Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Catalog
November

2005

Class 0613DC

CONTENTS

Description Page
General Information Page 3
Micrologic ${ }^{\circledR}$ DC1.0 Trip Unit Page 12
Accessories Page 14
Wiring Diagrams Page 32
Dimensional Drawings Page 35
Trip Curves Page 54
Selection Page 60

Schneider

\mathcal{F} Electric
Building a New Electric World

GENERAL INFORMATION

INTRODUCTION

Masterpact ${ }^{\circledR}$ NW Circuit Breakers are designed to protect electrical systems from damage caused by short circuits. All Masterpact circuit breakers are designed to open and close a circuit manually, and to open the circuit automatically at a predetermined overcurrent setting.
Selection of a dc circuit breaker is based on the type of dc system, the rated voltage, and the maximum short-circuit current at the point of installation. UL Listed circuit breakers are for use on ungrounded systems rated $500 \mathrm{Vdc}(600 \mathrm{Vdc}$ unloaded) or less. IEC Rated circuit breakers are for use on ungrounded, grounded middle point, or grounded negative systems.

CODES AND STANDARDS

Masterpact circuit breakers are manufactured and tested in accordance with the following standards:

Insulated Case Circuit Breaker	IEC ${ }^{\circledR}$ Rated Circuit Breaker	IEC ${ }^{\circledR}$ Extreme Atmospheric Conditions
UL 489 (UL Listed to Supplement SC)		IEC 68-2-1: Dry cold at $-55^{\circ} \mathrm{C}$
NEMA AB1	IEC 60947-2	IEC 68-2-2: Dry heat at $+85^{\circ} \mathrm{C}$
CSA C22.2 NO 5-02		IEC 68-2-30: Damp heat (temp. $+55^{\circ} \mathrm{C}$, rel. humidity 95\%)

Circuit breakers should be applied according to guidelines detailed in the National Electrical Code (NEC^{\circledR}) and other local wiring codes.

Masterpact circuit breakers are available in Square D, Merlin Gerin, or Federal Pioneer brands.

UL File Numbers:

Masterpact NW: E63335, Vol. 4, Sec. 1

FEATURES AND BENEFITS

100\% Rated Circuit Breaker: Masterpact circuit breakers are designed for continuous operation at 100% of their current rating.
True Two-step Stored Energy Mechanism: Masterpact circuit breakers are operated via a storedenergy mechanism which can be manually or motor charged. The closing time is less than five cycles. Closing and opening operations can be initiated by remote control or by push buttons on the circuit breaker front cover. An O-C-O cycle is possible without recharging.

Drawout or Fixed Mount, 3- or 4-pole Construction: UL Listed (3-pole only) and IEC Rated (3- or 4pole) Masterpact circuit breakers are available in drawout or fixed mounts.

Field-installable Accessories: Most accessories are field installable with only the aid of a screwdriver and without adjusting the circuit breaker. The uniform design of the circuit breaker line allows most accessories to be common for the whole line.

Reinforced Insulation: Two insulation barriers separate the circuit breaker front from the current path.
Isolation Function by Positive Indication of Contact Status: The mechanical indicator is truly representative of the status of all the main contacts.
Segregated Compartment: Once the accessory cover has been removed to provide access to the accessory compartment, the main contacts remain fully isolated. Furthermore, interphase partitioning allows full insulation between each pole even if the accessory cover has been removed.
Front Connection of Secondary Circuits: All accessory terminals (ring terminals are available as an option) are located on a connecting block which is accessible from the front in the connected, test and disconnected positions. This is particularly useful for field inspection and modification.

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers General Information

Anti-pumping Feature: All Masterpact NW circuit breakers are designed with an anti-pumping feature that causes an opening order to always takes priority over a closing order. Specifically, if opening and closing orders occur simultaneously, the charged mechanism discharges without any movement of the main contacts keeping the circuit breaker in the open (OFF) position.

In the event that opening and closing orders are simultaneously maintained, the standard mechanism provides and anti-pumping function which continues to keep the main contacts in the open position.

In addition, after fault tripping or opening the circuit breaker intentionally (using the manual or electrical controls and with the closing coil continuously energized) the circuit breaker cannot be closed until the power supply to the closing coil is discontinued and then reactivated.

NOTE: When the automatic reset after fault trip (RAR) option is installed, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or before blocking the circuit breaker in the open position.

Disconnection Through the Front Door: The racking handle and racking mechanism are accessible through the front door cutout. Disconnecting the circuit breaker is possible without opening the door and exposing live parts.

