Variable speed drives Altivar 78

Catalogue
May

06

Variable speed drives for asynchronous motors Altivar 78

- Presentation page
- Dialogue page 4
- Variable speed drives
- Characteristics page 6
- Operation. page 9
- References for high torque applications page 10
- References for standard torque applications. page 11
- Accessories
- Programming terminal remote mounting kit page 12
- PC-based setup software ATV 78 Soft page 12
- IP 54 kit (NEMA Type 12) page 12
- Flush-mounting kit in a dust and damp proof enclosure page 13
- Demonstration case page 13
- Reduction of current harmonics
- Line chokes page 14
\square Passive filters page 15
- Active compensators page 15
- Hybrid filters. page 15
- Options
- dv/dt filters page 16
- Motor chokes page 17
- Braking units and resistors page 18
- I/O extension cards page 24
- Communication cards page 25
- Combinations of variable speed drives and options page 26
- Dimensions page 28
- Mounting recommendations page 38
- Schemes page 40
- Motor starters page 42
- Product reference index page 45

Abstract

Applications A compact and robust variable speed drive for all types of 3-phase asynchronous motors, the Altivar 78 incorporates the latest technological developments and its innovative functions meet the requirements of the most common applications, notably: ■ ventilation - air conditioning - pumping - conveying - grinding - handling and lifting

The Altivar 781 has several application-specific preset configurations with a few basic parameters, which can be modified using the programming terminal 2 to create additional functions.

The Altivar 78 range of variable speed drives extends across a range of motor power ratings from 2.2 to $1300 \mathrm{KW}(2$ to 1350 HP) for high-torque applications and from 3 to 1500 KW (3 to 1500 HP) for standard-torque applications with a single voltage range from 525 to 690 V .

Despite its high performance, it is easy to adjust. Motor nameplate data entry and autotuning make it possible to obtain high torque together with remarkable drive quality, even at very low rotation speeds ($<0.5 \mathrm{~Hz}$). The Flux Vector Control function in closed loop mode is designed for applications which require exceptional speed precision even at very low speed, and full torque at zero speed.

Functions

The main functions are:
■ Integrated PID regulator (flow rate, pressure, speed correction)

- 9 possible preset speeds
- Jog operation
- Brake release sequences for translational movement and hoisting
- User-definable analog and logic inputs

■ +/- speed

- Skip frequencies
- Local/remote control function
- Logic functions
- Start-up and speed control via Flux Vector Control
- Fan and pump control function
- Motor and variable speed drive protection
- Automatic catching of spinning load with speed detection (catch on the fly)

■ High overtorque on start-up

- Separate 24 V --- supply is possible for control circuit
- Integrated line choke for protection against supply overvoltage and reduction of harmonic distortion

Programming terminal

The Altivar 78 comes with a programming terminal 2 which:

- Controls the variable speed drive in local mode
- Configures the various parameters
- Provides a remote display and indication of the variable speed drive status
- Copies and backs up the parameters

Options

Available options, depending on the rating:
■ Additional I/O card 3, 11 I/O cards available (see page 24)

- PC-based setup software 4 (see page 24)
- Various dialogue and communication options 5 (Modbus, Profibus DP, LONWORKS,

CANopen slave, N2, DeviceNet communication cards) (see page 25)

- Braking units (see page 18)
- Braking resistors (see page 19)
- dv/dt filters when motor cables are longer than 30 metres (see page 16)
- Remote mounting kit for the programming terminal which allows the terminal to be installed on the door of an enclosure or on an operator panel (see page 12)
- IP 54 kit for increasing the degree of protection of the variable speed drive (see page 13)

Characteristics:	References:	Dimensions:
pages 6 to 9	pages 10 and 11	pages 28 to 37

Variable speed drives for asynchronous motors
 Altivar 78
 Dialogue

Presentation of the programming terminal

The Altivar 78 variable speed drive has a remote programming terminal on the front panel which allows:
■ Local control of the variable speed drive

- Configuration of the various parameters
- Remote display and signalling of the variable speed drive status, in conjunction with a remote mounting kit (see page 12).

The programming terminal features an alphanumeric display with:
■ Six variable speed drive status indicators (RUN, Ω, STOP, READY, ALARM,
FAULT)

- Three control indicators (I/O terminals, keypad, bus/comm) and three LED status indicators (ready, run, fault).

Presentation of the control keypad

The alphanumeric control keypad features 9 pushbuttons that are used to control the variable speed drive (and motor), set parameters and monitor values.

1 RESET:
To switch between the two most recent displays. This feature is a useful way of checking how a new value influences another value.

2 Edit values
3 "Right" button for menu selection:

- Move forward in menu
- Move cursor right (in Parameters menu)
- Switch to Edit mode

4 SELECT:
To reset active faults
5 "Left" button for menu selection:

- Move backward in menu
- Move cursor left (in Parameters menu)
- Exit Edit mode
- Hold down the button for 2 to 3 seconds to return to the main menu

6 Edit values
7 ENTER:
To confirm selections and to reset the fault history (2 to 3 seconds)
8 START:
To start the motor if the keypad is in active control mode
9 STOP:
To stop the motor (unless disabled by parameter R3.4/R3.6)

Variable speed drives for asynchronous motors

Altivar 78
Dialogue

Operator interface

1 RUN
$2 \Omega \Omega$
3 STOP
4 READY

ALARM

6 FAULT

7 I/O Term

8 Keypad

9 Bus/comm
ready Indicates that the drive is switched on. The READY status indicator lights up at the same time.

1 run Indicates that the variable speed drive is running. Blinks when the STOP button has been pressed and the drive is still ramping down.

2 fault Indicates that the variable speed drive has been stopped due to unsafe operating conditions.
The FAULT status indicator blinks at the same time and a description of the fault is displayed.

Location indication: displays the symbol and number of the menu, parameter, etc.
Example: M2 = Menu 2 (Parameters) ; P2.1.3 = Acceleration time.
Description line: displays the description of the menu, value or fault.

Value line: displays the numerical and text values of references, parameters, etc., and the number of submenus available in each menu.

Variable speed drives for asynchronous motors

Altivar 78

Environmental characteristics

Conformity to standards		Altivar 78 drives have been developed to conform to the strictest national and international standards and to the recommendations relating to electrical industrial control devices (IEC, EN, NFC, VDE), in particular: - Low voltage: EN 50178 - Electrical isolation: conforming to EN 50178, PELV - EMC immunity: conforming to IEC 61800-E, EN 50082-1, -2 - EMC emissions: conforming to IEC 61800-3									
C¢ marking		Altivar 78 variable speed drives carry $\mathrm{C} \in$ marking in accordance with the following European directives: - Low Voltage Directive EC 73/23 - EMC Directive 89/336 for industrial environments									
Product certification		UL, c-UL									
Degree of protection											
ATV 78•U22Y...C16Y		IP 21/NEMA Type 1 or IP 54/NEMA Type 12									
ATV 78•U22Y...D22Y		IP 54/NEMA Type 12 kit for IP 21/NEMA Type 1 drives: installable on site									
ATV 780C20Y...M13Y		IP 00/open type									
Vibration resistance	Hz	```5 to 200 conforming to IEC/EN 50178/60068-2-6 and 60068-2-6 (60068-2-34, -35, -36) 3 mm peak to peak from 5 to 10.7 Hz 0.7 gn from 10.7 to 200 Hz```									
Shock resistance		Max. 15 gn for 11 ms conforming to EN 50178/EN 60068-2-27									
Maximum ambient pollution		Level 2 conforming to IEC 60664-1 and EN 50178									
Maximum relative humidity and Environmental class		95% without condensation or dripping water, conforming to IEC 60068-2-3 3C2, conforming to IEC 60721-3-3									
Ambient temperature around the device	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$									
	${ }^{\circ} \mathrm{C}$	High torque applications: - ATV 78•U22Y to ATV 78॰C16Y: - 10 (no frost) to +50 - ATV 780C20Y to ATV 780M13Y or ATV 780FC20Y to ATV 780FM13Y: 10 (no frost) to +40 Standard torque applications: - 10 (no frost) to +40									
Programmable switching frequency Inv = max. nominal current of variable speed drive		To operate at a switching frequency from 1.5 to 6 kHz , select the drive rating according to the derating current value given in the table below:									
		ATV 780/ ATV 780F	Ambient temperature	Switching frequency (kHz)							
				1.5	2	2.5	3	3.5	4	5	6
		$\begin{aligned} & \text { U22Y } \\ & \text { to D90Y } \end{aligned}$	$40^{\circ} \mathrm{C}$	Inv	Inv	Inv	Inv	Inv	$\begin{aligned} & 0.93 \\ & \text { Inv } \end{aligned}$	$\begin{aligned} & 0.85 \\ & \text { Inv } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.75 \\ \text { Inv } \end{array}$
		$\begin{aligned} & \text { C11Y } \\ & \text { to M13Y } \end{aligned}$	$40^{\circ} \mathrm{C}$	Inv	$\begin{aligned} & 0.90 \\ & \text { Inv } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & \text { Inv } \end{aligned}$	$\begin{aligned} & \hline 0.74 \\ & \text { Inv } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & \operatorname{lnv} \end{aligned}$	$\begin{aligned} & \hline 0.62 \\ & \text { Inv } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.53 \\ & \text { Inv } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.47 \\ \text { Inv } \end{array}$
Maximum operating altitude	m	1000 without derating 1000 to 3000 with current derating of 1% per additional 100 m									
Operating position Maximum permanent angle in relation to the normal vertical mounting position											

Presentation:	References:	Dimensions:
pages 2 and 3	pages 10 and 11	pages 28 to 37

