FEATURES
- Linear voltage output vs %RH
- Laser trimmed interchangeability
- High accuracy, fast response
- Chemically resistant
- Stable, low drift performance
- Built-in static protection
- Ideal for dew point and absolute moisture measurements
- TO-39 housing

TYPICAL APPLICATIONS
- Refrigeration
- Drying
- Meteorology
- Battery-powered systems
- OEM assemblies

GENERAL INFORMATION
HIH-3602-A and HIH-3602-C Relative Humidity (RH) sensors combine both relative humidity and temperature sensing in a TO-5 housing with a hydrophobic sintered stainless steel filter.

The laser trimmed thermoset polymer capacitive sensing elements have on-chip integrated signal conditioning. The temperature sensor is thermally connected with the RH sensor making the HIH-3602-A/C ideal for measuring dew point and other absolute moisture terms. Factory calibration data supplied with each sensor allows individually matched downstream electronics and ±2% RH total accuracy.

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-3602-A</td>
<td>Monolithic IC humidity sensor with integral thermistor in TO-5 can</td>
</tr>
<tr>
<td>HIH-3602-C</td>
<td>Monolithic IC humidity sensor with integral precision RTD in TO-5 can</td>
</tr>
</tbody>
</table>

MOUNTING DIMENSIONS (for reference only)

| HIH-3602-A and HIH-3602-C |

INTERNAL PIN CONNECTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>(HIH-3602-A) Thermistor for temperature compensation</td>
</tr>
<tr>
<td>A, B</td>
<td>(HIH-3602-C) RTD for temperature compensation</td>
</tr>
<tr>
<td>C</td>
<td>+VDC supply</td>
</tr>
<tr>
<td>D</td>
<td>(−) Power or ground</td>
</tr>
<tr>
<td>E</td>
<td>VDC out</td>
</tr>
<tr>
<td>F</td>
<td>Case ground</td>
</tr>
</tbody>
</table>

CAUTION

PRODUCT DAMAGE
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take normal ESD precautions when handling this product.
PERFORMANCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>HIH-3602-A</th>
<th>HIH-3602-C</th>
</tr>
</thead>
</table>
| Temperature Sensor | Rb = 100 kΩ ±5% @ 25°C, NTC 0-50°C, β = 4143K, T = °K
R(T) = Rb exp (β(1/T-1/298.15)) | 100kΩ ±0.2% @ 0°C
Thin Film Platinum RTD
alpha = 0.00375 Ω/°C |
| Temperature Accuracy | ±3.0°C @ 25°C | ±0.5°C @ 25°C |
| RH Accuracy | ±2% RH, 0-100% RH non-condensing, 25°C, V_supply = 5 VDC |
| RH Interchangeability | ±5% RH, 0-60% RH; ±8% @ 90% RH |
| RH Linearity | ±0.5% RH typical |
| RH Hysteresis | ±1.2% of RH span maximum |
| RH Repeatability | ±0.5% RH |
| RH Response Time, 1/e | 50 sec in slowly moving air at 25°C |
| RH Stability | ±1% RH typical at 50% RH in 5 years |
| Power Requirements | Voltage Supply 4 to 5.8 VDC, sensor calibrated at 5 VDC
Current Supply 200 μA at 5 VDC, 2 mA typical at 9 VDC |
| Voltage Output | V_out = V_supply (0.0062 (Sensor RH) +0.16), typical @ 25°C
(Data printout provides a similar, but sensor specific, equation at 25°C.)
0.8 to 3.9 VDC output @ 25°C typical
Drive Limits Push/pull symmetric; 50 μA typical, 20 μA minimum, 100 μA maximum
Turn-on ≤0.1 second |
| Temp. Compensation | True RH = (Sensor RH)/(1.093-0012T), T in °F
Effect @ 0% RH ±0.007% RH/°C (negligible)
Effect @ 100% RH −0.22% RH/°C (<1% RH effect typical in occupied space systems above 15°C (59°F)) |
| Humidity Range | Operating 0 to 100% RH, non-condensing
Storage 0 to 90% RH, non-condensing |
| Temperature Range | Operating -40° to 85°C (−40° to 185°F)
Storage −40° to 125°C (−40° to 275°F) |
| Package | TO-5 with 60μ hydrophobic sintered stainless steel filter, resists condensation |
| Handling | Static sensitive diode protected to 15 kV maximum |

1. Extended exposure to ≥90% RH causes a reversible shift of 3% RH.
Humidity Sensors
HIH Series

FEATURES
- Linear voltage output vs %RH
- Laser trimmed interchangeability
- High accuracy
- Fast response
- Stable, low drift performance
- Chemically resistant
- Built-in static protection

TYPICAL APPLICATIONS
- Refrigeration
- Drying
- Meteorology
- Battery-powered systems
- OEM assemblies

GENERAL INFORMATION

The RH sensor is a thermoset polymer capacitive sensing element with on-chip integrated signal conditioning. On-board signal conditioning reduces product development times while a typical current draw of only 200 μA makes the HIH-3602-L perfect for battery powered systems.

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-3602-L</td>
<td>Integrated circuit humidity sensor in TO-39 can</td>
</tr>
<tr>
<td>HIH-3602-L-CP</td>
<td>Integrated circuit humidity sensor in TO-39 can with calibration and data printout</td>
</tr>
</tbody>
</table>

MOUNTING DIMENSIONS (for reference only)

INTERNAL PIN CONNECTIONS

<table>
<thead>
<tr>
<th>0.018 (0.46) dia. lead gold plated (6 places)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

NIST CALIBRATION
HIH-3602-L may be ordered with a NIST calibration and sensor specific data printout. Append "−CP" to the model number to order.

RH SENSOR CONSTRUCTION
Sensor construction consists of a planar capacitor with a second polymer layer to protect against dirt, dust, oils and other hazards.

CAUTION
PRODUCT DAMAGE
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take normal ESD precautions when handling this product.
Humidity Sensors
HIH Series

PERFORMANCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH Accuracy(^1)</td>
<td>±2% RH, 0-100% RH non-condensing, 25°C, (V_{\text{supply}} = 5) VDC</td>
</tr>
<tr>
<td>RH Interchangeability</td>
<td>±5% RH, 0-60% RH; ±8% at 90% RH typical</td>
</tr>
<tr>
<td>RH Linearity</td>
<td>±0.5% RH typical</td>
</tr>
<tr>
<td>RH Hysteresis</td>
<td>±1.2% of RH span maximum</td>
</tr>
<tr>
<td>RH Repeatability</td>
<td>±0.5% RH</td>
</tr>
<tr>
<td>RH Response Time, 1/e</td>
<td>30 seconds in slowly moving air at 25°C</td>
</tr>
<tr>
<td>RH Stability</td>
<td>±1% RH typical at 50% RH in 5 years</td>
</tr>
</tbody>
</table>

Power Requirements

- Voltage Supply: 4 to 5.8 VDC, sensor calibrated at 5 VDC
- Current Supply: 200 μA at 5 VDC, 2 mA typical at 9 VDC

Voltage Output

\[V_{\text{out}} = V_{\text{supply}} \times (0.0062 \text{ (Sensor RH)} + 0.16), \text{ typical @ 25°C} \]

\((\text{Data printout provides a similar, but sensor specific, equation at 25°C.)}\)

Drive Limits

- Push/pull symmetric; 50 μA typical, 20 μA minimum, 100 μA maximum
- Turn-on \(\leq 0.1\) second

Temp. Compensation

- True RH = \(\frac{\text{Sensor RH}}{1.093 - 0.0012T}\), T in °F
- True RH = \(\frac{\text{Sensor RH}}{1.0546 - 0.00216T}\), T in °C

Effect @ 0% RH
±0.007% RH/°C (negligible)

Effect @ 100% RH
−0.22% RH/°C (<1% RH effect typical in occupied space systems above 15°C (59°F))

Humidity Range

- Operating: 0 to 100% RH, non-condensing
- Storage: 0 to 90% RH, non-condensing\(^1\)

Temperature Range

- Operating: −40°C to 85°C (−40°F to 185°F)
- Storage: −40°C to 125°C (−40°F to 257°F)

Package

- Six pin TO-39 with slotted nickel cap\(^2\)

Handling

- Static sensitive, diode protected to 15 kV maximum

Notes:
1. Extended exposure to \(\geq 90\% \text{ RH}\) causes a reversible shift of 3% RH.
2. This sensor is light sensitive. For best results, shield the sensor from bright light.

