Peltier-Type Chiller

Thermo-con Air-cooled Water-cooled Series HEC

Can precisely control the temperature of a heat source or process fluid.

Precisely control the temperature of the circulating fluid by using the Peltier device. Generates little vibration, and is refrigerant-free and environmentally friendly.

Can control the temperature of the heat source by using the external temperature sensor (sold separately). (Automatically adjusts to the effects of ambient temperature.)

- **Temperature range setting:**
 - 10°C to 60°C

- **Temperature stability:**
 - ±0.01°C to 0.03°C

Air-cooled Series HEC-A

- Air-cooled: Can be used in the environments with no cooling equipment.
- Cooling capacity: 230 W, 600 W

Water-cooled Series HEC-W

- Water-cooled: Can be used in the environments with facility water equipment.
- Cooling capacity: 140 W, 320 W, 600 W, 1200 W

Technical Data

Related Products

Approved

Approved

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Compliant with safety standard for medical equipment IEC 60601-1 (Air-cooled/HEC002-A series)

Power supply: Applicable to 100 V to 240 V (Air-cooled/HEC-A series, Water-cooled/HEC001-W, HEC003-W)

Suitable to fluorinated fluids (Fluorinert™ FC-3283, GALDEN® HT135) (Water-cooled/HEC006-W, HEC012-W)

Compatible with ethylene glycol 20% (Water-cooled/HEC001-W, HEC003-W)

Learning Control Function (Temp. control by external temperature sensor)

This function adjusts the fluid temperature to the set value with an automatic offset setting. Set the external temperature sensor at the circulating fluid inlet located just in front of the heat source, which allows the Thermo-con to sample the fluid temperature. This function is effective when automatically adjusting for heat exhaust from piping, etc. If the external temperature sensor is installed directly on the heat source, the learning control function may not work properly due to large heat volume or large temperature difference. Be sure to install the sensor at the circulating fluid inlet.

Principle of Peltier Device (Thermo-module)

A Peltier device (thermo-module) is a plate type element, inside which P-type semiconductors and N-type semiconductors are located alternately. If direct current is supplied to the Peltier device (thermo-module), heat is transferred inside the device, and one face generates heat and increases temperature while the other face absorbs heat and decreases temperature. Therefore, changing the direction of the current supplied to the Peltier device (thermo-module) can achieve heating and cooling operation. This method has a fast response and can shift quickly between heating and cooling, so temperature can be controlled very precisely.
Construction and Principles

Air-cooled Series HEC-A

![Figure 1: Power supply & Controller](image1)

- Controller
- Switching power supply
- Peltier device (Thermo-module)
- Heat exchanger (Circulating fluid side)
- Heat exchanger (Cooling side)
- Fan
- Noise filter
- Level switch
- Flow switch (option)
- Circulating fluid supply port (Tank lid)
- Circulating fluid drain port
- Supply tank
- Facility water IN
- Facility water OUT
- Circulating fluid OUT
- Circulating fluid IN
- Tank

Water-cooled Series HEC-W

![Figure 1: Power supply & Controller](image2)

- Controller
- Switching power supply
- Peltier device (Thermo-module)
- Heat exchanger (Circulating fluid side)
- Heat exchanger (Cooling side)
- Fan
- Noise filter
- Flow switch
- Circulating fluid supply port (Tank lid)
- Level switch
- Supply tank
- Facility water IN
- Facility water OUT
- Circulating fluid drain port
- Target of temperature control

The Thermo-con is constructed as shown in Figure 1. It interposes a Peltier device (thermo-module) between the heat exchangers for the circulating fluid and facility water and controls the pulse width of supply direct current to achieve the target outlet temperature of circulating fluid precisely.

The circulating fluid returns to the tank, and is transferred by the pump which is built in the Thermo-con, and goes through the heat exchangers and internal sensors and out from the circulating fluid outlet.

Figure 2 shows an example of circulating fluid piping. The circulating fluid is transferred at a constant temperature by the pump.

*1 Optional setting for the HEC001 and 003
*2 Not built in the HEC001 and 003
*3 Optional setting for the HEC001 and 003 only
When to Use Air-Cooled and Water-Cooled Thermo-con

Both air-cooled and water-cooled Thermo-cons are available. Select a proper Thermo-con by referring to the following.

Air-cooled
- No facility water equipment → Can install the unit easily without facility water equipment.
- Frequent piping changes → Can reduce the piping installation labor since facility water piping is not required.

Water-cooled
- Need to avoid effects of ambient temperature → Since the unit is water-cooled, the ambient temperature will have little effect.
- Want to reduce the installation space → Can reduce the space since the unit is compact.

Application Examples

Semiconductor
- Example: Temperature control of a chamber electrode
 - Upper electrode
 - Lower electrode
 - Etching equipment
 - Spatter equipment
 - Cleaning equipment
 - Coating equipment
 - Dicing equipment
 - Tester, etc.

Medical
- Example: Blood preservation
 - X-ray diagnostic instrument
 - MRI
 - Blood preservation equipment

Machine tool
- Example: Laser machining
 - Temperature-controlling the laser generating tube enables the laser wavelength to be optimised, improving the accuracy of the machined cross sectional area.
 - Wire cutting
 - Grinder
 - Spot welding
 - Plasma welding
 - Laser machining, etc.

Analysis
- Example: Electronic microscope
 - Electron microscope
 - X-ray analytical instrument
 - Gas chromatography
 - Sugar level analytical instrument, etc.

Prevents the distortion caused by the heat generated by the electronic gun in an electronic microscope.

Bonding of DVD including next generation

Cooling of semiconductor laser

Temperature control of die-cast mold
CONTENTS

• Features ... P. 160 to 162
• Model Selection P. 164, 165

Air-cooled
Series HEC-A
• How to Order/Specifications P. 166
• Cooling Capacity/Heating Capacity/
 Pump Capacity (Thermo-con Outlet) P. 167
• Parts Description P. 168
• Dimensions P. 169, 170
• Connectors P. 171
• Alarm/Maintenance P. 172
• Options P. 173
• Specific Product Precautions P. 174 to 176

Water-cooled Series HEC-W
• How to Order/Specifications P. 178, 179
• Cooling Capacity/Heating Capacity/
 Pump Capacity (Thermo-con Outlet)/
 Pressure Loss in Facility Water Circuit • P. 180 to 182
• Parts Description P. 183
• Dimensions P. 184 to 186
• Connectors P. 187
• Alarm/Maintenance P. 188
• Options P. 189
• Specific Product Precautions P. 190, 191
Guide to Model Selection

1. What radiation method will be used?
Without a cooling tower Air-cooled HEC-A series
With a cooling tower Water-cooled HEC-W series

When to Use Air-cooled and Water-cooled Thermo-con
<Air-cooled>
• No facility water equipment → Can install the unit easily without facility water equipment.
• Frequent piping changes → Can reduce the piping installation labor since facility water piping is not required.

<Water-cooled>
• Need to avoid effects of ambient temperature. → Since the unit is water-cooled, the ambient temperature will have little effect.
• Want to reduce installation space. → Can reduce the space since the unit is compact.

