MERCURY & SOLID STATE CONTACTORS • RELAYS
• SWITCHES • LIQUID LEVEL CONTROL-FLOATS

Catalog X
GENERAL INFORMATION

Mercury Displacement Relays are all designed and built to meet the most exacting demands of the industry. They have won their high place in the electrical field by doing the tough and tricky jobs that ordinary equipment could at best do in an uncertain manner. They have proven their ability to stand up to the most adverse conditions of temperature, dust and moisture, in all types of applications. All the care required for the manufacture of high-grade instruments is used in the manufacture of the switches. All switch parts are specially cleaned, and contamination is avoided by use of tweezers, gloves, etc., when making assemblies.

Contactors are hermetically sealed with high quality glass to metal seals.

The stainless steel tube is totally encapsulated in high grade epoxy to prevent moisture damage and voltage breakdown through the protective coating.

The coils are wound on compact nylon bobbins and molded on to the metal tube to provide minimum power loss. This allows for low coil power required to actuate the contactor. This also enables the units to handle high loads with minimum derating due to higher ambient temperatures.

Internal gasses prevent excessive arcing between the mercury and the electrodes which enables the unit to function for millions of cycles with very low contact resistance, and minimum deterioration of the internal parts.

Available in all standard coil voltages, in single, two, three and four pole arrangements. Other coil voltages available upon request.

FEATURES

1) ADVANTAGE OVER ELECTROMECHANICAL AND SOLID STATE RELAYS

A) Superior Performance and Reliability
 (a) Long Life
 (b) Durable
B) Compact Size
C) Low, Predictable Contact Resistance
D) Reduced RFI for Improved Interface Capability
E) Handles a Variety of Loads
 (a) Increases design flexibility
F) Rapid On-Off Cycling Capability
 (a) Mercury quickly dissipates contact heat
G) Low Coil Power Requirements
H) Minimal Derating Due to Higher Ambient Temperatures
I) Quiet Action

2) DESIGN & CONSTRUCTION

A) Contacts are within a hermetically sealed steel body
 (a) Impervious to adverse condition
 (b) No external arcing
B) Arcing is in a gaseous atmosphere
 (a) Quenches the arc

SELECTION FACTORS

In order to get the right relay for your job -- the relay that will give you the best performance -- it is essential that certain information, concerning the conditions under which the relay must perform, be carefully considered. We therefore recommend that answers to the following questions be forwarded to us with your inquiry or order.

1) APPLICATION

a. What kind of job is relay to do?
b. Is application special in any way?
c. Will mounting be stationary?

2) TYPE OF LOAD

a. What is the voltage in the load circuit?
b. What is the amperage in the load circuit?
c. Is it A.C. or D.C.? If A.C., what is the frequency?
d. What is the nature of the load?
 Heater load?
 Lamp load?
 Motor load?
 Current inrush and running current?
 Other types of inductive load?

3) CONTACT ARRANGEMENT

a. Do you require a relay which has a normally open or normally closed contact?

4) DUTY

a. How often is relay to be operated?
b. How long is relay to be energized in each operation?

5) TIME DELAY CHARACTERISTICS

a. What operating time do you want to achieve, maximum and minimum seconds?
b. Is timing to be on closing or opening of the contacts?

6) COIL RATING

a. What is your maximum and minimum coil operating voltage or current?
b. Is coil to be operated from an A.C. or a D.C. circuit? If A.C., what frequency?

7) MOUNTING SPACE

a. Are there any limitations on space for applying relay?
CONTACTORS/RELAYS
30 AMP RELAY 4 - 20
L35/60 AMP NORMALLY OPEN CONTACTORS 5
35/60 AMP NORMALLY OPEN CONTACTORS 6
35 AMP T-TOP CONTACTORS 7
35/60 AMP METAL STRAPPED CONTACTORS (INC. 4 POLE) 8
35/60 AMP NORMALLY CLOSED CONTACTORS 9
100 AMP CONTACTORS 10
COIL DATA 5 - 6, 11, 13
FUSING INFORMATION 20
HAZARDOUS LOCATIONS 7
HIGH VOLTAGE RATINGS 11
MERCURY TO METAL CONTACTORS AND RELAYS 12
MERCURY TO MERCURY CONTACTORS AND RELAYS 13
MOV'S 20
OPTIONAL TERMINATIONS AND MOUNTING PLATES 21
SIZING RELAYS/CONTACTORS 20
SOLID STATE RELAYS (SSS SERIES) 22
SOLID STATE RELAYS (HPR SERIES) 23

CONTACTORS/RELAYS (CONTINUED)
SOLID STATE RELAYS (SSR SERIES) 18 - 19
TIME DELAY RELAYS 20
TORQUE INFORMATION 21
TRAFFIC CONTROL (CONSTANT DUTY) 7
WIRING AND FUSING AC RESISTIVE LOADS 20
RATINGS MERCURY & SOLID STATE RELAYS/CONTACTORS 14
LIQUID LEVEL CONTROLS 21 - 25
FLOAT SWITCHES 22 - 23
INDOOR WATER ALARM (SP-3000 & SP-3100) 24
OUTDOOR TANK ALARM (SP-4000 & SP-4100) 25
TWIN FLOAT SWITCH 26
VERTICAL SWITCH 27
MERCURY DISPOSAL 28
SWITCHES 26 - 27
DAMPER SWITCH 29
TILT SWITCH 26 - 27
TIP-OVER SWITCH 29
WARRANTY 30

Glossary of Terms & Expressions

AMBIENT: The temperature of air or liquid surrounding any electrical part or device.

CONSTANT DUTY: If the contactor will remain “on” in normal use for indefinite periods of time, in excess of 100 hours.

CONTACTOR: 1.) A device for the purpose of repeatedly establishing or interrupting an electric power circuit; 2.) A heavy duty relay used to control electrical circuits. Relays rated at 15 to 30 amps and up are generally referred to as contactors.

CONTACT: 1.) One of the current-carrying parts of a relay, switch or connector that is engaged or disengaged to open or close the associated electrical circuits. 2.) To join two conductors or conducting objects in order to provide a complete path for current flow. 3.) The juncture point to provide the complete path.

CONTACTS: Mercury to Metal: The contacts of a standard mercury displacement relay or contactor. The upper contact is metal and stationary. The lower contact is a pool of mercury that gets displaced by the plunger assembly, thereby coming in contact with the metal electrode during operation. (See page 4.)

Mercury to Mercury: The contacts of a standard mercury timer relay. This contact arrangement utilizes a cup, which has the electrode in it, and is filled with mercury. When the mercury at the bottom of the unit is displaced, it floods over the sides of the cup, completing the circuit. This provides a clean make and break with no chatter and little erosion. (See page 11.)

CONTINUITY: A continuous path for the flow of current in an electric circuit.

DERATE: To reduce the voltage, current, or power rating of a device to improve its reliability or to permit operation at high ambient temperatures.

DIELECTRIC: The insulating material between the metallic elements of an electronic component.

DROP-OUT: The current, voltage, or power value that will cause an energized relays contacts to return to their normal denergized condition.

GAUSS: The centimeter-gram-second electromagnetic unit of magnetic induction. One gauss represents one maxwell per square centimeter.

HEAT RISE: In a mercury displacement relay; The heat developed from the coil and contacts as a unit. The temperature of air or liquid surrounding any electrical part or device. The temperature of any part of an electrical device that gets displaced by the plunger assemblage, thereby coming in contact with the metal electrode during operation. (See page 4.)

Hermetic Seal: A mechanical or physical closure that is impervious to moisture or gas, including air.

Hertz: Cycles per second.

INRUSH CURRENT: In a solenoid or coil, the steady-state current drawn from the line with the armature, or plunger, in its maximum open position.

LOAD, CONTACT: The electrical power encountered by a contact set in any circuit. This provides a clean make and break with no chatter and little erosion. (See page 11.)

MAXWELL: The cgs electromagnetic unit of magnetic flux, equal to one gauss per square centimeter, or one magnetic line of force.

OPERATE TIME: In a mercury displacement relay; the amount of time that passes when power is applied to the coil, to when the contacts close in a normally open set of contacts, or when the contacts open in a normally closed set of contacts.

Quick Operate is when the operate time is less than the stated release time.

Pull-In: In a mercury displacement relay; The device used to displace mercury. This plunger is lighter than mercury so it floats on the mercury. The plunger also contains a magnetic shell or sleeve, so it can be pulled down into the mercury with a magnetic field. The plunger does the same job in a mercury displacement relay as an armature in a mechanical relay.

POLY: 1.) Output terminals on a switch. 2.) A single set of contacts; (i.e., three sets of contacts equal three poles)

POWER FACTOR: Ratio of the actual power of an alternating or pulsating current to the apparent power.

PULL-IN: (Pick-up): The maximum current, voltage, power or other value which will trip a relay or cause it to operate.

RELAY: An electromechanical or electronic device in which continuity is established or interrupted in one circuit by a control circuit. Typically used to switch large currents by supplying relatively small currents to the control circuit. Also see Contactor.

RELEASE TIME: In a mercury displacement relay; The amount of time that passes when power is removed from the coil, until the contacts of a normally open unit reopen, or when contacts of a normally closed unit reclose.

Quick Release is when the release time is less than the stated operate time. Slow release is when the release time is longer than the stated operate time.

STEADY-STATE: A condition in which circuit values remain essentially constant, occurring after all initial transients or fluctuating conditions have settled down.

TRANSIENT (Transient Phenomena): Rapidly changing action occurring in a circuit during the interval between closing of a switch and settling to steady-state conditions, or any other temporary actions occurring after some change in a circuit or it’s constants.

VOLT-AMPERE: A unit of apparent power in an AC circuit containing reactance. It is equal to the potential in volts multiplied by the current, in amperes, without taking phase into consideration.

VOLTAGE SPIKES: An abrupt transient which comprises part of a pulse but exceeds it’s average amplitude considerably.

VOLTAGE WITHSTAND: The amount of electromotive force (volts) that can be applied to two points before a current will flow (leakage or breakdown.)

WATT: A unit of electrical power. One watt is expended when one ampere of direct current flows through a resistance of one ohm. In an AC circuit, the true power in watts is effective volt-amperes multiplied by the circuit power factor. There are 746 watts in one horsepower.

