EL/ER Series Explosion-Proof Actuators and Motors

EL/ER SERIES

HAZARDOUS LOCATION ACTUATORS AND MOTORS

High precision positioning with integrated feedback Ability to handle heavy loads over thousands of hours

High efficiency and 100\% duty cycle
Class 1, Division 1 Classification

EL120

ATEX Rated Explosion-Proof Linear Actuators

Perfect for valve control or other hazardous environment applications, the EL120 is a high performance electric actuator offered as a direct replacement for hydraulics. EL120 actuators feature longer life, linear speeds up to 37 inches per second, closed loop feedback, 90% efficiency and 100% duty cycle.

For gas turbines with variable guide vanes, EL120 actuators provide precise positioning and feedback for fine tuning injector airflow to effectively manage CO and NOx emissions. In Oil \& Gas applications, the EL120 is well suited for position-based drilling choke valves.

163694
Class I Division 1 us Groups B, C, D, T4

EL120 explosion-proof actuators meet ATEX requirements for use in potentially explosive atmospheres and are in conformity with the EU ATEX Directive 94/9/EC. Additionally, these actuators are rated for Class 1, Division 1, Groups B, C, D, and T4 hazardous environments.

The EL Series integrates a highly efficient planetary roller screw mechanism with a high torque servomotor in a single selfcontained package. This highly robust design is engineered to provide reliable and precise operation over thousands of hours, handling heavy loads-even under very arduous conditions.

The EL120 Actuator is compatible with nearly any manufacturer's servo amplifier.

Technical Characteristics	
Frame Sizes in (mm)	$4.7(120)$
Screw Leads in (mm)	$0.1(2.54), 0.2(5.08)$,
	$0.5(12.7), 0.8(20.3)$
Standard Stroke Lengths	$4(100), 6(150), 8(200)$,
in (mm)	$10(250), 12(300), 18(450)$
Force Range	up to 4081 lbf in $(18 \mathrm{kN})$
Maximum Speed	up to $37.5 \mathrm{in} / \mathrm{sec}(953 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft	$0.001(0.025)$
Screw Lead Variations	in (mm)	$0.0012(0.030)$
Screw Lead Backlash	in (mm)	0.004 maximum
Ambient Conditions:		
Ambient Temperature	${ }^{\circ} \mathrm{C}$	-29 to 93
Storage Temperature	${ }^{\circ} \mathrm{C}$	-54 to 93
IP Rating		IP66S
Rel. Humidity	$\%$	5 to 100 at $60^{\circ} \mathrm{C}$
Vibration		3.5 grms, 5 to 520 hz

Product Features

1- Two 0.75 in NPT Ports, Front Facing (as viewed from rod end) $2-$ Two 0.75 in NPT Ports, Back Facing (as viewed from rod end)
3 - Two 0.75 in NPT Ports, Right Facing (as viewed from rod end) $4-$ Two 0.75 in NPT Ports, Left Facing (as viewed from rod end)
5 - Threaded Front \& Rear Face, Metric and Threaded Front \& Rear Face, English 6-Standard Front Flange 7-Standard Rear Flange 8 - Metric Rear Clevis
9 - English Rear Clevis 10 - Metric Rear Eye 11 - English Rear Eye 12-Male, US Standard Thread 13 - Male, Metric Thread 14 -Female, US Standard Thread
15 - Female, Metric Thread 16-External anti-rotate assembly 17-Handwheel Drive - Standard 18-Crank Drive

Industries and Applications

Process Control

Valve control
Damper control
Turbine control
Choke valves
Fuel control
Plunger pumps

Automotive

Paint booths
Fuel control
Engine test stands

Defense

Weapons room

Material Handling

Printing presses

The EL Series of explosion proof actuators is ideal for valve control, as well as many other applications in hazardous environments. These all-electric actuators easily outperform hydraulics and other competing technologies offering long life, high speeds, closed loop feedback, 90% efficiency and 100% duty cycle.

Notes

EL120 Explosion-Proof Actuators

Mechanical Specifications

Motor Stacks		1 Stack				2 Stack				3 Stack		
Screw Lead Designator		01	02	05	08	01	02	05	08	02	05	08
Screw Lead	in	0.1	0.2	0.5	0.75	0.1	0.2	0.5	0.75	0.1	0.2	0.5
	mm	2.54	5.08	12.7	19.05	2.54	5.08	12.7	19.05	2.54	5.08	12.7
Continuous Force** (Motor Limited)	lbf	2,984	1,748	839	559	NA	2,865	1,375	917	4,081	1,959	1,306
	N	13,272	7,776	3,733	2,488	NA	12,744	6,117	4,078	18,152	8,713	5,809
Max Velocity	$\mathrm{in} / \mathrm{sec}$	5	10	25	37.5	5	10	25	37.5	5	10	25
	$\mathrm{mm} / \mathrm{sec}$	127	254	635	953	127	254	635	953	127	254	635
Friction Torque	in-lbf	2.7				3.0				3.5		
	N-m	0.31				0.34				0.40		
Friction Torque (preloaded screw)	in-lbf	7.2				7.5				8.0		
	N -m	0.82				0.85				0.91		
Back Drive Force ${ }^{1}$	lbf	380	150	60	50	380	150	60	50	150	60	50
	N	1700	670	270	220	1700	670	270	220	670	270	220
Min Stroke	in	4				NA	6			8		
	mm	100				NA	150			200		
Max Stroke	in	18			12	NA	18		12	18		12
	mm	450			300	NA	450		300	450		300
C_{a} (Dynamic Load Rating)	lbf	7900	8300	7030	6335	7900	8300	7030	6335	7900	8300	7030
	N	35,141	36,920	31,271	28,179	35,141	36,920	31,271	28,179	35,141	36,920	31,271
Inertia (zero stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.01132				0.01232				0.01332		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.000012790				0.00001392				0.00001505		
Inertia (per unit of stroke)	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in}$	0.0005640										
	$\mathrm{Kg}-\mathrm{m}^{2} / \mathrm{mm}$	0.0000006372										
Weight (zero stroke)	lb	8.0				11.3				14.6		
	Kg	3.63				5.13				6.62		
Weight Adder (per unit of stroke)	lb/in	2.0										
	$\mathrm{Kg} / \mathrm{mm}$	0.91										