2. How much is the temperature in degrees centigrade for the circulating fluid?

Temperature range which can be set with the Thermo-con: 10 to 60°C
If a lower temperature (down to –20°C) or higher temperature (up to 90°C) than this range is necessary, select the Thermo-chiller HRZ series.

3. What kind of the circulating fluids will be used?

Circulating fluids that can be used in the Thermo-con

<table>
<thead>
<tr>
<th>Model</th>
<th>Clear water</th>
<th>Fluorinert™ FC-3238</th>
<th>GALDEN® HT135</th>
<th>20% ethylene glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEC001-W, HEC003-W</td>
<td>○</td>
<td>×</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>HEC006-W, HEC012-W</td>
<td>○</td>
<td>○</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>HEC002-A, HEC006-A</td>
<td>○</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

○ : Usable × : Unusable

4. How much cooling capacity required?

Allows a safety factor of 20% over the capacity that is actually required, taking into account the changes in the operating conditions. If a larger capacity than this Thermo-con is necessary, select the Thermo-cooler HRG series or Thermo-chiller HRZ series.

Example 1 When the heat generation amount in the customer’s machine is known.

Heat generation amount: 400 W

Cooling capacity = Considering a safety factor of 20%, 400 x 1.2 = 480 W
Guide to Model Selection

Example 2 When the heat generation amount in the customer’s machine is not known.

Obtain the temperature difference between inlet and outlet by circulating the fluid inside the customer’s machine.

\[Q = \Delta T \times L \times \gamma \times C \]

\[= \frac{0.8 \times 3 \times 1 \times 10^3 \times 4.2 \times 10^3}{60 \times 1000} \]

\[= 167 \text{ W} \]

Cooling capacity = Considering a safety factor of 20%,

\[167 \times 1.2 = 200 \text{ W} \]

Example 3 When cooling the object below a certain temperature in certain period of time.

\[Q = \frac{\Delta T \times V \times \gamma \times C}{h \times 60 \times 1000} \]

\[= \frac{10 \times 20 \times 1 \times 10^3 \times 4.2 \times 10^3}{15 \times 60 \times 1000} \]

\[= 933 \text{ W} \]

Cooling capacity = Considering a safety factor of 20%,

\[933 \times 1.2 = 1120 \text{ W} \]

Precautions on Model Selection

The flow rate of the circulating fluid depends on the pressure loss of the customer’s machine and the length, diameter and resistance created by bends in the circulating fluid piping, etc. Check if the required flow rate of circulating fluid can be obtained before selecting.

Circulating Fluid Typical Physical Property Values

<table>
<thead>
<tr>
<th>Physical property value</th>
<th>Density (\gamma) [kg/m³]</th>
<th>Specific heat (C) [J/(kg • K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>1.87 \times 10³</td>
<td>0.87 \times 10³</td>
</tr>
<tr>
<td>20°C</td>
<td>1.80 \times 10³</td>
<td>0.96 \times 10³</td>
</tr>
<tr>
<td>50°C</td>
<td>1.74 \times 10³</td>
<td>1.05 \times 10³</td>
</tr>
<tr>
<td>80°C</td>
<td>1.67 \times 10³</td>
<td>1.14 \times 10³</td>
</tr>
</tbody>
</table>

Water

Density \(\gamma \) = 1 \times 10³ [kg/m³] Specific heat \(C \) = 4.2 \times 10³ [J/(kg • K)]
Peltier-Type Chiller
Thermo-con (Air-cooled)
Series HEC-A

How to Order

HEC 002 - A 5 B

- **Cooling capacity:**
 - HEC002-A5A: 230 W
 - HEC006-A5A: 600 W
- **Radiating method:**
 - A: Air-cooled
- **Power supply:**
 - S: 100 to 240 VAC
- **Option:**
 - F: With flow switch
 - N: NPT thread

Communication
- Option should be specified when ordering.
 - RS-485
 - RS-232C

Specifications

(For details, please consult our “Product Specifications” information.)

<table>
<thead>
<tr>
<th>Model</th>
<th>HEC002-A5A</th>
<th>HEC002-A5B</th>
<th>HEC006-A5A</th>
<th>HEC006-A5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Thermoelectric device (Thermo-module)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiating method</td>
<td>Forced air cooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td>Cooling/Heating automatic shift PID control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>10 to 35°C, 35 to 80%RH (no condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid</td>
<td>Clear water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>10.0 to 60.0°C (no condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling capacity</td>
<td>230 W<sup>Note 1</sup></td>
<td>600 W<sup>Note 2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating capacity</td>
<td>600 W<sup>Note 1</sup></td>
<td>900 W<sup>Note 2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature stability</td>
<td>±0.01 to ±0.03°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump capacity</td>
<td>Refer to performance chart.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank capacity</td>
<td>Approx. 1.2 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc1/4</td>
<td>Rc3/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>Rc1/4 (with plug)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Stainless steel 303, Stainless steel 304, EPDM, Ceramics, PPS glass 30%, Carbon, PE, Polypropylene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>Single-phase: 100 to 240 VAC ±10%, 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent protector</td>
<td>15 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>8 A (100 VAC) to 3 A (240 VAC)</td>
<td>10 A (100 VAC) to 4 A (240 VAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td>Refer to alarm function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>RS-485</td>
<td>RS-232C</td>
<td>RS-485</td>
<td>RS-232C</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 17.5 kg (including foot for fixing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Power cable, Foot for fixing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety standards</td>
<td>CE marking, UL (NRTL) standards, Safety standard for medical equipment (IEC60601-1)</td>
<td>CE marking, UL (NRTL) standards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Conditions: Set temperature 25°C, Ambient temperature 25°C, Circulating flow rate 3 L/min

Note 2: Conditions: Set temperature 25°C, Ambient temperature 25°C, Circulating flow rate 8 L/min

Note 3: The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Peltier-Type Chiller
Thermo-con (Air-cooled) Series HEC-A

Cooling Capacity

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heating Capacity

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pump Capacity (Thermo-con Outlet)

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.

Ambient temperature: 15°C

Ambient temperature: 25°C

Ambient temperature: 35°C

Ambient temperature: 15°C

Ambient temperature: 20°C

Ambient temperature: 30°C

The pressure on the y-axis shows the discharge pressure of circulating fluid in the Thermo-con.