Figure 1: Racking Handle and Mechanism

Disconnected Position

Drawout Mechanism: The drawout assembly mechanism allows the circuit breaker to be racked in four positions (connected, test, disconnected, or withdrawn), as shown in the figure below.

NOTE: For UL circuit breakers, the clusters are mounted on the circuit breaker; for IEC circuit breakers, the clusters are mounted on the cradle.

Figure 2: Racking Positions

Reduced Maintenance: Under normal operating conditions, the circuit breaker does not require maintenance. However, if maintenance or inspection is necessary, the arc chambers are easily removed so you may visually inspect the contacts and wear indicator groove (see the figure below for how wear is indicated). The operation counter can also indicate when inspections and possible maintenance should be done.

Figure 3: Contact Wear Indicators

OPERATING CONDITIONS

Masterpact ${ }^{\circledR}$ circuit breakers are suited for use:

- At ambient temperatures between $-22^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right)$ and $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$
- At altitudes $+13,000 \mathrm{ft}$. (3900 m)

Masterpact circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust. Operation at temperatures above $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ may require derating or overbussing the circuit breaker. See the appropriate instruction bulletin and page 11 of this catalog for additional information.

Masterpact circuit breakers meet IEC 68-2-6 Standards for vibration.

- 2 to 13.2 Hz and amplitude 0.039 in . (1 mm)
- 13.2 to 100 Hz constant acceleration 0.024 oz. (0.7 g .)

The materials used in Masterpact NW circuit breakers will not support the growth of fungus and mold.
Masterpact circuit breakers have been tested to the following:

- IEC 68-2-30 - Damp heat (temperature $+55^{\circ} \mathrm{C}$ and relative humidity of 95%)
- IEC 68-2-52 level 2 - salt mist

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers General Information

MASTERPACT NW CIRCUIT BREAKER DESIGN

NOTE: For UL Listed circuit breakers, the clusters are mounted on the circuit breaker; for IEC Rated circuit breakers, the clusters are mounted on the cradle.

MASTERPACT NW CRADLE DESIGN

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 General Information

DC SYSTEMS

Selection of a dc circuit breaker is based on the type of dc system, the rated voltage, and the maximum short-circuit current at the point of installation.

The three types of dc systems are:

Table 1: DC Systems

Distribution System	Faults	Fault Comments	Worst Case
Isolated Source	Isc maximum Both polarities (positive and negative) are involved in the fault	Simultaneous faults at A and D or C and E	
Eather polarity may be			

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers General Information

CIRCUIT BREAKER CONNECTION

Table 2: Circuit Breaker Connection Based on Distribution System

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

General Information
FRAME SIZES AND INTERRUPTING RATINGS

Load Diagrams

Type D

Type E

Table 3: Interrupting Ratings for UL 489 Listed Masterpact NW Circuit Breakers

Model Number (Type C)	Circuit Breaker Rating	Endurance Rating (C/O cycles) (with no maintenance)		Breaking Capacity ${ }^{1} 500$ Vdc (max 600 Vdc unloaded) L/R 8 ms	Breaking Time	Closing Time
		Mechanical	Electrical			
NW08NDC NW12NDC NW16NDC	$\begin{aligned} & 800 \mathrm{~A} \\ & 1200 \mathrm{~A} \\ & 1600 \mathrm{~A} \end{aligned}$	10,000	2800	35 kA	30 to 75 ms	<70 ms
NW20NDC	2000 A	10,000	1000			
NW25NDC	$\begin{aligned} & 2500 \mathrm{~A} \\ & 3000 \mathrm{~A} \end{aligned}$	10,000	1000			
NW40NDC	4000 A	10,000	1000			

Table 4: Ratings for IEC 60947-2 Rated Masterpact NW Circuit Breakers

Circuit Breaker Frame Circuit Breaker Designation (AIR)				NW10		NW20		NW40	
				N	H	N	H	N	H
Rated current	In			1000 A		2000 A		4000 A	
Circuit breaker type				N	H	N	H	N	H
Ultimate breaking capacity	Icu	$\mathrm{L} / \mathrm{R} \leq 5 \mathrm{~ms}$	500 Vdc	85 kA	100 kA	85 kA	100 kA	85 kA	100 kA
			750 Vdc	-	85 kA	-	85 kA	-	85 kA
			900 Vdc	-	85 kA	-	85 kA	-	85 kA
		$\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$	500 Vdc	35 kA	85 kA	35 kA	85 kA	35 kA	85 kA
			750 Vdc	-	50 kA	-	50 kA	-	50 kA
			900 Vdc	-	35 kA	-	35 kA	-	35 kA
		$\mathrm{L} / \mathrm{R} \leq 30 \mathrm{~ms}$	500 Vdc	25 kA	50 kA	25 kA	50 kA	25 kA	50 kA
			750 Vdc	-	50 kA	-	50 kA	-	50 kA
			900 Vdc	-	25 kA	-	25 kA	-	25 kA
Rated Service Breaking Capacity (kA)	Ics		\% Icu	100\%		100\%		100\%	
Rated short-time withstand current (kA)	Icw		1 s	50	85	50	85	50	85
Rated making capacity (kA)	lcm		\% Icu	100\%		100\%		100\%	
Break time				30 to 75 ms		30 to 75 ms		30 to 75 ms	
Closing time				$<70 \mathrm{~ms}$		$<70 \mathrm{~ms}$		$<70 \mathrm{~ms}$	
Switch Designation (AIR)				-	HA	-	HA	-	HA
Rated making capacity (kA)	Icm				85		85		85
Rated short-time withstand current (kA)	Icw		1 s		85		85		85