ABBREVIATIONS
A.C. Alternating Current Hg Mercury
D.C. Direct Current Hz Hertz
M.D.R. Mercury Displacement Relay N.C. Normally Closed
D.P.S.T. Double Pole Single Throw N.O. Normally Open
S.P.S.T. Single Pole Single Throw Q Quick
T.P.S.T. Triple Pole Single Throw S Slow

INDEX
3

T.P.S.T. Triple Pole Single Throw S Slow
D.P.S.T. Double Pole Single Throw
S.P.S.T. Single Pole Single Throw
T.P.S.T. Triple Pole Single Throw

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
MERCURY TO METAL CONTACTORS AND RELAYS

DESCRIPTION
MERCURY TO METAL CONTACTOR: The load terminals are isolated from each other by the glass in the hermetic seal. "The plunger assembly," which includes the ceramic insulator, the magnetic sleeve and related parts, floats on the mercury pool. When the coil is powered causing a magnetic field, the plunger assembly is pulled down into the mercury pool which is in turn displaced and moved up to make contact with the electrode, closing the circuit between the top and bottom load terminal which is connected to the stainless steel can.

TRAFFIC CONTROL (CONSTANT DUTY)
SP-1132- VOLTAGE- (A or D)
35 AMPS @ 600 VAC
SP-1130- VOLTAGE- (A or D)
60 AMPS @ 480 VAC
*A return spring replaces the buffer spring for this application

HOW TO ORDER
SPECIFY AS SHOWN BELOW

EXAMPLE #1
NUMBER OF POLES: 2, 3, 4 or Blank if single pole (4 pole on 35 & 60 AMP only)
CONTACTS: "NO" = Normally Open, "NC" = Normally Closed
COIL VOLTAGE: Followed by "A" for Alternating Current or "D" for Direct Current
OPTION
SEE NOTE #1
335NO-120A THN-18

BRACKET, OTHER THEN STANDARD: "A, B, N, P or U" on 35 & 60-AMP units.
(Blank if Standard bracket is used)
See Page 12
"H": Is for loads other then AC Resistive & Tungsten on Normally Open Units Only
"T": For Top Termination, "TS" For Top Screw Termination on 35-AMP Units.
(Blank if Standard Termination).
See Pages 8 & 12.
A.C. RESISTIVE LOAD RATING: (30, 35, 60, or 100-AMP).

NOTES: 1) Other designations are -1 thru -99. These are suffix numbers, and are reserved for units with dead special detail, construction and/or features. -11 MOV on coil (see page 20), -13 MOV & metal strap, -17 DIN rail mount, -20 DIN rail & metal strap (see page 12). -18 metal strap (see page 9). (See example #2).

EXAMPLE #2
100NO-120AH-6A
The -6A stands for HIGH VOLTAGE contactor.
Used in ultraviolet curing ovens and other high voltage applications.
See page 11 for ratings.
GENERAL INFORMATION

The 30 Amp model is designed to save space and simplify mounting methods. The standard mounting bracket on the three pole model allows the unit to be mounted in standard 3" snap track channel. If you do not use snap track mounting, the standard three pole bracket has key hole slots for easy mounting in any panel arrangement. The universal three pole mounting bracket has various mounting holes and key hole slots to meet a variety of mounting centers.

The 30 Amp series is a more compact line with a well proven switch which is the heart of mercury relays. It is the same switch design that is in our 35 and 60 Amp encapsulated MDR’s, which have withstood the test of time and millions of cycles in many different applications.

TYPICAL SPECIFICATIONS

- **ON NORMALLY OPEN UNITS:**
 - **OPERATE TIME:** 50 milliseconds
 - **RELEASE TIME:** 80 milliseconds

- **CONTACT RESISTANCE:**
 - 30-AMP=.003 ohm

- **DIELECTRIC WITHSTAND:**
 - 2500 VAC RMS

- **LONGEVITY:**
 - MILLIONS OF CYCLES

- **TEMPERATURE RANGE:**
 - -35°C TO 85°C

- **COIL TERMINALS:**
 - #6 BINDING HEAD SCREWS

- **LOAD TERMINALS:**
 - #8 BINDING HEAD SCREWS

- **UL LISTING:** FILE #E62767

- **C.S.A.:** FILE #LR41198

- **TO ORDER SEE PAGE 4**

AFTER CYCLING UNDER LOAD.

Table of Specifications

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Resistance</th>
<th>Current</th>
<th>V.A.</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>30NO-24D</td>
<td>180 Ω</td>
<td>133 mA</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>230NO-24D</td>
<td>131 Ω</td>
<td>188 mA</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>330NO-24D</td>
<td>73 Ω</td>
<td>329 mA</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>30NO-24A</td>
<td>28 Ω</td>
<td>316 mA</td>
<td>7.6</td>
<td>2.8</td>
</tr>
<tr>
<td>230NO-24A</td>
<td>12.5 Ω</td>
<td>610 mA</td>
<td>14.6</td>
<td>4.7</td>
</tr>
<tr>
<td>330NO-24A</td>
<td>7.6 Ω</td>
<td>815 mA</td>
<td>19.6</td>
<td>5.0</td>
</tr>
<tr>
<td>30NO-120A</td>
<td>725 Ω</td>
<td>65 mA</td>
<td>7.8</td>
<td>3.1</td>
</tr>
<tr>
<td>230NO-120A</td>
<td>317 Ω</td>
<td>118 mA</td>
<td>14.2</td>
<td>4.4</td>
</tr>
<tr>
<td>330NO-120A</td>
<td>210 Ω</td>
<td>163 mA</td>
<td>19.6</td>
<td>5.6</td>
</tr>
<tr>
<td>30NO-220A</td>
<td>3.150 Ω</td>
<td>27 mA</td>
<td>6.0</td>
<td>2.2</td>
</tr>
<tr>
<td>230NO-220A</td>
<td>1,300 Ω</td>
<td>56 mA</td>
<td>12.3</td>
<td>4.1</td>
</tr>
<tr>
<td>330NO-220A</td>
<td>728 Ω</td>
<td>86 mA</td>
<td>18.9</td>
<td>5.5</td>
</tr>
</tbody>
</table>
The “L” version of the 35 and 60 amp normally open contractors are designed and manufactured to the same high quality specifications as the standard 35 and 60 amp models. The contactor switch is the same well proven design that has been manufactured since 1975. The mounting centers and physical size are identical to the standard single and two pole 35 and 60 amp molded versions.

The new design provides a cleaner appearance, and is a more economical design. It is available in the single and two pole models only, with top and bottom load terminals or with lead wires. Noted are the typical specifications and UL and CSA file numbers.

TYPICAL SPECIFICATIONS

- **ON NORMALLY OPEN UNITS:**
 - OPERATE TIME: 50 milliseconds
 - RELEASE TIME: 80 milliseconds
- **CONTACT RESISTANCE:**
 - 35-AMP = .003 ohm*
 - 60-AMP = .002 ohm*
- **DIELECTRIC WITHSTAND:**
 - 2500 VAC RMS
- **LONGEVITY:**
 - MILLIONS OF CYCLES
- **TEMPERATURE RANGE:**
 - -35°C TO 85°C
- **COIL TERMINALS:**
 - #6 BINDING HEAD SCREWS
- **LOAD TERMINALS:**
 - PRESSURE CONNECTORS FOR A.W.G. #4-#14 ON 35-AMP AND A.W.G. #2-#8 ON 60-AMP UNITS
- **UL LISTING:**
 - FILE #E62767 FOR L35 AND L60-AMP N.O. UNITS 1-2 POLES
- **C.S.A.**:
 - FILE #LR41198 FOR L35 AND L60-AMP N.O. UNITS 1-2 POLES

*AFTER CYCLING UNDER LOAD

COIL DATA L35 AND L60 SERIES.

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Resistance</th>
<th>Current</th>
<th>V.A.</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>L35NO-24D</td>
<td>188 Ω</td>
<td>135 mA</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>L235NO-24D</td>
<td>92 Ω</td>
<td>260 mA</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>L35NO-24A</td>
<td>28 Ω</td>
<td>325 mA</td>
<td>7.8</td>
<td>3.0</td>
</tr>
<tr>
<td>L235NO-24A</td>
<td>10.3 Ω</td>
<td>660 mA</td>
<td>15.8</td>
<td>4.5</td>
</tr>
<tr>
<td>L35NO-120A</td>
<td>725 Ω</td>
<td>75 mA</td>
<td>9.0</td>
<td>4.0</td>
</tr>
<tr>
<td>L235NO-120A</td>
<td>350 Ω</td>
<td>115 mA</td>
<td>13.8</td>
<td>4.6</td>
</tr>
<tr>
<td>L35NO-220A</td>
<td>3.150 Ω</td>
<td>27 mA</td>
<td>5.9</td>
<td>2.2</td>
</tr>
<tr>
<td>L235NO-220A</td>
<td>1,000 Ω</td>
<td>69 mA</td>
<td>15.2</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
SINGLE POLE—NORMALLY OPEN

TWO POLE—NORMALLY OPEN

THREE POLE—NORMALLY OPEN

HAZARDOUS LOCATION & TRAFFIC CONTROL

TYPICAL SPECIFICATIONS
- NORMALLY OPEN UNITS:
 OPERATE TIME: 50 milliseconds
 RELEASE TIME: 80 milliseconds
- NORMALLY CLOSED UNITS:
 OPERATE TIME: 30 milliseconds
 RELEASE TIME: 35 milliseconds
- CONTACT RESISTANCE:
 35 AMP = .003 ohm*
 60 AMP = .002 ohm*
- TEMPERATURE RANGE:
 -35°C to 85°C
- COIL TERMINALS:
 #6 WIRE BINDING SCREWS
- LOAD TERMINALS:
 PRESSURE CONNECTORS
 4 TO 14 AWG ON 35 AMP
 2 TO 8 AWG ON 60 AMP
- RATINGS:
 SEE PAGE 13 FOR COIL DATA
 SEE PAGE 14 FOR CONTACTS
- UL LISTING: FILE #E-62767 FOR
- C.S.A.: FILE # LR 41198 FOR
- TO ORDER SEE PAGE 4

HAZARDOUS LOCATIONS
SUFFIX “X”
Available in 1, 2 & 3 Pole Units
UL File E-71867
Auxiliary devices for use in hazardous locations
For CLASS 1, GROUPS A, B, C, & D – Division 2 only.