Series HEC-A

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEC006</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
</table>

Technical Data

Related Products

Approved

Heating Capacity

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEC006</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pump Capacity (Thermo-con Outlet)

<table>
<thead>
<tr>
<th>HEC002</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEC006</th>
<th>Circulating fluid: Clear water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pressure on the y-axis shows the discharge pressure of circulating fluid in the Thermo-con.
Series HEC-A

Parts Description

HEC002
- Power connector
- Handle
- Communication connector
 - RS-232C type: 1 pc.
 - RS-485 type: 2 pcs.
- Alarm connector
- External temperature sensor connector
- Circulating fluid outlet
- Filter
- Circulating fluid inlet
- Drain (circulating fluid drain port)
- Display/Operation panel
- Power switch
- Tank lid with gasket
- Circulating fluid level gauge

HEC006
- Power connector
- Handle
- Communication connector
 - RS-232C type: 1 pc.
 - RS-485 type: 2 pcs.
- Alarm connector
- External temperature sensor connector
- Circulating fluid outlet
- Filter
- Circulating fluid inlet
- Drain (circulating fluid drain port)
- Display/Operation panel
- Power switch
- Tank lid with gasket
- Circulating fluid level gauge
Dimensions

HEC002

Option (Fitting part)

- NPT fitting specification (-N, -FN)
- Circulating fluid outlet: NPT1/4
- Circulating fluid inlet: NPT1/4
- Circulating fluid drain port (with plug): NPT1/4

Power Cable (Accessory)

- Connector: IEC60320 C13 or equivalent
- Cable: 14AWG, O.D. ø8.4
- Wire colors: Black, Black, Green/Yellow

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Green/Yellow</td>
<td>PE</td>
</tr>
</tbody>
</table>

Power cable (Accessory) Handle Model no. label

Tank lid with gasket

Circulating fluid drain port (with plug) RC1/4

Circulating fluid inlet RC1/4

Circulating fluid outlet RC1/4

Filter cover

Filter

Dimensions:

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>101</td>
<td>51</td>
</tr>
</tbody>
</table>

THERMO-CON DRAIN

- Drain

- Circulating fluid outlet Rc1/4
- Circulating fluid drain port (with plug) Rc1/4
- Circulating fluid level gauge

Power switch

Communication connector

Alarm output connector

External temperature sensor connector

Display/Operation panel

Warning/Caution label

Handle

Model no. label

Circulating fluid drain port (with plug)

Circulating fluid inlet RC1/4

Circulating fluid outlet RC1/4

Foot (Accessory)

4 x Plastic foot

100 to 240 VAC

100 to 240 VAC

PE
Series HEC-A

Dimensions

HEC006

Option (Fitting part)
NPT fitting specification (-N, -FN)

Circulating fluid outlet
NPT3/8

Circulating fluid inlet
NPT3/8

Circulating fluid drain port (with plug)
NPT1/4

Power Cable (Accessory)
Connector: IEC60320 C13 or equivalent
Cable: 14AWG, O.D. ø8.4

Wire color	Contents
Black | 100 to 240 VAC |
Black | 100 to 240 VAC |
Green/Yellow| PE |

170

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Connectors

1. Power connector (AC)
 IEC60320 C14 or equivalent

<table>
<thead>
<tr>
<th>Pin</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>2</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
</tr>
</tbody>
</table>

2. Communication connector (RS-232C or RS-485)
 D-sub 9 pin (socket)

 Holding screw: M2.6

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS-232C</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
</tr>
<tr>
<td>3</td>
<td>SD</td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
</tr>
<tr>
<td>5</td>
<td>RD</td>
</tr>
<tr>
<td>6-9</td>
<td>Unused</td>
</tr>
</tbody>
</table>

3. External sensor connector (EXT.SENSOR)
 D-sub 15 pin (socket)

 Holding screw: M2.6

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Unused</td>
</tr>
<tr>
<td>3</td>
<td>Terminal A of resistance temperature detector</td>
</tr>
<tr>
<td>4</td>
<td>Terminal B of resistance temperature detector</td>
</tr>
<tr>
<td>5</td>
<td>Terminal B of resistance temperature detector</td>
</tr>
<tr>
<td>6-14</td>
<td>Unused</td>
</tr>
<tr>
<td>15</td>
<td>FG</td>
</tr>
</tbody>
</table>

4. Alarm output connector (ALARM)
 D-sub 9 pin (pin)

 Holding screw: M2.6

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contact a for output cut-off alarm (open when alarm occurs)</td>
</tr>
<tr>
<td>2</td>
<td>Common for output cut-off alarm</td>
</tr>
<tr>
<td>3</td>
<td>Contact b for output cut-off alarm (closed when alarm occurs)</td>
</tr>
<tr>
<td>4-5</td>
<td>Unused</td>
</tr>
<tr>
<td>6</td>
<td>Contact a for upper/lower temp. limit alarm (open when alarm occurs)</td>
</tr>
<tr>
<td>7</td>
<td>Common for upper/lower temp. limit alarm</td>
</tr>
<tr>
<td>8</td>
<td>Contact b for upper/lower temp. limit alarm (closed when alarm occurs)</td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
</tr>
</tbody>
</table>
Series **HEC-A**

Alarm

This unit is equipped as standard with a function allowing 15 kinds of alarms to display on the LCD and can be read out by serial communication. Also, it can generate relay output for upper/lower temperature limit alarm and output cut-off alarm.

<table>
<thead>
<tr>
<th>Alarm code</th>
<th>Alarm description</th>
<th>Operation status</th>
<th>Main reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRN</td>
<td>Upper/Lower temp. limit alarm</td>
<td>Continue</td>
<td>The temperature has exceeded the upper or lower limit of the target temperature.</td>
</tr>
<tr>
<td>ERR00</td>
<td>CPU hung-up</td>
<td>Stop</td>
<td>The CPU has crashed due to noise, etc.</td>
</tr>
<tr>
<td>ERR01</td>
<td>CPU check error</td>
<td>Stop</td>
<td>The contents of the CPU cannot be read out correctly when the power supply is turned on.</td>
</tr>
<tr>
<td>ERR03</td>
<td>Back-up data error</td>
<td>Stop</td>
<td>The contents of the back-up data cannot be read out correctly when the power supply is turned on.</td>
</tr>
<tr>
<td>ERR04</td>
<td>EEPROM writing error</td>
<td>Stop</td>
<td>The data cannot be written to EEPROM.</td>
</tr>
<tr>
<td>ERR11</td>
<td>DC power supply failure</td>
<td>Stop</td>
<td>The DC power supply has failed (due to fan stop or abnormal high temperature) or the thermo-module has been short-circuited.</td>
</tr>
<tr>
<td>ERR12</td>
<td>Internal temp. sensor</td>
<td>Stop</td>
<td>The internal temperature sensor has exceeded the upper limit of cut-off temperature.</td>
</tr>
<tr>
<td>ERR13</td>
<td>Internal temp. sensor</td>
<td>Stop</td>
<td>The internal temperature sensor has exceeded the lower limit of cut-off temperature.</td>
</tr>
<tr>
<td>ERR14</td>
<td>Thermostat alarm</td>
<td>Stop</td>
<td>The thermostat has been activated due to filter clog or fan/pump failure, etc.</td>
</tr>
<tr>
<td>ERR15</td>
<td>Abnormal output alarm</td>
<td>Continue</td>
<td>The temperature cannot be changed even at 100% output due to overload or disconnection of the thermo-module.</td>
</tr>
<tr>
<td>ERR16</td>
<td>Low flow rate alarm (option)</td>
<td>Stop</td>
<td>The flow rate of the circulating fluid has dropped.</td>
</tr>
<tr>
<td>ERR17</td>
<td>Internal temp. sensor</td>
<td>Stop</td>
<td>The internal temperature sensor has been disconnected or short-circuited.</td>
</tr>
<tr>
<td>ERR18</td>
<td>External temp. sensor</td>
<td>Continue</td>
<td>The external temperature sensor has been disconnected or short-circuited. (Only detected when in learning control or external tune control)</td>
</tr>
<tr>
<td>ERR19</td>
<td>Abnormal auto tuning alarm</td>
<td>Stop</td>
<td>Auto tuning has not been completed within 20 minutes.</td>
</tr>
<tr>
<td>ERR20</td>
<td>Low fluid level alarm</td>
<td>Stop</td>
<td>The amount of circulating fluid in the tank has dropped.</td>
</tr>
</tbody>
</table>

Maintenance

Maintenance of this unit is performed only in the form of return to and repair at SMC’s site. As a rule, SMC will not conduct on-site maintenance. Separately, the following parts have a limited life and need to be replaced before the life ends.