Drive characteristics

Output frequency range		Hz	$0 . . .320$ Frequency stability: $\pm 0.01 \%$ at 50 Hz Resolution: 0.01 Hz
Switching frequency		kHz	1.5 to 6 , factory setting 1.5
Speed range			1 to 100 in high torque configuration 1 to 1000 in FVC closed loop control mode
Speed accuracy			Without encoder feedback card: -30% of nominal slip, speed $>10 \%$ of nominal motor speed -50% of nominal slip, speed < 5% of nominal motor speed
			With encoder feedback in control mode: $\pm 0.01 \%$ of nominal speed
Transient overtorque on start-up			200% of nominal motor torque (typical value $\pm 10 \%$) in high torque configuration, 150% in standard torque
Braking torque			Up to 30% of nominal motor torque without braking unit (typical value) Up to 100% with external braking resistor
Maximum transient current			525 to 690 V : 150% of nominal current in high torque operation for 60 s , then 100% in continuous operation 110% of nominal current in standard torque operation for 60 s , then 100% in continuous operation
Voltage/frequency ratio	ATV 780ee日Y		Flux Vector Control without sensor; constant torque or variable torque
	ATV 78•F•e@		Flux Vector Control with sensor for more accurate speed and torque control
Electrical characteristics			
Power supply	Voltage	V	525 to $690 \mathrm{~V}, \pm 10 \%$ three-phase
	Frequency	Hz	45... 66
Signalling			Via 3 LEDs on the programming terminal: - green: power on - green: running - red: fault
Output voltage			Maximum voltage equal to line supply voltage
Efficiency			97.5\% (including line choke losses) at $50 / 60 \mathrm{~Hz}$ at nominal load
Internal supplies available			$1+10 \mathrm{~V}$ output, 0 to $+3 \%$, max. 10 mA , with short-circuit protection $1+24 \mathrm{~V}$ output, $\pm 15 \%$, max. 150 mA , with short-circuit protection
External +24 V power supply			Used to supply the control circuit and option cards if the main power supply is cut +24 V power supply, $\pm 15 \%$, min. 300 mA Separated from the internal power supply by a diode
Analog inputs	Al1		1 voltage analog input 0 to 10 V Impedance $200 \mathrm{k} \Omega$ Accuracy $\pm 1 \%$ of full scale (10 V) Resolution: 10 bits
	AI2		1 differential current analog input: 0 to 20 mA or 4 to 20 mA Max. load impedance: 250Ω Resolution: 10 bits
Analog output	AO		1 current analog output 0 to 20 mA or 4 to 20 mA , configurable Max. external load: < 500Ω Resolution: 10 bits, accuracy $\pm 3 \%$
Logic inputs	Dl•		6 bipolar inputs: positive or negative logic, 18 to $30 \mathrm{~V}=-$, configurable Impedance > $5 \mathrm{k} \Omega$ State 1 above 18 V , state 0 below 10 V
Programmable relay output			1 programmable relay output Switching voltage: $24 \mathrm{~V} / 6 \mathrm{~A}=-, 250 \mathrm{~V} / 6 \mathrm{~A} \sim, 125 \mathrm{~V} / 0.4 \mathrm{~A}=-$ Max. continuous current < 2 A RMS Minimum switching capacity $5 \mathrm{~V} / 10 \mathrm{~mA}$ Electrical isolation between line supply and relay power supply

Presentation:	References:	Dimensions:
pages 2 and 3	pages 10 and 11	pages 28 to 37

Protection characteristics

Overcurrent		Trip limit $4.0 \times \mathrm{I}_{\mathrm{H}}$ (nominal drive current)
Overvoltage on DC bus	V	--- 1200
Undervoltage on DC bus	V	--- 461
Earth fault		If an earth fault occurs on the motor or motor cable, only the drive is protected
Phase loss Input		Trips if a phase is missing
Output		Trips if a phase is missing
Thermal protection against overheating	${ }^{\circ} \mathrm{C}$	Alarm at 85 Trips at 95
Motor protection		Yes, calculation of $\mathrm{I}^{2} \mathrm{t}$
Motor stall		Yes
Motor underload		Yes
Short-circuit protection for +24 V and +10 V reference voltage		Yes

Torque characteristics (typical curves)

The curve opposite defines the available continuous torque and transient overtorque for both force-cooled and self-cooled motors.
The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

Self-cooled motor: continuous useful torque
2 Force-cooled motor: continuous useful torque (1)
3 Transient overtorque (1)
Possible overtorque at low speed (1)
5 Torque in overspeed at constant power (2)
(1) Torque available at zero speed with encoder feedback card.
(2) Caution: Check the mechanical overspeed characteristics of the selected motor with the manufacturer.

Special uses
 Motor power rating different from that of variable speed drive

The variable speed drive can supply any motor which has a power rating between 20% and 120% of that for which it is designed. Ensure that the current drawn does not exceed the continuous output current of the drive.

Connecting motors in parallel

The variable speed drive rating must be greater than the sum of the motor currents to be connected to the variable speed drive. In this case, external thermal protection must be provided for each motor using probes (up to 6 motors) or thermal overload relays.
If the total length of the cables is greater than 30 m , the fitting of a line choke between the variable speed drive and the motor is recommended (dv/dt filter is recommended for supply voltages of 525,660 and 690 V).
Autotuning is necessary for applications requiring a high start-up torque (conveyors, lifting). In this case the motors must be mechanically coupled, have the same power rating and the same cable length.
Autotuning is not necessary for applications which do not require a high start-up torque (pumps, fans). In this case the motor power ratings and the cable lengths may be different.
Each motor can be isolated by a contactor during operation. However, the motor should be reconnected to the variable speed drive in accordance with the precautions described below in "Coupling a contactor downstream of the variable speed drive."
The nominal current set for the variable speed drive must be equal to the sum of the motor currents.

Coupling a motor downstream of the variable speed drive

Connecting on the fly is possible if the current peak of the motor to be connected is less than the current supported by the variable speed drive at the time of coupling. In all cases it is preferable to lock the variable speed drive before closing the contactor and to unlock it after closing the power poles of the contactors.

Connection to an IT network

This type of connection is possible provided that no radio interference filters are installed. In addition, if the stray capacitance (or the filter capacitors) between the network and earth are excessive, there is a risk of premature wear on the variable speed drive in the event of a prolonged earth fault.

Presentation:	References:	
pages 2 and 3 pages 10 and 11	Dimensions:	Schemes:

Variable speed drives for asynchronous motors

Altivar 78

ATV 782D11Y

ATV 782C16Y

High torque applications (150\% Tn)									
Motor				Altivar 78					
Power rating on motor plate				Input/output current (1)		Transient output current (4)	Power dissipated at nominal load	Reference(5) (6) (7)	Weight (8)
525 V	575 V	660 V	690 V	Nominal drive current (2)	150% of nominal current (3)				
kW	HP	kW	kW	A	A	A	W		kg
3-phase supply voltage 525 V to $690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
1.7	2	2.1	2.2	3.2	4.8	6.4	97	ATV 78•U22Y	18.500
2.3	3	2.9	3	4.5	6.8	9	111	ATV 78•U30Y	18.500
3	-	3.8	4	5.5	8.3	11	126	ATV 78@U40Y	18.500
4.2	5	5.3	5.5	7.5	11.3	15	170	ATV 78@U55Y	18.500
5.7	7.5	7.2	7.5	10	15	20	193	ATV 78@U75Y	18.500
8	10	11	11	13.5	20.3	27	295	ATV 78@D11Y	18.500
11	15	14	15	18	27	36	414	ATV 780D15Y	18.500
14	20	18	18.5	22	33	44	450	ATV 78॰D18Y	18.500
17	25	21	22	27	41	54	520	ATV 78•D22Y	18.500
23	30	29	30	34	51	68	630	ATV 780D30Y	35.000
29	40	36	37	41	62	82	791	ATV 78@D37Y	35.000
34	50	43	45	52	78	104	1039	ATV 78•D45Y	58.000
42	60	53	55	62	93	124	1396	ATV 78@D55Y	58.000
57	75	72	75	80	120	160	2144	ATV 78॰D75Y	58.000
68	100	86	90	100	150	200	2015	ATV 78•D90Y	146.000
84	125	105	110	125	188	213	2687	ATV 780C11Y	146.000
100	150	126	132	144	216	245	3123	ATV 78*C13Y	146.000
122	-	153	160	170	255	289	3707	ATV 780C16Y	146.000
152	200	191	200	208	312	375	3971	ATV 780C20Y	176,000
190	250	239	250	261	392	470	5157	ATV 780C25Y	207.000
240	300	301	315	325	488	585	6016	ATV 780C31Y	207.000
270	400	340	355	385	578	693	6410	ATV 780C35Y	335.000
342	450	430	450	460	690	828	7401	ATV 780C45Y	335.000
380	500	478	500	502	753	904	8058	ATV 780C50Y	378.000
426	600	536	560	590	885	1062	8400	ATV 780C56Y	414.000
479	650	603	630	650	975	1170	9450	ATV 780C63Y	414.000
540	800	679	710	650	975	1170	10650	ATV 780C71Y	414.000
608	800	765	800	820	1280	1410	11880	ATV 780C80Y	756.000
684	900	860	900	930	1380	1755	13370	ATV 780C90Y	756.000
760	1000	956	1000	1030	1463	1755	15080	ATV 780M10Y	786.000
989	1350	1243	1300	1300	1950	2340	19070	ATV 780M13Y (9)	1512.000

High torque applications with integrated encoder feedback card
In the above references, replace ATV 78• with ATV 78॰F or ATV 780 with ATV 780F.
Example: ATV 78•U22Y becomes ATV 78॰FU22Y, ATV 780C71Y becomes ATV 780FC71Y.
(1) The input and output current values are about the same at nominal speed and nominal load.
(2) Typical values for a 4-pole class B motor.
(3) 150% of the nominal current for 1 minute every 10 minutes.
(4) Transient output current for 2 seconds every 20 seconds.
(5) In the reference, replace the - with 2 for an IP 21 (NEMA Type 1) drive or with 5 for an IP 54 (NEMA Type 12) drive. Example: ATV 782U22Y for IP 21 or ATV 785U22Y for IP 54.
For ATV 780C20Y to ATV 780M13Y drives, the product is only available in IP 00 (open type).
(6) To order a reinforced version of a drive for specific environmental conditions, add S337 to the end of the reference for ATV 785U22Y to ATV 785C16Y drives and ATV 780C20Y to ATV 780M13Y drives. Example: ATV 785D75Y becomes ATV 785D75YS337.
(7) Drives are supplied as standard with a line choke, which on ATV 78@U22Y to ATV 78•C16Y drives is built in. On ATV 780C20Y to ATV 780M13Y drives it is supplied but not installed.
(8) The weight includes the drive and the line choke.
(9) Drive supplied as standard with a dv/dt filter.

Presentation:	Characteristics:	Dimensions:
pages 2 and 3	pages 6 to 9	pages 28 to 32

ATV 782D11Y

ATV 782C16Y

Standard torque applications (110\% Tn)									
Motor				Altivar 78					
Power rating on motor plate				Input/output current (1)		Transient output current (4)	Power dissipated at nominal load	Reference (5) (6) (7)	Weight (8)
525 V	575 V	660 V	690 V	Nominal drive current (2)	110% of nominal current (3)				
kW	HP	kW	kW	A	A	A	W		kg
3-phase supply voltage 525 V to $690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
2.3	3	2.9	3	4.5	5	6,4	104	ATV 780U22Y	18.500
3	-	3.8	4	5.5	6.1	9	118	ATV 780U30Y	18.500
4.2	5	5.3	5.5	7.5	8.3	11	141	ATV 780U40Y	18.500
5.7	7.5	7.2	7.5	10	11	15	190	ATV 780U55Y	18.500
8	10	11	11	13	14.9	20	227	ATV 780U75Y	18.500
11	15	14	15	18	19.8	27	342	ATV 780D11Y	18.500
14	20	18	18.5	22	24.2	36	455	ATV 780D15Y	18.500
17	25	21	22	27	29.7	44	483	ATV 780D18Y	18.500
23	30	29	30	34	37.4	54	614	ATV 780D22Y	18.500
29	40	36	37	41	45.1	68	712	ATV 780D30Y	35.000
34	50	43	45	52	57.2	82	901	ATV 780D37Y	35.000
42	60	53	55	62	68.2	104	1160	ATV 780D45Y	58.000
57	75	72	75	80	88	124	1670	ATV 780D55Y	58.000
68	100	86	90	100	110	160	2345	ATV 780D75Y	58.000
84	125	105	110	125	138	200	2286	ATV 780D90Y	146.000
100	150	126	132	144	158	213	2998	ATV 780C11Y	146.000
122	-	153	160	170	187	245	3639	ATV 780C13Y	146.000
152	200	191	200	208	229	289	4263	ATV 780C16Y	146.000
190	250	239	250	261	287	375	4803	ATV 780C20Y	176.000
240	300	301	315	325	358	470	5660	ATV 780C25Y	207.000
270	400	340	355	385	424	585	7089	ATV 780C31Y	207.000
342	450	430	450	460	506	693	7377	ATV 780C35Y	335.000
380	500	478	500	502	552	828	8635	ATV 780C45Y	335.000
426	600	536	560	590	649	904	9201	ATV 780C50Y	378.000
479	650	603	630	650	715	1062	9450	ATV 780C56Y	414.000
540	800	679	710	750	825	1170	10650	ATV 780C63Y	414.000
609	800	765	800	820	902	1170	12000	ATV 780C71Y	414.000
684	800	860	900	920	1012	1410	13370	ATV 780C80Y	756.000
760	900	956	1000	1030	1130	1755	15080	ATV 780C90Y	756.000
875	1100	1100	1150	1180	1298	1755	17580	ATV 780M10Y	786.000
1141	1500	1434	1500	1500	1650	2340	21780	ATV 780M13Y	1512.000