TRAFFIC CONTROL (CONSTANT DUTY)
SP-1132- VOLTAGE- (A or D)
35 AMPS @ 600 VAC
SP-1130- VOLTAGE- (A or D)
60 AMPS @ 480 VAC
A return spring replaces the buffer spring for this application

* AFTER CYCLING UNDER LOAD

STANDARD MOUNTING SHOWN - SEE PAGE 12 FOR OPTIONS

35-AMP NORMALLY OPEN
LOAD DE-RATING DUE TO AMBIENT TEMPERATURE

60-AMP NORMALLY OPEN
LOAD DE-RATING DUE TO AMBIENT TEMPERATURE
35 AMP T-TOP CONTACTORS

35/60 AMP NORMALLY CLOSED CONTACTORS

SINGLE POLE—NORMALLY OPEN

TWO POLE—NORMALLY OPEN

THREE POLE—NORMALLY OPEN

SIMILAR CONSTRUCTION AS THE NORMALLY OPEN UNITS BUT WITH THE COIL POSITIONED CLOSER TO THE TOP OF THE CONTACTOR AND A NORMALLY CLOSED CONTACTOR IN PLACE OF A NORMALLY OPEN CONTACTOR. ALSO AVAILABLE IN THREE AND FOUR POLE UNITS.

35/60 AMP NORMALLY CLOSED CONTACTORS
35/60 AMP METAL STRAPPED CONTACTORS

Add suffix -18 to catalog number for metal strap, i.e. 335NO-120A-18

SINGLE POLE—NORMALLY OPEN

TWO POLE—NORMALLY OPEN

THREE POLE—NORMALLY OPEN

FOUR POLE—NORMALLY OPEN
100-AMP CONTACTORS

TYPICAL SPECIFICATIONS
- ON NORMALLY OPEN UNITS:
 OPERATE TIME: 50 milliseconds
 RELEASE TIME: 80 milliseconds
- ON NORMALLY CLOSED UNITS:
 OPERATE TIME: 45 milliseconds
 RELEASE TIME: 60 milliseconds
- CONTACT RESISTANCE: .001 ohm*
- DIELECTRIC WITHSTAND:
 2500VAC RMS
- LONGEVITY:
 MILLIONS OF CYCLES
- TEMPERATURE RANGE:
 -35°C TO 85°C
- COIL TERMINALS:
 #6 BINDING HEAD SCREWS
- LOAD TERMINALS:
 PRESSURE CONNECTORS.
 STANDARD ACCEPTS A.W.G. #2 to #8.
 FOR A.W.G. #1 to #8,
 ADD SUFFIX -5 TO CATALOG NUMBER (i.e. 100NO-120A-5)
- RATINGS:
 Derate over 240VAC Res.
 See Page 13 for Coil Data.
 See Page 14 for Contacts.
- TO ORDER SEE PAGE 4.

S100NO - SERIES
AVAILABLE IN 1, 2 & 3 POLES
RATINGS: 100 AMPS @ 480 VAC
SEE PAGE 14 FOR RATINGS
HIGH VOLTAGE CONTACTORS

For UV Curing, and Various High Voltage applications. Available in Single Pole, Normally Open, and Normally Closed Units. The coils utilize 6-32 Wire Binding Screws, and the Contacts use Compression type terminals for #2 thru #8 AWG wire.

RATINGS ARE:
10 AMPS @ 3500 VAC
15 AMPS @ 2500 VAC
AC INDUCTIVE Power Factor .7 or Greater.

COIL DATA

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Coil Voltage</th>
<th>Resistance</th>
<th>Current Draw</th>
<th>Wattage</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100NC-24D-6A</td>
<td>24 VDC</td>
<td>121 Ω</td>
<td>198 mA</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>100NC-120A-6A</td>
<td>120 VAC</td>
<td>380 Ω</td>
<td>125 mA</td>
<td>5.9</td>
<td>15.0</td>
</tr>
<tr>
<td>100NC-220A-6A</td>
<td>220 VAC</td>
<td>1,400 Ω</td>
<td>76 mA</td>
<td>8.1</td>
<td>16.7</td>
</tr>
<tr>
<td>100NO-12DH-6A</td>
<td>12 VDC</td>
<td>16 Ω</td>
<td>750 mA</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>100NO-24AH-6A</td>
<td>24 VAC</td>
<td>16 Ω</td>
<td>760 mA</td>
<td>9.2</td>
<td>18.2</td>
</tr>
<tr>
<td>100NO-24DH-6A</td>
<td>24 VDC</td>
<td>65 Ω</td>
<td>370 mA</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>100NO-120AH-6A</td>
<td>120 VAC</td>
<td>380 Ω</td>
<td>158 mA</td>
<td>9.5</td>
<td>19.0</td>
</tr>
<tr>
<td>100NO-220AH-6A</td>
<td>220 VAC</td>
<td>1,400 Ω</td>
<td>90 mA</td>
<td>11.3</td>
<td>19.8</td>
</tr>
</tbody>
</table>

TIME DELAY RELAYS

MDI’s Time Delay CONTACT ACTION is designated as follows:
DOO: Delay on operate, normally open
DORO: Delay on operate and release, normally open
DRO: Delay on release, normally open
DORC: Delay on operate and release, normally closed
DRC: Delay on release, normally closed

HOW TO ORDER Specify as shown below
A = ALTERNATING CURRENT
D = DIRECT CURRENT
DOO-120AP-5 TIME DELAY IN SECONDS
MOUNTING
A = “A” BRACKET
U = UNIVERSAL BRACKET
P = PANEL MOUNT
This space is blank for standard mounting bracket

TIME DELAY RELAYS Are available with delays of up to 15 seconds on normally open units, and 4 seconds on normally closed units. The timing limitation depends on the contact action required. A time delay function is accomplished in this unit by sizing a hole in the time disc that will control the rate of the mercury flow. This controls the time it will take from the instant the coil is powered until the mercury pools make contact with each other, closing the circuit between the load terminals. Typical contact ratings 10 AMP @ 120 VAC. Pilot duty rating 720 VA. Common coil voltages are available. Standard load terminals are compression type. Coil terminals use #6 binding head screws.
OPTIONAL TERMINATIONS AND MOUNTING PLATES

OPTIONAL 35 & 60 AMP CONTACTORS & TIMER MOUNTING PLATES

SP-1214
2" wide, narrow mount two pole 30 amp. catalog number SP-1214 followed by the coil voltage, then "D" for DC.
Example: SP-1214-120A

"P" PANEL MOUNT
For 35, 60-amp or standard timer; with standard mounting bracket.
The standard mounting bracket attaches to the panel with two 6-32 screws. Material: 3/8" thick phenolic.

SUFFIX "TN"
Two or Three Pole 35 AMP Only.
Load terminals on top for shorter overall height.

SUFFIX "N"
Narrow two or three pole 35 or 60 amp units only

SUFFIX-19
Two pole 35 or 60 amp narrow mounted, front facing, off set, for panel mounting.

SUFFIX-17 & -20
Din rail mount 35mm symmetrical for 35 and 60 AMP units.

L-1 (Leaded)
Designated by the letters "L-1" in the catalog number suffix.
For normally open 35-amp units. Height 3-3/16" other dimensions same as standard (page 8).

SNAP TRACK™ MOUNTING
Specify suffix "B" for SNAP TRACK mount on single, two and three pole 35 and 60 amp series and single and two pole 30 amp series. SNAP TRACK mount is standard on three pole 30 amp without suffix.

"B" BRACKET
For single pole 35 and 60-amp units, and for timers. Mounts into standard 3" snap-track. Material is 16-ga. plated steel.

TS (Top Screws)
Designated by the letters "TS" in the catalog number suffix. For timers and 35-amp units. Dimensions same as T-Top (see page 8).

"U" UNIVERSAL BRACKET
For single pole, 35 and 60-amp units, and for timers. This is the standard bracket for hybrid timers. Material: 16-ga. plated steel.
Coil Data Per Pole Ratings on Standard Coils