Installation and maintenance

Service life C/O cycles x 1000	mechanical	Without maintenance	10,000						
	electrical	Without maintenance	500 Vdc	8500	8500	5000	5000	2000	2000
			900 Vdc	-	2000	-	2000	-	1000

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers General Information

CORRECTION FACTORS

Table 5: Temperature Correction Factors

	Maximum Ambient Temperature									
${ }^{\circ} \mathrm{F}$	140	122	104	86	77	68	50	32	14	-4
${ }^{\circ} \mathrm{C}$	60	50	40	30	25	20	10	0	-22	
Current	0.83	0.92	1.00	1.07	1.11	1.14	1.21	1.27	1.33	1.39

Table 6: Altitude Correction Factors

	$<\mathbf{6 6 0 0} \mathbf{f t} \mathbf{(2 0 0 0} \mathbf{~ m})$	$\mathbf{8 5 0 0} \mathbf{~ f t ~ (\mathbf { 2 6 0 0 } \mathbf { ~ m })}$	$\mathbf{1 3 , 0 0 0} \mathbf{f t} .(\mathbf{3 9 0 0} \mathbf{~ m})$
Voltage	1.00	0.95	0.80
Current	1.00	0.99	0.96

SHIPPING WEIGHTS

Table 7: Weights for UL 489 Listed Masterpact NW Circuit Breakers

Frame Rating	Connector Type	Weights (lbs./kg.)				
		Circuit Breaker	Cradle	Connector	Pallet	Total
800-2500 A, drawout	RCTH/RCTV	$\begin{aligned} & 109 \mathrm{lbs} . \\ & (50 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 97 \mathrm{lbs} \\ & (44 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \hline 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \hline 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 240 \mathrm{lbs} \\ & (109 \mathrm{~kg}) \end{aligned}$
800-2500 A, fixed-mounted	RCTH/RCTV	$\begin{aligned} & 109 \mathrm{lbs} . \\ & (50 \mathrm{~kg}) \end{aligned}$	-	$\begin{aligned} & 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 143 \mathrm{lbs} \\ & (65 \mathrm{~kg}) \end{aligned}$
3000-4000 A, drawout	RCTH/RCTV	$\begin{aligned} & 109 \mathrm{lbs} . \\ & (50 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 97 \mathrm{lbs} \\ & (44 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 26 \mathrm{lbs} \\ & (12 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 249 \mathrm{lbs} \\ & (114 \mathrm{~kg}) \end{aligned}$
3000-4000 A, fixed-mounted	RCTH/RCTV	$\begin{array}{\|l} 109 \mathrm{lbs} . \\ (50 \mathrm{~kg}) \end{array}$	-	$\begin{aligned} & 26 \mathrm{lbs} \\ & (12 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 17 \mathrm{lbs} \\ & (8 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 152 \mathrm{lbs} \\ & (70 \mathrm{~kg}) \end{aligned}$

Table 8: Weights for IEC 60947-2 Rated Masterpact NW Circuit Breakers

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Micrologic ${ }^{\circledR}$ DC1.0 Trip Unit

MICROLOGIC ${ }^{\circledR}$ DC1.0 TRIP UNIT

Micrologic DC1.0
Type of protection 1 = instantaneous Circuit breaker family -_

All Masterpact ${ }^{\circledR}$ NW DC circuit breakers are equipped with Micrologic ${ }^{\circledR}$ DC1.0 trip units, which is designed to protect power circuits and load devices.