(1) The input and output current values are about the same at nominal speed and nominal load.
(2) Typical values for a 4-pole class B motor.
(3) 110% of the nominal current for 1 minute every 10 minutes.
(4) Transient output current for 2 seconds every 20 seconds.
(5) In the reference, replace the \bullet with 2 for an IP 21 (NEMA Type 1) drive or with 5 for an IP 54 (NEMA Type 12) drive. Example: ATV 782U22Y for IP 21 or ATV 785U22Y for IP 54.
For ATV 780C20Y to ATV 780M13Y drives, the product is only available in IP 00 (open type).
(6) To order a reinforced version of a drive for specific environmental conditions, add S337 to the end of the reference for ATV 785U22Y to ATV 785C16Y drives and ATV 780C20Y to ATV 780M13Y drives. Example: ATV 785D75Y becomes ATV 785D75YS337.
(7) Drives are supplied as standard with a line choke, which on ATV 78@U22Y to ATV 78•C16Y drives is built in. On ATV 780C20Y to ATV 780M13Y drives it is supplied but not installed.
(8) The weight includes the drive and the line choke.
(9) Drive supplied as standard with a dv/dt filter.

Presentation: pages 2 and 3	Characteristics:	Dimensions:

Variable speed drives for asynchronous motors
 Altivar 78
 Accessories

VW3 A7810

Remote mounting kit for programming terminal

The Altivar 78 is supplied with a remote programming terminal (see page 4).
A terminal support option allows remote mounting of the programming terminal at a distance of between 2 and 15 metres. It is particularly suitable for mounting on an enclosure door.

The mounting kit comprises:
■ Terminal support

- Connection cable (length 2 or 15 m)

■ Screws and washers

Description	Cable length \mathbf{m}	For drives	Reference	Weight $\mathbf{k g}$
Terminal support	2	ATV 78 all ratings	VW3 A78102	1.000
	15	ATV 78 all ratings	VW3 A78103	1.000

PC-based setup software ATV 78 Soft

ATV 78 Soft is provided on a CD-ROM shipped with the product.
The PC connection kit allows connection to a PC operating in a Microsoft Windows ${ }^{\circledR}$ environment.

Minimum PC configuration: Pentium 3 processor with 128 MB of RAM.
Operating system: Windows ${ }^{\circledR} 95,98$, NT, 2000 or XP.
Main functions:
■ Drive configuration

- Configuration backup
- Printout of complete parameter list
- Comparison of parameters
- Configuration transfer from one drive to another
- Oscilloscope mode for maintenance
- Control and monitoring
$\left.\begin{array}{llllr}\text { Description } & \begin{array}{l}\text { Cable length } \\ \mathbf{m}\end{array} & \begin{array}{l}\text { For } \\ \text { drives }\end{array} & \text { Reference }\end{array} \begin{array}{r}\text { Weight } \\ \mathbf{k g}\end{array}\right)$

IP 54 kit (NEMA type 12)

The IP 54 kit increases the protection class of the variable speed drive enclosure from IP 21 to IP 54. The kit offers protection against dust and water spray. It does not protect the drive against powerful water jets or immersion, however.

The IP 54 kit comprises:

- IP 54 enclosure

■ IP 54 cover with fan

- Cable gland with rubber grommets

■ Rubber seals
■ Screws, cable anchors, fasteners, warning sticker

Description	For drives	Reference	Weight $\mathbf{k g}$
IP 54 kit	ATV 782U22Y...2D22Y	VW3 A78801	1.500
	ATV 782FU22Y...2FD22Y		

Variable speed drives for asynchronous motors

Altivar 78
Accessories

Kit for flush-mounting in a dust and damp proof enclosure

This kit allows the power section of the drive to be mounted outside the enclosure, reducing the power dissipated inside the enclosure. It is available for drives ATV 782 U 227 to ATV 782C16Y.
This type of mounting requires a cutout in the enclosure.
The heatsink and fan mounted outside the enclosure have IP 54/NEMA type 12 degree of protection.

The mounting kit comprises:

- Seals
- Cable glands
- Fan
- Sealing tape

■ Cable tie, screws

- Instructions and cutout dimensions

For drives	Reference	Weight $\mathbf{k g}$
ATV 782U22Y...2D22Y	VW3 A78806	0.370
ATV 782FU22Y...2FD22Y		
ATV 782D30Y, 2D37Y	VW3 A78807	2.000
ATV 782FD30Y, 2FD37Y		
ATV 782D45Y...2D75Y	VW3 A78808	3.000
ATV 782FD45Y...2FD75Y	VW3 A78809	
ATV 782D90Y...2C16Y		8.500
ATV 782FD90Y...2FC16Y		

Demonstration case

The Altivar 78 demonstration case comprises:

- 115/230 V ~ dual voltage input power supply
- ABS case
- Altivar 78 variable speed drive with programming terminal
- Power cord and PC connection cable
- PC software
- Switches, LEDs and analog counter

Description	Reference	Weight $\mathbf{k g}$
Altivar 78 demonstration case	VW3 A78DEMO	12.700

Variable speed drives for asynchronous motors

Altivar 78
Reduction of current harmonics

The main solutions for reducing current harmonics are as follows:

- Line chokes (supplied with the Altivar 78)
- Passive filters

■ Active compensators, also called Accusine active filters, marketed under the
Merlin Gerin brand

- Hybrid filters

All four solutions can be used on the same installation. It is always easier and less expensive to handle harmonics at an installation level as a whole rather than at the level of each individual unit, particularly when using passive filters and active compensators.

Line chokes

Presentation

The Altivar 78 comes with line chokes to help reduce the current harmonic distortion generated by the variable speed drive and to help improve protection against overvoltages on the line supply. The integrated line chokes on the Altivar 78 are also used to minimize the line current.
The use of line chokes is recommended in particular under the following circumstances:
■ Close connection of several drives in parallel

- Line supply with significant disturbance from other equipment (interference, overvoltages, switching capacitors)
■ Line supply with voltage imbalance between phases above 1.8% of the nominal voltage
■ Line supply with a very low impedance; e.g. the transformer power rating is 10 times greater than the drive rating
■ Installation of a large number of variable speed drives on the same line
- If the installation includes a power factor correction unit, the line choke reduces the overload on the $\cos \varphi$ correction capacitors and limits the voltage spikes caused by capacitor switching.
Example of current harmonic levels for a $690 \mathrm{~V} / 50 \mathrm{~Hz}$ line supply

Variable speed drives	H1		H5		H7		H11		H13	
	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 110 \% \\ & \operatorname{Tn} \end{aligned}$	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 110 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 110 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 110 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at 110\% } \\ & \text { Tn } \end{aligned}$
	A	A	\%	\%	\%	\%	\%	\%	\%	\%
ATV 78•U22Y, ©FU22Y	1.84	2.51	72.46	69.11	51.65	45.19	14.86	9.13	6.42	5.96
ATV 780U30Y, ©FU30Y	2.51	3.35	69.11	69.10	45.19	45.45	9.13	10.29	5.96	6.53
ATV 780U40Y, ©FU40Y	3.35	4.60	69.10	65.82	45.45	39.84	10.29	5.94	6.53	5.21
ATV 78@U55Y, ©FU55Y	4.60	6.28	65.82	63.58	39.84	36.49	5.94	5.89	5.21	5.80
ATV 78@U75Y, ©FU75Y	6.28	9.20	63.58	57.32	36.49	30.32	5.89	7.21	5.80	7.07
ATV 78@D11Y, ©FD11Y	9.20	12.55	57.32	45.73	30.32	22.68	7.21	6.20	7.07	4.96
ATV 78@D15Y, ©FD15Y	12.55	15.48	45.73	43.45	22.68	21.53	6.20	6.09	4.96	5.68
ATV 78@D18Y, ©FD18Y	15.48	18.41	43.45	41.32	21.53	17.83	6.09	6.15	5.68	5.17
ATV 780D22Y, ©FD22Y	18.41	25.10	41.32	34.43	17.83	11.99	6.15	5.13	5.17	4.50
ATV 78॰D30Y, ©FD30Y	25.10	31.38	45.91	40.78	21.76	17.02	6.61	5.93	5.75	4.64
ATV 78@D37Y, ©FD37Y	31.38	37.65	40.78	37.82	17.02	15.20	5.93	5.75	4.64	4.97
ATV 78@D45Y, ©FD45Y	37.65	46.02	43.42	38.00	19.82	16.32	6.49	5.51	4.92	4.67
ATV 78@D55Y, ©FD55	46.02	62.76	38.00	35.30	16.32	13.58	5.51	5.85	4.67	4.46
ATV 78॰D75Y, ©FD75Y	62.76	75.31	35.30	32.22	13.58	10.63	5.85	5.64	4.46	4.08
ATV 78॰D90Y, ©FD90Y	75.31	92.04	32.22	32.09	10.63	9.29	5.64	5.92	4.08	3.39
ATV 78@C11Y, \bullet FC11Y	92.04	110.45	38.32	36.03	15.87	13.19	5.81	6.03	5.05	4.29
ATV 78@C13Y, \bullet FC13Y	110.45	133.88	36.03	33.39	13.19	10.30	6.03	5.63	4.29	3.92
ATV 78@C16Y, ©FC16Y	133.88	167.35	33.39	31.74	10.30	9.65	5.63	5.72	3.92	3.53
ATV 780C20Y, 0FC20Y	167.35	209.18	37.69	35.58	16.62	10.90	6.29	5.97	3.94	3.56
ATV 780C25Y, 0FC25Y	209.18	263.57	40.05	34.87	15.27	11.65	5.95	5.33	4.19	3.94
ATV 780C31Y, 0FC31Y	263.57	297.04	34.87	33.90	11.65	11.28	5.33	5.00	3.94	3.98
ATV 780C35Y, 0FC35Y	297.04	376.53	43.10	39.70	18.10	14.70	7.20	7.00	3.90	3.30
ATV 780C45Y, 0FC45Y	376.53	418.37	39.70	38.40	14.70	13.40	7.00	6.90	3.30	3.20
ATV 780C50Y, 0FC50Y	418.37	468.57	46.70	44.90	21.10	19.20	6.90	6.80	4.10	3.70
ATV 780C56Y, 0FC56Y	468.57	527.15	43.00	41.30	17.60	15.90	7.00	6.90	3.70	3.40
ATV 780C63Y, 0FC63Y	527.15	594.09	41.30	39.80	15.90	14.30	6.90	6.90	3.40	3.20
ATV 780C71Y, 0FC71Y	527.15	669.39	41.30	38.10	15.90	12.90	6.90	6.80	3.40	3.20
ATV 780C80Y, 0FC80Y	677.9	761.6	40.30	38.56	15.06	13.25	7.20	7.08	3.41	3.18
ATV 780C90Y, 0FC90Y	761.6	845	40.98	36.93	13.25	11.87	7.08	6.96	3.18	3.12
ATV 780M10Y, 0FM10Y	847.8	973.7	41.61	39.74	15.90	13.90	7.10	6.98	3.46	3.12
ATV 780M13Y, 0FM13Y	1100.26	1267.84	39.05	36.99	14.90	13.09	7.47	7.22	3.64	3.46