Parts Life Expectation

<table>
<thead>
<tr>
<th>Description</th>
<th>Expected life</th>
<th>Possible failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>3 to 5 years</td>
<td>The bearing is worn so the pump fails to transfer the circulating fluid, which results in temperature control failure.</td>
</tr>
<tr>
<td>Fan</td>
<td>5 to 10 years</td>
<td>The bearing uses up lubrication and makes the fan unable to supply enough air, which deteriorates the cooling and heating capacity.</td>
</tr>
<tr>
<td>DC power supply</td>
<td>5 to 10 years</td>
<td>The capacity of the electrolytic condenser decreases, and causes abnormal voltage which results in DC power supply failure and stops the Thermo-con.</td>
</tr>
<tr>
<td>Display panel</td>
<td>50,000 hours (approx. 5 years)</td>
<td>The display turns off when the backlight of the LCD reaches the end of its life.</td>
</tr>
</tbody>
</table>
Series HEC-A Options

With Flow Switch

<table>
<thead>
<tr>
<th>Option symbol</th>
<th>Description</th>
<th>Applicable models</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>With Flow Switch</td>
<td>HEC002-A5/-F, HEC006-A5/-F</td>
</tr>
</tbody>
</table>

This is an ON/OFF switch detecting low levels of the circulating fluid. When the fluid volume is 1 L/min. or less, “ERR16” is displayed and the Thermo-con stops. This switch is installed between the circulating fluid inlet and the tank, and built into the Thermo-con. Refer to page 161.

NPT Thread

<table>
<thead>
<tr>
<th>Option symbol</th>
<th>Description</th>
<th>Applicable models</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NPT thread</td>
<td>HEC002-A5/-N, HEC006-A5/-N</td>
</tr>
</tbody>
</table>

The connection parts of circulating fluid piping, facility water piping and circulating fluid drain port are NPT thread type.

Note Options have to be selected when ordering the Thermo-con. It is not possible to add them after purchasing the unit.
Series HEC-A
Specific Product Precautions 1
Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

System Design

⚠️ Warning

1. This catalog shows the specifications of the Thermo-con.
 1. Check detailed specifications in the separate "Product Specifications", and evaluate the compatibility of the Thermo-con with customer’s system.
 2. Although the protection circuit as a single unit is installed, the customer is requested to carry out the safety design for the whole system.

Handling

⚠️ Warning

1. Thoroughly read the Operation Manual.
 Read the Operation Manual completely before operation, and keep this manual available whenever necessary.
2. If the set temperature is repeatedly changed by 10°C or more, the Thermo-con may fail in short periods of time.

Operating Environment/Storage Environment

⚠️ Warning

1. Keep within the specified ambient temperature and humidity range.
 Also, if the set temperature is too low, condensation may form on the inside of the Thermo-con or the surface of piping even within the specified ambient temperature range. Dew condensation can cause failure, and so must be avoided by considering operating conditions.
2. The Thermo-con is not designed for clean room usage.
 It generates dust from the pump inside the unit and the cooling fan.
3. Low molecular siloxane can damage the contact of the relay.
 Use the Thermo-con in a place free from low molecular siloxane.

Radiation Air

⚠️ Caution

1. The inlet for radiation air must not be exposed to particles and dust as far as possible.
2. Do not let the inlet and outlet for radiation air get closed.

<HEC002>

If radiation is prevented, the set temperature may not be achieved depending on the value of the set temperature and the load. Keep a space of 100 mm for opened rear side or 200 mm for closed rear side respectively.

Note) The space must be 500 mm or more. Be sure that the ambient temperature is within the specification range.
Series HEC-A
Specific Product Precautions 2
Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

Caution
3. If more than one Thermo-con is used, consider their arrangement so that the downstream sides of the Thermo-cons suck radiation air from the upstream sides.
 Otherwise, the performance at the downstream sides may deteriorate. Also, the set temperature may not be achieved depending on the value of the set temperature and the load. In such a case, take countermeasures such as changing the direction of circulation or any suitable measures to prevent the deterioration of performance.
4. If dust adheres to the filter, remove dust with a vacuum cleaner or a dry cloth.
5. Do not operate without the filter.
 Otherwise, dust may accumulate on the heat sink and electrical components, causing abnormal heating.

Caution
1. Use tap water or fluid which will not damage the wetted material.
 (Stainless steel 303, Stainless steel 304, EPDM, Polypropylene, PE, PPE, Ceramics, Polyurethane)
2. Deionized water (with an electrical conductivity of approx. 1 µS/cm) can be used, but may lose its electrical conductivity.
 Also, if a facility supplying deionized water is used, the Thermo-con may be damaged by static electricity.
3. If deionized water is used, bacteria and algae may grow in short periods of time.
 If the Thermo-con is operated with bacteria and algae, its cooling capacity or the capacity of the pump may deteriorate. Exchange all deionized water regularly depending on the conditions (once a month as a guide).
4. If using a fluid other than water, please contact SMC beforehand.
5. The maximum operating pressure of circulating fluid circuit is 0.1 MPa.
 If this pressure is exceeded, leakage from the tank in the Thermo-con may result.
6. Select a pipe with a length and diameter which allow a flow rate of 1 L/min or more (HEC002) or 3 L/min or more (HEC006) for the circulating fluid.
 If the flow rate is less than these values, the Thermo-con cannot provide precise control, but also can fail because of the repeated cooling and heating operation.
7. A magnet driven pump is used as a circulating pump.
 A fluid which contains metal powders such as iron powder cannot be used.
8. The Thermo-con must not be operated without circulating fluid.
 The pump can break due to idling.

Circulating Fluid
9. If the tank lid is opened after the supply of circulating fluid, the circulating fluid may spill out depending on the condition of external piping.
10. If an external tank is used, the circulating fluid may spill out from the internal tank lid depending on where the external tank is installed.
 Check that the internal tank has no leakage if using an external tank.
11. If there is a point where fluid is released to atmosphere externally (tank or piping), minimize the piping resistance at the circulating fluid return side.
 If the piping resistance is too large, the piping may be crushed, or the built-in circulator tank may be deformed or cracked because the pressure in the piping for return will become negative. The built-in circulator tank is made of resin (PE).
 Therefore, the tank may be crushed if the pressure is negative. Special attention must be paid if the flow rate of the circulating fluid is high. To avoid getting negative pressure less than –0.02 MPa, the piping for return should be as thick and short as possible to minimize the piping resistance. It is also effective to restrict the flow rate of circulating fluid or remove the gasket of internal tank for the release to atmosphere.
12. Fluorinated fluid is outside of the specifications.
 If it is used in the Thermo-con, static electricity will be generated by the flow of fluid. This static electricity may be discharged to the board of the Thermo-con, causing damage or operation failure and loss of data of such as set temperature. Also, as the specific gravity of the fluorinated fluid is 1.3 to 1.8 times of water, the pump will be overloaded, which also causes fluorinated fluid to be outside the specifications. Therefore, if fluorinated fluid is used, please contact SMC and we will introduce a suitable special product (water-cooled type).
13. Avoid operation with cavitation or bubbles due to low fluid level in the tank. This may shorten the pump life.
14. If clear water is used, it should satisfy the quality standards shown below.