OUTPUT VOLTAGE VS RELATIVE HUMIDITY (at 0°C)

OUTPUT VOLTAGE VS RELATIVE HUMIDITY (at 0°C, 25°C, and 85°C)
FEATURES
- Linear voltage output vs %RH
- Laser trimmed interchangeability
- Low power design
- High accuracy
- Fast response time
- Stable, low drift performance
- Chemically resistant

TYPICAL APPLICATIONS
- Refrigeration
- Drying
- Meteorology
- Battery-powered systems
- OEM assemblies

GENERAL INFORMATION
The HIH-3605 monolithic IC (Integrated Circuit) humidity sensor is designed specifically for high volume OEM (Original Equipment Manufacturer) users. Direct input to a controller or other device is made possible by this sensor’s linear voltage output. With a typical current draw of only 200 μA, the HIH-3605 is ideally suited for low drain, battery powered systems.

The HIH-3605 delivers instrumentation quality RH sensing performance in a low cost, solderable SIP (Single In-line Package). Available in two lead spacing configurations, the RH sensor is a laser trimmed thermoset polymer capacitive sensing element with on-chip integrated signal conditioning.

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-3605-A</td>
<td>Integrated circuit humidity sensor, 0.100 in. lead pitch SIP</td>
</tr>
<tr>
<td>HIH-3605-A-CP</td>
<td>Integrated circuit humidity sensor, 0.100 in. lead pitch SIP with calibration and data printout</td>
</tr>
<tr>
<td>HIH-3605-B</td>
<td>Integrated circuit humidity sensor, 0.050 in. lead pitch SIP</td>
</tr>
<tr>
<td>HIH-3605-B-CP</td>
<td>Integrated circuit humidity sensor, 0.050 in. lead pitch SIP with calibration and data printout</td>
</tr>
</tbody>
</table>

MOUNTING DIMENSIONS (for reference only)

HIH-3605-A

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>0.30</td>
</tr>
<tr>
<td>8.9</td>
<td>0.35</td>
</tr>
<tr>
<td>9.0</td>
<td>0.75</td>
</tr>
<tr>
<td>19.0</td>
<td></td>
</tr>
</tbody>
</table>

HIH-3605-B

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>0.15</td>
</tr>
<tr>
<td>6.0</td>
<td>0.025</td>
</tr>
<tr>
<td>0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>1.3</td>
<td>0.05</td>
</tr>
<tr>
<td>2.54</td>
<td>0.10</td>
</tr>
<tr>
<td>4.10</td>
<td></td>
</tr>
</tbody>
</table>

NIST CALIBRATION
HIH-3605 sensors may be ordered with a NIST calibration and sensor specific data printout. Append “−CP” to the model number to order.

RH SENSOR CONSTRUCTION
Sensor construction consists of a planar capacitor with a second polymer layer to protect against dirt, dust, oils and other hazards.

CAUTION
PRODUCT DAMAGE
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take normal ESD precautions when handling this product.
Performance Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH Accuracy</td>
<td>±2% RH, 0-100% RH non-condensing, 25°C, V<sub>supply</sub> = 5 VDC</td>
</tr>
<tr>
<td>RH Interchangeability</td>
<td>±5% RH, 0-60% RH; ±8% @ 90% RH typical</td>
</tr>
<tr>
<td>RH Linearity</td>
<td>±0.5% RH typical</td>
</tr>
<tr>
<td>RH Hysteresis</td>
<td>±1.2% of RH span maximum</td>
</tr>
<tr>
<td>RH Repeatability</td>
<td>±0.5% RH</td>
</tr>
<tr>
<td>RH Response Time, 1/e</td>
<td>15 sec in slowly moving air at 25°C</td>
</tr>
<tr>
<td>RH Stability</td>
<td>±1% RH typical at 50% RH in 5 years</td>
</tr>
<tr>
<td>Power Requirements</td>
<td></td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>4 to 5.8 VDC, sensor calibrated at 5 VDC</td>
</tr>
<tr>
<td>Current Supply</td>
<td>200 μA at 5 VDC, 2 mA typical at 9 VDC</td>
</tr>
<tr>
<td>Voltage Output</td>
<td>V<sub>out</sub> = V<sub>supply</sub> (0.0062 (Sensor RH) + 0.16), typical @ 25°C</td>
</tr>
<tr>
<td></td>
<td>(Data printout provides a similar, but sensor specific, equation at 25°C.)</td>
</tr>
<tr>
<td></td>
<td>V<sub>supply</sub> = 5 VDC</td>
</tr>
<tr>
<td>Drive Limits</td>
<td>Push/pull symmetric; 50 μA typical, 20 μA minimum, 100 μA maximum</td>
</tr>
<tr>
<td></td>
<td>Turn-on ≤ 0.1 second</td>
</tr>
<tr>
<td>Temp. Compensation</td>
<td>True RH = (Sensor RH)/(1.093 - 0.0012T), T in °F</td>
</tr>
<tr>
<td>Effect @ 0% RH</td>
<td>True RH = (Sensor RH)/(1.0546 - 0.00216T), T in °C</td>
</tr>
<tr>
<td></td>
<td>±0.007% RH/°C (negligible)</td>
</tr>
<tr>
<td></td>
<td>Effect @ 100% RH -0.22% RH/°C (<1% RH effect typical in occupied space systems above 15°C (59°F))</td>
</tr>
<tr>
<td>Humidity Range</td>
<td>Operating 0 to 100% RH, non-condensing</td>
</tr>
<tr>
<td></td>
<td>Storage 0 to 90% RH, non-condensing</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Operating -40° to 85°C (-40° to 185°F)</td>
</tr>
<tr>
<td></td>
<td>Storage -51° to 125°C (-60° to 257°F)</td>
</tr>
<tr>
<td>Package</td>
<td>Three pin solderable ceramic SIP</td>
</tr>
<tr>
<td>Handling</td>
<td>Static sensitive diode protected to 15 kV maximum</td>
</tr>
</tbody>
</table>

Notes:
1. Extended exposure to ≥90% RH causes a reversible shift of 3% RH.
2. This sensor is light sensitive. For best results, shield the sensor from bright light.

Output Voltage vs Relative Humidity

- **Output Voltage vs Relative Humidity (at 0°C)**
- **Output Voltage vs Relative Humidity (at 0°C, 25°C, and 85°C)**
HCH-1000 Series
Capacitive Humidity Sensor

DESCRIPTION
The HCH-1000 series humidity sensor is a capacitive polymer sensor designed for relative humidity measurement. The sensor converts humidity value into capacitance, which can be measured electronically.

Polyimide is used as a humidity sensing material because of its inherent IC (Integrated Circuit) processing compatibility, reduced temperature dependence and enhanced resistance against contamination. The HCH-1000-Series is manufactured using semiconductor technology.

FEATURES
- Polymer sensing offers enhanced resistance against contamination
- Reduced temperature dependence
- Semiconductor fabrication technology
- Uses glass wafer as substrate
- Enhanced sensitivity and accuracy, fast response
- Low hysteresis and long-term stability

POTENTIAL APPLICATIONS
- Hygrometers, consumer goods
- Humidifiers and dehumidifiers
- Medical
- Automotive
- HVAC systems
- Weather stations

The sensor consists of a grid top electrode, a polyimide layer, and a bottom electrode. The grid top electrode on the bottom electrode provides enhanced sensitivity when compared to that of a standard structure.