* Please note that stroke mm are Nominal dimensions.
" Force ratings at $25^{\circ} \mathrm{C}$.
"-" Inertia +/-5\%
${ }^{1}$ Back drive force is a nominal value only. Operating conditions can cause wide variations in back drive force. Exlar cannot assure that an actuator will or will not back drive.

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.

Max Velocity: The linear velocity that the actuator will achieve at rated motor rpm.

Friction Torque (standard screw): Amount of torque required to move the actuator when not coupled to a load.

Friction Torque (preloaded screw): Amount of torque required to move the actuator when not coupled to a load.

Back Drive Force: Amount of axial force applied to the rod end of the actuator that will produce motion with no power applied to the actuator.

Min Stroke: Shortest available stroke length.

Max Stroke: Longest available stroke length.
C_{a} (Dynamic Load Rating): A design constant used when calculating the estimated travel life of the roller screw.

Inertia (zero stroke): Base inertia of an actuator with zero available stroke length.

Inertia Adder (per unit of stroke): Inertia per unit of stroke that must be added to the base (zero stroke) inertia to determine the total actuator inertia.

Weight (zero stroke): Base weight of an actuator with zero available stroke length.

Weight Adder (per unit of stroke): Weight adder per unit of stroke that must be added to the base (zero stroke) weight to determine the total actuator weight.

Electrical Specifications

Motor Stator		118	138	158	168	238	258	268	338	358	368
RMS SINUSOIDAL COMMUTATION DATA											
Continuous Motor Torque	lbf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.6	172.3	168.9	176.9
	N -m	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	lbf-in	148.20	148.20	148.60	148.10	247.20	242.80	247.20	344.50	337.80	353.70
	N-m	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in	4.30	8.70	15.70	17.30	8.70	15.80	17.30	8.50	15.80	17.50
	N-m/A	0.49	1.00	1.80	2.00	1.00	1.80	2.00	1.00	1.80	2.00
Continuous Current Rating	A	19.10	9.50	5.30	4.80	15.90	8.60	8.00	22.70	11.90	11.30
Peak Current Rating	A	38.20	19.10	10.60	9.50	31.80	17.10	15.90	45.40	23.80	22.50
O-PEAK SINUSOIDAL COMMUTATION											
Continuous Motor Torque	lbf-in	74.1	74.1	74.3	74.1	123.6	121.4	123.6	172.3	168.9	176.9
	N-m	8.37	8.37	8.39	8.37	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	lbf-in	148.20	148.20	148.60	148.10	247.20	242.80	247.20	344.50	337.80	353.70
	N -m	16.74	16.74	16.79	16.74	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt)	lbf-in/A	3.10	6.10	11.10	12.30	6.10	11.20	12.30	6.00	11.20	12.40
	N-m/A	0.35	0.70	1.30	1.40	0.70	1.30	1.40	0.70	1.30	1.40
Continuous Current Rating	A	27.00	13.50	7.50	6.70	22.50	12.10	11.30	32.10	16.90	15.90
Peak Current Rating	A	54.00	27.00	15.00	13.50	45.00	24.20	22.50	64.20	33.70	31.90
MOTOR DATA											
Voltage Constant @ $25^{\circ} \mathrm{C}$ (Ke)	Vrms	29.6	59.2	106.9	118.5	59.2	108.2	118.5	58.0	108.2	119.8
	Krpm	41.9	83.8	151.2	167.6	83.8	153.0	167.6	82.0	153.0	169.4
Pole Configuration		8	8	8	8	8	8	8	8	8	8
Resistance (L-L)	Ohms	0.20	0.80	2.60	3.21	0.34	1.17	1.35	0.20	0.72	0.81
Inductance (L-L)	mH	3.30	11.90	42.40	48.30	5.90	21.10	25.30	3.70	11.60	17.10
Brake Inertia	Ibf-in-sec ${ }^{2}$	0.00146									
	kg-cm ${ }^{2}$	1.66									
Brake Current @24 VDC +/-10\%	A	1.0									
Brake Holding Torque - Dry	lbf-in	177									
	Nm/A	20									
Brake Engage/Disengage Time	ms	13/50									
Mechanical Time Constant (tm)	ms	0.79	0.79	0.79	0.79	0.60	0.63	0.60	0.54	0.56	0.51
Electrical Time Constant (te)	ms	16.26	14.88	16.34	15.06	17.60	18.06	18.72	18.51	16.06	21.16
Friction Torque	lbf-in	1.43	1.43	1.43	1.43	1.81	1.81	1.81	2.32	2.32	2.32
	N-m	0.16	0.16	0.16	0.16	0.20	0.20	0.20	0.26	0.26	0.26
Bus Voltage	Vrms	115	230	400	460	230	400	460	230	400	460
Speed @ Bus Voltage	rpm	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Insulation Class		180(H)									
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$									
Insulation System Voltage Rating		T4, $135^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature									

Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

EL120 Explosion-Proof Actuators

Speed vs. Force Curves

The speed vs. force curves (below) represent approximate continuous thrust ratings at the indicated linear speed. Different types of servo amplifiers offer varying motor torque

Estimated Service Life

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, multiply the result by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \%$ $x 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
C_{a} = Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cm}}=$ Cubic mean applied load (lbf) $\quad \mathrm{L}_{10}=\binom{\mathrm{C}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{cml}}}^{3} \times \ell$
$\ell=$ Roller screws lead (inches)
All curves represent properly lubricated and maintained actuators.
Ratings may vary, depending on the application.
and, thus, varying actuator thrust. These values are at constant velocity and do not account for motor torque required for acceleration.