The Micrologic DC1.0 trip unit:

- is associated with sensors with instantaneous trip values than can be adjusted on the front of the trip unit
- has three sensor versions provide different threshold ranges:
- 1250-2500 A
- 2500-5400 A
- 5000-11000 A

See trip curves, Figure 52

- has an instantaneous protection with no time delay settings
- has no overload protection provided

Figure 4: Micrologic DC1.0 Trip Unit

Figure 5: Circuit Breaker Configuration and Sensor Locations

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Micrologic ${ }^{\circledR}$ DC1.0 Trip Unit

- has sensor adjustment dials accessible in front of the circuit breaker behind the door of the cubicle. Both sensors must have the same settings
NOTE: Dials are normally set to setting marked, for example B1 and B2 for 8000 A. Eleven intermediate values can also be set which are not indicated on the adjustment knob, for example between A and B for $6000 A$.

Figure 6: Sensor Adjustment Dials

Table 9: Im Thresholds

Sensor	\boldsymbol{A}	\boldsymbol{B}	\mathbf{C}	\boldsymbol{D}	\boldsymbol{E}
$1250-2500 \mathrm{~A}$	$1250 \mathrm{~A} \pm 8 \%$	$1500 \mathrm{~A} \pm 10 \%$	$1600 \mathrm{~A} \pm 10 \%$	$2000 \mathrm{~A} \pm 10 \%$	$2500 \mathrm{~A} \pm 10 \%$
$2500-5400 \mathrm{~A}$	$2500 \mathrm{~A} \pm 8 \%$	$3300 \mathrm{~A} \pm 10 \%$	$4000 \mathrm{~A} \pm 10 \%$	$5000 \mathrm{~A} \pm 10 \%$	$5400 \mathrm{~A} \pm 10 \%$
$5000-11,000 \mathrm{~A}$	$5000 \mathrm{~A} \pm 8 \%$	$8000 \mathrm{~A} \pm 10 \%$	$10,000 \mathrm{~A} \pm 10 \%$	$11,000 \mathrm{~A} \pm 10 \%$	$11,000 \mathrm{~A} \pm 10 \%$

Table 10: Sensors

Frame Rating	Model Number	Sensor Type		
		1250-2500 A	2500-5400 A	5400-11,000 A
800 A	NW08	X	X	X
1000 A	NW10	X	X	X
1200 A	NW12	X	X	X
1600 A	NW16	X	X	X
2000 A	NW20	-	X	X
2500 A	NW25	-	X	X
3000 A	NW30	-	X	X
4000 A	NW40	-	-	X

ACCESSORIES

REMOTE OPERATION

NOTE: When remote operation features are used, a minimum of four seconds is required for the spring charging motor (MCH) to completely charge the circuit breaker closing springs prior to actuating the shunt close (XF) device.

Figure 7: Wiring Diagram for Remote ON/OFF Function

The remote ON/OFF function is used to remotely open and close the circuit breaker. It is made up of

Masterpact Circuit Breaker Equipped for Remote ON/OFF Function the following components:

- A spring-charging motor (MCH) equipped with a spring-charged limit switch; see page 15 for more information
- A shunt close (XF); see page 15 for more information
- A shunt trip (MX1); see page 15 for more information

Optionally, the function may be completed with:

- A ready-to-close contact (PF)
- An electrical closing push button (BPFE)
- A remote reset following a fault (RES)

The remote operation function may be completed with:

- Auxiliary contacts (OF)
- Overcurrent trip switch (SDE)

NOTE: Induced voltages in the circuit at terminal C2 and/or A2 can cause the shunt close to not work properly. The best way to prevent induced voltages is keep the circuit to terminal C2 and A2 as short as possible. If it is impossible to keep the circuit less than 10 feet (3 m), use an interposing relay near terminal C2 or A2.

Terminals

Table 11: Terminal Characteristics

Standards	UL 486E
Termination Capacity	$22-14$ AWG solid or stranded wire with max. O.D. of insulation 3.5 mm
Current	Nominal
	Minimum

Table 11: Terminal Characteristics

	$22 \mathrm{AWG}=4.5 \mathrm{lbs}(20 \mathrm{~N})$
Pull-out Forces	$20 \mathrm{AWG}=6.75 \mathrm{lbs}(30 \mathrm{~N})$
	$18 \mathrm{AWG}=6.75 \mathrm{lbs}(30 \mathrm{~N})$
	$16 \mathrm{AWG}=9 \mathrm{lbs}(40 \mathrm{~N})$
	$14 \mathrm{AWG}=11.5 \mathrm{lbs}(50 \mathrm{~N})$

Spring-charging Motor (MCH)

The spring-charging motor automatically charges the spring mechanism for closing the circuit breaker
 and also recharges the spring mechanism when the circuit breaker is in the ON position. Instantaneous reclosing of the circuit breaker is thus possible following circuit breaker opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.