Dimensions:
pages 28 to 32

Variable speed drives presentation for asynchronous motors
Altivar 78
Reduction of current harmonics

Line chokes (continued)											
Characteristics											
Variable speed drives			Line choke								
	Nominal current (In)(1)		Inductance value	Impedance value for In at $\mathbf{1 5 0 \%}$ Tn (high torque application)				Impedance value for In at 110\% Tn (standard torque application)			
	$\begin{aligned} & \text { at } 150 \% \\ & \text { Tn } \end{aligned}$	$\begin{aligned} & \text { at } 110 \% \\ & \mathrm{Tn} \end{aligned}$		$\begin{aligned} & 525 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 690 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 525 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 690 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$
	A	A	$\mu \mathrm{H}$	\%	\%	\%	\%	\%	\%	\%	\%
ATV 78॰U22Y, ©FU22Y	3	4	1500	0.44	0.40	0.29	0.28	0.60	0.55	0.40	0.38
ATV 78ゃU30Y, eFU30Y	4	5	1500	0.60	0.55	0.40	0.38	0.80	0.73	0.53	0.51
ATV 78@U40Y, ©FU40Y	5	7	1500	0.80	0.73	0.53	0.51	1.10	1.01	0.73	0.70
ATV 78@U55Y, ©FU55Y	7	10	1500	1.10	1.01	0.73	0.70	1.50	1.37	1.00	0.95
ATV 78@U75Y, өFU75Y	10	13	1500	1.50	1.37	1.00	0.95	2.20	2.01	1.46	1.40
ATV 78@D11Y, eFD11Y	13	18	1500	2.20	2.01	1.46	1.40	3.00	2.74	1.99	1.90
ATV 780D15Y, eFD15Y	18	22	1500	3.00	2.74	1.99	1.90	3.71	3.38	2.46	2.35
ATV 780D18Y, eFD18Y	22	27	1500	3.71	3.38	2.46	2.35	4.41	4.02	2.92	2.79
ATV 78@D22Y, eFD22Y	27	34	1500	4.41	4.02	2.92	2.79	6.01	5.49	3.98	3.81
ATV 780D30Y, eFD30Y	34	41	880	3.52	3.22	2.34	2.24	4.41	4.02	2.92	2.79
ATV 78eD37Y, eFD37Y	41	52	880	4.41	4.02	2.92	2.79	5.29	4.83	3.50	3.35
ATV 780D45Y, eFD45Y	52	62	880	5.29	4.83	3.50	3.35	6.46	5.90	4.28	4.10
ATV 78@D55Y, eFD55Y	62	80	575	4.22	3.86	2.80	2.68	5.76	5.26	3.82	3.65
ATV 780D75Y, eFD75Y	80	100	575	5.76	5.26	3.82	3.65	6.91	6.31	4.58	4.38
ATV 78॰D90Y, eFD90Y	100	125	300	3.61	3.29	2.39	2.29	4.41	4.02	2.92	2.79
ATV 78॰C11Y, ©FC11Y	125	144	300	4.41	4.02	2.92	2.79	5.29	4.83	3.50	3.35
ATV 78॰C13Y, ©FC13Y	144	170	300	5.29	4.83	3.50	3.35	6.41	5.85	4.25	4.06
ATV 78॰C16Y, eFC16Y	170	208	300	6.41	5.85	4.25	4.06	8.01	7.31	5.31	5.08
ATV 780C20Y, 0FC20Y	208	261	187	4.99	4.56	3.31	3.17	6.24	5.70	4.14	3.96
ATV 780C25Y, 0FC25Y	261	325	120	4.21	3.84	2.79	2.67	5.30	4.84	3.51	3.36
ATV 780C31Y, 0FC31Y	325	385	120	5.30	4.84	3.51	3.36	5.97	5.45	3.96	3.79
ATV 780C35Y, 0FC35Y	416	460	95	4.50	4.11	2.98	2.86	5.71	5.21	3.78	3.62
ATV 780C45Y, 0FC45Y	460	502	95	5.71	5.21	3.78	3.62	6.34	5.79	4.20	4.02
ATV 780C50Y, 0FC50Y	502	590	60	4.21	3.84	2.79	2.67	4.71	4.30	3.12	2.99
ATV 780C56Y, 0FC56Y	590	650	60	4.71	4.30	3.12	2.99	5.30	4.84	3.51	3.36
ATV 780C63Y, 0FC63Y	650	750	60	5.30	4.84	3.51	3.36	5.97	5.45	3.96	3.79
ATV 780C71Y, 0FC71Y	750	820	60	5.97	5.45	3.96	3.79	6.73	6.14	4.46	4.27
ATV 780C80Y, 0FC80Y	820	920	47.5	4.04	4.42	3.21	3.07	4.53	4.96	3.60	3.45
ATV 780C90Y, 0FC90Y	920	1030	47.5	4.53	0.58	3.60	3.45	5.07	4.96	4.03	3.86
ATV 780M10Y, 0FM10Y	1030	1180	37.5	4	0.59	3.18	3.05	4.59	4.96	3.65	3.49
ATV 780M13Y, 0FM13Y	1300	1500	31.67	4.27	0.8	3.39	3.25	4.92	4.96	3.92	3.75

(1) In is the nominal output current rating of the variable speed drive in standard torque applications ($110 \% \mathrm{Tn}$) or in high torque applications (150\% Tn).

Passive filters

Active compensators

Presentation

Passive filters can be used to reduce the current harmonics according to the harmonic orders to be filtered (H1 to H13). They thus consist of "steps", each step corresponding to a harmonic order. Orders 5 and 7 are those most commonly filtered.
The filter can be installed for a load or for a group of loads. Its design requires a detailed analysis of the supply and a research project. Its size depends on the harmonic range of the load and on the impedance of the source.
This type of filtering depends entirely on the source and the loads.
Note: This type of filter can also be used to eliminate harmonic distortion which already exists on the line supply. Please consult your Regional Sales Office.

Presentation

Compensators, connected in parallel on the load and on the line supply, measure current harmonics emitted by the equipment and automatically generate inverse current harmonics.
Their advantages are as follows:

- Independence in relation to the load and to the supply impedance
- Adaptive tuning

Note: Please consult your Regional Sales Office.

Hybrid filters

Presentation

Hybrid filters consist of a passive filter and an active compensator and represent an excellent compromise for handling harmonics.
Note: Please consult your Regional Sales Office.

Variable speed drives

Altivar 78
Option: dv/dt filters

Presentation

$\mathrm{dv} / \mathrm{dt}$ are the steep-front voltage pulses that travel along the leads in the circuit to the motor and are then returned in a "reflected wave".

If the leads are long enough, 30 metres or more, the reflection time corresponds to the transmission time, resulting in a high harmonic factor on the circuit. Overvoltages of up to 2100 V are commonly observed in $525 / 660 / 690 \mathrm{~V} \sim$ line supplies. To avoid equipment failure, the use of a dv/dt filter is essential.

Installed between the variable speed drive and the motor, the dv/dt filter protects the motor by slowing the rate of voltage increase and minimizing the overvoltage that occurs at the motor terminals.

References						
For variable speed drives	Max. cable length		dv/dt for 525/660/690 V ~		Reference	Weight
	Shielded	Unshielded	Nominal current	Max. loss		
	m	m	A	W		kg
$\begin{aligned} & \text { ATV 78•U22Y...@D15Y } \\ & \text { ATV 78@FU22Y...@FD15Y } \end{aligned}$	100	140	25	90	VW3 A78601C	7
ATV 78•D18Y...eD31Y ATV 78॰FD18Y...@FD31Y	100	210	55	120	VW3 A78602C	12
ATV 78@D45Y...@D55Y ATV 78॰FD45Y...eFD55Y	150	210	80	140	VW3 A78603C	15
ATV 78•D75Y...@D90Y ATV 78॰FD75Y...•FD90Y	150	280	130	190	VW3 A78604C	23
ATV 78•C11Y...eC16Y ATV 78॰FC11Y...•FC16Y	200	280	210	210	VW3 A78605C	35
ATV 780C20Y ATV 780FC20Y	200	350	280	350	VW3 A78606C	60
ATV 780C25Y ATV 780FC25Y	250	350	350	480	VW3 A78607C	70
ATV 780C31Y ATV 780FC31Y	250	350	420	650	VW3 A78608C	85
ATV 780C35Y...0C50Y ATV 780FC35Y...0FC50Y	250	420	600	850	VW3 A78609C	120
ATV 780C56Y...0C71Y ATV 780FC56Y...0FC71Y	300	420	820	1050	VW3 A78610C	140
ATV 780C80Y...0M10Y ATV 780FC80Y...0FM10Y	300	420	1200	1200	VW3 A78611C	160
ATV 780M13Y ATV 780FM13Y	300	420	1500	1400	VW3 A78612C	210

[^0]page 33

Variable speed drives for asynchronous motors

Altivar 78
Option: Motor chokes

Presentation

The use of a motor choke between the drive and the motor is recommended for motor leads longer than 10 metres.
This makes it possible to:
■ Limit dv/dt

- Limit overvoltage at the motor terminals
- Limit "reflected wave" from the motor back to the variable speed drive
- Filter interference caused by opening a contactor placed between the choke and the motor
- Reduce the motor earth leakage current.

Note: Please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 78
Options: Braking units and resistors

Braking units

Presentation

Resistance braking enables the Altivar 78 drive to operate while braking to a
 standstill or during "generator" operation, by dissipating the energy in the braking resistor.

Drives ATV 780(F)C80Y to ATV 780(F)M13Y can be fitted with a braking unit. Please consult your Regional Sales Office.