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$

Dimensions

Base Actuator

All dimensions shown in mm (inches)

Clevis Mount and Manual Drive Options

Front and Rear Flange Mount

Dim	$\begin{gathered} 4^{\prime \prime}(102 \mathrm{~mm}) \\ \text { Stroke in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} 6^{\prime \prime \prime}(152 \mathrm{~mm}) \\ \text { Stroke in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} 8^{\prime \prime}(203 \mathrm{~mm}) \\ \text { Stroke in }(\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 10^{\prime \prime}(254 \mathrm{~mm}) \\ & \text { Stroke in }(\mathrm{mm}) \end{aligned}$	12" (305 mm) Stroke in (mm)	$\begin{aligned} & 18^{\prime \prime}(457 \mathrm{~mm}) \\ & \text { Stroke in }(\mathrm{mm}) \end{aligned}$
A	345 (13.6)	396 (15.6)	447 (17.6)	498 (19.6)	549 (21.6)	701 (27.6)

Note: Add 1.63 Inches (41.4 mm) to Dims "A" if ordering a brake without a manual drive.

EL120 Series Ordering Guide

Rod End Options

EL = Model Series
$E L=$ Explosion proof linear actuator
AAA = Frame Size
$120=120 \mathrm{~mm}$
$B B=$ Stroke Length
$04=4$ in
$06=6$ in
$08=8$ in
$10=10$ in
$12=12$ in
$18=18$ in
CC= Screw Lead (linear travel per screw revolution)
$01=0.1 \mathrm{in} / \mathrm{rev}(2.54 \mathrm{~mm} / \mathrm{rev})$
$02=0.2 \mathrm{in} / \mathrm{rev}(5.08 \mathrm{~mm} / \mathrm{rev})$
$05=0.5 \mathrm{in} / \mathrm{rev}(12.7 \mathrm{~mm} / \mathrm{rev})$
$08=0.8 \mathrm{in} / \mathrm{rev}(20.3 \mathrm{~mm} / \mathrm{rev})$

D = Connections

$\mathrm{F}=$ Two 0.75 in NPT Ports, Front Facing (as viewed from rod end)
$B=$ Two 0.75 in NPT Ports, Back Facing (as viewed from rod end)
$R=$ Two 0.75 in NPT Ports, Right Facing (as viewed from rod end)
L= Two 0.75 in NPT Ports, Left Facing (as viewed from rod end)

E = Mounting
$\mathrm{F}=$ Standard Front Flange
R = Standard Rear Flange
G = Metric Rear Clevis
C = English Rear Clevis
$J=$ Metric Rear Eye
K = English Rear Eye
F = Rod End Thread
M = Male, US Standard Thread
A = Male, Metric Thread
F = Female, US Standard Thread
$B=$ Female, Metric Thread
GGG = Feedback Type
See page 207 for detailed information
H = Motor Stator
$1=1$ stack motor
$2=2$ stack motor
$3=3$ stack motor

I = Rated Voltage
1 = 115 Volt RMS
$3=230$ Volt RMS
$5=400$ Volt RMS
$6=460$ Volt RMS
$\mathrm{J}=$ Motor Poles
$8=8$ pole motor

KK = Rated Motor Speed at Rated

 Voltage01 - 45 Two digit number $\times 100=$ rated RPM
MM $=$ Mechanical Option ${ }^{3}$
PF = Preloaded follower ${ }^{1}$
AR = External anti-rotate assembly
$R B=$ Rear brake
HW = Manual drive, handwheel with interlock switch
$C D=$ Crank drive with interlock switch

NOTES:

1. The dynamic load rating of zero backlash, preloaded screws is 63% of the dynamic load rating of the standard non-preloaded screws. The calculated travel life of a preloaded screw will be 25% of the same size and lead of a non-preloaded screw.
2. Not compatible with Kinetix 300 Drives.
3. For extended temperature operation consult factory for model number.

For options or specials not listed above or for extended temperature operation, please contact Exlar

EL100

Explosion-Proof Linear Actuators

This electromechanical system provides process engineers with a clean, fast, simple, and cost effective replacement for hydraulic actuation and a longer life alternative to pneumatic actuation. The roller screw technology manufactured by Exlar offer 15 times the travel life of rival ball screws and can carry higher loads. The compact design allows users to effectively replace hydraulic or air cylinders with an electromechanical actuator, while meeting all required capabilities of the application. Servo electric actuation reduces emissions, lowers energy consumption (80% system energy efficiency), and increases position control and accuracy-all leading to reduced cost.

The EL100 explosion-proof linear actuator offers a Class 1 , Division 1, Groups B, C, D, and T3 rating. Additionally, it meets ATEX essential requirements and are in conformance with the EU ATEX Directive 94/9/EC.

The EL Series linear actuators are compatible with nearly any manufacturer's resolver-based amplifier.