The spring-charging motor is equipped as standard with a limit switch contact (CH) that signals the charged position of the mechanism (springs charged).

Table 12: Spring Charging Motor Characteristics

Characteristics	MCH
Voltage Ratings $\left(\mathrm{V}_{\mathrm{n}}\right)$	$\mathrm{Vac} 50 / 60 \mathrm{~Hz}$
	Vdc
Operating Threshold	$48 / 60,100 / 130,200 / 250,240 / 277,380 / 415,400 / 440,480$
Power Consumption	0.85 to $1.1 \mathrm{~V} \mathrm{~V}_{\mathrm{n}}$
Motor Overcurrent	180 VA
Charging Time	$2-3 \times \mathrm{I}_{\mathrm{n}}$ for 0.1 s
Duty Cycle	4 s maximum on NW
Endurance	3 cycles per minute maximum
CH Contact	10,000 cycles for $\mathrm{NW}<4000 \mathrm{~A}$ 5000 cycles for $\mathrm{NW} \geq 4000 \mathrm{~A}$

Shunt Trip (MX1) and Shunt Close (XF)

Maximum Wire Length—The inrush currents for these devices are approximately 200 VA. When low supply voltages (12,24 or 48 V) are used, the maximum allowable wire length is dependent on the voltage and the wire size.
Table 13: Maximum Wire Length*

Device	Percent of Source Voltage	Source Voltage					
		12 Vdc		24 Vdc		48 Vdc	
Wire Size		$\begin{aligned} & \# 14 \mathrm{AWG} \\ & \left(2.08 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \# 16 \mathrm{AWG} \\ & \left(1.31 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \# 14 \mathrm{AWG} \\ \left(2.08 \mathrm{~mm}^{2}\right) \end{array} \end{aligned}$	$\begin{aligned} & \text { \#16 AWG } \\ & \left(1.31 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \# 14 \mathrm{AWG} \\ \left(2.08 \mathrm{~mm}^{2}\right) \end{array} \end{aligned}$	$\begin{aligned} & \# 16 \mathrm{AWG} \\ & \left(1.31 \mathrm{~mm}^{2}\right) \end{aligned}$
UVR (MN)	100\%	-	-	$\begin{aligned} & 159 \mathrm{ft} . \\ & (48.5 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 100 \mathrm{ft} . \\ & (30.5 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 765 \mathrm{ft} . \\ & (233.2 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline 472 \mathrm{ft} . \\ & (143.9 \mathrm{~m}) \end{aligned}$
	85\%	-	-	44 ft . (13.4 m)	$\begin{aligned} & 29 \mathrm{ft} . \\ & (8.8 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 205 \mathrm{ft} . \\ & (62.5 \mathrm{~m}) \end{aligned}$	$\begin{array}{\|l\|} \hline 129 \mathrm{ft} . \\ (39.3 \mathrm{~m}) \end{array}$
Shunt Trip (MX) and Shunt Close (XF)	100\%	$\begin{aligned} & 57 \mathrm{ft} . \\ & (17.4 \mathrm{~m}) \end{aligned}$	$\begin{array}{\|l\|} \hline 34 \mathrm{ft} . \\ (10.4 \mathrm{~m}) \end{array}$	$\begin{array}{\|l\|} \hline 314 \mathrm{ft} . \\ (95.7 \mathrm{~m}) \end{array}$	$\begin{aligned} & 200 \mathrm{ft} . \\ & (61.0 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline 1503 \mathrm{ft.} \\ & (457.8 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 944 \mathrm{ft.} \\ & (287.7 \mathrm{~m}) \end{aligned}$
	85\%	$\begin{aligned} & 27 \mathrm{ft.} \\ & (8.2 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 17 \mathrm{ft.} \\ & (5.2 \mathrm{~m}) \end{aligned}$	$\begin{array}{\|l\|} \hline 205 \mathrm{ft} . \\ (62.5 \mathrm{~m}) \end{array}$	$\begin{array}{\|l} 126 \mathrm{ft} . \\ (38.4 \mathrm{~m}) \end{array}$	$\begin{aligned} & 957 \mathrm{ft.} \\ & (291.7 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 601 \mathrm{ft.} \\ & (183.2 \mathrm{~m}) \end{aligned}$

The length shown in the table is for each of the two supply wires.

Shunt trip (MX1): When energized, the shunt trip instantaneously opens the circuit breaker. The shunt trip may be supplied continuously or intermittently.

Shunt close (XF): Remotely closes the circuit breaker if the spring mechanism is charged.