Braking resistors

Presentation

The dynamic braking transistor and braking resistor allow the Altivar 78 drive to operate in quadrants 2 and 4 of the four-quadrant speed/torque curve. In these quadrants of operation, the motor is essentially a generator through which energy is transferred from the motor load to the variable speed drive. This results in a rise in DC bus voltage to the variable speed drive, which may cause it to shut down to protect itself.

Braking resistors are generally used to dissipate the excess energy generated by the motor operating in this mode. The flow of current to the braking resistor is controlled by the dynamic braking transistor.

For drives ATV 780(F)C80Y to ATV 780(F)M13Y, the resistor required must be determined in accordance with the recommendations on pages 20 and 21. You should also consult your Regional Sales Office.

The dynamic braking transistor is integrated in the drive from ATV 78•(F)U22Y to ATV 780(F)C71Y.

Characteristics							
Type of braking resistor			VW3 A78701L ...A78703L	VW3 A78704L and A78705L	VW3 A78706L and A78707L	$\begin{aligned} & \text { VW3 A78701H } \\ & \text {...A78703H } \end{aligned}$	VW3 A78704H ...A78707H
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	- $40 \ldots+70$				
	Operation	${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$ without derating. Up to $80^{\circ} \mathrm{C}$ with current derating of 2.5% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$				
Degree of protection of enclosure	Vertical mounting		IP 50	IP 21	IP 20	IP 21	IP 20
	In other cases		IP 50	IP 20	IP 20	IP 20	IP 20
Thermal protection			-		By temperature controlled switch		
Temperature-controlled switch	Activation temperature	${ }^{\circ} \mathrm{C}$	220				

Variable speed drives for asynchronous motors

Altivar 78
Option: Braking resistors

Braking resistors (continued)

For variable speed drives		Braking resistors			
	Minimum ohmic resistance at $20^{\circ} \mathrm{C}$ (1)	Continuous power	Number of resistors required per drive	Reference	Weight
	Ω	kW			kg
Braking time: 5 s (2)					
ATV 78•U22Y...•U75Y ATV 78•FU22Y...•FU75Y	100	0.3	1	VW3 A78701L	1.700
ATV 78•D11Y...•D22Y ATV 78•FD11Y...•FD22Y	30	1.0	1	VW3 A78702L	4.000
ATV 78•D30Y...@D37Y ATV 78•FD30Y...•FD37Y	18	1.7	1	VW3 A78703L	7.000
ATV 78•D45Y...@D75Y (3) ATV 78•FD45Y...•FD75Y (3)	9	3.2	1	VW3 A78704L	16.000
ATV 78•D90Y...eC16Y (3) ATV 78•FD90Y...•FC16Y (3)	7	4	1	VW3 A78705L	28.000
ATV 780C20Y...0C31Y and ATV 780FC20Y...0FC31Y		11	1	VW3 A78706L	57.000
ATV 780C35Y...0C50Y and ATV 780FC35Y...0FC50Y	1.7	17	1	VW3 A78707L	86.000
ATV 780C56Y...0C71Y and ATV 780FC56Y...0FC71Y	2.5	11	2	VW3 A78706L	114.000
Braking time: 10 s (2)					
ATV 78•U22Y...•U75Y ATV 78•FU22Y...•FU75Y	100	0.79	1	VW3 A78701H	7.000
ATV 78•D11Y...@D22Y ATV 78•FD11Y...•FD22Y	30	2.8	1	VW3 A78702H	14.000
ATV 78•D30Y...eD37Y ATV 78•FD30Y...•FD37Y	18	5.5	1	VW3 A78703H	33.000
ATV 78•D45Y...eD75Y (3) ATV 78•FD45Y...•FD75Y (3)	9	9.4	1	VW3 A78704H	46.000
ATV 78•D90Y...•C16Y (3) ATV 78•FD90Y...•FC16Y (3)	7	12	1	VW3 A78705H	55.000
ATV 780C20Y...0C31Y and ATV 780FC20Y...0FC31Y		34	1	VW3 A78706H	160.000
ATV 780C35Y...0C50Y and ATV 780FC35Y...0FC50Y	1.7	50	1	VW3 A78707H	230.000
ATV 780C56Y...0C71Y and ATV 780FC56Y...0FC71Y	2.5	34	2	VW3 A78706H	320.000
Braking resistor connection kit					
For variable speed drives				Reference	Weight kg
ATV 78•D45Y...eC16Y ATV 78•FD45Y...•FC16Y				VW3 A78810	1.250
(1) Do not use a resistor with a value less than the minimum value given in the table. (2) For special applications such as hoisting, please refer to the curves on pages 22 and 23. (3) Braking resistor connection kit VW3 A78810 must be used.					

Variable speed drives for asynchronous motors

Altivar 78

Option: Braking resistors

Determining the braking power

Calculating the braking time from the inertia

$$
\begin{array}{|cc|c}
\mathrm{t}_{\mathrm{b}}=\frac{\mathrm{J} \cdot \omega}{\mathrm{~T}_{\mathrm{b}}+\mathrm{T}_{\mathrm{r}}} \quad \omega=\frac{2 \pi \cdot \mathrm{n}}{60} \quad \mathrm{~T}_{\mathrm{b}}=\frac{\Sigma \mathrm{J} \cdot\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{9,55 \cdot \mathrm{t}_{\mathrm{b}}} & \hat{\mathrm{P}}_{\mathrm{b}}=\frac{\mathrm{T}_{\mathrm{b}} \cdot \mathrm{n}_{1}}{9,55} \\
\overline{\mathrm{P}}_{\mathrm{b}}=\frac{\hat{\mathrm{P}}_{\mathrm{b}}}{2}
\end{array}
$$

[Nm]

[kgm^{2}]
[rpm]
[rpm]
[s]
[W]
[W]
[mN]

Braking power of an applied load moving horizontally with constant deceleration (e.g.: carriage)
[Joule]
[kg]
[m/s]
[s]
[W]
[W]
[Nm]
[rpm]
$9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
[m/s]
[kgms²]
[rad/s]
[s]

Kinetic energy
w Weight
v Speed
$t_{b} \quad$ Braking time
$\hat{\mathrm{P}}_{\mathrm{b}} \quad$ Maximum braking power
$\bar{P}_{b} \quad$ Average braking power during t_{b}
Braking torque
Motor speed

Acceleration

Deceleration
Linear downward speed
Moment of inertia
Angular speed
Downward stopping time
$W=\frac{w \cdot v^{2}}{2} \quad \bar{P}_{b}=\frac{W}{t_{b}}$

$$
\hat{P}_{b}=\bar{P}_{b} \cdot 2
$$

Braking power for an active load (e.g.: test bench)

$$
\bar{P}_{\mathrm{b}}=\frac{\mathrm{T}_{\mathrm{b}} \cdot \mathrm{n}}{9,55}
$$

Braking power for a downward vertical movement
\square
$\bar{P}_{b}=w \cdot g \cdot v$

$$
\hat{P}_{b}=w \cdot(g+a) \cdot v+\frac{J \cdot \omega^{2}}{t_{b}}
$$

$$
\omega=\frac{2 \pi \cdot n}{60}
$$

Braking power connected with the resistive or [W] driving torque (not taken into account in the calculation). $\mathrm{P}_{\text {load }}$ can be positive or negative.
Drive efficiency $=0.98$
$\eta_{\text {mec }} \quad$ Mechanical efficiency
$\eta_{\text {mot }}$

The braking power calculations are only valid if it is assumed that there are no losses ($\eta=1$) and there is no resistive torque.
An accurate analysis must be made:

- Losses in the system:

The losses generated in the motor (operating as a generator, quadrants II and IV) are of some help during the braking phase. Without exception, efficiency must be calculated to the braking power squared

- Resistive torque:

There may sometimes be resistive torque related to mechanical friction, air and opposing quadratic torque of the fans.
These phenomena, which are rarely taken into consideration, reduce the braking power.
The power or resistive torque should be derived from the calculated braking power

- Motor torque

Additional phenomena, such as the wind, can cause an increase in the braking power. These phenomena must also be taken into consideration.

The required braking power is calculated as follows:

$$
\hat{\mathrm{P}}_{\mathrm{bR}}=\left(\hat{\mathrm{P}}_{\mathrm{b}}-\mathrm{P}_{\text {load }}\right) \times \eta \text { total } \quad \overline{\mathrm{P}}_{\mathrm{bR}}=\left(\overline{\mathrm{P}_{\mathrm{b}}}-\mathrm{P}_{\text {load }}\right) \times \eta \text { total }
$$

$$
\eta_{\text {total }}=\eta_{\text {mec }} \times \eta_{\text {mot }} \times 0,98
$$

Presentation:	Characteristics	References:
page 18	page 18	page 19

Variable speed drives for asynchronous motors

Altivar 78
Option: Braking resistors
$\hat{P}_{\text {max }}$
Maximum braking power available with the braking unit
$\mathrm{P}_{\text {contin }}$ Continuous thermal braking power [W]
$\mathrm{U}_{\mathrm{d}} \quad$ Braking unit control level [V]
Braking resistor thermal current (see the TH setting)
$P_{\text {cycle }} \quad$ See the braking cycle diagram

Example of selection of a braking resistor for a hosting application

To select the braking power $\left(\hat{P}_{\mathrm{b}}, \overline{\mathrm{P}}_{\mathrm{b}}\right)$, it is also necessary to consider the following points:

- Type of installation and protection of the braking resistors
- Wiring conditions
- Problems with heat dissipation (air conditioning)
- Cost and possibility of depreciation of the installation due to the reduced costs of electrical energy

For braking, the braking resistor is selected to match the required power and the braking cycle.

In general:

$$
\hat{\mathrm{P}}_{\max }=\frac{\mathrm{U}^{2} \mathrm{~d}}{\mathrm{R}}
$$

\triangle The drive has a protection device inside the braking resistor. See the set-up parameters E3.06, E3.07 and E3.08.
The programming guide includes a protection curve and other advice.
If this protection curve is suitable for your braking resistors, then the internal protection can be used. Otherwise, external protection must be provided by a thermal overload relay.

Thermal overload relay
$\mathrm{P}=$ nominal braking resistor power
$\mathrm{R}=$ resistance value
$P=R I^{2} \rightarrow I=\sqrt{\frac{P}{R}}=$ nominal value of thermal overload relay
In the formula, we have: $\hat{P}_{\text {max }}=\frac{U^{2} d}{R}$
$\hat{P}^{\text {max }}$
$P_{\text {max }}=$ braking unit power $+R$
$P_{\text {continuous }}=I^{2} R$ (resistor P)

Customer data:	Raising/lowering cycle $=\mathbf{1}$ minute $\mathrm{Td} / \mathrm{Tn}=1.38$ Raising with nominal load at steady state: $\mathbf{1 0 6} \mathbf{k W}$ १total $=0.85$
Calculations:	106 kW leads to selection of a 120 kW motor $120 \mathrm{~kW} \times 0.85=102 \mathrm{~kW} \rightarrow 100 \mathrm{~kW}$ braking at steady state 102 kW X $1.38=140 \mathrm{~kW} \rightarrow$ selection of a max. braking power of 150 kW The variable speed drive used is a 132 kW ATV 782C13Y (min. braking resistance $=9 \Omega$)

The minimum resistance to be used is calculated according to the variable speed drive used, with the aid of braking resistor cycle curves.
Braking cycle: $60 \mathrm{~s}=150 \mathrm{~kW}$ max. for 2.5 s and 100 kW for 5 s .
Braking resistor VW3 A78705H can be used since it accepts 100 kW for more than 5 s and 150 kW for 2.5 s .