Features
T-LAM technology yielding 35\% increase in continuous motor torque over traditional windings
Forces up to 2000 Ibs
Speeds up to 25 ips
Resolver feedback
Strokes up to 6 inches
8 pole motors
Rod end options
Several mounting configurations
Potted NPT connectors
Windings available from 24 VDC to 460 VAC rms
Class 180 H insulation, IP66S Standard

> * "Class I" means that flammable gases or vapors may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. "Division 1" means that hazardous concentrations in the air may exist continuously, intermittently, or periodically under normal operating conditions. "Group B" allows for atmospheres containing hydrogen, gases, or vapors of equivalent hazard, such as manufactured gas. "Group C" allows for atmospheres containing ethyl-ether vapors, ethylene or cyclo propane. "Group D" allows for atmospheres containing gasoline, hexane, naphtha, benzene, butane, alcohol, acetone, benzol, lacquer solvent vapors or natural gas. EL Series actuators are not rated for operation in atmospheres containing acetylene. Temperature classification defines the maximum surface temperature the product will reach at full load. $T 3=200^{\circ} \mathrm{C}, \mathrm{T} 3 \mathrm{~A}=180^{\circ} \mathrm{C}, \mathrm{T} 4=135^{\circ} \mathrm{C}$.

Technical Characteristics	
Frame Sizes in (mm)	$4(100)$
Screw Leads in (mm)	$0.1(2.54), 0.2(5.08), 0.5(12.7)$
Standard Stroke Lengths in (mm)	$5.9(150)$
Force Range	up to 4081 lbf -in $(18 \mathrm{kN})$
Maximum Speed	up to $37.5 \mathrm{in} / \mathrm{sec}(953 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft	$0.001(0.025)$
Screw Lead Variation	in (mm)	$0.0012(0.030)$
Screw Lead Backlash	in (mm)	0.004 maximum
Ambient Conditions:		
Ambient Temperature	${ }^{\circ} \mathrm{C}$	-29 to 93
Storage Temperature	${ }^{\circ} \mathrm{C}$	-54 to 93
IP Rating		IP66S
Shock		10 g
Vibration		5 grms, 5 to 2000 hz

EL100 Explosion-Proof Linear Actuators

Product Features

1 - Terminal strips with 3/4" NPT port access, single row
2 - Threaded front and rear face, US standard and metric
3 - Front and rear flange and standard front flange
4 - Standard rear clevis
5 - Front and rear flange
6 - Male, US standard thread and Male, US standard thread SS
7 - Male, metric thread and Male, metric thread SS
8 - Female, US standard thread and Female, US standard thread SS
9 - Female, metric thread and Female, metric thread SS
10 - External anti-rotate assembly (requires flange mount option)
11 - Rear brake

EL100 Explosion-Proof Linear Actuators

Industries and Applications

Process Control
Turbine fuel flow
Chemical process plants
Fuel distribution systems
Shipbound fuel management
Valve control
Damper control
Fuel Skids
Silos

Automotive

Engine test stands
Paint booths

The EL100 actuator is another simple, clean, and cost effective replacement for hydraulics meeting Class 1, Division 1, Group B, C, D, and T3 as well as ATEX requirements.

Mechanical Specifications

Motor Stacks		2 Stacks		
Screw Lead Designator		01	02	05
Screw Lead	in	0.1	0.2	0.5
	mm	2.54	5.08	12.7
Continuous Force (Motor Limited)	lbf	2011	1005	402
	N	8943	4472	1789
Max Velocity	in/sec	6.66	13.33	33.33
	$\mathrm{mm} / \mathrm{sec}$	169.33	338.58	846.58
Friction Torque (standard screw)	in-lbf	1.7		
	N-m	0.19		
Friction Torque (preloaded screw)	in-lbf	3.5		
	N -m	0.39		
Back Drive Force	Ibf	180	80	40
	N	800	360	180
Min Stroke	in	3		
	mm	75		
Max Stroke	in	18		
	mm	450		
C_{a} (Dynamic Load Rating)	lbf	5516	5800	4900
	N	24,536	25,798	21,795
Inertia	$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}$	0.002829		
	$\mathrm{Kg}-\mathrm{m}^{2}$	0.000003196		
Weight	lb	7.65		
	Kg	3.47		