Table 14: Shunt Trip and Shunt Close Characteristics

Characteristics	MX1	XF	Min	Max
Voltage Ratings (V_{n})	24 Vac		17 Vac	26 Vac
		48 Vac	34 Vac	52 Vac
		120 Vac	60 Vac	132 Vac
		240 Vac	168 Vac	264 Vac
		277 Vac	194 Vac	304 Vac
		380 Vac	266 Vac	418 Vac
		480 Vac	336 Vac	528 Vac
		12 Vdc	8 Vdc	13 Vdc
		24 Vdc	17 Vdc	26 Vdc
Vdc		48 Vdc	34 Vdc	52 Vdc
		125 Vdc	88 Vdc	137 Vdc
		250 Vdc	175 Vdc	275 Vdc
Operating Threshold	0.7 to $1.1 \mathrm{~V}_{\mathrm{n}}$	0.85 to $1.1 \mathrm{~V}_{\mathrm{n}}$		
Power Consumption (VA or W) Steady-state/inrush		4.5/200		
Circuit Breaker Response Time at V_{n}	$50 \mathrm{~ms} \pm 10$	$\begin{gathered} 70 \mathrm{~ms} \pm 10(\mathrm{NW} \leq 4000 \mathrm{~A}) \\ 80 \mathrm{~ms} \pm 10(\mathrm{NW}>4000 \mathrm{~A}) \end{gathered}$		

Additional Shunt Trip (MX2) or Undervoltage Trip (MN)

This function opens the circuit breaker via an electrical order.
It is made up of:

- Shunt trip (MX2, second MX) or,
- Undervoltage trip (MN)
- Instantaneous trip
- Fixed undervoltage trip (time delayed) or,
- Adjustable undervoltage trip (time delayed)

As shown in the wiring diagram for the remote tripping function below, the delay unit (installed outside the circuit breaker) may be disabled by an emergency off button to obtain non-delayed opening of the circuit breaker.

Figure 8: Wire Diagram for the Remote Tripping Function
When energized, the shunt trip (MX1) instantaneously opens the circuit breaker. A continuous supply of power to the second shunt trip (MX2) locks the circuit breaker in the off position.

The undervoltage trip (MN) instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage.

If the undervoltage trip is not energized, it is impossible to close the circuit breaker, either manually or electrically. An attempt to close the circuit breaker produces no movement of the main contacts.
Closing is allowed when the supply voltage of the undervoltage trip reaches 85% of rated voltage.

Table 15: Undervoltage Trip Characteristics

Characteristics		MX2	Min	Max
Voltage Ratings (V_{n})	Vac$50 / 60 \mathrm{~Hz}$	24 Vac	17 Vac	26 Vac
		48 Vac	34 Vac	52 Vac
		120 Vac	60 Vac	132 Vac
		240 Vac	168 Vac	264 Vac
		277 Vac	194 Vac	304 Vac
		380 Vac	266 Vac	418 Vac
		480 Vac	336 Vac	528 Vac
		12 Vdc	8 Vdc	13 Vdc
		24 Vdc	17 Vdc	26 Vdc
	Vdc	48 Vdc	34 Vdc	52 Vdc
		125 Vdc	88 Vdc	137 Vdc
		250 Vdc	175 Vdc	275 Vdc
Power Consumption (VA or W)	Constant/Inrush	4.5/200		
Circuit Breaker Response Time at V_{n}		$50 \mathrm{~ms} \pm 10$		

Time-delay Module for Undervoltage Trip

To eliminate circuit breaker nuisance tripping during temporary voltage dips (micro-breaks), operation of the undervoltage trip (MN) can be delayed. This function is achieved by adding an external delay unit (either adjustable or non-adjustable) to the undervoltage trip (MN) circuit.

Table 16: Time-delay Module Characteristics

Voltage Ratings of Undervoltage Trip		Vac 50/60 Hz	24/30, 48/60, 100/130, 200/250, 380/480
		Vdc	24/30, 48/60, 100/130, 200/250
Voltage Ratings of Time-delay Module	Adjustable	Vac $50 / 60 \mathrm{~Hz}$	48/60, 100/130, 200/250, 380/480
		Vdc	48/60, 100/130, 200/250, 380/480
	Non-Adjustable	Vac 50/60 Hz	100/130, 200/250
		Vdc	100/130, 200/250
Operating Threshold		Opening	0.35 to $0.7 \mathrm{~V}_{\mathrm{n}}$
		Closing	$0.85 \mathrm{~V}_{\mathrm{n}}$
Power Consumption			4.5 VA/W (Holding), 200 VA/W (Inrush)
Time-delay Settings	Adjustable		$0.5,0.9,1.5$, and 3.0 s
	Non-Adjustable		0.25 s