Presentation:	Characteristics	References:
page 18	page 18	page 19

Variable speed drives for asynchronous motors

Altivar 78
Characteristic curves for braking resistors

Braking resistors
VW3 A78701L (P continuous $=0.3 \mathrm{~kW}$)

VW3 A78703L (P continuous $=1.7 \mathrm{~kW}$)

VW3 A78705L (P continuous $=4.0 \mathrm{~kW}$)

VW3 A78702L (P continuous $=1.0 \mathrm{~kW}$)

VW3 A78704L (P continuous $=3.2 \mathrm{~kW}$)

VW3 A78706L (P continuous = 11 kW)

VW3 A78707L (P continuous $=\mathbf{1 7} \mathrm{kW}$)

Presentation:	Characteristics	References:
page 18	page 18	page 19

Variable speed drives for asynchronous motors

Altivar 78
Characteristic curves for braking resistors

VW3 A78703H (P continuous $=5.5 \mathrm{~kW}$)

VW3 A78705H (P continuous = 12 kW)

VW3 A78702H (P continuous = 2.8 kW)

VW3 A78704H (P continuous = 9.4 kW)

VW3 A78706H (P continuous = 34 kW)

VW3 A78707H (P continuous = 50 kW)

[^1]Presentation, characteristics, references

Variable speed drives for asynchronous motors

Altivar 78

Option: I/O extension cards
Presentation

The Altivar 78 variable speed drive is designed to take a total of 5 option cards, including fieldbus cards, in 5 slots labelled A to E on the control panel.

(1) Cards VW3 A78201 and A78202 are integrated in the Altivar 78 variable speed drive.
(2) For Flux Vector Control applications in closed loop mode, use cards VW3 A78204, A78205 and A78207 with an ATV $78 \bullet F 0000$ variable speed drive (see page 10).
(3) To order a reinforced version for specific environmental conditions, add S337 to the reference. Example: VW3 A78201 becomes VW3 A78201S337.

Variable speed drives for asynchronous motors

Altivar 78

Option: Communication cards

Presentation

The Altivar 78 variable speed drive can be connected to various communication networks (Modbus, DeviceNet, Profibus DP, LonWorks and CANopen) using a communication card or communication module.

Functions common to all communication cards:
■ Control (accessible in read/write mode): start/stop, speed reference, fault reset, etc.
■ Monitoring (accessible in read-only mode): drive status register, motor speed, motor current, logic I/O status register, fault register, etc.
■ Authorization of local control (via terminals)

- Configuration (accessible in read/write mode): all variable speed drive parameter registers
■ Adjustment (accessible in read/write mode): ramp time, thermal protection, speed range, current limit, etc.

Characteristics						
Protocol	Modbus	DeviceNet	Profibus DP	LonWorks	N2	CANopen
Number of devices on network	31	64	127	64	32	127
Transmission speed	$0.3-38.4$ kbps	125-500 kbps	0.96-12 Mbps	87 kBaud	9.6 kbps	0.01-1 Mbps
Physical interface	$\begin{aligned} & \hline \text { RS } 485 \\ & \text { half-duplex } \end{aligned}$	RS 485 CANopen	$\begin{aligned} & \hline \text { RS } 485 \\ & \text { half-duplex } \end{aligned}$	Twisted pair	Twisted pair	CANopen (ISO 11898)
References						
	Description			Slot number	Reference (1)	Weight kg
㕸	Modbus: connected to fieldbus via a 5-pin connector (N2 possible)			D, E	VW3 A78306	0.300
-	Profibus DP: connected to fieldbus via a 5-pin connector			D, E	VW3 A78307	0.300
	CANopen slave: connected to fieldbus via a 5-pin connector			D, E	VW3 A78308	0.300
18	DeviceNet: connected to fieldbus via a 5-pin connector			D, E	VW3 A78309	0.300
	LONWORKS: connected to fieldbus via a 3-pin connector			D, E	VW3 A78312	0.300

VW3 A78307
(1) To order a reinforced version for specific environmental conditions, add S337 to the reference. Example: VW3 A78306 becomes VW3 A78306S337

Table showing possible combinations for Altivar 78 variable speed drives

Motor	Altivar 78 variable speed drive for high torque or standard torque applications	Options (1)			
		dv/dt filter	Braking resistor - cycle times:60/120/200 s (2)		Braking resistor connection kit
			Braking time 5 s	Braking time 10 s	
3-phase power supply: 525 to 690 V $50 / 60 \mathrm{~Hz}$	ATV 78•U22Y, ©FU22Y	VW3 A78601C	VW3 A78701L	VW3 A78701H	-
	ATV 78@U30Y, ©FU30Y	VW3 A78601C	VW3 A78701L	VW3 A78701H	-
	ATV 78•U40Y, ©FU40Y	VW3 A78601C	VW3 A78701L	VW3 A78701H	-
	ATV 78@U55Y, ©FU55Y	VW3 A78601C	VW3 A78701L	VW3 A78701H	-
	ATV 78@U75Y, ©FU75Y	VW3 A78601C	VW3 A78701L	VW3 A78701H	-
	ATV 78॰D11Y, ©FD11Y	VW3 A78601C	VW3 A78702L	VW3 A78702H	-
	ATV 78॰D15Y, 0 FD15Y	VW3 A78601C	VW3 A78702L	VW3 A78702H	-
	ATV 78॰D18Y, 0 FD18Y	VW3 A78602C	VW3 A78702L	VW3 A78702H	-
	ATV 78॰D22Y, ©FD22Y	VW3 A78602C	VW3 A78702L	VW3 A78702H	-
	ATV 78॰D30Y, 0 FD30Y	VW3 A78602C	VW3 A78703L	VW3 A78703H	-
	ATV 78॰D37Y, ©FD37Y	VW3 A78602C	VW3 A78703L	VW3 A78703H	-
	ATV 78॰D45Y, ©FD45Y	VW3 A78603C	VW3 A78704L	VW3 A78704H	VW3 A78810
	ATV 78॰D55Y, 0 FD55Y	VW3 A78603C	VW3 A78704L	VW3 A78704H	VW3 A78810
	ATV 78॰D75Y, ©FD75Y	VW3 A78604C	VW3 A78704L	VW3 A78704H	VW3 A78810
	ATV 78॰D90Y, ©FD90Y	VW3 A78604C	VW3 A78705L	VW3 A78705H	VW3 A78810
	ATV 78॰C11Y, 0 FC11Y	VW3 A78605C	VW3 A78705L	VW3 A78705H	VW3 A78810
	ATV 78॰C13Y, ©FC13Y	VW3 A78605C	VW3 A78705L	VW3 A78705H	VW3 A78810
	ATV 78@C16Y, ©FC16Y	VW3 A78605C	VW3 A78705L	VW3 A78705H	VW3 A78810
	ATV 780C20Y, 0FC20Y	VW3 A78606C	VW3 A78706L	VW3 A78706H	-
	ATV 780C25Y, 0FC25Y	VW3 A78607C	VW3 A78706L	VW3 A78706H	-
	ATV 780C31Y, 0FC31Y	VW3 A78608C	VW3 A78706L	VW3 A78706H	-
	ATV 780C35Y, 0FC35Y	VW3 A78609C	VW3 A78707L	VW3 A78707H	-
	ATV 780C45Y, 0FC45Y	VW3 A78609C	VW3 A78707L	VW3 A78707H	-
	ATV 780C50Y, 0FC50Y	VW3 A78609C	VW3 A78707L	VW3 A78707H	-
	ATV 780C56Y, 0FC56Y	VW3 A78610C	$2 \times$ VW3 A78706L	$2 \times$ VW3 A78706H	-
	ATV 780C63Y, 0FC63Y	VW3 A78610C	$2 \times$ VW3 A78706L	$2 \times$ VW3 A78706H	-
	ATV 780C71Y, 0FC71Y	VW3 A78610C	$2 \times$ VW3 A78706L	$2 \times$ VW3 A78706H	-
	ATV 780C80Y, 0FC80Y	VW3 A78611C	-	-	-
	ATV 780C90Y, 0FC90Y	VW3 A78611C	-	-	-
	ATV 780M10Y, 0FM10Y	VW3 A78611C	-	-	-
	ATV 780M13Y, 0FM13Y	VW3 A78612C	-	-	-
Pages	10 and 11	16	19		19

(1) Line chokes are supplied with Altivar 78 variable speed drives (see pages 14 and 15).
(2) For special applications such as hoisting, please refer to the curves on pages 20 and 21.

Variable speed drives for asynchronous motors

Altivar 78

Variable speed drives

Variable speed drives
ATV 78@(F)U22Y to ATV 78e(F)C16Y (with integrated line choke)

ATV 78@, ATV 780F	a	b	c	G	H
U22Y...D22Y	195	558	237	148	541
D30Y, D37Y	237	630	257	190	614
D45Y...D75Y	289	755	344	255	732
D90Y...C16Y	480	1150	362	400	1120

ATV 780(F)C20Y to ATV 780(F)C31Y (line choke supplied with variable speed drive but not integrated)

Line choke

For ATV 78 drives	\mathbf{a}	b	b1	c	$\mathbf{c 1}$	G	$\boldsymbol{\varnothing}$
OC20Y OFC20Y	354	357	319	230	206	108	9×14
OC25Y, 0C31Y OFC25Y, 0FC31Y	350	421	383	262	238	140	11×15

Presentation:	Characteristics:	References:
pages 2 and 3	pages 6 to 9	pages 10 and 11

Variable speed drives for asynchronous motors
Altivar 78
Variable speed drives

Variable speed drives (continued) ATV 780(F)C35Y to ATV 780(F)C50Y (line choke supplied with variable speed drive but not integrated)

Without terminal cover

Line choke for ATV 780(F)C35Y and ATV 780(F)C45Y variable speed drives

Line choke for ATV 780(F)C50Y variable speed drives (1)

(1) Two line chokes supplied with the drive.

Variable speed drives for asynchronous motors

Altivar 78
Variable speed drives

Variable speed drives (continued)
ATV 780(F)C56Y to ATV 780(F)C71Y (1) (line choke supplied with variable speed drive but not integrated)

-
\square50

Variable speed drives for asynchronous motors
Altivar 78
Variable speed drives

Variable speed drives (continued)
ATV 780(F)C80Y to ATV 780(F)M10Y (line choke supplied with variable speed drive but not integrated)

Line choke for ATV 780(F)C80Y and ATV 780(F)C90Y variable speed drives (1)

(1) Two line chokes supplied with the drive.

Line choke for ATV 780(F)M10Y variable speed drives

Variable speed drives for asynchronous motors

Altivar 78
Variable speed drives, remote mounting kit for programming terminal

Variable speed drives (continued)
ATV 780(F)M13Y (line choke supplied with variable speed drive but not integrated)

(1) Three line chokes supplied with the drive.