A cased version, for dust protection, and an uncased version are available.
HCH-1000 Series

SPECIFICATIONS (T_A = 25 °C [77 °F], Input Voltage = 1 V_RMS, Frequency = 20 kHz)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal capacitance</td>
<td>310</td>
<td>330</td>
<td>350</td>
<td>pF</td>
<td>at 55% RH</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.55</td>
<td>0.60</td>
<td>0.65</td>
<td>pF/%RH</td>
<td>10% RH to 95% RH</td>
</tr>
<tr>
<td>Humidity hysteresis</td>
<td>–</td>
<td>±2</td>
<td>–</td>
<td>%RH</td>
<td>–</td>
</tr>
<tr>
<td>Linearity</td>
<td>–</td>
<td>±2</td>
<td>–</td>
<td>%RH</td>
<td>–</td>
</tr>
<tr>
<td>Response time</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>sec</td>
<td>30% RH to 90% RH</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>pF/°C</td>
<td>5 °C to 70 °C [41 °F to 158 °F]</td>
</tr>
<tr>
<td>Long-term stability (drift)</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>%RH/year</td>
<td>–</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-40</td>
<td>-</td>
<td>120</td>
<td>°C [°F]</td>
<td>–</td>
</tr>
<tr>
<td>Operating humidity range</td>
<td>0%</td>
<td>–</td>
<td>100%</td>
<td>RH</td>
<td>–</td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>1</td>
<td>–</td>
<td>100</td>
<td>kHz</td>
<td>–</td>
</tr>
</tbody>
</table>

FIGURE 1: FREQUENCY CHARACTERISTICS

FIGURE 2: TYPICAL HUMIDITY RESPONSE

(Sensitivity = 0.6 pF/%RH)

FIGURE 3: TEMPERATURE CHARACTERISTICS (At 1 V_RMS and 20 kHz)
Capacitive Humidity Sensors

FIGURE 4: MOUNTING DIMENSIONS (For reference only: mm [in])

HCH-1000-001

HCH-1000-002

ENVIRONMENTAL TEST SYSTEM

Figure 5 depicts environmental testing. The devices are characterized at 25 °C [77 °F] between 20% RH and 95% RH. The meter is set to measure capacitance at 1 V and 20 kHz.

For a precise measurement, a hygrometer is compared with the humidity of the temperature-humidity chamber.

The data output indicates the effect of sensor characterization before/after environmental tests.

FIGURE 5: ENVIRONMENTAL TEST SYSTEM DIAGRAM

<table>
<thead>
<tr>
<th>Test specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>25 °C [77 °F]</td>
</tr>
<tr>
<td>Voltage</td>
<td>1 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Test humidity range</td>
<td>10% RH to 98% RH</td>
</tr>
</tbody>
</table>

Software program: hitester
Chamber temperature compensation range: 25 °C ±0.5 °C [77 °F ±0.9 °F]
Chamber humidity compensation range: ±3% RH
ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCH-1000-001</td>
<td>HCH Series capacitive polymer humidity sensor, 2.54 mm [0.100 in] lead pitch SIP</td>
</tr>
<tr>
<td>HCH-1000-002</td>
<td>HCH Series capacitive polymer humidity sensor, 2.54 mm [0.100 in] lead pitch SIP, cased version</td>
</tr>
</tbody>
</table>

WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

- **E-mail:** info.sc@honeywell.com
- **Internet:** www.honeywell.com/sensing
- **Phone and Fax:**
 - Asia Pacific +65 6355-2828 +65 6445-3033 Fax
 - Europe +44 (0) 1698 481481 +44 (0) 1698 481676 Fax
 - Latin America +1-305-805-8188 +1-305-883-8257 Fax
 - USA/Canada +1-800-537-6945 +1-815-235-6847 +1-815-235-6545 Fax
HIH-4000 Series
Humidity Sensors

DESCRIPTION
The HIH-4000 Series Humidity Sensors are designed specifically for high volume OEM (Original Equipment Manufacturer) users.

Direct input to a controller or other device is made possible by this sensor’s near linear voltage output. With a typical current draw of only 200 µA, the HIH-4000 Series is often ideally suited for low drain, battery operated systems.

Tight sensor interchangeability reduces or eliminates OEM production calibration costs. Individual sensor calibration data is available.

FEATURES
- Molded thermoset plastic housing
- Near linear voltage output vs % RH
- Laser trimmed interchangeability
- Low power design
- Enhanced accuracy
- Fast response time
- Stable, low drift performance
- Chemically resistant

The HIH-4000 Series delivers instrumentation-quality RH (Relative Humidity) sensing performance in a competitively priced, solderable SIP (Single In-line Package).

Available in two lead spacing configurations, the RH sensor is a laser trimmed, thermoset polymer capacitive sensing element with on-chip integrated signal conditioning.

The sensing element’s multilayer construction provides excellent resistance to most application hazards such as wetting, dust, dirt, oils and common environmental chemicals.

POTENTIAL APPLICATIONS
- Refrigeration equipment
- HVAC (Heating, Ventilation and Air Conditioning) equipment
- Medical equipment
- Drying
- Metrology
- Battery-powered systems
- OEM assemblies

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Table 1. Performance Specifications (At 5 Vdc supply and 25 ºC [77 ºF] unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0% RH to 59% RH</td>
<td>–5</td>
<td>–</td>
<td>5</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>60% RH to 100% RH</td>
<td>–8</td>
<td>–</td>
<td>8</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3.5</td>
<td>–</td>
<td>+3.5</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability</td>
<td>–</td>
<td>–</td>
<td>70 ms</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Setting time</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Stability (at 50% RH)</td>
<td>–</td>
<td>1.2</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>4</td>
<td>–</td>
<td>5.8</td>
<td>Vdc</td>
<td>2</td>
</tr>
<tr>
<td>Current supply</td>
<td>–</td>
<td>200</td>
<td>500</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>Voltage output (1st order curve fit)</td>
<td>$V_{OUT} = (V_{SUPPLY})(0.0062\text{(sensor RH)} + 0.16)$, typical at 25 ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>True RH = (Sensor RH)/(1.0546 – 0.00216T), T in ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage temperature, coefficient at 50% RH, 5 V</td>
<td>–</td>
<td>-4</td>
<td>–</td>
<td>mV/ºC</td>
<td>–</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40[-40]</td>
<td>See Figure 1.</td>
<td>85[185]</td>
<td>ºC[ºF]</td>
<td>–</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>3</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-50[-58]</td>
<td>–</td>
<td>125[257]</td>
<td>%RH</td>
<td>–</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>See Figure 2.</td>
<td>–</td>
<td>–</td>
<td>% RH</td>
<td>3</td>
</tr>
</tbody>
</table>

Specific Notes:
1. Can only be achieved with the supplied slope and offset.
 For HIH-4000-003 and HIH-4000-004 catalog listings only.
2. Device is calibrated at 5 V dc and 25 ºC.
3. Non-condensing environment.

General Notes:
- Sensor is ratiometric to supply voltage.
- Extended exposure to >90% RH causes a reversible shift of 3% RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.

FACTORY CALIBRATION DATA

HIH-4000 Sensors may be ordered with a calibration and data printout. See Table 2 and the order guide on the back page.

Table 2. Example Data Printout

<table>
<thead>
<tr>
<th>Model</th>
<th>HIH-4000-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>92</td>
</tr>
<tr>
<td>Wafer</td>
<td>030996M</td>
</tr>
<tr>
<td>MRP</td>
<td>337313</td>
</tr>
<tr>
<td>Calculated values at 5 V</td>
<td></td>
</tr>
<tr>
<td>V_{OUT} at 0% RH</td>
<td>0.826 V</td>
</tr>
<tr>
<td>V_{OUT} at 75.3% RH</td>
<td>3.198 V</td>
</tr>
<tr>
<td>Linear output for 3.5% RH accuracy at 25 ºC</td>
<td></td>
</tr>
<tr>
<td>Zero offset</td>
<td>0.826 V</td>
</tr>
<tr>
<td>Slope</td>
<td>31.483 mV/%RH</td>
</tr>
<tr>
<td>RH</td>
<td>(V_{OUT} - zero offset)/slope = (V_{OUT} - 0.826)/0.0315</td>
</tr>
<tr>
<td>Ratiometric response for 0% RH to 100% RH</td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V_{SUPPLY} (0.1652 to 0.7952)</td>
</tr>
</tbody>
</table>
Humidity Sensors

Figure 1. Operating Environment (Non-condensing environment.)