SWITCHES

Ready-to-close Switch (PF)

The ready-to-close position switch indicates that the following conditions are met and the circuit breaker can be closed:

- The circuit breaker is open
- The closing springs are charged
- There is no standing closing or opening order

Table 17: Ready-to-close Switch Characteristics

Type of Contact	1a/1b Form C
Maximum Number of Contacts	1

Ready-to-clos ϵ Switch (PF)

Auxiliary Switch (OF) with Four Contacts

Table 17: Ready-to-close Switch Characteristics

Breaking Capacity at a Power Factor (p.f.) of 0.3	Standard: $100 \mathrm{~mA} / 24 \mathrm{~V}$ minimum load		Low-Level: $2 \mathrm{~mA} / 15 \mathrm{~V}$ minimum load	
	240/380 Vac	5 A	24/48 Vac	3 A
	480 Vac	5 A	240 Vac	3 A
	600/690 Vac	3 A	380 Vac	3 A
	24/48 Vdc	3 A	24/48 Vdc	3 A
	240 Vdc	0.3 A	125 Vdc	0.3 A
	380 Vdc	0.15 A	250 Vdc	0.15 A

Electrical Closing Push Button (BPFE)

Located on the front panel of the circuit breaker, this push button carries out electrical closing of the circuit breaker, taking into account all of the safety functions that are part of the control/monitoring system of the installation. The push button is installed on the control circuit of the shunt close, and connects to the communicating shunt close module (XF-COM). Terminal A2 of XF-COM is used to remotely close the circuit breaker.

Remote Reset (RES) and Automatic Reset After Fault Trip

- Following tripping, the remote reset (RES) resets the overcurrent trip switch (SDE) and the mechanical indicator. (Voltage rating: 110/130 Vac and 200/240 Vac.) RES is not compatible with an additional overcurrent trip switch (SDE2).
- Automatic reset after fault-trip: Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit breaker closing (factory adjustable only).

Auxiliary Switch (OF)

The rotary-type auxiliary switches are directly driven by the trip mechanism when the minimum isolation distance between the main circuit breaker contact is reached.

Table 18: Auxiliary Switch Characteristics

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Accessories

Overcurrent Trip Switch (SDE)

Connected/Closed Switch (EF)

Cradle Position Switch (CE, CD, CT)

Overcurrent Trip Switch (SDE)

Circuit breaker tripping due to a fault is signalled by a red mechanical fault indicator (reset) and one overcurrent trip switch (SDE).

Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. An additional overcurrent trip switch (SDE2) is supplied as an option and is not compatible with the remote reset (RES).

Table 19: Overcurrent Trip Switch Characteristics

Supplied as Standard	1a/1b Form C			
Maximum Number of Contacts	2			
Breaking Capacity at a Power Factor (p.f.) of 0.3	Standard: $100 \mathrm{~mA} / 24 \mathrm{~V}$ minimum load		Low-level: $2 \mathrm{~mA} / 15 \mathrm{~V}$ minimum load	
	240/380 Vac	5 A	24/48 Vac	3 A
	480 Vac	5 A	240 Vac	3 A
	600/690 Vac	3 A	380 Vac	3 A
	24/48 Vdc	3 A	24/48 Vdc	3 A
	240 Vdc	0.3 A	125 Vdc	0.3 A
	380 Vdc	0.15 A	250 Vdc	0.15 A

Connected/Closed Switch (EF)

This switch combines the "device connected" and "device closed" information to produce "circuit closed" information. The connected/closed switch (EF) is supplied as an option and must be used with an additional auxiliary switch (OF) and fits into its connector (it is not available for ring terminals).

Table 20: Connected/Closed Switch Characteristics

Circuit Breaker Type	NW			
Maximum Number of Contacts	8a/8b Form C			
Breaking Capacity at a Power Factor (p.f.) of 0.3	Standard: $100 \mathrm{~mA} / 24 \mathrm{~V}$ minimum load		Low-level: $2 \mathrm{~mA} / 15 \mathrm{~V}$ minimum load	
	240/380 Vac	6 A	24/48 Vac	5 A
	480 Vac	6 A	240 Vac	5 A
	600/690 Vac	6 A	380 Vac	5 A
	24/48 Vdc	2.5 A	24/48 Vdc	2.5 A
	125 Vdc	0.8 A	125 Vdc	0.8 A
	250 Vdc	0.3 A	250 Vdc	0.3 A

Cradle Position Switch

Three series of optional auxiliary switches are available for the cradle:

- Cradle position switches (CE) to indicate the connected position.
- Cradle position switches (CD) to indicate the disconnected position. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached.
- Cradle position switches (CT) to indicate the test position. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Accessories