Remote mounting kit for programming terminal VW3 A78102 and VW3 A78103

Cutouts and drill holes

Variable speed drives for asynchronous motors
Altivar 78
dv/dt filters

dv/dt filters

VW3 A78601C to VW3 A78603C

VW3 A78604C and VW3 A78605C

VW3	a	b	c	G	J
A78601C	155	220	130	130	72
A78602C	190	250	130	170	78
A78603C	210	280	135	180	81

VW3 A78606C to VW3 A78608C

VW3	b	c	
A78606C	270	235	125
A78607C	270	250	150
A78608C	330	250	150

VW3 A78610C

VW3 A78609C

VW3 A78611C and VW3 A78612C

VW3	a	b	b1	b2	c	G	\varnothing
A78611C	420	500	210	400	310	350	11×15
A78612C	480	599	285	510	325	400	13×18

Variable speed drives for asynchronous motors
 Altivar 78
 Braking resistors

Braking resistors: braking time 5 s

 VW3 A78701L
(1) For vertical mounting, the cables must be located at the bottom.

VW3 A78702L and VW3 A78703L

VW3	a	G
A78702L	426	326
A78703L	725	626

VW3 A78704L

Mounting recommendations (1)

(1) For vertical mounting, the cables must be located at the bottom.

| Presentation: | Characteristics: | References:
 page 18
 page 18 19 |
| :--- | :--- | :--- | | Selection: |
| :--- |
| pages 20 to 23 |

Mounting recommendations (1)

(1) For vertical mounting, the cables must be located at the bottom.

VW3 A78706L and VW3 A78707L

(1) Lifting eye bolt.
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Presentation: } \\ \text { page 18 }\end{array} & \begin{array}{l}\text { Characteristics: } \\ \text { page 18 }\end{array} & \begin{array}{l}\text { References: } \\ \text { page 19 }\end{array}\end{array} \begin{array}{l}\text { Selection: } \\ \text { pages 20 to 23 }\end{array}\right]$

Variable speed drives for asynchronous motors

Altivar 78
Braking resistors

Braking resistors: braking time 10 s VW3 A78701H

VW3 A78702H

VW3 A78703H

Mounting recommendations (1)

(1) For vertical mounting, the cables must be located at the bottom.

Mounting recommendations (1)

(1) For vertical mounting, the cables must be located at the bottom.

Mounting recommendations (1)

(1) For vertical mounting, the cables must be located at the bottom.

Presentation:	Characteristics:	References:
page 18	page 18	page 19

Variable speed drives for asynchronous motors
Altivar 78
Braking resistors

Braking resistors: braking time 10 s (continued) VW3 A78704H and VW3 A78705H

VW3 A78706H

VW3 A78707H

(1) Lifting eye bolt.

Braking resistor connection kit for ATV 78e(F)D45Y to e(F)C16Y VW3 A78810

Presentation:	Characteristics:	References:
page 18	page 18	page 19

Mounting recommendations

Mounting recommendations for ATV 78e(F)U22Y to e(F)C16Y variable speed drives

■ Observe the minimum clearance space shown opposite when installing

- Install the Altivar 78 in a vertical position
- Make provision for evacuation of hot air to the outside of the enclosure
- Make provision for an air inlet on the enclosure door

■ Pay attention to the ambient temperature (see characteristics on page 6)
Avoid harmful environments such as those with high temperatures or humidity levels and those containing dust, dirt or corrosive gases. The location must be well ventilated and away from direct sunlight.

If several units are mounted one above the other, the minimum clearance required is equal to $b+b 1(b+b 2)$, see figure opposite.

For variable speed drives	a mm	a1 mm	a2 mm	b mm	b1 mm	b2 mm
ATV 78@U22Y...@D22Y ATV 78eFU22Y...eFD22Y	30	-	20	160	80	-
ATV 78॰D30Y and eD37Y ATV 780FD30Y and \bullet FD37Y	80	-	80	300	100	-
ATV 78@D45Y...@D75Y ATV 780FD45Y...eFD75Y	80	150	80	300	200	-
ATV 78@D90Y...eC16Y ATV 78॰FD90Y...॰FC16Y	50	-	80	400	250	350

a: Clearance around the variable speed drive (see also a1 and a2)
a1: Clearance needed on either side of the variable speed drive for changing the fan(s) without disconnecting the motor cables
a2: Distance between variable speed drives or between drive and enclosure
b: Clearance above the variable speed drive
b1: Clearance below the variable speed drive
b2: Clearance needed below the variable speed drive for changing the fan(s)

Air flow rate depending on the drive rating

For variable speed drives	Flow rate $\mathrm{m}^{3 / h}$
ATV 78•U22Y...eD22Y ATV 780FU22Y...eFD22Y	425
ATV 780D30Y and eD37Y ATV 78॰FD30Y and oFD37Y	425
ATV 78ゃD45Y...eD75Y ATV 780FD45Y...eFD75Y	650
ATV 78@D90Y...@C16Y ATV 78॰FD90Y...॰FC16Y	1300

\(\left.\begin{array}{lllll}\hline Presentation: \& Characteristics: \& \begin{array}{l}References:

pages 2 and 3\end{array} \& pages 10 and 11 \& Dimensions:\end{array}\right]\)| pages 28 to 32 |
| :--- |

Variable speed drives

 for asynchronous motors

 for asynchronous motors Altivar 78

 Altivar 78} recommendations (continued)

Mounting recommendations for ATV 780(F)C20Y to ATV 780(F)M13Y variable speed drives

Drives ATV 780(F)C20Y to ATV 780(F)M13Y have IP 00 degree of protection (open type).

Installing the line choke

For ATV 780(F)C20Y to ATV 780(F)C71Y drives
The recommended location for the line choke is the bottom left of the enclosure, close to the rear panel.
Fasten the line choke to the mounting plate or use mounting rails.

For ATV 780(F)C80Y to ATV 780(F)M13Y drives

The recommended location for the line choke is the bottom of the control unit enclosure 1, close to the rear panel.
Pay particular attention to the mounting of the line chokes where a 600 mm enclosure is used in the case of ATV 780(F)C80Y to ATV 780(F)M10Y drives or an 800 mm enclosure in the case of ATV 780(F)M13Y drives.
Fasten the line choke to the mounting plate or use mounting rails.

Nota : For ATV 780(F)C50Y to ATV 780(F)M10Y drives fitted with two line chokes in parallel or ATV 780(F)M13Y drives fitted with three line chokes in parallel, the chokes must be wired in the same way. If the chokes are wired differently, the variable speed drive may be damaged.

Mounting the drive

ATV 780(F)C20Y to ATV 780(F)C71Y drives

The drives are supplied with a separate line choke 3 , a control unit 1 and a mounting plate, together with connection cables.

We recommend mounting the Altivar 78 drives on rails to facilitate future servicing work.

- Fasten the mounting rails to the sides of the enclosure at a minimum distance of 910 mm from the top of the enclosure.
- Leave a minimum clearance of 50 mm between the rails and the side of the enclosure to allow the circulation of air for cooling.

ATV 780(F)C80Y to ATV 780(F)M13Y drives

The drives are supplied with a control unit 1 , power supply unit 2 and line chokes 3 (not integrated).

We recommend mounting the Altivar 78 drives on rails to facilitate future servicing work.

Note: Drives ATV 780(F)C56Y to ATV 780(F)M13Y can be mounted side by side, with no clearance.
(1) Minimum distance from the enclosure door, to allow the control unit to be installed in front of the power module
(2) Minimum distance from the top of the enclosure, to allow room for power cables and fuses
(3) Drive height
(4) Minimum distance from the bottom of the enclosure if the line choke is installed at the bottom of the enclosure. If the line choke is installed in another location, the distance must not be less than 290 mm . The clearance needed below the variable speed drive for changing the fan(s) must not be less than 70 mm
(5) Minimum distance between the mounting rails and the top of the enclosure
(6) Minimum distance between the mounting rails and the bottom of the enclosure. If the line choke is not installed in the bottom of the enclosure, the distance must not be less than 590 mm
(7) Minimum distance from the bottom of the enclosure if the line choke is installed at the bottom of the enclosure. If the line choke is installed in another location, the distance must not be less than 300 mm

Variable speed drives for asynchronous motors
 Altivar 78

Wiring diagram for ATV 78e(F)U22Y to ATV 780(F)M13Y (3-phase supply voltage: 525 to 690 V)

(1) The line choke is integrated in drives ATV 78e(F)U22Y to e(F)C16Y. It is supplied with variable speed drives ATV 780(F)C20Y to ATV 780(F)M13Y, but is not mounted inside the product.
(2) A dynamic braking resistor can be added to variable speed drives $\boldsymbol{A T V} \mathbf{7 8 \boldsymbol { e }}(\boldsymbol{F}) \mathbf{U 2 2 Y}$ to $\boldsymbol{\bullet}(\boldsymbol{F}) \mathbf{C 7 1 Y}$. If the braking resistor is fitted with a temperature-controlled switch, wire this switch to a logic input (e.g. DIN6) and assign this logic input to "External fault" (see the Programming Guide for more information).
Note: To wire the I/O extension cards, VW3 A78201 to VW3 A78211, please refer to the I/O option manual.

Presentation:	Characteristics:	References:
pages 2 and 3	pages 6 to 9	pages 10 and 11

Variable speed drives for asynchronous motors
 Altivar 78

Examples of recommended schemes (continued)

Connection of encoders
Differential connection of TTL type encoder with internal or external + 5 V power supply
$+5 \mathrm{~V} /+\mathbf{1 5} \mathrm{V} /+\mathbf{2 4} \mathrm{V}$ from the VW3 A78204 extension card or an external power supply (1)

	VW3 A78204	
+ $5 \mathrm{~V} /+15 \mathrm{~V} /+24 \mathrm{~V}$	$\begin{aligned} & 10+5 \mathrm{~V} /+15 \mathrm{~V} /+24 \mathrm{~V} \\ & 9 \quad \text { GND } \end{aligned}$	
$\square \square$		DIC1A +
Encoder $\square \square \square$		
	4	DIC2B -
$\square \square$	5	DIC3Z +
	6	DIC3Z-
		DIC1

(1) If an external power supply is used, connect the ground of the external supply to terminal 9 on the VW3 A78205 card and to the encoder ground.
Connection of one encoder to three VW3 A78207 option cards

Single-ended connection of HTL type encoder (high-voltage transistor logic) (open source) with internal or external + 24 V power supply

+ $15 \mathrm{~V} /+24 \mathrm{~V}$ from the VW3 A78205 extension card or an external power supply (1)

(1) If an external power supply is used, connect the ground of the external supply to terminal 9 on the VW3 A78205 card and to the encoder ground.