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Voltage</th>
<th>Resistance (D.C. Ohms)</th>
<th>Current (Milliamperes)</th>
<th>Volt Amperes (V/A)</th>
<th>Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35NO-24A</td>
<td>24 VAC</td>
<td>50 Ω</td>
<td>242 mA</td>
<td>5.8 V/A</td>
<td>2.9 W</td>
</tr>
<tr>
<td>35NO-120A</td>
<td>120 VAC</td>
<td>1,250 Ω</td>
<td>53 mA</td>
<td>6.4 V/A</td>
<td>3.5 W</td>
</tr>
<tr>
<td>35NO-208A</td>
<td>208 VAC</td>
<td>3,400 Ω</td>
<td>30 mA</td>
<td>6.2 V/A</td>
<td>3.1 W</td>
</tr>
<tr>
<td>35NO-220A</td>
<td>220 VAC</td>
<td>4,800 Ω</td>
<td>28 mA</td>
<td>6.2 V/A</td>
<td>3.8 W</td>
</tr>
<tr>
<td>35NO-277A</td>
<td>277 VAC</td>
<td>7,900 Ω</td>
<td>20 mA</td>
<td>5.5 V/A</td>
<td>3.2 W</td>
</tr>
<tr>
<td>35NO-480A</td>
<td>480 VAC</td>
<td>20,000 Ω</td>
<td>12 mA</td>
<td>5.9 V/A</td>
<td>3.0 W</td>
</tr>
<tr>
<td>35NO-6D</td>
<td>6 VDC</td>
<td>13 Ω</td>
<td>462 mA</td>
<td>2.8 V/A</td>
<td>2.8 W</td>
</tr>
<tr>
<td>35NO-12D</td>
<td>12 VDC</td>
<td>36 Ω</td>
<td>333 mA</td>
<td>4.0 V/A</td>
<td>4.0 W</td>
</tr>
<tr>
<td>35NO-24D</td>
<td>24 VDC</td>
<td>176 Ω</td>
<td>136 mA</td>
<td>3.3 V/A</td>
<td>3.3 W</td>
</tr>
<tr>
<td>35NO-48D</td>
<td>48 VDC</td>
<td>636 Ω</td>
<td>75 mA</td>
<td>3.6 V/A</td>
<td>3.6 W</td>
</tr>
<tr>
<td>35NO-125D</td>
<td>125 VDC</td>
<td>3,400 Ω</td>
<td>37 mA</td>
<td>4.6 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>35NO-250D</td>
<td>250 VDC</td>
<td>14,800 Ω</td>
<td>17 mA</td>
<td>4.2 V/A</td>
<td>4.2 W</td>
</tr>
<tr>
<td>35NC-24A</td>
<td>24 VAC</td>
<td>36 Ω</td>
<td>310 mA</td>
<td>7.4 V/A</td>
<td>3.5 W</td>
</tr>
<tr>
<td>35NC-120A</td>
<td>120 VAC</td>
<td>860 Ω</td>
<td>65 mA</td>
<td>7.8 V/A</td>
<td>3.6 W</td>
</tr>
<tr>
<td>35NC-220A</td>
<td>220 VAC</td>
<td>3,400 Ω</td>
<td>31 mA</td>
<td>6.8 V/A</td>
<td>3.3 W</td>
</tr>
<tr>
<td>35NC-12D</td>
<td>12 VDC</td>
<td>36 Ω</td>
<td>333 mA</td>
<td>4.0 V/A</td>
<td>4.0 W</td>
</tr>
<tr>
<td>35NC-24D</td>
<td>24 VDC</td>
<td>176 Ω</td>
<td>136 mA</td>
<td>3.3 V/A</td>
<td>3.3 W</td>
</tr>
<tr>
<td>35NC-48D</td>
<td>48 VDC</td>
<td>560 Ω</td>
<td>86 mA</td>
<td>4.1 V/A</td>
<td>4.1 W</td>
</tr>
<tr>
<td>35NC-125D</td>
<td>125 VDC</td>
<td>3,400 Ω</td>
<td>37 mA</td>
<td>4.6 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>60NO-24A</td>
<td>24 VAC</td>
<td>50 Ω</td>
<td>259 mA</td>
<td>6.2 V/A</td>
<td>3.4 W</td>
</tr>
<tr>
<td>60NO-120A</td>
<td>120 VAC</td>
<td>1,250 Ω</td>
<td>48 mA</td>
<td>5.8 V/A</td>
<td>2.9 W</td>
</tr>
<tr>
<td>60NO-208A</td>
<td>208 VAC</td>
<td>3,400 Ω</td>
<td>30 mA</td>
<td>6.2 V/A</td>
<td>3.1 W</td>
</tr>
<tr>
<td>60NO-220A</td>
<td>220 VAC</td>
<td>4,800 Ω</td>
<td>27 mA</td>
<td>5.9 V/A</td>
<td>3.5 W</td>
</tr>
<tr>
<td>60NO-277A</td>
<td>277 VAC</td>
<td>7,900 Ω</td>
<td>19 mA</td>
<td>5.3 V/A</td>
<td>2.9 W</td>
</tr>
<tr>
<td>60NO-480A</td>
<td>480 VAC</td>
<td>20,000 Ω</td>
<td>12 mA</td>
<td>5.8 V/A</td>
<td>2.9 W</td>
</tr>
<tr>
<td>60NO-12D</td>
<td>12 VDC</td>
<td>36 Ω</td>
<td>333 mA</td>
<td>4.0 V/A</td>
<td>4.0 W</td>
</tr>
<tr>
<td>60NO-24D</td>
<td>24 VDC</td>
<td>176 Ω</td>
<td>136 mA</td>
<td>3.3 V/A</td>
<td>3.3 W</td>
</tr>
<tr>
<td>60NO-48D</td>
<td>48 VDC</td>
<td>636 Ω</td>
<td>75 mA</td>
<td>3.6 V/A</td>
<td>3.6 W</td>
</tr>
<tr>
<td>60NO-125D</td>
<td>125 VDC</td>
<td>3,400 Ω</td>
<td>37 mA</td>
<td>4.6 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>60NO-250D</td>
<td>250 VDC</td>
<td>14,800 Ω</td>
<td>17 mA</td>
<td>4.3 V/A</td>
<td>4.3 W</td>
</tr>
<tr>
<td>60NC-24A</td>
<td>24 VAC</td>
<td>36 Ω</td>
<td>325 mA</td>
<td>7.8 V/A</td>
<td>5.3 W</td>
</tr>
<tr>
<td>60NC-120A</td>
<td>120 VAC</td>
<td>860 Ω</td>
<td>69 mA</td>
<td>8.3 V/A</td>
<td>4.1 W</td>
</tr>
<tr>
<td>60NC-220A</td>
<td>220 VAC</td>
<td>3,400 Ω</td>
<td>34 mA</td>
<td>7.5 V/A</td>
<td>3.9 W</td>
</tr>
<tr>
<td>60NC-277A</td>
<td>277 VAC</td>
<td>7,900 Ω</td>
<td>26 mA</td>
<td>7.3 V/A</td>
<td>5.5 W</td>
</tr>
<tr>
<td>60NC-12D</td>
<td>12 VDC</td>
<td>36 Ω</td>
<td>333 mA</td>
<td>4.0 V/A</td>
<td>4.0 W</td>
</tr>
<tr>
<td>60NC-24D</td>
<td>24 VDC</td>
<td>140 Ω</td>
<td>171 mA</td>
<td>4.1 V/A</td>
<td>3.3 W</td>
</tr>
<tr>
<td>60NC-48D</td>
<td>48 VDC</td>
<td>560 Ω</td>
<td>86 mA</td>
<td>4.1 V/A</td>
<td>4.1 W</td>
</tr>
<tr>
<td>60NC-125D</td>
<td>125 VDC</td>
<td>3,400 Ω</td>
<td>37 mA</td>
<td>4.6 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>100NO-24A</td>
<td>24 VAC</td>
<td>16 Ω</td>
<td>646 mA</td>
<td>15.5 V/A</td>
<td>6.7 W</td>
</tr>
<tr>
<td>100NO-120A</td>
<td>120 VAC</td>
<td>380 Ω</td>
<td>137 mA</td>
<td>16.4 V/A</td>
<td>7.1 W</td>
</tr>
<tr>
<td>100NO-220A</td>
<td>220 VAC</td>
<td>1,400 Ω</td>
<td>73 mA</td>
<td>16.1 V/A</td>
<td>7.5 W</td>
</tr>
<tr>
<td>100NO-277A</td>
<td>277 VAC</td>
<td>2,400 Ω</td>
<td>55 mA</td>
<td>15.2 V/A</td>
<td>7.3 W</td>
</tr>
<tr>
<td>100NO-480A</td>
<td>480 VAC</td>
<td>6,300 Ω</td>
<td>35 mA</td>
<td>16.8 V/A</td>
<td>7.7 W</td>
</tr>
<tr>
<td>100NO-24D</td>
<td>24 VDC</td>
<td>65 Ω</td>
<td>369 mA</td>
<td>8.9 V/A</td>
<td>8.9 W</td>
</tr>
<tr>
<td>100NO-48D</td>
<td>48 VDC</td>
<td>350 Ω</td>
<td>137 mA</td>
<td>6.6 V/A</td>
<td>6.6 W</td>
</tr>
<tr>
<td>100NO-125D</td>
<td>125 VDC</td>
<td>2,400 Ω</td>
<td>52 mA</td>
<td>6.5 V/A</td>
<td>6.5 W</td>
</tr>
<tr>
<td>100NC-24A</td>
<td>24 VAC</td>
<td>16 Ω</td>
<td>515 mA</td>
<td>12.4 V/A</td>
<td>4.2 W</td>
</tr>
<tr>
<td>100NC-120A</td>
<td>120 VAC</td>
<td>380 Ω</td>
<td>110 mA</td>
<td>13.2 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>100NC-208A</td>
<td>220 VAC</td>
<td>1,400 Ω</td>
<td>55 mA</td>
<td>11.4 V/A</td>
<td>4.2 W</td>
</tr>
<tr>
<td>100NC-240A</td>
<td>240 VAC</td>
<td>1,685 Ω</td>
<td>49 mA</td>
<td>11.8 V/A</td>
<td>4.0 W</td>
</tr>
<tr>
<td>100NC-480A</td>
<td>480 VAC</td>
<td>6,300 Ω</td>
<td>27 mA</td>
<td>13.0 V/A</td>
<td>4.6 W</td>
</tr>
<tr>
<td>100NC-12D</td>
<td>12 VDC</td>
<td>28 Ω</td>
<td>433 mA</td>
<td>5.2 V/A</td>
<td>5.2 W</td>
</tr>
<tr>
<td>100NC-24D</td>
<td>24 VDC</td>
<td>121 Ω</td>
<td>198 mA</td>
<td>4.8 V/A</td>
<td>4.8 W</td>
</tr>
<tr>
<td>100NC-48D</td>
<td>48 VDC</td>
<td>380 Ω</td>
<td>126 mA</td>
<td>6.1 V/A</td>
<td>6.1 W</td>
</tr>
<tr>
<td>100NC-125D</td>
<td>125 VDC</td>
<td>2,400 Ω</td>
<td>52 mA</td>
<td>6.5 V/A</td>
<td>6.5 W</td>
</tr>
</tbody>
</table>

NOTES:
1. Inrush current = 1.5 times the steady state current. (No inrush on DC coils).
2. Minimum operation voltage is 90% of nominal voltage.
3. All AC voltages are 50/60 Hz.
4. For other coils voltages contact the factory.
5. Ratings shown are per pole. (Coils are in parallel.)
MERCURY CONTACTOR RATINGS

<table>
<thead>
<tr>
<th>A.C. RESISTIVE</th>
<th>A.C. INDUCTIVE P.F. .4 OR GREATER</th>
<th>GENERAL PURPOSE P.F. .7 OR GREATER</th>
<th>D.C. RESISTIVE HEATING</th>
<th>TUNGSTEN LAMP</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 V</td>
<td></td>
<td></td>
<td></td>
<td>120 V</td>
<td>120 V</td>
<td>240 V</td>
</tr>
<tr>
<td>480 V</td>
<td></td>
<td></td>
<td></td>
<td>240 V</td>
<td>240 V</td>
<td>240 V</td>
</tr>
<tr>
<td>600 V</td>
<td></td>
<td></td>
<td></td>
<td>240 V</td>
<td>240 V</td>
<td>480 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 V</td>
<td>120 V</td>
<td>120 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240 V</td>
<td>240 V</td>
<td>240 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240 V</td>
<td>240 V</td>
<td>480 V</td>
</tr>
</tbody>
</table>

- **KEY:** SHADED AREA FOR UL LISTING AND/OR COMPONENT RECOGNITION.
- NOT RECOMMENDED FOR THIS TYPE OF LOAD.