Clear Water (as Circulating Water) Quality Standards
The Japan Refrigeration and Air Conditioning Industry Association
JRA GL-02-1994 “Cooling water system – Circulating type – Supply water”

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (at 25°C)</td>
<td>6.0 to 8.0</td>
</tr>
<tr>
<td>Electrical conductivity (25°C)</td>
<td>100 to 300 [µS/cm]</td>
</tr>
<tr>
<td>Sulfuric acid ion</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Acid consumption amount (at pH4.8)</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Total hardness</td>
<td>70 [mg/L] or less</td>
</tr>
<tr>
<td>Calcium hardness</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Iodine state silica</td>
<td>30 [mg/L] or less</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 [mg/L] or less</td>
</tr>
<tr>
<td>Copper</td>
<td>0.1 [mg/L] or less</td>
</tr>
<tr>
<td>Sulfide ion</td>
<td>Should not be detected</td>
</tr>
<tr>
<td>Ammonium ion</td>
<td>0.1 [mg/L] or less</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td>0.3 [mg/L] or less</td>
</tr>
<tr>
<td>Free carbon</td>
<td>4.0 [mg/L] or less</td>
</tr>
</tbody>
</table>

*1 Electrical conductivity should be 100 [µS/cm] or more.
*2 In the case of [MΩ•cm], it will be 0.003 to 0.01.
Series HEC-A
Specific Product Precautions 3
Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

Communication

Caution
1. Prevention of electric shock and fire
 Do not operate the switch with wet hands. Also, do not operate the Thermo-con with water left on it.

2. Action in the case of error
 If any error such as abnormal sounds, smoke, or bad smell occurs, cut off the power at once, and stop supplying and conveying fluid. Please contact SMC or a sales distributor to repair the Thermo-con.

3. Regular inspection
 Check the following items at least once a month. The inspection must be done by an operator who has sufficient knowledge and experience.
 a) Check of displayed contents.
 b) Check of temperature, vibration and abnormal sounds in the body of the Thermo-con.
 c) Check of the voltage and current of the power supply system.
 d) Check for leakage and contamination of the circulating fluid and intrusion of foreign objects to it, and subsequent replacement of the fluid.
 e) Check for flow condition, temperature and filter of radiation air.

Maintenance

Warning
1. The set value can be written to EEPROM, but only up to approx. 1 million times.
 In particular, pay attention to how many of times the writing is performed using the communication function.

176

Approved
Peltier-Type Chiller
Thermo-con (Water-cooled)

Series HEC-W

How to Order

140 W, 320 W

HEC 003

W 5 B

Cooling capacity
001 140 W
003 320 W

Radiating method
W Water-cooled

Power supply
S 100 to 240 VAC

Option
N Nil
F With flow switch
N NPT thread
L With level switch

Communication
A RS-485
B RS-232C

Specifications

(For details, please consult our “Product Specifications” information.)

<table>
<thead>
<tr>
<th>Model</th>
<th>HEC001-W5A</th>
<th>HEC001-W5B</th>
<th>HEC003-W5A</th>
<th>HEC003-W5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Thermoelectric device (Thermo-module)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiating method</td>
<td>Water-cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td>Cooling/Heating automatic shift PID control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>10 to 35°C, 35 to 80%RH (no condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid</td>
<td>Clear water, 20% ethylene glycol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temp. range</td>
<td>10.0 to 60.0°C (no condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling capacity</td>
<td>140 W Note 1</td>
<td>320 W Note 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating capacity</td>
<td>400 W Note 1</td>
<td></td>
<td>770 W Note 1</td>
<td></td>
</tr>
<tr>
<td>Temperature stability Note 2</td>
<td>±0.01 to 0.03°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank capacity</td>
<td>Refer to performance chart.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>In/OUT: Rc3/8</td>
<td>Drain: Rc1/4 (with plug)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>PPE, PP glass 10%, Alumina ceramics, Carbon, EPDM, Stainless steel 303, Stainless steel 304, PE, PP, NBR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>10 to 35°C (no condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure range</td>
<td>1 MPa or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate Note 2</td>
<td>3 to 7 L/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>In/OUT: Rc3/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Stainless steel 304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>Single-phase: 100 to 240 VAC ±10%, 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent protector</td>
<td>10 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>3.5 A (100 VAC) to 1.5 A (240 VAC)</td>
<td>5.5 A (100 VAC) to 2.5 A (240 VAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td>Refer to alarm function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>RS-485</td>
<td>RS-232C</td>
<td>RS-485</td>
<td>RS-232C</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 12 kg</td>
<td>Approx. 13 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Power cable, Foot for fixing, Splashproof cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical system</td>
<td>CE marking, UL (NRTL) standards, SEMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent protector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 2) The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.
Note 3) The flow rate over or below the set range may deteriorate performance or generate noise.

RoHS
Note) Except HEC006, 012

Approved

Approved

CE marking, UL (NRTL) standards, SEMI

Safety standards

Controller: Thermo-con (Water-cooled)

PPE, PP glass 10%, Alumina ceramics, Carbon, EPDM, Stainless steel 303, Stainless steel 304, PE, PP, NBR

Exceptions: HEC006, 012

© 2022 SMC Corporation

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
How to Order

Model:
- HEC006-W2A
- HEC006-W2B
- HEC012-W2A
- HEC012-W2B

Cooling capacity:
- HEC006-W2A: 600 W
- HEC006-W2B: 1200 W
- HEC012-W2A: 600 W
- HEC012-W2B: 1200 W

Radiating method:
- Water-cooled

Power supply:
- 200 to 220 VAC

Option:
- None

Communication:
- RS-485
- RS-232C

Note: Select B when communication is not used.

Specifications

For details, please consult our “Product Specifications” information.

Technical Data

- **Model:**
 - HEC006-W2A
 - HEC006-W2B
 - HEC012-W2A
 - HEC012-W2B

- **Cooling method:**
 - Thermoelectric device (Thermo-module)

- **Radiating method:**
 - Water-cooled

- **Control method:**
 - Cooling/Heating automatic shift PID control

- **Ambient temperature/humidity:**
 - 10 to 35°C, 35 to 80% RH (no condensation)

- **Circulating fluid** (Note 1):
 - Clear water, Fluorinated fluid (Fluorinert™ FC-3283, GALDEN® HT135)

- **Operating temperature range:**
 - 10.0 to 60.0°C (no condensation)

- **Cooling capacity:**
 - 600 W (Clear water), 400 W (Fluorinert™ FC-3283) (Note 2)
 - 1200 W (Clear water), 800 W (Fluorinert™ FC-3283) (Note 2)

- **Heating capacity:**
 - 500 W (Clear water), 600 W (Fluorinert™ FC-3283) (Note 3)
 - 2200 W (Clear water), 1500 W (Fluorinert™ FC-3283) (Note 3)

- **Temperature stability** (Note 4):
 - ±0.01 to 0.03°C

- **Pump capacity:**
 - Refer to performance chart.