Connection of two encoders to one VW3 A78207 option card

Presentation:	Characteristics:	References:
pages 2 and 3	pages 6 to 9	pages 10 and 11

Variable speed drives for asynchronous motors

Altivar 78

Motor starters

Protection by circuit breaker

Input current for applications		Circuit breaker Reference (1)	Contactor Reference (2) (3)	Variable speed drive Reference (4)
High torque (150\% Tn)	Standard torque (110\% Tn)			
A	A			
3	4.5	GV2 P10	LC1 D09ee	ATV 78@U22Y, ©FU22Y
4	5.5	GV2 P10	LC1 D09•e	ATV 78@U30Y, ©FU30Y
5	7.5	GV2 P14	LC1 D09•e	ATV 78@U40Y, ©FU40Y
7	10	GV2 P14	LC1 D09*e	ATV 78@U55Y, ©FU55Y
10	13	GV2 P16	LC1 D09•e	ATV 78@U75Y, ©FU75Y
13	18	GV2 P21	LC1 D09•e	ATV 780D11Y, ©FD11Y
18	22	GV2 P22	LC1 D09•e	ATV 780D15Y, ©FD15Y
22	27	NS80HMA50	LC1 D18e¢	ATV 78@D18Y, ©FD18Y
27	34	NS80HMA50	LC1 D25ee	ATV 780D22Y, -FD22Y
34	41	NS80HMA50	LC1 D32•e	ATV 78॰D30Y, ©FD30Y
41	52	NS80HMA65	LC1 D40*e	ATV 78@D37Y, ©FD37Y
52	62	NS80HMA65	LC1 D65*e	ATV 78@D45Y, ©FD45Y
62	80	NS1000MA100	LC1 D80¢0	ATV 780D55Y, ©FD55Y
80	100	NS1600MA150	LC1 D80•e	ATV 78@D75Y, ©FD75Y
100	125	NS1600MA150	LC1 D80•e	ATV 78॰D90Y, ©FD90Y
125	144	NS1600MA150	LC1 F1150॰	ATV 780C11Y, ©FC11Y
144	170	NS250^MA220	LC1 F11500	ATV 78@C13Y, ©FC13Y
170	208	NS250^MA220	LC1 F18500	ATV 780C16Y, ©FC16Y
208	261	NS4000STR43ME	LC1 F26500	ATV 780C20Y, 0FC20Y
261	325	NS400॰STR43ME	LC1 F33000	ATV 780C25Y, 0FC25Y
325	385	NS400•STR43ME	LC1 F400*e	ATV 780C31Y, 0FC31Y
385	460	NS630STR43ME	LC1 F63000	ATV 780C35Y, 0FC35Y
460	502	NS630STR43ME	LC1 F630e	ATV 780C45Y, 0FC45Y
502	590	NS6300STR43ME	LC1 F630*	ATV 780C50Y, 0FC50Y
590	650	NS800 Micrologic 2.0	LC1 F800*0	ATV 780C56Y, 0FC56Y
650	750	NS800 Micrologic 2.0	LC1 F800*0	ATV 780C63Y, 0FC63Y
650	820	NS800 Micrologic 2.0	LC1 BMee	ATV 780C71Y, 0FC71Y
820	920	NS1000 Micrologic 2.0	LC1 BMe॰	ATV 780C80Y, 0FC80Y
920	1030	NS1250 Micrologic 2.0	LC1 BMee	ATV 780C90Y, 0FC90Y
1030	1180	NS1250 Micrologic 2.0	LC1 BMee	ATV 780M10Y, 0FM10Y
1300	1500	NS1600 Micrologic 2.0	LC1 BPee	ATV 780M13Y, 0FM13Y

(1) NSooe: Product sold under the Merlin Gerin brand. Please consult your Regional Sales Office.
(2) The contact reference requires the addition of the code corresponding to the coil voltage. Please consult your Regional Sales Office.
(3) Composition of contactors:

LC1 D09 to LC1 D80: 3 or 4 poles +1 "N/O" auxiliary contact +1 " N / C " auxiliary contact
LC1 F115 to LC1 F800: 2 to 4 poles
LC1 Be: 1 to 4 poles
(4) In the reference, replace the • with 2 for an IP 21 (NEMA type 1) drive or with 5 for an IP 54 (NEMA type 12) drive.

Variable speed drives for asynchronous motors

Altivar 78
Motor starters

Fuse protection							
3-phase supply voltage: 525 to 690 V 50/60 Hz (for 2.2 to 1300 kW or 2 to 1350 HP motors)							
Input current for applications		Fuse				Contactor Reference (1) (2)	Variable speed drive Reference (3)
High torque ($150 \% \mathrm{Tn}$)	Standard torque(110\% Tn)	North America (600 V)		Europe (690 V)			
		Fast-acting	Fuse class	Fast-acting	Fuse class		
A	A	A		A			
3	4.5	10	J	10	$\mathrm{gG} / \mathrm{gL}$	LC1 D09ee	ATV 78•U22Y, ©FU22Y
4	5.5	10	J	10	gG/gL	LC1 D09ee	ATV 780U30Y, ©FU30Y
5	7.5	10	J	10	gG/gL	LC1 D09ee	ATV 78@U40Y, ©FU40Y
7	10	15	J	16	gG/gL	LC1 D09•e	ATV 78@U55Y, ©FU55Y
10	13	15	J	16	gG/gL	LC1 D09*e	ATV 78@U75Y, ©FU75Y
13	18	20	J	20	gG/gL	LC1 D09*e	ATV 780D11Y, ©FD11Y
18	22	25	J	25	gG/gL	LC1 D09ee	ATV 780D15Y, ©FD15Y
22	27	35	J	35	gG/gL	LC1 D180e	ATV 780D18Y, ©FD18Y
27	34	40	J	35	gG/gL	LC1 D25ee	ATV 780D22Y, -FD22Y
34	41	50	J	50	gG/gL	LC1 D320e	ATV 78॰D30Y, ©FD30Y
41	52	60	J	63	gG/gL	LC1 D40ee	ATV 78॰D37Y, ©FD37Y
52	62	80	J	80	gG/gL	LC1 D650e	ATV 78॰D45Y, ©FD45Y
62	80	100	J	80	gG/gL	LC1 D80ee	ATV 78॰D55Y, ©FD55Y
80	100	125	J	100	gG/gL	LC1 D800e	ATV 78@D75Y, ©FD75Y
100	125	150	J	160	gG/gL	LC1 D80*e	ATV 78॰D90Y, •FD90Y
125	144	175	J	160	gG/gL	LC1 F11500	ATV 78॰C11Y, 0 FC11Y
144	170	200	J	170	gG/gL	LC1 F11500	ATV 78@C13Y, ©FC13Y
170	208	250	J	250	gG/gL	LC1 F18500	ATV 78॰C16Y, ©FC16Y
208	261	400	J	700	aR	LC1 F26500	ATV 780C20Y, 0FC20Y
261	325	500	J	700	aR	LC1 F33000	ATV 780C25Y, 0FC25Y
325	385	600	J	700	aR	LC1 F400*0	ATV 780C31Y, 0FC31Y
385	460	700	J	1100	aR	LC1 F630*	ATV 780C35Y, 0FC35Y
460	502	800	L	1250	aR	LC1 F630•๑	ATV 780C45Y, 0FC45Y
502	590	900	L	700	aR	LC1 F630*	ATV 780C50Y, 0FC50Y
590	650	1000	L	700	aR	LC1 F800•e	ATV 780C56Y, 0FC56Y
650	750	1200	L	700	aR	LC1 F800•e	ATV 780C63Y, 0FC63Y
650	820	1200	L	700	aR	LC1 BMee	ATV 780C71Y, 0FC71Y
820	920	1400	L/- (4)	1250/1000 (5)		LC1 BMee	ATV 780C80Y, 0FC80Y
920	1030	1600	L/- (4)	1250/1000 (5)		LC1 BMoe	ATV 780C90Y, 0FC90Y
1030	1180	1800	L/- (4)	1250/1000 (5)		LC1 BMe॰	ATV 780M10Y, 0FM10Y
1300	1500	2500	L/- (4)	1250/1000 (5)		LC1 BPoe	ATV 780M13Y, 0FM13Y

(1) The contact reference requires the addition of the code corresponding to the coil voltage. Please consult your Regional Sales Office.
(2) Composition of contactors:

LC1 D09 to LC1 D80: 3 poles + 1 "N/O" auxiliary contact + 1 " N / C " auxiliary contact
LC1 F115 to LC1 F800: 3 to 4 poles
LC1 Be: 1 to 4 poles
(3) In the reference, replace the • with 2 for an IP 21 (NEMA type 1) drive or with 5 for an IP 54 (NEMA type 12) drive.
(4) Please consult your Regional Sales Office.
(5) The first class corresponds to fuses for \sim current, the second to fuses for =-. current.

A	
ATV 780C20Y	10 and 11
ATV 780C25Y	10 and 11
ATV 780C31Y	10 and 11
ATV 780C35Y	10 and 11
ATV 780C45Y	10 and 11
ATV 780C50Y	10 and 11
ATV 780C56Y	10 and 11
ATV 780C63Y	10 and 11
ATV 780C71Y	10 and 11
ATV 780C80Y	10 and 11
ATV 780C90Y	10 and 11
ATV 780M10Y	10 and 11
ATV 780M13Y	10 and 11
ATV 780C11Y	10 and 11
ATV 780C13Y	10 and 11
ATV 780C16Y	10 and 11
ATV 78•D11Y	10 and 11
ATV 78•D15Y	10 and 11
ATV 780D18Y	10 and 11
ATV 78•D22Y	10 and 11
ATV 780D30Y	10 and 11
ATV 78@D37Y	10 and 11
ATV 78•D45Y	10 and 11
ATV 78@D55Y	10 and 11
ATV 78•D75Y	10 and 11
ATV 78•D90Y	10 and 11
ATV 780U22Y	10 and 11
ATV 780U30Y	10 and 11
ATV 78•U40Y	10 and 11
ATV 78@U55Y	10 and 11
ATV 78•U75Y	10 and 11
V	
VW3 A78102	12
VW3 A78103	12
VW3 A78201	24
VW3 A78202	24
VW3 A78203	24
VW3 A78204	24
VW3 A78205	24
VW3 A78206	24
VW3 A78207	24
VW3 A78208	24
VW3 A78209	24
VW3 A78210	24
VW3 A78211	24
VW3 A78306	25
VW3 A78307	25
VW3 A78308	25
VW3 A78309	25
VW3 A78312	25
VW3 A78332	12
VW3 A78601C	16
VW3 A78602C	16
VW3 A78603C	16
VW3 A78604C	16
VW3 A78605C	16
VW3 A78606C	16
VW3 A78607C	16
VW3 A78608C	16
VW3 A78609C	16
VW3 A78610C	16
VW3 A78611C	16
VW3 A78612C	16
VW3 A78701H	19
VW3 A78701L	19
VW3 A78702H	19

Schneider Electric Industries SAS

Head Office 89, bd Franklin Roosevelt 92506 Rueil-Malmaison Cedex
France
www.schneider-electric.com www.telemecanique.com

Due to evolution of standards and equipment, the characteristics indicated in texts and images of this document do not constitute a commitment on our part without confirmation.
Design: Schneider Electric
Photos: Schneider Electric
Printed by:

[^0]: Dimensions

[^1]: - P max (60 s cycle)
 ---- P max (120 s cycle)
 _ P max (200 s cycle)