SOLID STATE RELAY RATINGS

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>HPR48A25</th>
<th>HPR48A50</th>
<th>HPR48A75</th>
<th>3PSS60A75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operational current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC51 @ Ta=25°C</td>
<td>25 AMPS rms</td>
<td>50 AMPS rms</td>
<td>75 AMPS rms</td>
<td>75 AMPS rms</td>
</tr>
<tr>
<td>AC53a @ Ta=25°C</td>
<td>5 AMPS rms</td>
<td>15 AMPS rms</td>
<td>20 AMPS rms</td>
<td>20 AMPS rms</td>
</tr>
<tr>
<td>Minimum operational current</td>
<td>150 mA rms</td>
<td>250 mA rms</td>
<td>400 mA rms</td>
<td>400 mA rms</td>
</tr>
<tr>
<td>Rep. overload current t=1 s</td>
<td>< 55 A rms</td>
<td>< 125 A rms</td>
<td>< 150 A rms</td>
<td>< 150 A rms</td>
</tr>
<tr>
<td>Non-rep. surge current t = 10 ms</td>
<td>325 A_p</td>
<td>600 A_p</td>
<td>1150 A_p</td>
<td>1150 A_p</td>
</tr>
<tr>
<td>Off-state leakage current</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
</tr>
<tr>
<td>l^t for fusing t = 10 ms</td>
<td>525 A2s</td>
<td>1800 A2s</td>
<td>6600 A2s</td>
<td>6600 A2s</td>
</tr>
<tr>
<td>On-state voltage drop</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
</tr>
<tr>
<td>Critical dV/dt off-state</td>
<td>1000 V/μs</td>
<td>1000 V/μs</td>
<td>1000 V/μs</td>
<td>500 V/μs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>SS20AE</th>
<th>SS30AU</th>
<th>SS50AE</th>
<th>SS70AU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operational current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC51 @ Ta=25°C</td>
<td>20 AMPS rms</td>
<td>30 AMPS rms</td>
<td>50 AMPS rms</td>
<td>70 AMPS rms</td>
</tr>
<tr>
<td>AC53a @ Ta=25°C</td>
<td>5 AMPS rms</td>
<td>15 AMPS rms</td>
<td>30 AMPS rms</td>
<td>30 AMPS rms</td>
</tr>
<tr>
<td>Minimum operational current</td>
<td>350 mA rms</td>
<td>150 mA rms</td>
<td>150 mA rms</td>
<td>150 mA rms</td>
</tr>
<tr>
<td>Rep. overload current t=1 s</td>
<td>< 35 A rms</td>
<td>< 125 A rms</td>
<td>< 200 A rms</td>
<td>< 200 A rms</td>
</tr>
<tr>
<td>Non-rep. surge current t = 10 ms</td>
<td>250 A_p</td>
<td>400 A_p</td>
<td>1900 A_p</td>
<td>1900 A_p</td>
</tr>
<tr>
<td>Off-state leakage current</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
<td>< 3 mA rms</td>
</tr>
<tr>
<td>l^t for fusing t = 10 ms</td>
<td>310 A2s</td>
<td>1800 A2s</td>
<td>1800 A2s</td>
<td>1800 A2s</td>
</tr>
<tr>
<td>On-state voltage drop</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
<td>1.6 V rms</td>
</tr>
<tr>
<td>Critical dV/dt off-state</td>
<td>500 V/μs</td>
<td>500 V/μs</td>
<td>500 V/μs</td>
<td>500 V/μs</td>
</tr>
</tbody>
</table>

Coupon of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
SOLID STATE RELAYS

Models: 3PSS60A75 S (Standard Din-rail)
3PSS60A75 R (Retro Fit)

General Specifications

- **Operational voltage range**: 42-660 VAC 45 to 65 Hz
- **Blocking voltage**: 1600 V
- **Over voltage category**: III
- **Pollution degree**: 3
- **Operating temperature**: -30°C to 80°C (-22° to 158°F)
- **Storage temperature**: -40°C to 100°C (-40° to 212°F)
- **Input to output isolation voltage**: ≥ 4000 VAC rms
- **Output to case isolation voltage**: ≥ 4000 VAC rms
- **Heat Sink Fan requires**: 70 mA @ 24 VDC
- **Markings**:

Input Specifications

- **Control voltage range**: 24-275 VAC/24-50 VDC
- **Pick-up voltage**: 18 VAC/20 VDC
- **Drop-out voltage**: 9 VAC/DC
- **Input current**: ≤ 15 mA
- **Response time pick-up (Power output = 50 Hz)**: 20 ms
- **Response time drop-out (Power output = 50 Hz)**: 30 ms

All data specified at Ta=25°C

Product Description

A Solid State Relay family designed to switch various loads such as heating elements, motors and transformers. The relay is capable of switching voltages up to 600 VAC rms. The built-in varistor is for heavy industrial applications. For higher reliability and load cycle capability three semiconductor power units are bonded directly to the substrate.

Tested and Approved

3 Pole 50 AMPS @ 480 VAC @ -30°C to 50°C 3-Phase
2 Pole 75 AMPS @ 480 VAC @ -30°C to 50°C 3-Phase
51°C to 80°C derates @ 10 AMPS per decade
*For 2 Pole usage, use L1 & L3

Model S

- 4.754
- .477
- .198
- 4.694
- .173
- .504
- 3.550
- 3.550
- .166 X .190 (2 HOLES) ALIGNS WITH SLOTS BELOW
- M-5 THREADS 2 PLACES

Model R

- Includes Retro Fit Back Plate
- For direct replacement with standard 2 & 3 pole Mercury Relays. Using the same mounting holes.

Bracket adds 3/16" to depth
SOLID STATE RELAYS

Type HPR48 Industrial, 1-Phase ZS (IO) w. LED and Built-in Varistor

Product Description

The industrial, 1-phase relay with anti parallel thyristor output is the most widely used industrial SSR due to its multiple application possibilities. The relay can be used for resistive, inductive and capacitive loads. The zero switching relay switches ON when the sinusoidal curve crosses zero and switches OFF when the current crosses the instant-on relay with DC control input can be used for phase control. The built in varistor secures transient protection for the heavy industrial applications, and the LED indicates the status of the control input. The clip on cover is securing touch protection to IP 20. Protected output terminals can handle cables up to 16mm² (6 AWG).

General Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>HPR48...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational voltage range</td>
<td>42 to 530 VAC rms</td>
</tr>
<tr>
<td>Blocking voltage</td>
<td>$\geq 1200 , V_C$</td>
</tr>
<tr>
<td>Zero voltage turn-on</td>
<td>$\leq 10 , V$</td>
</tr>
<tr>
<td>Operational frequency range</td>
<td>45 to 65Hz</td>
</tr>
<tr>
<td>Power factor</td>
<td>$> 0.5 , @ , 480 , VAC , rms$</td>
</tr>
<tr>
<td>Markings</td>
<td>CE, UL</td>
</tr>
</tbody>
</table>

Ordering Key

<table>
<thead>
<tr>
<th>Model</th>
<th>HPR48 A 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Relay</td>
<td>Control voltage</td>
</tr>
<tr>
<td>Rated operational current</td>
<td></td>
</tr>
</tbody>
</table>

Type Selection

<table>
<thead>
<tr>
<th>Control voltage</th>
<th>Rated operation current</th>
</tr>
</thead>
<tbody>
<tr>
<td>D: 4-32VDC</td>
<td>50: 50 AMPS rms</td>
</tr>
<tr>
<td></td>
<td>75: 75 AMPS rms</td>
</tr>
</tbody>
</table>

Input Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>HPR..25</th>
<th>HPR..50</th>
<th>HPR..75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control voltage range</td>
<td>4 - 32 VDC</td>
<td>20 - 280 VAC</td>
<td>22 - 48 VDC</td>
</tr>
<tr>
<td>Pick-up voltage @ $T_a = 25^\circ C$</td>
<td>3.5 VDC</td>
<td>18 VAC/DC</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>32 VDC</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Drop out voltage</td>
<td>1.2 VDC</td>
<td>6 VAC/DC</td>
<td></td>
</tr>
<tr>
<td>Input current @ max voltage</td>
<td>$\leq 12 , mA$</td>
<td>$\leq 20 , mA$</td>
<td></td>
</tr>
<tr>
<td>Response time pick-up</td>
<td>$\leq 1/2 , cycle$</td>
<td>$\leq 12 , ms$</td>
<td></td>
</tr>
<tr>
<td>Response time drop-out</td>
<td>$\leq 1/2 , cycle$</td>
<td>$\leq 40 , ms$</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>HPR..25</th>
<th>HPR..50</th>
<th>HPR..75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-20° to 70°C (36° to 126°F)</td>
<td>-20° to 70°C (36° to 126°F)</td>
<td>-20° to 70°C (36° to 126°F)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40° to 100°C (72° to 180°F)</td>
<td>-40° to 100°C (72° to 180°F)</td>
<td>-40° to 100°C (72° to 180°F)</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>$\leq 125^\circ C$ (225°F)</td>
<td>$\leq 125^\circ C$ (225°F)</td>
<td>$\leq 125^\circ C$ (225°F)</td>
</tr>
<tr>
<td>R_{th} junction to case</td>
<td>$\leq 0.80K/W$</td>
<td>$\leq 0.50K/W$</td>
<td>$\leq 0.35K/W$</td>
</tr>
<tr>
<td>R_{th} junction to ambient</td>
<td>$\leq 20.0K/W$</td>
<td>$\leq 20.0K/W$</td>
<td>$\leq 20.0K/W$</td>
</tr>
</tbody>
</table>