[^0]
Electrical Specifications

Motor Stator		2A8-10	2B8-25	2C8-40	218-40	238-40	258-40	268-40
RMS SINUSOIDAL COMMUTATION DATA								
Continuous Motor Torque $\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	lbf-in	35.2/24.3	35.9/24.8	36.5/25.2	39.6/27.3	40.0/27.6	39.5/27.3	39.9/27.6
	N -m	3.98/2.75	4.06/2.80	4.12/2.85	4.47/3.09	4.52/3.12	4.46/3.08	4.51/3.11
Torque Constant	Ibf-in	1.7	1.7	2.6	3.2	6.6	11.6	13.2
	N-m/A	0.19	0.19	0.30	0.37	0.75	1.31	1.50
Continuous Current Rating $\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	A	23.1/15.9	23.6/16.3	15.6/10.7	13.6/9.4	6.8/4.7	3.8/2.6	3.4/2.3
Peak Current Rating ($25^{\circ} / 80^{\circ} \mathrm{C}$)	A	46.2/31.9	47.1/32.5	31.1/21.5	27.3/18.8	13.5/9.3	7.6/5.3	6.7/4.7
O-PEAK SMUSOIDAL COMMUTATION DATA								
Continuous Motor Torque$\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	Ibf-in	35.2/24.3	35.9/24.8	36.5/25.2	39.6/27.3	40.0/27.6	39.5/27.3	39.9/27.6
	N-m	3.98/2.75	4.06/2.80	4.12/2.85	4.47/3.09	4.52/3.12	(4.46/3.08)	(4.51/3.11)
Torque Constant	lbf-in/A	1.2	1.2	1.9	2.3	4.7	8.2	9.4
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.14	0.14	0.21	0.26	0.53	0.92	1.06
Continuous Current Rating $\left(25^{\circ} / 80^{\circ} \mathrm{C}\right)$	A	32.7/22.6	33.3/23.0	22.0/15.2	19.3/13.3	9.5/6.6	5.4/3.7	4.8/3.3
Peak Current Rating ($25^{\circ} / 80^{\circ} \mathrm{C}$)	A	65.4/45.1	66.7/46.0	44.0/30.4	38.6/26.6	19.1/13.2	10.8/7.5	9.5/6.6
MOTOR STATOR DATA								
Voltage Constant @ $25^{\circ} \mathrm{C}(\mathrm{Ke}$)	Vrms/Krpm	11.6	11.6	17.9	22.1	45.2	78.9	90.4
	Vpk/Krpm	16.5	16.5	25.3	31.3	64.0	111.6	127.9
Pole Configuration		8	8	8	8	8	8	8
Resistance (L-L)	Ohms	0.10	0.1	0.2	0.30	1.2	3.8	4.86
Inductance (L-L)	mH	0.75	0.8	1.9	2.93	12.2	37.2	48.9
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00047						
	$\mathrm{kg}-\mathrm{cm}^{2}$	0.53						
Brake Current @24 VDC +/- 10\%		0.5						
Brake Holding Torque - Dry	Ibf-in	70						
	Nm/A	8						
Brake Engage/Disengage Time	ms	25/50						
Mechanical Time Constant (tm)	ms	1.4	1.3	1.3	1.1	1.1	1.1	1.1
Electrical Time Constant (te)	ms	7.2	7.9	8.2	9.9	10.1	9.9	10.1
Frictional Torque	lbf-in	2.22	2.22	2.22	2.22	2.22	2.22	2.22
	N -m	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Bus Voltage	Vrms	24 VDC	48 VDC	120 VDC	115 VAC	230 VAC	400 VAC	460 VAC
Speed @ Bus Voltage	rpm	1,000	2,500	4,000	4,000	4,000	4,000	4,000
Insulation Class		180 (H)						
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$						
CSA/ATEX Temperature Class		T3, $200^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature						

For amplifiers using peak sinusoidal ratings, multiply RMS sinusoidal Kt by 0.707 , and peak current by 1.414 .
Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} / 80^{\circ} \mathrm{C}$ ambient.

EL100 Explosion-Proof Linear Actuators

Performance Curves

The below speed vs. force curves represent approximate continuous thrust ratings at indicated linear speed. Different types of servo amplifiers offer varying motor torque and, thus,
varying actuator thrust. These values are at constant velocity and do not account for motor torque required for acceleration.

EL100 Speed Force

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.

Max Velocity: The linear velocity that the actuator will achieve at rated motor rpm.

Friction Torque (standard screw): Amount of torque required to move the actuator when not coupled to a load.

Friction Torque (preloaded screw): Amount of torque required to move the actuator when not coupled to a load.

Back Drive Force: Amount of axial force applied to the rod end of the actuator that will produce motion with no power applied to the actuator.

Min Stroke: Shortest available stroke length.

Max Stroke: Longest available stroke length.
C_{a} (Dynamic Load Rating): A design constant used when calculating the estimated travel life of the roller screw.

Inertia (zero stroke): Base inertia of an actuator with zero available stroke length.

Inertia Adder (per unit of stroke): Inertia per unit of stroke that must be added to the base (zero stroke) inertia to determine the total actuator inertia.

Weight (zero stroke): Base weight of an actuator with zero available stroke length.

Weight Adder (per unit of stroke): Weight adder per unit of stroke that must be added to the base (zero stroke) weight to determine the total actuator weight.

EL100 Explosion-Proof Linear Actuators

Dimensions

Base Actuator

Rod End Options

	A	B	ØC	D	ØE	F	Male "M" Inch	Male "A" Metric	Female "F" Inch
Female "B" Metric									
EL100 in (mm)	$1.250(31.8)$	$0.625(17.0)$	$0.787(20.0)$	$0.281(7.1)$	$0.725(18.4)$	$1.000(25.4)$	$1 / 2-20$ UNF $-2 A$	$M 16 \times 1.56 \mathrm{~g}$	$1 / 2-20$ UNF

[^1]Terminal Box Wiring

EL100 Series Ordering Guide

EL100 = Model Series
CC= Stroke Length
$06=5.9$ inch (150 mm)

```
DD = Roller Screw Lead (Linear
    Travel per Screw Revolution)
01 = 0.1 in/rev ( }2.54\textrm{mm}/\textrm{rev}
02 = 0.2 in/rev (5.08 mm/rev)
05 = 0.5 in/rev (12.7 mm/rev)
E = Connections
S = Terminal strips with 3/4" NPT port
        access, single row
```

F = Mounting
H = Threaded front and rear face, US
standard thread
$\mathrm{N}=$ Threaded front and rear face,
metric thread
$B=$ Front and rear flange
$\mathrm{F}=$ Standard front flange
$C=$ Standard rear clevis
$R=$ Rear flange
G $=$ Rod End
M = Male, US standard thread
A = Male, metric thread
F = Female, US standard thread
$B=$ Female, metric thread
W = Male, US standard thread SS
$\mathrm{R}=$ Male, metric thread SS
$V=$ Female, US standard thread SS
$\mathrm{L}=$ Female, metric thread SS