-Recommended operating zone
-Operating zone limited to <50 hours
-No specification zone

Figure 2. Storage Environment (Non-condensing environment.)

-Recommended storage zone
HIH-4000 Series

Figure 3. Typical Output Voltage vs Relative Humidity (At 25 ºC and 5 V.)

Figure 4. Typical Output Voltage (BFSL) vs Relative Humidity (At 0 ºC, 70 ºC and 5 V.)
Figure 5. Mounting Dimensions (For reference only. mm/[in])

Figure 6. Typical Application Circuit

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-4000-001</td>
<td>Integrated circuit humidity sensor, 2.54 mm [0.100 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4000-002</td>
<td>Integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4000-003</td>
<td>Integrated circuit humidity sensor, 2.54 mm [0.100 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4000-004</td>
<td>Integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4000-005</td>
<td>Equivalent to HIH-4000-001</td>
</tr>
</tbody>
</table>

ADDITIONAL HUMIDITY SENSOR INFORMATION

See the following associated literature at www.honeywell.com/sensing:

- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors
WARNING
MISUSE OF DOCUMENTATION
- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

WARNING
PERSONAL INJURY
DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.
Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY
Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE
Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com
Internet: www.honeywell.com/sensing

Phone and Fax:
Asia Pacific +65 6355-2828
+65 6445-3033 Fax
Europe +44 (0) 1698 481481
+44 (0) 1698 481676 Fax
Latin America +1-305-805-8188
+1-305-883-8257 Fax
USA/Canada +1-800-537-6945
+1-815-235-6847
+1-815-235-6545 Fax

Sensing and Control
Honeywell
1985 Douglas Drive North
Golden Valley, MN 55422
www.honeywell.com/sensing
HIH-4010/4020/4021 Series
Humidity Sensors

DESCRIPTION
The HIH-4010/4020/4021 Series Humidity Sensors are designed specifically for high volume OEM (Original Equipment Manufacturer) users.

Direct input to a controller or other device is made possible by this sensor’s near linear voltage output. With a typical current draw of only 200 µA, the HIH-4010/4020/4021 Series is often ideally suited for low drain, battery operated systems.

Tight sensor interchangeability reduces or eliminates OEM production calibration costs. Individual sensor calibration data is available.

The HIH-4010/4020/4021 Series delivers instrumentation-quality RH (Relative Humidity) sensing performance in a competitively priced, solderable SIP (Single In-line Package).

FEATURES
- Molded thermoset plastic housing
- Near linear voltage output vs %RH
- Laser trimmed interchangeability
- Low power design
- Enhanced accuracy
- Fast response time
- Stable, low drift performance
- Chemically resistant

POTENTIAL APPLICATIONS
- Refrigeration equipment
- HVAC (Heating, Ventilation and Air Conditioning) equipment
- Medical equipment
- Drying
- Metrology
- Battery-powered systems
- OEM assemblies

The HIH-4010 is an uncovered integrated humidity sensor, the HIH-4020 is a covered integrated circuit humidity sensor, and the HIH-4021 is a covered, condensation-resistant, integrated circuit humidity sensor. All three products are available in two lead space configurations.

The RH sensor is a laser trimmed, thermoset polymer capacitive sensing element with on-chip integrated signal conditioning.

The sensing element's multilayer construction provides excellent resistance to most application hazards such as wetting, dust, dirt, oils and common environmental chemicals. Both products are available in two lead spacing configurations, as well as with or without calibration and data printouts.
HIH-4010/4020/4021 Series

TABLE 1. PERFORMANCE SPECIFICATIONS (At 5 Vdc supply and 25 °C [77 °F] unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0% RH to 59% RH</td>
<td>-5</td>
<td>–</td>
<td>5</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>60% RH to 100% RH</td>
<td>-8</td>
<td>–</td>
<td>8</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3.5</td>
<td>–</td>
<td>+3.5</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Setting time</td>
<td>–</td>
<td>–</td>
<td>70 ms</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Stability (at 50 %RH in 1 year)</td>
<td>–</td>
<td>±1.2</td>
<td>–</td>
<td>% RH</td>
<td>2</td>
</tr>
<tr>
<td>Stability (at 50 %RH in 1 year)</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>3</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>4</td>
<td>–</td>
<td>5.8</td>
<td>Vdc</td>
<td>4</td>
</tr>
<tr>
<td>Current supply</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>μA</td>
<td>–</td>
</tr>
<tr>
<td>Voltage output (1° order curve fit)</td>
<td>$V_{OUT} = (V_{SUPPLY})(0.00062(sensor RH) + 0.16)$, typical at 25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>True RH = (Sensor RH)/(1.0546 – 0.00216T), T in °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage temp. coefficient at 50% RH, 5 V</td>
<td>–</td>
<td>-4</td>
<td>–</td>
<td>mV/°C</td>
<td>–</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40[-40]</td>
<td>See Figure 1.</td>
<td>85[185]</td>
<td>°C[°F]</td>
<td>–</td>
</tr>
<tr>
<td>Operating humidity (HIH-4010)</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>5</td>
</tr>
<tr>
<td>Operating humidity (HIH-4020)</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>5</td>
</tr>
<tr>
<td>Operating humidity (HIH-4021)</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>–</td>
<td>–</td>
<td>% RH</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Specific Notes:
1. For HIH-4010/20/21-003/004 catalog listings only.
2. Includes testing outside of recommended operating zone.
3. Includes testing for recommended operating zone only.
4. Device is calibrated at 5 Vdc and 25 °C.
5. Non-condensing environment. When liquid water falls on the humidity sensor die, output goes to a low rail condition indicating no humidity.

General Notes:
- Sensor is ratiometric to supply voltage.
- Extended exposure to >90% RH causes a reversible shift of 3% RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.

FACTORY CALIBRATION DATA
HIH-4010/4020/4021 Sensors may be ordered with a calibration and data printout. See Table 2 and the order guide on the back page.

TABLE 2. EXAMPLE DATA PRINTOUT

<table>
<thead>
<tr>
<th>Model</th>
<th>HIH-4010-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>92</td>
</tr>
<tr>
<td>Wafer</td>
<td>030996M</td>
</tr>
<tr>
<td>MRP</td>
<td>333713</td>
</tr>
<tr>
<td>Calculated values at 5 V</td>
<td></td>
</tr>
<tr>
<td>V_{OUT} at 0% RH</td>
<td>0.958 V</td>
</tr>
<tr>
<td>V_{OUT} at 75.3% RH</td>
<td>3.268 V</td>
</tr>
<tr>
<td>Linear output for 3.5% RH accuracy at 25 °C</td>
<td></td>
</tr>
<tr>
<td>Zero offset</td>
<td>0.958 V</td>
</tr>
<tr>
<td>Slope</td>
<td>30.680 mV/%RH</td>
</tr>
<tr>
<td>(V_{OUT} - zero offset)/slope (V_{OUT} - 0.958)/0.0307</td>
<td></td>
</tr>
<tr>
<td>Ratiometric response for 0% RH to 100% RH</td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V_{SUPPLY} (0.1915 to 0.8130)</td>
</tr>
</tbody>
</table>
FIGURE 1. OPERATING ENVIRONMENT (Non-condensing environment for HIH-4010 and HIH-4020 catalog listings only.)

FIGURE 2. STORAGE ENVIRONMENT (Non-condensing environment for HIH-4010 and HIH-4020 catalog listings only.)
HIH-4010/4020/4021 Series

FIGURE 3. TYPICAL OUTPUT VOLTAGE VS RELATIVE HUMIDITY (At 25 °C and 5 V.)