- **Tank capacity:**
 - Approx. 3 L
 - Approx. 5 L

- **Port size:**
 - IN/OUT: Rc3/8
 - Drain: Rc1/4 (with plug)
 - IN/OUT: Rc3/4
 - Drain: Rc1/4 (with plug)

- **Wetted parts material:**
 - Stainless steel 303, Stainless steel 304, EPDM, Ceramics, PPS glass 30%, Carbon, PE, Polyurethane
 - Stainless steel 303, Stainless steel 304, EPDM, Ceramics, PP, PE, Polyurethane, SiC, PPS

- **Temperature range:**
 - 10 to 35°C (no condensation)

- **Pressure range:**
 - 1 MPa or less

- **Required flow rate** (Note 5):
 - 8 to 10 L/min
 - 10 to 15 L/min

- **Port size:**
 - IN/OUT: Rc3/8
 - IN/OUT: Rc1/2

- **Wetted parts material:**
 - Stainless steel 303, Stainless steel 304

- **Power supply:**
 - Single-phase: 200 to 220 VAC ±10%, 50/60 Hz

- **Overcurrent protector:**
 - 10 A
 - 15 A

- **Current consumption:**
 - 5 A
 - 10 A

- **Alarm:**
 - Refer to alarm function.

- **Communications:**
 - RS-485
 - RS-232C

- **Weight:**
 - Approx. 25 kg (including foot for fixing)
 - Approx. 40 kg (including foot for fixing)

- **Accessories:**
 - Power cable, Foot for fixing

- **Safety standards:**
 - CE marking

Note 1: Fluorinert™ is a trademark of 3M and GALDEN® is a registered trademark of Solvay Solexis, Inc. Regarding the fluid other than the above, please consult with SMC.

Note 2: Conditions: Set temperature 25°C, Facility water temperature 20°C, Facility water flow rate 8 L/min, Ambient temperature 25°C.

Note 3: Conditions: Set temperature 25°C, Facility water temperature 20°C, Facility water flow rate 10 L/min, Ambient temperature 25°C.

Note 4: The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.

Note 5: The flow rate over or below the set range may deteriorate performance or generate noise.

179 ©

Series HEC-W

Cooling Capacity

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.

HEC001
- Circulating fluid: Clear water
- Circulating fluid: FC-3283

HEC003
- Circulating fluid: Clear water
- Circulating fluid: 20% ethylene glycol

HEC006
- Circulating fluid: Clear water
- Circulating fluid: FC-3283

HEC012
- Circulating fluid: Clear water
- Circulating fluid: FC-3283

180

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Peltier-Type Chiller
Thermo-con (Water-cooled) **Series HEC-W**

Heating Capacity

HEC001
Circulating fluid: Clear water

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.

![Graph of HEC001 with Clear Water](image)

HEC003
Circulating fluid: Clear water

![Graph of HEC003 with Clear Water](image)

HEC006
Circulating fluid: Clear water

![Graph of HEC006 with Clear Water](image)

HEC012
Circulating fluid: Clear water

![Graph of HEC012 with Clear Water](image)

CIRCULATING FLUID: FC-3283

![Graph of CIRCULATING FLUID: FC-3283 with Clear Water](image)
Series HEC-W

Pump Capacity (Thermo-con Outlet)

HEC001/003 Since a DC pump is used, the unit is not affected by power requirements.

HEC006 Since a DC pump is used, the unit is not affected by power requirements.

Pressure Loss in Facility Water Circuit

HEC001

HEC003

HEC006

HEC012

Water

20% ethylene glycol

Fluorinert™ FC-3283

Water

Fluorinert™ FC-3283

Water
Parts Description

HEC001/003

Display/Operation panel
- Tank lid (with O-ring)
- Circulating fluid inlet
- Circulating fluid level gauge
- Power switch
- Handle
- Facility water outlet
- Facility water inlet
- Drain (Circulating fluid drain port)
- Circulating fluid outlet
- Splashproof cover
- Cooling fan
- Communication connector
 - RS-232C type 1 pc.
 - RS-485 type 2 pcs.
- Alarm output connector
- External temperature sensor connector
- Power connector (Connect the attached power cable.)

HEC006/012

Display/Operation panel
- Tank lid (with gasket)
- Circulating fluid level gauge
- Power switch
- Handle
- Facility water outlet
- Facility water inlet
- Splashproof cover
- Cooling fan
- Communication connector
 - RS-232C type 1 pc.
 - RS-485 type 2 pcs.
- Alarm output connector
- External temperature sensor connector
- Power connector (Connect the attached power cable.)
Series HEC-W

Dimensions

HEC001-W5/003-W5

Power Cable (Accessory)

Connector: IEC60320 C13 or equivalent
Cable: 14AWG, O.D. ø8.4

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Black</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Green/Yellow</td>
<td>PE</td>
</tr>
</tbody>
</table>

For NPT thread specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.

Power cable (Accessory)

(2000)

© 2023 SMC

184

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Peltier-Type Chiller
Thermo-con (Water-cooled) Series HEC-W

Dimensions

HEC006-W2

Power Cable
Connector: IEC60320 C13 or equivalent
Cable: 14AWG, O.D. ø8.4

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>Black</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>Green/Yellow</td>
<td>PE</td>
</tr>
</tbody>
</table>

For NPT thread specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.

Power cable (Accessory)

Related Products
Approved

Technical Data

Series HEC-W

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Series HEC-W

Dimensions

HEC012-W2

Power Cable

Connector: DDK CE06-6A18-10SD-D-BSS or equivalent
Cable: 14AWG, O.D. ø8.4

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>Black</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>Green/Yellow</td>
<td>PE</td>
</tr>
</tbody>
</table>

For NPT fitting specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.
Connectors

HEC006-W2□001-W5□003-W5□

1. Power connector (AC)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>2</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>2</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
</tr>
</tbody>
</table>

2. Communication connector (RS-232C or RS-485)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS-232C</td>
</tr>
<tr>
<td>2</td>
<td>RS-485</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
</tr>
<tr>
<td>6-9</td>
<td>Unused</td>
</tr>
</tbody>
</table>

3. External sensor connector (EXT.SENSOR)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Terminal A of resistance temperature detector</td>
</tr>
<tr>
<td>3</td>
<td>Terminal B of resistance temperature detector</td>
</tr>
<tr>
<td>4</td>
<td>Terminal B of resistance temperature detector</td>
</tr>
<tr>
<td>6-14</td>
<td>Unused</td>
</tr>
<tr>
<td>15</td>
<td>FG</td>
</tr>
</tbody>
</table>