Functional Diagram

Dimensions

![Diagram](https://stevenengineering.com/images/hpr48.png)
Heatsink Data

(loaded current versus ambient temperature)

HPR..25

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>2.70 2.34 1.98 1.61 1.25</td>
<td>0.89 28</td>
</tr>
<tr>
<td>22.5</td>
<td>3.10 2.69 2.28 1.86 1.45</td>
<td>1.04 24</td>
</tr>
<tr>
<td>20.0</td>
<td>3.61 3.13 2.65 2.18 1.70</td>
<td>1.23 21</td>
</tr>
<tr>
<td>17.5</td>
<td>4.26 3.70 3.14 2.59 2.03</td>
<td>1.47 18</td>
</tr>
<tr>
<td>15.0</td>
<td>5.14 4.47 3.80 3.14 2.47</td>
<td>1.80 15</td>
</tr>
<tr>
<td>12.5</td>
<td>6.38 5.56 4.73 3.91 3.09</td>
<td>2.27 12</td>
</tr>
<tr>
<td>10.0</td>
<td>8.25 7.19 6.14 5.08 4.02</td>
<td>2.97 9</td>
</tr>
<tr>
<td>7.5</td>
<td>11.4 9.94 8.49 7.04 5.59</td>
<td>4.14 7</td>
</tr>
<tr>
<td>5.0</td>
<td>17.7 15.4 13.2 11.0 8.74</td>
<td>6.51 4</td>
</tr>
<tr>
<td>2.5</td>
<td>- - - - -</td>
<td>18.2 13.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temp.</th>
<th>TA 70°C</th>
<th>158°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>86</td>
<td>104</td>
</tr>
</tbody>
</table>

- Junction to ambient thermal resistance, R_{th-j} < 20.0 K/W
- Junction to case thermal resistance, R_{th-c} < 0.80 K/W
- Case to heatsink thermal resistance, R_{th-c-a} < 0.20 K/W
- Maximum allowable case temperature: 100 (212) °C (F)
- Maximum allowable junction temperature: 125 (257) °C (F)

HPR..50

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>1.03 0.86 0.70 0.53 0.37</td>
<td>0.20 61</td>
</tr>
<tr>
<td>45.0</td>
<td>1.27 1.09 0.90 0.71 0.52</td>
<td>0.33 53</td>
</tr>
<tr>
<td>40.0</td>
<td>1.54 1.32 1.10 0.89 0.67</td>
<td>0.45 46</td>
</tr>
<tr>
<td>35.0</td>
<td>1.85 1.59 1.34 1.08 0.82</td>
<td>0.57 39</td>
</tr>
<tr>
<td>30.0</td>
<td>2.26 1.95 1.65 1.34 1.03</td>
<td>0.72 33</td>
</tr>
<tr>
<td>25.0</td>
<td>2.85 2.47 2.08 1.70 1.32</td>
<td>0.94 26</td>
</tr>
<tr>
<td>20.0</td>
<td>3.73 3.24 2.75 2.26 1.77</td>
<td>1.27 20</td>
</tr>
<tr>
<td>15.0</td>
<td>5.22 4.54 3.86 3.19 2.51</td>
<td>1.83 15</td>
</tr>
<tr>
<td>10.0</td>
<td>8.21 7.16 6.11 5.05 4.00</td>
<td>2.95 10</td>
</tr>
<tr>
<td>5.0</td>
<td>17.2 15.0 12.9 10.7 8.51</td>
<td>6.33 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temp.</th>
<th>TA 70°C</th>
<th>158°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>86</td>
<td>104</td>
</tr>
</tbody>
</table>

- Junction to ambient thermal resistance, R_{th-j} < 20.0 K/W
- Junction to case thermal resistance, R_{th-c} < 0.50 K/W
- Case to heatsink thermal resistance, R_{th-c-a} < 0.20 K/W
- Maximum allowable case temperature: 100 (212) °C (F)
- Maximum allowable junction temperature: 125 (257) °C (F)

HPR..75

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75.0</td>
<td>0.91 0.78 0.65 0.52 0.39</td>
<td>0.26 77</td>
</tr>
<tr>
<td>67.5</td>
<td>1.10 0.96 0.81 0.66 0.51</td>
<td>0.36 68</td>
</tr>
<tr>
<td>60.0</td>
<td>1.34 1.17 1.00 0.83 0.66</td>
<td>0.49 59</td>
</tr>
<tr>
<td>52.5</td>
<td>1.60 1.40 1.20 1.00 0.80</td>
<td>0.60 50</td>
</tr>
<tr>
<td>45.0</td>
<td>1.93 1.68 1.44 1.20 0.96</td>
<td>0.72 42</td>
</tr>
<tr>
<td>37.5</td>
<td>2.38 2.08 1.78 1.49 1.19</td>
<td>0.89 34</td>
</tr>
<tr>
<td>30.0</td>
<td>3.06 2.68 2.30 1.91 1.53</td>
<td>1.15 26</td>
</tr>
<tr>
<td>22.5</td>
<td>4.21 3.68 3.16 2.63 2.10</td>
<td>1.58 19</td>
</tr>
<tr>
<td>15.0</td>
<td>6.51 5.70 4.88 4.07 3.26</td>
<td>2.44 12</td>
</tr>
<tr>
<td>7.5</td>
<td>13.5 11.77 10.09 8.41 6.73</td>
<td>5.04 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temp.</th>
<th>TA 70°C</th>
<th>158°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>86</td>
<td>104</td>
</tr>
</tbody>
</table>

- Junction to ambient thermal resistance, R_{th-j} < 20.0 K/W
- Junction to case thermal resistance, R_{th-c} < 0.35 K/W
- Case to heatsink thermal resistance, R_{th-c-a} < 0.10 K/W
- Maximum allowable case temperature: 100 (212) °C (F)
- Maximum allowable junction temperature: 125 (257) °C (F)
20, 30, 50 & 70 AMP RELAYS WITH INTEGRATED HEATSINKS

- AC Semiconductor contactor
- Zero switching
- Direct-Copper bonding (DCB) technology
- LED indication
- Cage Clamp terminals
- 2 input ranges: 4-32 VDC & 24-274 VAC/24-48 VDC
- Operational ratings: 20-70 AMPS AC rms @ 600 VAC
- Non-repetitive voltage: Up to 1200 Vp
- Opto isolation: > 4000 VAC rms
- Operating temperature: -30° to +80°C
- Junction temperature: 125°C on 20, 30 & 70 AMP
- Junction temperature: 120°C on 50 AMP

PRODUCT DESCRIPTION: MDI Solid State Relays are advantageous in industrial heating applications requiring high cycle rates. These relays have integral heat sinks and are ready to mount on chassis or DIN-rail.

The standard housing dimensions enable straightforward replacement of alternative products and allow for two standard terminal configurations. Cage clamp terminals are used to ensure secure load connection.

An LED indicates the status of the control input. The superior heat-transfer efficiency combined with a robust power management system makes this a high reliability product that can meet the most stringent functional requirements.
Panel mounting

Terminal Layout

Derating Curve SS20/SS30

Power Dissipation VS. Load Current SS20/SS30

Derating Curve SS50

Power Dissipation VS. Load Current SS50

Derating Curve SS70

Power Dissipation VS. Load Current SS70

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Proper Fusing is Required
1. While MDI Mercury contactors handle high inrush, such as lamps, mercury contactors are susceptible to damage by short circuit currents, and should be fused to minimize short circuit fault currents. UL class RK-1 and class J fuses and semiconductor PT fuses more effectively protect relays. These are low current-peak fuses designed to limit short circuit currents. Regardless, when there is a short circuit, relay operations should be closely monitored afterward because of the possibility of concealed damage that could cause the relays to behave inconsistently.

-RECOMMENDED-
250 VOLT 600 VOLT
KTN-R KTS-R
JHN/A3T JJS
JKS/A4J KTK-R

2. For sizing of relay see below
3. For data on standard coils see pages 5, 6, 11, & 13.
4. MDI RELAYS must mount vertically, ±10°.
5. Control line can be protected with metal oxide varistors (MOV). Use suffix -11.
6. Disconnect power before installing or servicing. Observe all electrical and safety codes and ordinances such as national electric code (NEC) and the occupational safety and health act (OSHA).

TORQUE SPECIFICATIONS
- For coils 8 in. Lb. max.
- For line and load terminals see ratings labels.

SIZING RELAY

<table>
<thead>
<tr>
<th>3 Ø AC</th>
<th>FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>To find AMPS per pole</td>
<td>208 V 2.776</td>
</tr>
<tr>
<td>3 Ø Balanced Heater loads</td>
<td>220 V 2.624</td>
</tr>
<tr>
<td>AMPS per pole = (\frac{KW \times 1,000}{VOLTS \times 1.732})</td>
<td>240 V 2.406</td>
</tr>
<tr>
<td>Or multiply the kilowatts times the appropriate factor</td>
<td>277 V 2.084</td>
</tr>
<tr>
<td>480 V 1.203</td>
<td></td>
</tr>
<tr>
<td>600 V 0.962</td>
<td></td>
</tr>
</tbody>
</table>

MOV CHART

<table>
<thead>
<tr>
<th>FOR</th>
<th>SIEMENS</th>
<th>HARRIS</th>
<th>C.K.E.</th>
<th>M.D.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VOLT</td>
<td>S14K30</td>
<td>V47ZA7</td>
<td>-</td>
<td>PM-567-5</td>
</tr>
<tr>
<td>120 VOLT</td>
<td>S20K130</td>
<td>V150LA20B</td>
<td>Z150LA20B</td>
<td>PM-567-1</td>
</tr>
<tr>
<td>220 VOLT</td>
<td>S20K275</td>
<td>V275LA40B</td>
<td>Z275LA40B</td>
<td>PM-567-2</td>
</tr>
<tr>
<td>277 VOLT</td>
<td>S20K385</td>
<td>V320LA20B</td>
<td>Z320LA20B</td>
<td>PM-567-3</td>
</tr>
</tbody>
</table>

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
INDOOR WATER ALARM

WITH BATTERY BACKUP

SP-3000 ALARM - BBLA INDOOR ALARM WITH XF20Y1500 MECHANICAL FLOAT
SP-3100 ALARM - BBLA INDOOR ALARM WITH AS20Y1500 MERCURY FLOAT

The BBLA alarm system is designed to monitor liquid levels in sump basins, holding tanks, lift stations tanks and many other non-potable water and wastewater applications. Comes individually boxed with Cable tie and Instruction sheet.