HHH = Controller Feedback Option
XX1 = Custom Feedback. Resolver only. $2=2$ stack motor Consult Exlar
AB6 = Allen-Bradley/Rockwell - standard resolver
AM3 = Advanced Motion Control - standard resolver
AP1 = API Controls - standard resolver
BD2 = Baldor - standard resolver
BM2 = Baumueller - standard resolver
BR1 $=$ B\&RAutomation
CT5 = Control Techniques - standard resolver
CO2 = Copely Controls - standard resolver
DT2 = Delta Tau Data Systems - standard resolver
EL1 = Elmo Motion Control - standard resolver
EX4 = Exlar - standard resolver
IF1 = Infranor - standard resolver
IN6 = Indramat/Bosch-Rexroth - standard resolver
JT1 = Jetter Technologies - standard resolver
KM5 $=$ Kollmorgen/Danaher - standard resolver
LZ5 = Lenze/AC Tech - standard resolver
MD1 = Modicon - standard resolver
MG1 = Moog - standard resolver
MN4 = Momentum - Standard Resolver
MX1 = Metronix - standard resolver
OR1 = Ormec - standard resolver
PC7 = Parker - standard resolver - European only

PCO = Parker - standard resolver - US only
PS3 = Pacific Scientific - standard resolver
SM2 = Siemens - standard resolver
SW1 = SEW/Eurodrive - standard resolver
WD1 = Whedco/Fanuc - standard resolver

NOTES:

1. The dynamic load rating of zero backlash, preloaded screws is 63% of the dynamic load rating of the standard non-preloaded screws. The calculated travel life of a preloaded screw will be 25% of the calculated travel life of the same size and lead of a non-preloaded screw.
2. For extended temperature operation consult factory for model number.

ER120 Series

Explosion-Proof Rotary Motor and Gearmotor

For hazardous duty environments with constant exposure to flammable gasses or vapors* Exlar's ER Series rotary explosionproof motors and gearmotors provide an excellent solution. Exlar's motors utilizing T-LAM technology, an innovative segmented winding, have been designed for efficiency, power and durability and provide a very high torque-to-size ratio when compared to other suppliers' motors.

The gearmotor comprises a brushless permanent magnet motor optimized for use with an integral planetary gear set. Through the uniform load sharing of several gears acting in concert, planetary gear heads are a very compact, reliable solution providing high torque, low backlash and low maintenance.

The ER Series motors are compatible with nearly any manufacturers' resolver-based amplifier.

The ER Series actuators are ideal for operating quarter turn or multi turn valves or shaft driven dampers in hazardous environments. These actuators are directly coupled shaft-to-shaft, eliminating ungainly mechanisms needed by the linear motion of pneumatics. Our compact T-LAM servo motors outperform any standard motor, providing excellent continuous modulating service.

II 2 G
Exd IIB+H2 T4 Gb SIRA 15ATEX1010X

163694

Class I Division 1 Sroups B, C, D, T4

Features
T-LAM technology yielding 35% increase in continuous motor torque over traditional windings
Resolver feedback
8 pole motors
Rod end options
1,2, or 3 stack motor availability compatible with nearly any resolver based servo amplifier
Several mounting configurations
Potted NPT leads
Windings from 24 VDC to 460 VAC rms
Class 180 H insulation system

ER120 Explosion-Proof Motors

Product Features

Industries and Applications

Process Control

Valve control
Damper control
Turbine control
Choke valves
Fuel control
Plunger pumps

Automotive

Paint booths
Fuel control
Engine test stands

Defense

Weapons room

Material Handling

Printing presses

In hazardous duty environments where exposure to flammable gasses or vapors may be ever present, ER Series explosion proof motors and gear motors stand up to the challenge making them perfect for paint booths and printing presses.

With life counts in the hundreds of millions of cycles, response times in milliseconds and accuracy of 0.10%, Exlar offers superior electric control valve actuation replacing other traditional electric, pneumatic, and hydraulic actuators.