FIGURE 4. TYPICAL OUTPUT VOLTAGE (BFSL) VS RELATIVE HUMIDITY (At 0 °C, 70 °C and 5 V.)
Humidity Sensors

FIGURE 5. HIH-4010 MOUNTING DIMENSIONS (For reference only. mm/[in])

FIGURE 6. HIH-4020 MOUNTING DIMENSIONS (For reference only. mm/[in])
HIH-4010/4020/4021 Series

FIGURE 7. HIH-4021 MOUNTING DIMENSIONS (For reference only, mm/[in])

 Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Humidity Sensors

FIGURE 8. TYPICAL APPLICATION CIRCUIT

![Circuit Diagram]

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-4010-001</td>
<td>Integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4010-002</td>
<td>Integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4010-003</td>
<td>Integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4010-004</td>
<td>Integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4020-001</td>
<td>Covered integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4020-002</td>
<td>Covered integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4020-003</td>
<td>Covered integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4020-004</td>
<td>Covered integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4021-001</td>
<td>Covered, filtered integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4021-002</td>
<td>Covered, filtered integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP</td>
</tr>
<tr>
<td>HIH-4021-003</td>
<td>Covered, filtered integrated circuit humidity sensor, 2.45 mm [0.100 in] lead pitch SIP, calibration and data printout</td>
</tr>
<tr>
<td>HIH-4021-004</td>
<td>Covered, filtered integrated circuit humidity sensor, 1.27 mm [0.050 in] lead pitch SIP, calibration and data printout</td>
</tr>
</tbody>
</table>

FURTHER HUMIDITY SENSOR INFORMATION

See the following associated literature at www.honeywell.com/sensing:

- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors
WARNING
MISUSE OF DOCUMENTATION
- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

WARNING
PERSONAL INJURY
DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.
Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY
Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE
Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com
Internet: www.honeywell.com/sensing

Phone and Fax:
Asia Pacific +65 6355-2828
+65 6445-3033 Fax
Europe +44 (0) 1698 481481
+44 (0) 1698 481676 Fax
Latin America +1-305-805-8188
+1-305-883-8257 Fax
USA/Canada +1-800-537-6945
+1-815-235-6847
+1-815-235-6545 Fax
HIH-4030/31 Series
Humidity Sensors

DESCRIPTION
Honeywell has expanded our HIH Series to include an SMD (Surface Mount Device) product line: the new HIH 4030/4031. The HIH 4030/4031 complements our existing line of non-SMD humidity sensors. SMD packaging on tape and reel allows for use in high volume, automated pick and place manufacturing, eliminating lead misalignment to printed circuit board through-hole.

The HIH-4030/4031 Series Humidity Sensors are designed specifically for high volume OEM (Original Equipment Manufacturer) users. Direct input to a controller or other device is made possible by this sensor’s near linear voltage output. With a typical current draw of only 200 μA, the HIH-4030/4031 Series is often ideally suited for low drain, battery operated systems.

Tight sensor interchangeability reduces or eliminates OEM production calibration costs. Individual sensor calibration data is available.

FEATURES
- Tape and reel packaging allows for use in high volume pick and place manufacturing (1,000 units per tape and reel)
- Molded thermoset plastic housing
- Near linear voltage output vs %RH
- Laser trimmed interchangeability
- Low power design
- Enhanced accuracy
- Fast response time
- Stable, low drift performance
- Chemically resistant

The HIH-4030/4031 Series delivers instrumentation-quality RH (Relative Humidity) sensing performance in a competitively priced, solderable SMD.

The HIH-4030 is a covered integrated circuit humidity sensor. The HIH-4031 is a covered, condensation-resistant, integrated circuit humidity sensor that is factory-fitted with a hydrophobic filter allowing it to be used in condensing environments including industrial, medical and commercial applications.

The RH sensor uses a laser trimmed, thermostet polymer capacitive sensing element with on-chip integrated signal conditioning.

The sensing element's multilayer construction provides excellent resistance to most application hazards such as condensation, dust, dirt, oils and common environmental chemicals.

Sample packs are available. See order guide.

POTENTIAL APPLICATIONS
- Refrigeration equipment
- HVAC (Heating, Ventilation and Air Conditioning) equipment
- Medical equipment
- Drying
- Metrology
- Battery-powered systems
- OEM assemblies
TABLE 1. PERFORMANCE SPECIFICATIONS (At 5 Vdc supply and 25 °C [77 °F] unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0% RH to 59% RH</td>
<td>-5</td>
<td>–</td>
<td>5</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>60% RH to 100% RH</td>
<td>-8</td>
<td>–</td>
<td>8</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3.5</td>
<td>–</td>
<td>+3.5</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>±3</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Setting time</td>
<td>–</td>
<td>–</td>
<td>70</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Stability (at 50% RH in a year)</td>
<td>–</td>
<td>±1.2</td>
<td>–</td>
<td>% RH</td>
<td>2</td>
</tr>
<tr>
<td>Stability (at 50% RH in a year)</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>3</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>4</td>
<td>–</td>
<td>5.8</td>
<td>Vdc</td>
<td>4</td>
</tr>
<tr>
<td>Current supply</td>
<td>–</td>
<td>200</td>
<td>500</td>
<td>μA</td>
<td>–</td>
</tr>
<tr>
<td>Voltage output (1st order curve fit)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output voltage temp. coefficient at 50% RH, 5 V</td>
<td>–</td>
<td>-4</td>
<td>–</td>
<td>mV/°C</td>
<td>–</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40[-40]</td>
<td>See Figure 1.</td>
<td>85[185]</td>
<td>°C(°F)</td>
<td>–</td>
</tr>
<tr>
<td>Operating humidity (HIH-4030)</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>5</td>
</tr>
<tr>
<td>Operating humidity (HIH-4031)</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-50[58]</td>
<td>–</td>
<td>125[257]</td>
<td>°C(°F)</td>
<td>–</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>% RH</td>
<td>5</td>
</tr>
</tbody>
</table>

Specific Notes:
1. Can only be achieved with the supplied slope and offset. For HIH-4030/31-003 catalog listings only.
2. Includes testing outside of recommended operating zone.
3. Includes testing for recommended operating zone only.
4. Device is calibrated at 5 Vdc and 25 °C.
5. Non-condensing environment. When liquid water falls on the humidity sensor die, output goes to a low rail condition indicating no humidity.

FACTORY CALIBRATION DATA
HIH-4030/31 Sensors may be ordered with a calibration and data printout. See Table 2 and the order guide on the back page.

TABLE 2. EXAMPLE DATA PRINTOUT

<table>
<thead>
<tr>
<th>Model</th>
<th>HIH-4030-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>92</td>
</tr>
<tr>
<td>Wafer</td>
<td>030996M</td>
</tr>
<tr>
<td>MRP</td>
<td>337313</td>
</tr>
<tr>
<td>Calculated values at 5 V</td>
<td></td>
</tr>
<tr>
<td>V<sub>out</sub> at 0% RH</td>
<td>0.958 V</td>
</tr>
<tr>
<td>V<sub>out</sub> at 75.3% RH</td>
<td>3.268 V</td>
</tr>
<tr>
<td>Linear output for 3.5% RH accuracy at 25 °C</td>
<td></td>
</tr>
<tr>
<td>Zero offset</td>
<td>0.958 V</td>
</tr>
<tr>
<td>Slope</td>
<td>30.680 mV/%RH</td>
</tr>
<tr>
<td>Sensor RH</td>
<td>(V<sub>out</sub> - zero offset)/slope</td>
</tr>
<tr>
<td>(V<sub>out</sub> - 0.958)/0.0307</td>
<td></td>
</tr>
<tr>
<td>Ratiometric response for 0% RH to 100% RH</td>
<td></td>
</tr>
<tr>
<td>V<sub>out</sub></td>
<td>V<sub>supply</sub> (0.1915 to 0.8130)</td>
</tr>
</tbody>
</table>

General Notes:
- Sensor is ratiometric to supply voltage.
- Extended exposure to >90% RH causes a reversible shift of 3% RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.
Humidity Sensors

FIGURE 1. OPERATING ENVIRONMENT (Non-condensing environment for HIH-4030 catalog listings only.)

Recommended operating zone
Operating zone limited to <50 hours
No specification zone

FIGURE 2. STORAGE ENVIRONMENT (Non-condensing environment for HIH-4030 catalog listings only.)

Recommended storage zone
HIH-4030/31 Series

FIGURE 3. TYPICAL OUTPUT VOLTAGE VS RELATIVE HUMIDITY (At 25 °C and 5 V.)