4. Alarm output connector (ALARM)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contact a for output cut-off alarm (open when alarm occurs)</td>
</tr>
<tr>
<td>2</td>
<td>Contact b for output cut-off alarm (closed when alarm occurs)</td>
</tr>
<tr>
<td>3</td>
<td>Contact a for output cut-off alarm (open when alarm occurs)</td>
</tr>
<tr>
<td>4-5</td>
<td>Contact b for output cut-off alarm (closed when alarm occurs)</td>
</tr>
<tr>
<td>6-8</td>
<td>Contact a for upper/lower temp. limit alarm (open when alarm occurs)</td>
</tr>
<tr>
<td>9</td>
<td>Common for upper/lower temp. limit alarm</td>
</tr>
<tr>
<td>10</td>
<td>Contact b for upper/lower temp. limit alarm (closed when alarm occurs)</td>
</tr>
<tr>
<td>11</td>
<td>Unused</td>
</tr>
</tbody>
</table>

HEC012-W2□

Power connector (AC)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>B</td>
<td>200 to 220 VAC</td>
</tr>
<tr>
<td>C</td>
<td>Unused</td>
</tr>
<tr>
<td>D</td>
<td>PE</td>
</tr>
</tbody>
</table>

Other connectors are the same as those for the HEC006-W2□.
Series HEC-W

Alarm

This unit is equipped as standard with a function allowing 15 kinds of alarms to display on the LCD and can be read out by serial communication. Also, it can generate relay output for upper/lower temperature limit alarm and output cut-off alarm.

<table>
<thead>
<tr>
<th>Alarm code</th>
<th>Alarm description</th>
<th>Operation status</th>
<th>Main reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRN</td>
<td>Upper/Lower temp. limit alarm</td>
<td>Continue</td>
<td>The temperature has exceeded the upper or lower limit of the target temperature.</td>
</tr>
<tr>
<td>ERR00</td>
<td>CPU hung-up</td>
<td>Stop</td>
<td>The CPU has crashed due to noise, etc.</td>
</tr>
<tr>
<td>ERR01</td>
<td>CPU check error</td>
<td>Stop</td>
<td>The contents of the CPU cannot be read out correctly when the power supply is turned on.</td>
</tr>
<tr>
<td>ERR03</td>
<td>Back-up data error</td>
<td>Stop</td>
<td>The contents of the back-up data cannot be read out correctly when the power supply is turned on.</td>
</tr>
<tr>
<td>ERR04</td>
<td>EEPROM writing error</td>
<td>Stop</td>
<td>The data cannot be written to EEPROM.</td>
</tr>
<tr>
<td>ERR11</td>
<td>DC power supply failure</td>
<td>Stop</td>
<td>The DC power supply has failed (due to abnormal high temperature) or an irregular voltage has occurred or the thermo-module has been short-circuited.</td>
</tr>
<tr>
<td>ERR12</td>
<td>Internal temp. sensor high temp. error</td>
<td>Stop</td>
<td>The internal temperature sensor has exceeded the upper limit of cut-off temperature.</td>
</tr>
<tr>
<td>ERR13</td>
<td>Internal temp. sensor low temp. error</td>
<td>Stop</td>
<td>The internal temperature sensor has exceeded the lower limit of cut-off temperature.</td>
</tr>
<tr>
<td>ERR14</td>
<td>Thermostat alarm</td>
<td>Stop</td>
<td>The thermostat has been activated due to insufficient of the facility water or high temperature</td>
</tr>
<tr>
<td>ERR15</td>
<td>Abnormal output alarm</td>
<td>Continue</td>
<td>The temperature cannot be changed even at 100% output due to overload or disconnection of the thermo-module.</td>
</tr>
<tr>
<td>ERR16</td>
<td>Pump failure(^1) or low circulating fluid level alarm(^2)</td>
<td>Stop</td>
<td>The pump has been overloaded (^1) or the flow switch is activated (^2).</td>
</tr>
<tr>
<td>ERR17</td>
<td>Internal temp. sensor disconnection alarm</td>
<td>Stop</td>
<td>The internal temperature sensor has been disconnected or short-circuited.</td>
</tr>
<tr>
<td>ERR18</td>
<td>External temp. sensor disconnection alarm</td>
<td>Continue</td>
<td>The external temperature sensor has been disconnected or short-circuited. (Only detected when in learning control or external tune control.)</td>
</tr>
<tr>
<td>ERR19</td>
<td>Abnormal auto tuning alarm</td>
<td>Stop</td>
<td>Auto tuning has not been completed within 20 minutes.</td>
</tr>
<tr>
<td>ERR20</td>
<td>Low fluid level alarm(^3)</td>
<td>Stop</td>
<td>The amount of circulating fluid in the tank has dropped and the level switch is activated.</td>
</tr>
</tbody>
</table>

\(^1\) The HEC012 only
\(^2\) Optional for the HEC001 and HEC003 only (Not available for the HEC006)
\(^3\) Optional for the HEC001 and HEC003

Maintenance

Maintenance of this unit is performed only in the form of return to and repair at SMC’s site. As a rule, SMC will not conduct on-site maintenance. Separately, the following parts have a limited life and need to be replaced before the life ends.

<table>
<thead>
<tr>
<th>Description</th>
<th>Expected life</th>
<th>Possible failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>3 to 5 years</td>
<td>The bearing is worn so the pump fails to transfer the circulating fluid, which results in temperature control failure.</td>
</tr>
<tr>
<td>Fan</td>
<td>5 to 10 years</td>
<td>The bearing uses up lubrication and makes the fan unable to supply enough air, which increases the internal temperature of the Thermo-con, and activates the overheat protection of the power supply and generates the alarm.</td>
</tr>
<tr>
<td>DC power supply</td>
<td>5 to 10 years</td>
<td>The capacity of the electrolytic condenser decreases, and causes abnormal voltage which results in DC power supply failure and stops the Thermo-con.</td>
</tr>
<tr>
<td>Display panel</td>
<td>50,000 hours (approx. 5 years)</td>
<td>The display turns off when the backlight of the LCD reaches the end of its life.</td>
</tr>
</tbody>
</table>
Options have to be selected when ordering the Thermo-con. It is not possible to add them after purchasing the unit.

With Flow Switch

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>With Flow Switch</td>
</tr>
</tbody>
</table>

This is an ON/OFF switch detecting low levels of the circulating fluid. When the fluid volume is 1 L/min. or less, "ERR16" is displayed and the Thermo-con stops. This switch is installed between the circulating fluid inlet and the tank, and built into the Thermo-con. Refer to page 161.

NPT Thread

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NPT Thread</td>
</tr>
</tbody>
</table>

The connection parts of circulating fluid piping, facility water piping and circulating fluid drain port are NPT thread type.

With Level Switch

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>With Level Switch</td>
</tr>
</tbody>
</table>

This switch is used to detect a LOW level of tank fluid. When the fluid level becomes below the LOW level, "ERR20" is displayed and the Thermo-con stops. This switch is installed in the circulating fluid tank and built into the Thermo-con. Refer to page 161.

Series HEC-W

Note) Options have to be selected when ordering the Thermo-con. It is not possible to add them after purchasing the unit.

- **Type**
 - Water cooled
- **Applicable model**
 - HEC001-W5:-F
 - HEC003-W5:-F
 - HEC001-W5:-N
 - HEC003-W5:-N
 - HEC006-W2:-N
 - HEC012-W2:-N

Other models include a level switch as standard equipment.
Series HEC-W
Specific Product Precautions 1
Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

⚠️ Warning

System Design

⚠️ Warning
1. This catalog shows the specifications of the Thermo-con.
 1. Check detailed specifications in the separate “Product Specifications”, and evaluate the compatibility of the Thermo-con with customer’s system.
 2. Although the protection circuit as a single unit is installed, the customer is requested to carry out the safety design for the whole system.