Electrical and Mechanical Specifications

Motor Stator		1A8	1B8	118	138	158	168	2A8	2B8	238	258	268	338	358	368
RMS SINUSOIDAL COMMUTATION DATA															
Continuous Motor Torque	Ibf-in	71.8	71.8	74.1	74.1	74.3	74.1	120.5	120.5	123.6	121.4	123.8	172.3	168.9	176.9
	N-m	8.11	8.11	8.37	8.37	8.39	8.37	13.61	13.61	13.96	13.72	13.96	19.46	19.09	19.98
Peak Motor Torque	Ibf-in	143.6	143.6	148.2	148.2	148.6	148.2	241.0	241.0	247.2	242.8	247.2	344.5	337.8	353.7
	N -m	16.22	16.22	16.74	16.74	16.79	16.74	27.23	27.23	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	lbf-in/A	5.3	5.3	4.3	8.7	15.7	17.3	5.3	5.3	8.7	15.8	17.3	8.5	15.8	17.5
	$\mathrm{N}-\mathrm{m} / \mathrm{A}$	0.60	0.60	0.49	1.00	1.80	2.00	0.60	0.60	1.00	1.80	2.00	1.00	1.80	2.00
Continuous Current Rating	g A	15.2	15.2	19.1	9.5	5.3	4.8	25.5	25.5	15.9	8.6	8.0	22.7	11.9	11.3
Peak Current Rating	A	30.4	30.4	38.2	19.1	10.6	9.5	51.0	51.0	31.8	17.1	15.9	45.4	23.8	22.5
O-PEAK SINUSOIDAL COMMUTATION															
Continuous Motor Torque	Ibf-in	71.8	71.8	74.1	74.1	74.3	74.1	120.5	120.5	123.6	121.4	123.6	74.1	74.1	74.1
	N -m	8.11	8.11	8.37	8.37	8.39	8.37	13.61	13.61	13.96	13.72	13.96	8.37	8.37	8.37
Peak Motor Torque	Ibf-in	143.6	143.6	148.2	148.2	148.6	148.2	241.0	241.0	247.2	242.8	247.2	344.5	337.8	353.7
	$\mathrm{N}-\mathrm{m}$	16.22	16.22	16.74	16.74	16.79	16.74	27.23	27.23	27.93	27.43	27.93	38.93	38.17	39.96
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	$\mathrm{lbf-in} / \mathrm{A}$	3.7	3.7	3.1	6.1	11.1	12.3	3.7	3.7	6.1	11.2	12.3	6.0	11.2	12.4
	N-m/A	0.42	0.42	0.35	0.70	1.25	1.39	0.42	0.42	0.70	1.27	1.39	0.68	1.27	1.40
Continuous Current Rating	g A	21.5	21.5	27.0	13.5	7.5	6.7	36.1	36.1	22.5	12.1	11.3	32.1	16.9	15.9
Peak Current Rating	A	43.0	43.0	54.0	27.0	15.0	13.5	72.1	72.1	45.0	24.2	22.5	64.2	33.7	31.9
MOTOR DATA															
Voltage Constant (Ke) (+/-10\% @ $25^{\circ} \mathrm{C}$)	Vrms/Krpm	36.1	36.1	29.6	59.2	106.9	118.5	36.1	36.1	59.2	108.2	118.5	58.0	108.2	119.8
	Vpk/Krpm	51.0	51.0	41.9	83.8	151.2	167.6	51.0	51.0	83.8	153.0	167.6	82.0	153.0	169.4
Pole Configuration		8													
$\begin{aligned} & \text { Resistance (L-L) } \\ & \left(+/-5 \% @ 25^{\circ} \mathrm{C}\right. \end{aligned}$	Ohms	0.31	0.31	0.20	0.80	2.60	3.21	0.13	0.13	0.34	1.17	1.35	0.20	0.72	0.81
$\begin{aligned} & \text { Inductance (L-L) } \\ & (+/-15 \%) \end{aligned}$	mH	4.8	4.8	3.3	13.0	42.4	52.1	2.3	2.3	6.3	21.1	25.3	4.0	13.1	17.1
Armature Inertia (+/-5\%)	lbf-in-sec ${ }^{2}$	0.00538						0.00818					0.01097		
	$\mathrm{Kg}-\mathrm{cm}^{2}$	6.082						9.242					12.400		
Brake Inertia	lbf-in-sec ${ }^{2}$	0.00030													
	$\mathrm{Kg}-\mathrm{cm}^{2}$	0.339													
Brake Current @ 24VDC (+/-10\%)	A	1.0													
Brake Holding Torque - Dry	Ibf-in	177													
	($\mathrm{N}-\mathrm{m}$)	20													
Brake Engage/ Disengage Time	ms	13/50													
Mechanical Time Constant ${ }^{\text {TM }}$	ms	0.94	0.94	0.91	0.91	0.9	0.91	0.58	0.58	0.57	0.59	0.57	0.47	0.47	0.45
Electrical Time Constant (te)	ms	15.73	15.73	16.26	16.26	16.34	16.25	18.41	18.41	18.72	18.06	18.72	20.08	20.19	21.16
Friction Torque	Ibf-in	1.39	1.39	1.39	1.39	1.39	1.39	1.75	1.75	1.75	1.75	1.75	2.25	2.25	2.25
	N-m	0.157	0.157	0.157	0.157	0.157	0.157	0.197	0.197	0.197	0.197	0.197	0.254	0.254	0.254
Bus Voltage	Vrms	24 VDC	48 VDC	115	230	400	460	24 VDC	48 VDC	230	400	460	230	400	460
Speed @ Bus Voltage rpm		300	750	3000				300	750	3000			3000		
Insulation Class		180 (H)													
Ambient Temperature Rating		$-29^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$													
Insulation System Voltage Rating		$\mathrm{T} 4,135^{\circ} \mathrm{C}$ Maximum Allowable Surface Temperature													

Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient

ER120 Explosion-Proof Motors

Gearmotor Data

	1 Stack Motor		2 Stack Motor		3 Stack Motor	
SLG Armature Inertia* lbf-in-sec ${ }^{2}\left(\mathrm{Kg}-\mathrm{cm}^{2}\right)$	0.00538 (6.085)		0.00820 (9.274)		0.01102 (12.464)	
GEARING REFLECTED INERTIA	SINGLE REDUCTION			DOUBLE REDUCTION		
	Gear Stages	lbf-in-sec ${ }^{2}$	($\mathrm{Kg}-\mathrm{cm}^{2}$)	Gear Stages	Ibf-in-sec ${ }^{2}$	(Kg-cm²)
	4:1	0.000851	(0.961)	16:1	0.000510	(0.576)
	5:1	0.000557	(0.629)	20:1, 25:1	0.000344	(0.389)
	10:1	0.000145	(0.164)	40:1, 50:1, 100:1	0.000092	(0.104)
Backlash at 1% rated torque:	10 Arc minutes (Efficiency: Single reduction 91\%)			13 Arc minutes (Efficiency: Double Reduction: 86\%)		

* Add armature inertia to gearing inertia for total ER geared system inertia

Gearmotor General Performance Specifications

Two torque ratings for the ER Series Gearmotors are given in the table below. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size ER Series Gearmotor. This IS NOT the rated output torque of the motor multiplied by the ratio of the reducer.