FIGURE 4. TYPICAL OUTPUT VOLTAGE (BFSL) VS RELATIVE HUMIDITY (At 0 °C, 70 °C and 5 V.)
FIGURE 5. HIH-4030 MOUNTING DIMENSIONS (For reference only. mm/[in])
Humidity Sensors

FIGURE 8. TAPE AND REEL DIMENSIONS (For reference only. mm/[in])

FIGURE 9. TYPICAL APPLICATION CIRCUIT

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-4030-001</td>
<td>Covered integrated circuit humidity sensor, SMD, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-4030-003</td>
<td>Covered integrated circuit humidity sensor, SMD, calibration and data printout, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-4031-001</td>
<td>Covered, filtered integrated circuit humidity sensor, SMD, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-4031-003</td>
<td>Covered, filtered integrated circuit humidity sensor, SMD, calibration and data printout, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-4030-001S</td>
<td>Sample pack: covered integrated circuit humidity sensor, SMD, five units on tape</td>
</tr>
<tr>
<td>HIH-4030-003S</td>
<td>Sample pack: covered integrated circuit humidity sensor, SMD, calibration and data printout, five units on tape</td>
</tr>
<tr>
<td>HIH-4031-001S</td>
<td>Sample pack: covered, filtered integrated circuit humidity sensor, SMD, sample pack, five units on tape</td>
</tr>
<tr>
<td>HIH-4031-003S</td>
<td>Sample pack: covered, filtered integrated circuit humidity sensor, SMD, calibration and data printout, five units on tape</td>
</tr>
</tbody>
</table>

FURTHER HUMIDITY SENSOR INFORMATION

See the following associated literature is available on the Web:

- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
WARNING
MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

WARNING
PERSONAL INJURY
DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.
Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY
Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE
Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com
Internet: www.honeywell.com/sensing

Phone and Fax:
Asia Pacific +65 6355-2828
+65 6445-3033 Fax
Europe +44 (0) 1698 481481
+44 (0) 1698 481676 Fax
Latin America +1-305-805-8188
+1-305-883-8257 Fax
USA/Canada +1-800-537-6945
+1-815-235-6847
+1-815-235-6545 Fax
HIH-4602-A/C Series
Humidity Sensors

DESCRIPTION
HIH-4602-A/C Series Relative Humidity (RH) sensors combine both relative humidity and temperature sensing in a TO-5 housing with a hydrophobic sintered stainless steel filter.

The laser-trimmed, thermoset polymer capacitive sensing elements have on-chip integrated signal conditioning.

The temperature sensor is thermally connected with the RH sensor making the HIH-4602-A/C often ideal for measuring dew point and other absolute moisture terms.

The HIH-4602-A contains an integral thermistor, while the HIH-4602-C contains an integral precision RTD.

Factory calibration data supplied with each sensor allows individually matched downstream electronics and ±3.5 %RH total accuracy.

FEATURES
- Near linear voltage output vs %RH
- Laser-trimmed interchangeability
- Enhanced accuracy, fast response
- Chemically resistant
- Stable, low drift performance
- Built-in static protection
- Often ideal for dew point and absolute moisture measurements
- TO-5 housing

POTENTIAL APPLICATIONS
- Refrigeration
- Drying
- Meteorology
- Battery-powered systems
- OEM (Original Equipment Manufacturer) assemblies
HIH-4602-A/C Series

TABLE 1. PERFORMANCE SPECIFICATIONS (At 5 Vdc supply and 25 °C [77 °F] unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0% RH to 59% RH</td>
<td>-5</td>
<td>–</td>
<td>5</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>60% RH to 100% RH</td>
<td>-8</td>
<td>–</td>
<td>8</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3.5</td>
<td>–</td>
<td>+3.5</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>±3</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Settling time</td>
<td>–</td>
<td>–</td>
<td>70</td>
<td>ms</td>
<td>–</td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Stability (at 50% RH in one year)</td>
<td>–</td>
<td>±1.2</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>4</td>
<td>–</td>
<td>5.8</td>
<td>Vdc</td>
<td>–</td>
</tr>
<tr>
<td>Current supply</td>
<td>–</td>
<td>200</td>
<td>500</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>Output voltage temp. coefficient at 50% RH, 5 V</td>
<td>–</td>
<td>-4</td>
<td>–</td>
<td>mV/ºC</td>
<td>–</td>
</tr>
<tr>
<td>Voltage output (1st order curve fit)</td>
<td>$V_{OUT} = (V_{SUPPLY})(0.0062(sensor RH) + 0.16)$, typical at 25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>True RH = (sensor RH)/(1.0546-0.00216T), T in ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40[-40]</td>
<td>See Figure 1.</td>
<td>85[185]</td>
<td>ºC[ºF]</td>
<td>–</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>0</td>
<td>See Figure 1.</td>
<td>100</td>
<td>% RH</td>
<td>2</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-50[-58]</td>
<td>–</td>
<td>125[257]</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>See Figure 2.</td>
<td>–</td>
<td>–</td>
<td>% RH</td>
<td>2</td>
</tr>
</tbody>
</table>

Specific Notes:
1. Device is calibrated at 5 Vdc and 25 °C.
2. Non-condensing environment.

FACTOR CALIBRATION DATA

HIH-4602 Sensors are supplied with a calibration and data printout. See Table 2.

TABLE 2. EXAMPLE DATA PRINTOUT

<table>
<thead>
<tr>
<th>Model</th>
<th>HIH-4602-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>92</td>
</tr>
<tr>
<td>Wafer</td>
<td>030996M</td>
</tr>
<tr>
<td>MRP</td>
<td>337313</td>
</tr>
<tr>
<td>Rb</td>
<td>100 kOhm ±5% at 25 ºC</td>
</tr>
</tbody>
</table>

Linear output for 3.5% RH accuracy at 25 ºC

- Zero offset: 0.826 V
- Slope of RH: 3.198 V

Ratiometric response for 0% RH to 100% RH

- V$_{OUT}$ = V$_{SUPPLY}$ (0.1652 to 0.7952)

TABLE 3. HIH-4602-A NTC THERMISTOR TEMPERATURE SPECIFICATIONS

- $R_b = 100 \text{kOhm} \pm 5\% \text{ at } 25 \text{ ºC}$
- $\beta = 4250$, 25 ºC to 85 ºC

1/T = a + b(Ln R) + c(Ln R)^3, T in degrees K

- Low: a = 0.000828083, b = 0.000208691, c = 8.0812E-08

TABLE 4. HIH-4602-C RTD TEMPERATURE SENSOR SPECIFICATIONS

- Thin film platinum RTD – Class 2B (Ro: ±0.25%)
- DIN EN 60571 (PER IEC 751)
- TCR = 3750 ppm/ºC
- 1000 Ohm at 0 ºC [32 ºF]

General Notes:
- Sensor is ratiometric to supply voltage.
- Extended exposure to >90% RH causes a reversible shift of 3% RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.
Humidity Sensors

FIGURE 1. OPERATING ENVIRONMENT (Non-condensing environment.)

Temperature °C

Relative Humidity

- Recommended operating zone
- Operating zone limited to <60 hours
- No specification zone

FIGURE 2. STORAGE ENVIRONMENT (Non-condensing environment.)

Temperature °C

Relative Humidity

- Recommended storage zone
HIH-4602-A/C Series

FIGURE 3. TYPICAL OUTPUT VOLTAGE VS RELATIVE HUMIDITY (At 25 °C and 5 V.)