Auxiliary contacts with common, normally open and normally closed terminals are available behind a panel, on the lower right side, held in place by two #1 Phillips head screws. The barrier terminal screws are Phillips/Standard slot combo head type.

The BBLA is designed to sound a piezo horn and illuminate a red light to notify of an alarm situation. There is a green line voltage power indicator light to show that the unit is functioning, as well as a silence switch to turn horn off while fixing the alarm (the red alarm light will remain on until the alarm conditions are remedied).

SPECIFICATIONS
- Dimensions: 7" X 4" X 2 1/2"
- Enclosure: NEMA 1 thermoplastic (external mounting feet)
- Horn: 85 dB
- Weight: 1 1/3 pounds
- Voltage: Primary: 120 VAC, Secondary 12 VAC, 60 Hz (Alarm condition 2.5 Watts max)
- Power cord: 6 feet 120 VAC (NEMA 5-15P)
- External block connection: Float connection. DO NOT APPLY POWER! Class Two Output, 12 VAC
- Auxiliary contacts: 120 VAC, 5 AMPS max 60 Hz
- Battery Back Up: 9 Volt

OUTDOOR TANK ALARM

SP-4000 ALARM - OTA OUTDOOR ALARM WITH NF2OW1500 MECHANICAL FLOAT
SP-4100 ALARM - OTA OUTDOOR ALARM WITH CG20Y1500 MERCURY FLOAT

The OTA alarm system is designed to monitor liquid levels in sump basins, holding tanks, lift stations tanks and many other non-potable water and wastewater applications. Comes individually boxed with Cable tie and Instruction sheet.

This alarm comes in a Type 4X non-metallic enclosure with external mounting feet and a gasketed door for outdoor use. It has a large red illuminating beacon, front cover mounted piezo, with Test and Silence push button switches.

The OTA is designed to sound an audible piezo horn and illuminate the red beacon light to notify of an alarm situation. There is a silence switch to turn the piezo horn off while fixing the alarm (the red alarm light will remain on until the alarm conditions are remedied).

SPECIFICATIONS
- Dimensions: 8" X 4 1/2" X 4 1/4"
- Enclosure: Type 4X non-metallic enclosure rated for indoor or outdoor use
- Piezo Horn: 85 dB
- Weight: 2 pounds
- Voltage: Primary: 120 VAC, Secondary 12 VAC, 60 Hz 6 Watts max.
- Power cord: 6 feet 120 VAC (NEMA 5-15P)
- Float connection: External block connection
HOW TO ORDER LIQUID LEVEL CONTROL FLOATS

BASIC SWITCH SERIES
MERCURY
A - TS-1
 1 AMP @ 120 VAC Pilot Duty 10°
B - WATS-1
 1 AMP @ 120 VAC Pilot Duty 90°
C - TS-10
 13 AMPS @ 120 VAC / 5 AMPS @ 240 VAC 10°
D - NATS-20
 13 AMPS @ 120 VAC / 6 AMPS @ 240 VAC 30°
E - WATS-20
 13 AMPS @ 120 VAC / 6 AMPS @ 240 VAC 90°

MECHANICAL
G - ½ H.P. 13/15 AMPS 90°
H - 1 and 3/4 H.P. 15 AMPS 90°
K - 10 AMPS Pilot Duty Narrow Angle Tetherless
L - 1 & 2 H.P. 25 AMPS 90°
N - 10 AMPS Pilot Duty Narrow Angle 35°
P - ½ H.P. Narrow Angle 25°
R - ½ H.P. Narrow Angle Tetherless
S - Small 5 AMPS 120/250 VAC 90°
X - Small 5 AMPS 120/250 VAC Narrow Angle 15°

FLOAT SIZE & STANDARD COLOR CODE

<table>
<thead>
<tr>
<th>NORMALLY OPEN</th>
<th>NORMALLY CLOSED</th>
<th>BASIC SWITCH SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - SMALL MERCURY BLACK ABS ONLY</td>
<td>S - SMALL MERCURY BLACK ABS ONLY</td>
<td>A & B SERIES</td>
</tr>
<tr>
<td>M - MERCURY BLACK HIPS ONLY</td>
<td>B - MERCURY YELLOW HIPS ONLY</td>
<td>C, D, & E SERIES</td>
</tr>
<tr>
<td>F - SMALL MECHANICAL BLACK ABS ONLY</td>
<td>F - SMALL MECHANICAL BLACK ABS ONLY</td>
<td>S & X SERIES</td>
</tr>
<tr>
<td>DOUBLE THROW</td>
<td>F - SMALL MECHANICAL BLACK ABS ONLY</td>
<td></td>
</tr>
<tr>
<td>Y - MECHANICAL GREEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMINATION AND LABEL DESIGNATION
00 - Standard skive (See Fig 4)
 Recognized: No Label
C1 - 120 VAC Series plug (See Fig 1)
 Listed: Label on 6’ min. cord
F1 - 120 VAC Series plug (See Fig 1)
 Listed: Label on Float - 6’ min. cord
R1 - 120 VAC Series plug (See Fig 1)
 Recognized: No Label - 6’ min. cord
C2 - 240 VAC Series plug (See Fig 2)
 Listed: Label on 6’ min. cord
F2 - 240 VAC Series plug (See Fig 2)
 Listed: Label on Float - 6’ min. cord
R2 - 240 VAC Series plug (See Fig 2)
 Recognized: No Label - 6’ min. cord
O3 - 3 Pin barrel plug (See Fig 3)
 Recognized: No Label
F0 - Standard skive (See Fig 4)
 Recognized: Label on Float

GOLD PLATED MECHANICAL FLOAT SWITCHES AVAILABLE INTRINSICALLY SAFE
RATINGS: 160 μA TO 100 mA

Installation Instructions
1. Attach cord, using a cable tie, to any convenient rigid surface as illustrated. This is known as the tether point. Do not tighten until both turn-on and turn-off levels are established.
2. To adjust greater distance between turn-on and turn-off, increase cord length between tether point and float. For less distance between turn-on and turn-off decrease cord.
3. Make sure the float is at least 2 inches above pump base, in the turn-off position, before tightening cable tie at the tether point.
4. Plug piggy-back switch cord (Series Plug) into grounded outlet, then plug into piggy-back switch cord, and check for proper operation.

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
Mercury Floats

<table>
<thead>
<tr>
<th>Series</th>
<th>Angle</th>
<th>AMPS @ 120 VAC</th>
<th>AMPS @ 240 VAC</th>
<th>GA Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Series</td>
<td>10°</td>
<td>1 AMP</td>
<td>120 VAC</td>
<td>5 AMP @ 240 VAC</td>
</tr>
<tr>
<td>D Series</td>
<td>30°</td>
<td>1 AMP</td>
<td>120 VAC</td>
<td>6 AMP @ 240 VAC</td>
</tr>
<tr>
<td>E Series</td>
<td>90°</td>
<td>1 AMP</td>
<td>120 VAC</td>
<td>6 AMP @ 240 VAC</td>
</tr>
</tbody>
</table>

Mechanical Floats

<table>
<thead>
<tr>
<th>Series</th>
<th>Angle</th>
<th>AMPS @ 120/240 VAC</th>
<th>AMPS @ 30 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Series</td>
<td>90°</td>
<td>5 AMP @ 120/240 VAC</td>
<td>5 AMP @ 30 VDC</td>
</tr>
<tr>
<td>X Series</td>
<td>15°</td>
<td>5 AMP @ 120/240 VAC</td>
<td>5 AMP @ 30 VDC</td>
</tr>
<tr>
<td>G Series</td>
<td>90°</td>
<td>1/2 H.P. @ 120/240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 AMP @ 120/240 VAC w/ 14 GA. cord</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 AMP @ 120/240 VAC w/ 16 GA. cord</td>
<td>58.8 AMPS overload</td>
</tr>
<tr>
<td>L Series</td>
<td>90°</td>
<td>1 H.P. @ 120 and 2 H.P. @ 240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 AMP @ 120/240 VAC with 12 GA. cord</td>
<td></td>
</tr>
<tr>
<td>P Series</td>
<td>25°</td>
<td>1/2 H.P. @ 120/240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 AMP @ 120/240 VAC with 14 GA. cord</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 AMP @ 120/240 VAC with 16 GA. cord</td>
<td>58.8 AMPS overload</td>
</tr>
<tr>
<td>H Series</td>
<td>90°</td>
<td>1 H.P. @ 120 and 2 H.P. @ 240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 AMP @ 120/240 VAC with 14 GA. cord</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>96 AMPS overload</td>
<td></td>
</tr>
<tr>
<td>N Series</td>
<td>35°</td>
<td>1/4 H.P. @ 120/240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 AMP @ 120/240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.8 AMPS overload</td>
<td></td>
</tr>
<tr>
<td>R Series</td>
<td>Tetherless with Internal Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Narrow Angle Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2 H.P. @ 120/240 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 AMP @ 120/240 VAC with 14 GA. cord</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 AMP @ 120/240 VAC with 16 GA. cord</td>
<td>58.8 AMPS overload</td>
<td></td>
</tr>
</tbody>
</table>

Tetherless Internally Weighted

- **N Series**
 - Narrow Angle Float (Normally Open Shown)
 - K - SERIES = 9.5°
 - R - SERIES = 2.5°
- **P Series**
 - From Initial Contact to Turn On
 - PM-590
 - Close
 - Pumping Range
 - Turn On
 - Re-Open