It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system, including the amplifier, do not allow these values to be exceeded.

The right hand columns give the output torque at the indicated speed which will result in 10,000 hour (L10). The setup of the system, including the amplifier, will determine the actual output torque and speed.

Output Torque Ratings - Mechanical

ER120 Ratio	Maximum Allowable Output Torque	Output Torque @ Speed for 10,000 Hour Life - Ibf-in (Nm)		
	Ibf-in (Nm)	1000 RPM	2000 RPM	3000 RPM
	$4696(530.4)$	$1392(157.3)$	$1132(127.9)$	$1000(112.9)$
$5: 1$	$4066(459.4)$	$1445(163.3)$	$1175(132.8)$	$1040(117.5)$
$10: 1$	$2545(287.5)$	$1660(187.6)$	$1350(152.6)$	$1200(135.6)$
$16: 1$	$4696(530.4)$	$2112(238.6)$	$1714(193.0)$	$1518(171.0)$
$20: 1$	$4696(530.4)$	$2240(253.1)$	$1840(207.9)$	$1620(183.0)$
$25: 1$	$4066(459.4)$	$2350(265.5)$	$1900(214.7)$	$1675(189.2)$
$40: 1$	$4696(530.4)$	$2800(316.4)$	$2240(253.1)$	$2000(225.9)$
$50: 1$	$4066(459.4)$	$2900(327.7)$	$2350(265.5)$	$2100(237.3)$
$100: 1$	$2545(287.5)$	$2500(282.5)$	$2500(282.5)$	$2400(271.2)$

Radial Load and Bearing Life

RPM	ER120 lbf (N)	RPM	ER120 (Gear) Ibf (N)
50	$579(2576)$	50	$1223(5440)$
100	$460(2046)$	100	$971(4318)$
250	$339(1508)$	250	$715(3181)$
500	$269(1197)$	500	$568(2525)$
1000	$214(952)$	1000	$451(2004)$
3000	$148(658)$	3000	$218(970)$

Side load ratings shown below are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Visit www.exlar.com for full details on radial load and bearing life.

Motor and Gearmotor Weight

	Motor	Gearmotor	
ER120	Motor Weight lb (kg)	1 Stage lb (kg)	2 Stage lb (kg)
1 Stack	$29.9(13.56)$	$37.7(17.10)$	$43.2(19.60)$
2 Stack	$37.4(16.96)$	$45.2(20.50)$	$50.7(23.00)$
3 Stack	$44.8(20.32)$	$52.7(23.90)$	$58.3(26.45)$

* For brake option add $0.9 \mathrm{lb}(0.408 \mathrm{~kg})$ mass.

ER120 Explosion-Proof Motors

Speed/Torque Curves

For gearmotors, divide speed by gear ratio; multiply torque by gear ratio and effciency. Efficencies: 1 Stage $=0.91,2$ Stage $=0.86$ Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Notes

ER120 Explosion-Proof Motors

Dimensions

Base Actuator

Gear Reduction		Dimension "A"
Stages	Stacks	Length mm (in)
0	1	$297.9(11.73)$
	2	$348.7(13.73)$
	3	$399.5(15.73)$

ER120 with Gear Reduction Option

Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.


```
ER = Model Series
ER = Explosion proof rotary actuator
AAA = Frame Size
120=120 mm
BBB = Gear Reduction Ratio
Single reduction ratio
004=4:1
005=5:1
010=10:1
Double reduction ratio (N/A on 075 mm}
016=16:1
020=20:1
025=25:1
040=40:1
050=50:1
100=100:1
C = Shaft Type
K = Keyed
R= Smooth/round
ER = Model Series
ER = Explosion proof rotary actuator
AAA = Frame Size
\(120=120 \mathrm{~mm}\)
BBB = Gear Reduction Ratio
Single reduction ratio
\(005=5: 1\)
\(010=10: 1\)
Double reduction ratio (N/A on 075 mm )
\(016=16: 1\)
\(020=20: 1\)
\(040=40 \cdot 1\)
\(050=50: 1\)
\(100=100: 1\)
C = Shaft Type
K = Keyed
\(\mathrm{R}=\) Smooth/round
```

D = Connections
F = Two 0.75 in NPT Ports, Front Facing (as viewed from rod end)
$B=$ Two 0.75 in NPT Ports, Back Facing (as viewed from rod end)
$R=$ Two 0.75 in NPT Ports, Right Facing (as viewed from rod end)
L = Two 0.75 in NPT Ports, Left Facing (as viewed from rod end)

F = Brake Options
S = Standard no brake
$B=$ Brake
GGG = Feedback Type
See page 207 for detailed information

HHH = Motor Stator, All 8 Pole

118=1 Stack	115 Vrms	158 = 1 Stack	400 Vrms
138 = 1 Stack	230 Vrms	$258=2$ Stack	
238 = 2 Stack		$358=3$ Stack	
$338=3$ Stack		$168=1$ Stack	460 Vrms
		268 = 2 Stack	
		$368=3$ Stack	

II = Speed Designations
$30=3000 \mathrm{rpm}$
MM $=$ Mechanical Options ${ }^{1}$
HW = Manual drive, handwheel with Interlock switch
$C D=$ Crank drive with interlock switch

NOTES:

1. For extended temperature operation consult factory for model number.

[^0]: *Please note that stroke mm are nominal dimensions. **Inertia +/-5\%

[^1]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