FIGURE 4. TYPICAL OUTPUT VOLTAGE (BFSL) VS RELATIVE HUMIDITY (At 0 °C, 70 °C and 5 V.)
Humidity Sensors

FIGURE 5. HIH-4602-A/C 1MOUNTING DIMENSIONS (For reference only. mm/[in])

1. Case ground
2. Vdc out
3. (-) Power or ground
4. (+) Vdc supply
5., 6. HIH-4602-A thermistor for temperature compensation
5., 6. HIH-4602-C RTD for temperature compensation

FIGURE 6. RH SENSOR CONSTRUCTION
Sensor construction consists of a planar capacitor with a second polymer layer to protect against dirt, dust, oils and other hazards.
HIH-4602-A/C Series

FIGURE 7. TYPICAL APPLICATION CIRCUIT

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-4602-A</td>
<td>Monolithic IC humidity sensor with integral thermistor in TO-5 can</td>
</tr>
<tr>
<td>HIH-4602-C</td>
<td>Monolithic IC humidity sensor with integral precision RTD in TO-5 can</td>
</tr>
</tbody>
</table>

FURTHER HUMIDITY SENSOR INFORMATION

See the following associated literature at www.honeywell.com/sensing:
- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors
WARNING
MISUSE OF DOCUMENTATION
• The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
• Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY
Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE
Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com
Internet: www.honeywell.com/sensing

Phone and Fax:
Asia Pacific +65 6355-2828
+65 6445-3033 Fax
Europe +44 (0) 1698 481481
+44 (0) 1698 481676 Fax
Latin America +1-305-805-8188
+1-305-883-8257 Fax
USA/Canada +1-800-537-6945
+1-815-235-6847
+1-815-235-6545 Fax

© 2007 Honeywell International Inc. All rights reserved.
HIH-4602-L Series
Humidity Sensors

DESCRIPTION
HIH-4602-L Series Relative Humidity (RH) sensors are designed to deliver RH sensing in a rugged, low-cost slotted TO-5 can.

The laser-trimmed, thermoset polymer capacitive sensing elements have on-chip integrated signal conditioning, helping to reduce product development times.

A typical current draw of only 200 µA allows use in battery-powered systems.

HIH-4602-L-CP sensors include a calibration and data printout to allow individually matched downstream electronics and ±3.5 %RH total accuracy.

FEATURES
• Near linear voltage output vs %RH
• Laser-trimmed interchangeability
• Enhanced accuracy, fast response
• Chemically resistant
• Stable, low drift performance
• Built-in static protection
• TO-5 can

POTENTIAL APPLICATIONS
• Refrigeration
• Drying
• Meteorology
• Battery-powered systems
• OEM (Original Equipment Manufacturer) assemblies
HIH-4602-L Series

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0% RH to 59% RH</td>
<td>-5</td>
<td>–</td>
<td>5</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>60% RH to 100% RH</td>
<td>-8</td>
<td>–</td>
<td>8</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3.5</td>
<td>–</td>
<td>+3.5</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Repeatability</td>
<td>–</td>
<td>±0.5</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Settling time</td>
<td>–</td>
<td>–</td>
<td>70 ms</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>s</td>
<td>–</td>
</tr>
<tr>
<td>Stability (at 50% RH in one year)</td>
<td>–</td>
<td>1.2</td>
<td>–</td>
<td>% RH</td>
<td>–</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>4</td>
<td>–</td>
<td>5.8</td>
<td>Vdc</td>
<td>–</td>
</tr>
<tr>
<td>Current supply</td>
<td>–</td>
<td>200</td>
<td>500</td>
<td>µA</td>
<td>–</td>
</tr>
<tr>
<td>Output voltage temp. coefficient at 50% RH, 5 V</td>
<td>–</td>
<td>-4</td>
<td>–</td>
<td>mV/°C</td>
<td>–</td>
</tr>
</tbody>
</table>

Voltage output (1st order curve fit)

\[V_{OUT} = \left(V_{SUPPLY} \times \left(\frac{0.0062 \text{(sensor RH)}}{1.0546} - 0.16\right)\right), \text{typical at 25 °C} \]

Temperature compensation

\[\text{True RH} = \left(\frac{\text{sensor RH}}{1.0546 - 0.00216T}\right), \text{T in °C} \]

Specific Notes:

1. Applies to HIH-4602-L-CP only.
2. Device is calibrated at 5 Vdc and 25 °C.
3. Non-condensing environment.

Factory Calibration Data

HIH-4602-L-CP Sensors include a calibration and data printout. See Table 2.

Table 2. Example Data Printout

<table>
<thead>
<tr>
<th>Model</th>
<th>HIH-4602-L-CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>92</td>
</tr>
<tr>
<td>Wafer</td>
<td>030996M</td>
</tr>
<tr>
<td>MRP</td>
<td>337313</td>
</tr>
</tbody>
</table>

Calculated values at 5 V

- \(V_{OUT} \) at 0% RH: 0.958 V
- \(V_{OUT} \) at 75.3% RH: 3.268 V

Linear output for 3.5% RH accuracy at 25 °C

- Zero offset: 0.958 V
- Slope: 30.680 mV/%RH
- \(\text{RH} = \frac{(V_{OUT} - \text{zero offset})}{\text{slope}} \)
- \((V_{OUT} \times 0.958)/0.0307 \)

Ratiometric response for 0% RH to 100% RH

\(V_{OUT} = V_{SUPPLY} \times (0.1915 \text{ to } 0.8130) \)

General Notes:

- Sensor is ratiometric to supply voltage.
- Extended exposure to ≥90% RH causes a reversible shift of 3% RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.

CAUTION

- Electrostatic sensitive devices.
- Do not open or handle except at a static free workstation.
- ESD SENSITIVITY: CLASS 3A
Humidity Sensors

Figure 1. Operating Environment (Non-condensing environment.)

Figure 2. Storage Environment (Non-condensing environment.)
HIH-4602-L Series

Figure 3. Typical Output Voltage vs Relative Humidity (At 5 V and 25 °C.)

![Graph showing typical output voltage vs relative humidity at 5 V and 25 °C.]

Figure 4. Typical Output Voltage (BFSL) vs Relative Humidity (At 0 °C, 70 °C and 5 V.)

![Graph showing typical output voltage vs relative humidity at 0 °C, 70 °C, and 5 V.]

- Sensor Response
- Best Linear Fit
- 0 °C
- 70 °C
Figure 5. Mounting Dimensions (For reference only, mm/[in])

1. Case ground
2. Vdc out
3. (-) Power or ground
4. (+) Vdc supply
5. No connection
6. No connection

Figure 6. RH Sensor Construction

Sensor construction consists of a planar capacitor with a second polymer layer to protect against most dirt/dust particles, oils and other hazards.

Figure 7. Typical Application Circuit

HIH-4602

+ Ve Supply Voltage (5 V)

- Ve Voltage Out

OUT

Minimum Load

0 V

80 kOhm
Order Guide

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-4602-L</td>
<td>Relative humidity sensor in TO-5 can</td>
</tr>
<tr>
<td>HIH-4602-LP</td>
<td>Relative humidity sensor in TO-5 can with calibration and data printout</td>
</tr>
</tbody>
</table>

ADDITIONAL HUMIDITY SENSOR INFORMATION
See the following associated literature at www.honeywell.com/sensing:

- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors

WARNING

MISUSE OF DOCUMENTATION
- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product. Failure to comply with these instructions could result in death or serious injury.

WARNING

PERSONAL INJURY
DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Failure to comply with these instructions could result in death or serious injury.

SALES AND SERVICE
Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com

Internet: www.honeywell.com/sensing

Phone and Fax:
- Asia Pacific +65 6355-2828
 +65 6445-3033 Fax
- Europe +44 (0) 1698 481481
 +44 (0) 1698 481676 Fax
- Latin America +1-305-805-8188
 +1-305-883-8257 Fax
- USA/Canada +1-800-537-6945
 +1-815-235-6847
 +1-815-235-6545 Fax

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
HIH-5030/5031 Series
Low Voltage Humidity Sensors

DESCRIPTION
The HIH-5030/5031 Series Low Voltage Humidity Sensors operate down to 2.7 Vdc, often ideal in battery-powered systems where the supply is a nominal 3 Vdc.

The HIH 5030/5031 complements our existing line of 5 Vdc SMD (Surface Mount Device) humidity sensors. SMD packaging on tape and reel allows for use in high volume, automated pick and place manufacturing, eliminating lead misalignment to printed circuit board through-holes.

The HIH-5030/5031 Series Humidity Sensors are designed specifically for high volume OEM (Original Equipment Manufacturer) users.

Direct input to a controller or other device is made possible by this sensor's near linear voltage output. With a typical current draw of only 200 μA, the HIH-5030/5031 Series is ideally suited for many low drain, battery operated systems.

Tight sensor interchangeability reduces or eliminates OEM production calibration costs.