MDI Tether Clamp
- A nice and simple way to mount your float switch to a pipe, either with a cable tie or pipe clamp.
- It can be used on 12-2 to 18-2 cords (14-3 to 18-3 with the 3 conductor cord).
- **TC** (Includes the clamp, bolt and nut)
- TC-1 (Includes the clamp, bolt, nut and 2½” max. Pipe clamp)
- TC-2 (Includes the clamp, bolt, nut and 3½” max. pipe clamp)
- TC-10 (Includes the clamp, bolt, nut and 14” cable tie)
VERTICAL LIQUID LEVEL CONTROL SWITCH

NUMBERING SYSTEM
VS - 012 03 R9 L - 01
A B C D E

A - Length of cord in inches
B - Termination; Standards are:
 00 - 1 3/4” ROJ & 3/4” Strip, or Skive (Standard)
 R1 - Piggyback 120 VAC Component Recognized
 C1 - Piggyback 120 VAC W/ Listed Cord Label
 R2 - Piggyback 240 VAC Component Recognized
 C2 - Piggyback 240 VAC W/ Listed Cord Label
 03 - 3-Pin Barrel Plug Component Recognized
 C3 - 3-Pin Barrel Plug W/ Listed Cord Label

C - Rod Length
 Rod length in inches (9” is standard)
 Rods available up to 24”

D - Rod Guide
 L - Lower rod guide
 U - Upper rod guide

(Optional)
E - With or without Bracket, or mounting system
 01 - Pipe Clamp & Stainless Steel Bracket
 02 - Pipe Clamp & Plastic Bracket

VS SERIES SUMP PUMP SWITCH

RATINGS: 10 AMPS / 1/2 H.P. @ 120/240 V 50/60 Hz.

PUMPING RANGE: ADJUSTABLE UP TO 6 INCHES (WITH
STANDARD 9” ROD LENGTH).

MATERIALS: ENCLOSURE AND GUIDE IS ABS PLASTIC.
FLOAT IS BLACK POLYPROPYLENE

MOUNTING: STANDARD MOUNTING HOLES FOR #8
SCREWS ON 2.06 INCH CENTERS ARE
LOCATED UNDER HOUSING.

OPTIONAL PIPE MOUNT BRACKET
ALLOWS FOR MOUNTING TO STANDARD
SIZE SUMP DISCHARGE PIPING.

OTHER OPTIONS: 15 AMPS 3/4 H.P. @ 120/240 VAC
NORMALLY CLOSED & DOUBLE THROW
CONTACT THE FACTORY
PRODUCT DESCRIPTION:
The Twin Float pump switch consists of two floats, each float contains a mercury switch. One of the two floats contains a heavy-duty relay, which enables the floats to function in series. The relay eliminates pump chatter in turbulent conditions.

The unit is well suited for narrow & deep sump pump pits. On the N.O. (Pump Down) model, the pump is turned on when activated by the top float switch. The pump stays on until the bottom float switch turns it off, this allows a pumping range of about 48" with the standard 54" cord length on the bottom float. This can be extended almost indefinitely with longer cords.

NUMBERING SYSTEM
TFD 1 - 054 - U 15 01
A B C D E F
A - Switch Action
D - Pump Down (Normally Open)
U - Pump Up (Normally Closed)
B - Voltage
1 - 120 VAC
2 - 240 VAC
C - Bottom Float Cord Length
6" increments, min. length 12"
54" is our standard length
D - Cord Types
U - 14 AWG CPE jacketed SJOW cord
E - Power Cord Length in Feet
F - Power Cord (14 AWG PVC)
00 - Standard Skive
01 - 120 VAC, 15 AMP piggyback (B must = 1)
02 - 240 VAC, 15 AMP piggyback (B must = 2)
HOW TO ORDER

Specify as shown below.

TERMINATION
All leaded and cased tilt switches come with silicone rubber mercury switch lead wire, except TOS-12

*TERMINATION WIRE LENGTHS
- L1 = 6” Leads
- L2 = 12” Leads
- L3 = 18’’ Leads
- L4 = 24” Leads

(CONTINUES IN 6” INCREMENTS)

For lead wire or lengths other than the above contact the factory

MOUNTING CLIPS

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-348-36</td>
<td>TS-1, TS-1-L1</td>
</tr>
<tr>
<td>PM-348-44</td>
<td>TS-10, TS-10-L1</td>
</tr>
<tr>
<td>PM-348-50</td>
<td>TS-1C-L1</td>
</tr>
<tr>
<td>PM-348-62</td>
<td>TS-10C-L1, TS-20C-L1</td>
</tr>
</tbody>
</table>

CASED UNIT
“C” for cased unit this space is blank for uninsulated units

For Mercury Free Switches Contact the Factory

SWITCHES

TS-1 Tilt Switch 10°
WATS-1 Wide Angle Tilt Switch 90°

.075” DIA.
1.0”
.125” WIDE .156” LONG TAB
.62”
.36” DIA.

TS-1-3
WATS-1-3
Printed circuit mountable Tilt Switch

.045” DIA.
.25
.052” DIA.
.128” DIA.

Hole pattern side opposite component

TS-1-6
WATS-1-6

Standard

TS-1C-L
WATS-1C-L

.60” DIA.
1.40”
.75”
.50” DIA.

TS-10 Tilt Switch 10°
TS-20 Tilt Switch 10°

.60” DIA.
.125” DIA.
1.812”
.438” DIA.

TS-10C-L
TS-20C-L

.75” DIA.
2.31”
1.50”
.625” DIA.

RATINGS

TS-1 & WATS-1 1 AMP @ 120 VAC / 1 AMP @ 28 VDC

TS-10 10 AMPS @ 120 VAC
TS-20 20 AMPS @ 120 VAC

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com
NATS-20
Narrow Angle Tilt Switch 30°

WATS-20
Wide Angle Tilt Switch 90°

RATINGS
NATS-20 & WATS-20
13 AMPS @ 120 VAC
6 AMPS @ 240 VAC

TOS-12-2
Tip Over Switch 25°

TOS-12C-8
1.02" DIA.

TOS-12C-L*

TOS-12

RATINGS
12 AMPS @ 120 VAC
25° Tip Over Angle
15° & 45° TOS-12 &
Mercury Free Available
Contact the factory

Damper Arm Tilt Switch

1" DIA.

FOR .50 DIA. SHAFT

300 Volt Plenum wire
or SJOW cord

1.375"

RATINGS
1 AMP @ 120 VAC / 1 AMP @ 28 VDC

SP-1162-L_
SPDT - 18 AWG Plenum wire

SP-1335-L_
SPDT - 18 AWG SJOW Cord

CORD LENGTHS
-L1 = 6” LEADS
-L2 = 12” LEADS
-L3 = 18” LEADS
-L4 = 24” LEADS
(CONTINUES IN 6” INCREMENTS)

TOS-12
Omni Directional
Operating Angle

APPROXIMATELY
25° OPERATING ANGLE
ON POSITION
OFF POSITION
VERTICAL

WATS-1
WATS-20

NATS-20
Operating Angle

SWITCH CLOSES ABOVE HORIZONTAL

5°

30°

SWITCH OPENS BELOW HORIZONTAL

5°

TS-1, TS-10, TS-20
Operating Angle
Recommended operating angle
for good switch open and closure
conditions.
TYPICAL APPLICATIONS

FOR MDI’S MERCURY DISPLACEMENT CONTACTORS

LIGHTING
Auditorium Lighting
Beacons and Search Lights
Copy Equipment
Dimmer Controls
Display Signs
Emergency Lighting
Flood Lights
High Intensity Lamps
Hospital Lighting
Lighting Test Panels
Mercury Vapor Lamps
Parking Lots
Photography Lighting
Scoreboards
Sodium Vapor Lamps
Stage Lighting
Street Lighting
Surgical Lighting Control
Tower Lights
Traffic Signal
Tungsten Lamps

GENERAL APPLICATIONS
Air Conditioning
Alarm Systems
Automatic Door Closers
Battery Chargers
Blue Print Machines
Copiers
Computer Power Supplies
Corrosive Locations
Dusty, Oil Locations
Dry Cleaning Equipment
Energy Management Systems
Farm Incubators and Brooders
Low Voltage Switching
Marking and Engraving Equipment
Motor Starting
Soldering Systems
Surgical Equipment
Telephone Switching
Test Panels
Vapor Degreasers
X-Ray Machine Controls
Ink Heating
Injection Molding Machines
Kilns
Lab Ovens
Packaging Equipment
Plastic Extruders
Pool Heaters
Quartz Heaters
Radiant Heaters
Roof Top Heating
Shrink Tunnels
Unit Heaters
Vacuum Forming

ELECTRIC HEATERS
Baseboard Heaters
Blow Molding
Cabinet Heaters
Chemical Tank Heaters
Curing Furnaces
Drying Ovens
Duct Heaters
Film Packaging
Glass Furnaces
Heat Lamps
Heat Sealing Machines
Induction Heater
Industrial Ovens
Infrared Heaters
Ink Drying
(Heaters)
Baking Ovens
Coffee Urns
Deep Fryers
Dishwashers
Electric Grills
Electric Ranges
Pizza Ovens
Steam Generators

FOOD INDUSTRY EQUIPMENT
Baking Ovens
Coffee Urns
Deep Fryers
Dishwashers
Electric Grills
Electric Ranges
Pizza Ovens
Steam Generators

SPECIALTY APPLICATIONS
Capacitor Discharge Systems
Hazardous Locations
Mining Equipment
Phase Converters
Tower Control

WARRANTY
Mercury Displacement Industries, Inc., warrants its products to be free from defects in material or workmanship for one year, and will replace any units with such defects. Warranty is void if units are improperly applied. Mercury Displacement Industries, Inc. shall not be liable for special or consequential damages.

For Mercury Free Switches
Contact MDI Inc.
1-800-634-4077 or www mdius.com

TO RECYCLE USED CONTACTORS, TILT SWITCHES & MERCURY FLOATS, RETURN TO MDI

MERCURY DISPLACEMENT INDUSTRIES, INC.
Post Office Box 710 - U.S. 12 East - Edwardsburg, Michigan 49112-0710
PHONE (269) 663-8574 - FAX (269) 663-2924
1-800-MDI-4077 - 1-800-634-4077
www mdius.com

1/09

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com