Operating Environment/Storage Environment

⚠️ Warning
4. Installation conditions
 If the space for the intake and discharge of air is insufficient, the amount of transferred air will decrease, which can impair the performance and life of the product. Therefore, keep the conditions illustrated below for installation. Also, if ambient temperature is expected to be over 35°C, vent or exhaust air to prevent the increase of ambient temperature over 35°C.

⚠️ Warning

Handling

⚠️ Warning
1. Thoroughly read the Operation Manual.
 Read the Operation Manual completely before operation, and keep this manual available whenever necessary.
2. If the set temperature is repeatedly changed by 10°C or more, the Thermo-con may fail in short periods of time.

Operating Environment/Storage Environment

⚠️ Warning
1. Keep within the specified ambient temperature and humidity range.
 Also, if the set temperature is too low, condensation may form on the inside of the Thermo-con or the surface of piping even within the specified ambient temperature range. Dew condensation can cause failure, and so must be avoided by considering operating conditions.
2. The Thermo-con is not designed for clean room usage.
 The pump and fan generate dust.
3. Low molecular siloxane can damage the contact of the relay.
 Use the Thermo-con in a place free from low molecular siloxane.

⚠️ Caution

Facility Water

1. If the temperature of the facility water is too low, it can cause formation of dew condensation inside the heat exchanger.
 Supply facility water with a temperature over the atmospheric dew point to avoid the formation of dew condensation.
2. If the facility water piping is connected to multiple machines, the facility water exchanges heat at the upstream side and its temperature will become higher as it goes downstream.
 Limit the number of connected Thermo-cons to two per facility water system, and if more than two Thermo-cons are to be connected, increase the number of systems.

Circulating Fluid

⚠️ Caution
1. Use tap water or fluid which will not damage the wetted parts material as described in this catalog’s specifications.
 (PPE, PP glass 10%, Alumina ceramics, Carbon, EPDM, Stainless steel 303, Stainless steel 304, PE, PP, NBR)
2. Deionized water (with an electrical conductivity of approx. 1 µS/cm) can be used, but may lose its electrical conductivity.
Series HEC-W
Specific Product Precautions 2

Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

⚠️ Caution

3. If deionized water is used, bacteria and algae may grow in a short period.
 If the Thermo-con is operated with bacteria and algae, its heat exchanging capacity or the capacity of the pump may deteriorate. Exchange all deionized water regularly depending on the conditions (once a month as a guide).

4. If using a fluid other than this catalog, please contact SMC beforehand.

5. The maximum operating pressure of circulating fluid circuit is 0.1 MPa.
 If this pressure is exceeded, leakage from the tank in the Thermo-con can result.

6. Select a pipe with a length and diameter which allow a flow rate of 3 L/min or more for the circulating fluid.
 If the flow rate is less than 3 L/min, the Thermo-con cannot provide precise control, but also can fail because of the repeated cooling and heating operation.

7. A magnet driven pump is used as a circulating pump.
 A fluid which contains metal powders such as iron powder cannot be used.

8. The Thermo-con must not be operated without circulating fluid.
 The pump can break due to idling.

9. If the tank lid is opened after the supply of circulating fluid, the circulating fluid may spill out depending on the condition of external piping.

10. If an external tank is used, the circulating fluid may spill out from the internal tank lid depending on where the external tank is installed.
 Check that the internal tank has no leakage if using an external tank.

11. If there is a point where fluid is released to atmosphere externally (tank or piping), minimize the piping resistance at the circulating fluid return side.
 If the piping resistance is too large, the piping may be crushed, or the built-in circulator tank may be deformed or cracked because the pressure in the piping for return will become negative. The built-in circulator tank is made of resin (PE). Therefore, the tank may be crushed if the pressure is negative. Special attention must be paid if the flow rate of the circulating fluid is high. To avoid getting negative pressure less than -0.02 MPa, the piping for return should be as thick and short as possible to minimize the piping resistance. It is also effective to restrict the flow rate of circulating fluid or remove the gasket of internal tank for the release to atmosphere.

12. If fluorinated fluid is used in the Thermo-con (HEC006/012), static electricity will be generated by the flow of fluid. This static electricity may be discharged to the board of the Thermo-con, causing damage or operation failure and loss of data of such as set temperature.
 Ground pipe in order to remove static electricity.

13. Avoid operation with cavitation or bubbles due to low fluid level in the tank. This may shorten the pump life.

⚠️ Caution

14. If clear water is used, it should satisfy the quality standards shown below.

Clear Water (as Circulating Water) Quality Standards
The Japan Refrigeration and Air Conditioning Industry Association
JRA GL-02-1994 “Cooling water system – Circulating type – Supply water”

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (at 25°C)</td>
<td>6.0 to 8.0</td>
</tr>
<tr>
<td>Electrical conductivity (25°C)</td>
<td>1000 to 3000[µS/cm]</td>
</tr>
<tr>
<td>Chloride ion</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Sulfuric acid ion</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Acid consumption amount (at pH4.8)</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Total hardness</td>
<td>70 [mg/L] or less</td>
</tr>
<tr>
<td>Calcium hardness</td>
<td>50 [mg/L] or less</td>
</tr>
<tr>
<td>Ionic state silica</td>
<td>30 [mg/L] or less</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 [mg/L] or less</td>
</tr>
<tr>
<td>Copper</td>
<td>0.1 [mg/L] or less</td>
</tr>
<tr>
<td>Sulfide ion</td>
<td>Should not be detected</td>
</tr>
<tr>
<td>Ammonium ion</td>
<td>0.1 [mg/L] or less</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td>0.3 [mg/L] or less</td>
</tr>
<tr>
<td>Free carbon</td>
<td>4.0 [mg/L] or less</td>
</tr>
</tbody>
</table>

+1 Electrical conductivity should be 1000[µS/cm] or more.
+2 In the case of [M•cm], it will be 0.003 to 0.01.

⚠️ Caution

1. The set value can be written to EEPROM, but only up to approx. 1 million times.
 In particular, pay attention to how many of times the writing is performed using the communication function.

⚠️ Warning

1. Prevention of electric shock and fire
 Do not operate the switch with wet hands. Also, do not operate the Thermo-con with water left on it.

2. Action in the case of error
 If any error such as abnormal sounds, smoke, or bad smell occurs, cut off the power at once, and stop supplying and conveying fluid. Please contact SMC or a sales distributor to repair the Thermo-con.

3. Regular inspection
 Check the following items at least once a month. The inspection must be done by an operator who has sufficient knowledge and experience.
 a) Check of displayed contents.
 b) Check of temperature, vibration and abnormal sounds in the body of the Thermo-con.
 c) Check of the voltage and current of the power supply system.
 d) Check for leakage and contamination of the circulating fluid and intrusion of foreign objects to it, and subsequent replacement of water.
 e) Check for leakage, quality change, flow rate and temperature of facility water.