FEATURES
- Operates down to 2.7 Vdc, often ideal in battery-powered systems where the supply is a nominal 3 Vdc.
- Tape and reel packaging allows for use in high volume pick and place manufacturing (1,000 units per tape and reel)
- Molded thermoset plastic housing
- Near linear voltage output vs %RH
- Laser trimmed interchangeability
- Low power design
- Enhanced accuracy
- Fast response time
- Stable, low drift performance
- Chemically resistant

The HIH-5030/5031 Series delivers instrumentation-quality RH (Relative Humidity) sensing performance in a competitively priced, solderable SMD.

The HIH-5030 is a covered integrated circuit humidity sensor.
The HIH-5031 is a covered, condensation-resistant, integrated circuit humidity sensor that is factory-fitted with a hydrophobic filter allowing it to be used in many condensing environments including industrial, medical and commercial applications.

The RH sensor uses a laser trimmed, thermoset polymer capacitive sensing element with on-chip integrated signal conditioning.

The sensing element’s multilayer construction provides excellent resistance to most application hazards such as condensation, dust, dirt, oils and common environmental chemicals.

Sample packs are available. See order guide.

POTENTIAL APPLICATIONS

Industrial
- Air compressors
- Battery-powered systems
- Drying equipment
- HVAC (includes air conditioning, air movement, thermostats, humidifiers, de-humidifiers, humidistats, enthalpy sensing)
- OEM assemblies
- Office automation equipment
- Process equipment
- Refrigeration (includes bulk and transport systems)
- Telecommunications cabinets
- Weather stations and meteorology equipment

Medical
- Hospital air compressors
- Infant incubators
- Microenvironments
- Sleep apnea equipment
- Treadmill stress monitoring equipment
HIH-5030/5031 Series

Table 1. Performance Specifications (At 3.3 Vdc supply and 25 °C [77 °F] unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Specific Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchangeability (first order curve)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0% RH to 10% RH, 90% RH to 100% RH</td>
<td>-7</td>
<td>-</td>
<td>7</td>
<td>% RH</td>
<td></td>
</tr>
<tr>
<td>11% RH to 89% RH</td>
<td>-3</td>
<td>-</td>
<td>3</td>
<td>% RH</td>
<td></td>
</tr>
<tr>
<td>Accuracy (best fit straight line)</td>
<td>-3</td>
<td>-</td>
<td>+3</td>
<td>% RH</td>
<td>4</td>
</tr>
<tr>
<td>Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11% RH to 89% RH</td>
<td>-3</td>
<td>-</td>
<td>+3</td>
<td>% RH</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>-</td>
<td>±0.5</td>
<td>-</td>
<td>% RH</td>
<td></td>
</tr>
<tr>
<td>Setting time</td>
<td></td>
<td></td>
<td>70</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Response time (1/e in slow moving air)</td>
<td></td>
<td></td>
<td>5</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Stability (at 50% RH in 5 years)</td>
<td></td>
<td></td>
<td>±1.2</td>
<td>% RH</td>
<td>1</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>2.7</td>
<td>-</td>
<td>5.5</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Current supply</td>
<td></td>
<td></td>
<td>200</td>
<td>500</td>
<td>μA</td>
</tr>
<tr>
<td>Voltage output (1st order curve fit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{out}} = (V_{\text{supply}})(0.00636(\text{sensor RH}) + 0.1515)$, typical at 25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True RH = (Sensor RH)/(1.0546 – 0.00216T), T in °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage temp. coefficient at 50% RH, 3.3 V</td>
<td>-</td>
<td>-2</td>
<td>-</td>
<td>mV/°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40[-40]</td>
<td>See Figure 2</td>
<td>85[185]</td>
<td>°C[°F]</td>
<td></td>
</tr>
<tr>
<td>Operating humidity (HIH-5030)</td>
<td>0</td>
<td>See Figure 2</td>
<td>100</td>
<td>% RH</td>
<td>3</td>
</tr>
<tr>
<td>Operating humidity (HIH-5031)</td>
<td>0</td>
<td>See Figure 2</td>
<td>100</td>
<td>% RH</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-50[-58]</td>
<td>-</td>
<td>125[257]</td>
<td>°C[°F]</td>
<td></td>
</tr>
<tr>
<td>Storage humidity</td>
<td>See Figure 3</td>
<td></td>
<td></td>
<td>% RH</td>
<td>3</td>
</tr>
</tbody>
</table>

Specific Notes:
1. Includes stress outside of recommended operating zone.
2. Device is tested at 3.3 Vdc and 25 °C.
3. Non-condensing environment. When liquid water falls on the humidity sensor die, output goes to a low rail condition indicating no humidity.
4. Total accuracy including interchangeability is ±3 %RH.

General Notes:
- Sensor is ratiometric to supply voltage.
- Extended exposure to ≥90 % RH causes a reversible shift of 3 % RH.
- Sensor is light sensitive. For best performance, shield sensor from bright light.

2 www.honeywell.com/sensing

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Low Voltage Humidity Sensors

Figure 1. Operating Environment (Non-condensing environment for HIH-5030 catalog listings only.)

Figure 2. Storage Environment (Non-condensing environment for HIH-5030 catalog listings only.)
HIH-5030/5031 Series

Figure 3. Typical Output Voltage vs Relative Humidity (At 25 °C and 3.3 Vdc.)

Figure 4. Typical Output Voltage (BFSL) vs Relative Humidity (At 0 °C, 70 °C and 3.3 Vdc.)
Figure 5. HIH-5030 Mounting Dimensions (For reference only. mm/[in])

Figure 6. HIH-5030 PCB Landing Pattern (For reference only. mm/[in])
HIH-5030/5031 Series

Figure 7. HIH-5031 Mounting Dimensions (For reference only. mm/[in])

Figure 8. HIH-5031 PCB Landing Pattern (For reference only. mm/[in])
Low Voltage Humidity Sensors

Figure 9. Tape and Reel Dimensions (For reference only. mm/[in])

```
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Metric</th>
<th>Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>3.09</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>2.64</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td>11.51</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>0.945</td>
<td></td>
</tr>
<tr>
<td>22.25</td>
<td>0.876</td>
<td></td>
</tr>
<tr>
<td>3.91</td>
<td>0.154</td>
<td></td>
</tr>
<tr>
<td>DIA. 1.50</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>DIA. 1.50</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIA. 101.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DIA. 330.2</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 10. Typical Application Circuit

- HIH-50XX
- Supply Voltage (3.3 V)
- Voltage Out
- Minimum Load
- 65 kOhm
- 0 V

ORDER GUIDE

<table>
<thead>
<tr>
<th>Catalog Listing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIH-5030-001</td>
<td>Covered integrated circuit humidity sensor, SMD, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-5031-001</td>
<td>Covered, filtered integrated circuit humidity sensor, SMD, 1000 units on tape and reel</td>
</tr>
<tr>
<td>HIH-5030-001S</td>
<td>Sample pack: covered integrated circuit humidity sensor, SMD, five units on tape</td>
</tr>
<tr>
<td>HIH-5031-001S</td>
<td>Sample pack: covered, filtered integrated circuit humidity sensor, SMD, sample pack, five units on tape</td>
</tr>
</tbody>
</table>

ADDITIONAL HUMIDITY SENSOR INFORMATION

See the following associated literature is available on the Web:
- Product installation instructions
- Application sheets:
 - Humidity Sensor Performance Characteristics
 - Humidity Sensor Theory and Behavior
 - Humidity Sensor Moisture and Psychrometrics
 - Thermoset Polymer-based Capacitive Sensors

[Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com]
HIH-5030/5031 Series

Low Voltage Humidity Sensors

WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

WARNING

PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office or:

E-mail: info.sc@honeywell.com

Internet: www.honeywell.com/sensing

Phone and Fax:
Asia Pacific +65 6355-2828
+65 6445-3033 Fax
Europe +44 (0) 1698 481481
+44 (0) 1698 481676 Fax
Latin America +1-305-805-8188
+1-305-883-8257 Fax
USA/Canada +1-800-537-6945
+1-815-235-6847
+1-815-235-6545 Fax