Actuator for up to Three CD Switches (standard)

Actuator for up to Three CT Switches (standard)

Table 21: Cradle Position Switch Characteristics

Circuit Breaker Type			NW		
			CE	CD	CT
Maximum Push-in Switches with Standard Actuators			3^{\square}	3^{\square}	3^{\square}
With Additional Actuators			9	0	0
			6	3	0
			6	0	3
Standard ($100 \mathrm{~mA} / 24 \mathrm{~V}$ minimum load)					
Breaking Capacity at a Power Factor (p.f) of 0.3	Vac	240	8 A		
		380	8 A		
		480	8 A		
		600/690	6 A		
	Vdc	24/48	2.5 A		
		125	0.8 A		
		250	0.3 A		
	Low-level ($2 \mathrm{~mA} / 15 \mathrm{~V}$ minimum load)				
	Vac	24/48	5 A		
		240	5 A		
		380	5 A		
	Vdc	24/48	2.5 A		
		125	0.8 A		
		250	0.3 A		

Possible Ring-terminal Combinations		
CE	CD	CT
1 b	1 a	1 b
1 b	$1 \mathrm{a}, 1 \mathrm{~b}$	1 b
$1 \mathrm{a}, 2 \mathrm{~b}$	$1 \mathrm{a}, 2 \mathrm{~b}$	1 a
$1 \mathrm{a}, 2 \mathrm{~b}$	$2 \mathrm{a}, 1 \mathrm{~b}$	1 b
$2 \mathrm{a}, 1 \mathrm{~b}$	$1 \mathrm{a}, 2 \mathrm{~b}$	1 b
1 a	1 a	1 a
3 a	3 a	1 a
3 b	3 b	1 b

Additional Actuators for Cradle Position Switches on Masterpact NW Circuit Breakers

A set of additional actuators may be installed on the cradle to change or add the functions of the cradle position switches. Each standard actuator can be replaced by any other actuator to change the function of the cradle position switch.

CRADLE CONNECTIONS

Table 22: Masterpact NW UL Listed Circuit Breaker Connectors (Rear Connections)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Accessories

Table 23: Masterpact NW IEC Rated 3-pole/4-pole Drawout Circuit Breakers

Wiring	
Connector Type	Ampere Rating

Continued on next page

Table 23: Masterpact NW IEC Rated 3-pole/4-pole Drawout Circuit Breakers (continued)

Wiring	Connector Type	Ampere Rating	Connector and Bussing	
Type D (3P)	RCTV	1000-2000 A		
		4000 A		
	RCTH	1000-2000 A		
		4000 A	NA	

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Accessories

Table 23: Masterpact NW IEC Rated 3-pole/4-pole Drawout Circuit Breakers (continued)
Wiring \quad Connector Type Ampere Rating Connector and Bussing

Table 24: Masterpact NW IEC Rated 3-pole/4-pole Fixed Circuit Breakers
Connector
Type
Rating

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Accessories

Table 24: Masterpact NW IEC Rated 3-pole/4-pole Fixed Circuit Breakers (continued)

| Connector |
| :--- | :--- | :--- |
| Type | Rating

Table 24: Masterpact NW IEC Rated 3-pole/4-pole Fixed Circuit Breakers (continued)

Wiring | Connector |
| :--- |
| Type |
| Rating |

Open Position Key Lock

Open Position Padlock Provision

CIRCUIT BREAKER LOCKING AND INTERLOCKING

Push Button Lock

A transparent cover blocks access to the push buttons used to open and close the device. It is possible to independently lock the opening button and/or the closing button. The push buttons may be locked using:

- One to three padlocks: $3 / 16$ " to $5 / 16$ "

Push Button Lock diameter, not supplied

- A lead seal
- Two screws

Open Position Padlock and Key Lock Provisions

The circuit breaker is locked in the off position by physically keeping the opening push button pressed down using one of the following:

- One to three padlocks: $3 / 16$ " to $5 / 16$ " diameter, not supplied
- Key locks: One or two Kirk or Federal Pioneer key locks (keyed alike or differently) are available for UL Listed/ANSI Certified circuit breakers; for IEC Rated circuit breakers, Ronis, Castell, or Profalux key locks are available
Keys may be removed only when locking is effective. The key locks are available in any of the following configurations:
- One key lock
- One key lock mounted on the device + one identical key lock supplied separately for interlocking with another device
- Two different key locks mounted on the circuit breaker for double locking

A locking kit for installation of one or two key locks may be ordered separately.
Table 25: Circuit Breaker and Switch Locking Options

Type of Locking	Maximum Number of Locks	
Pushbutton Locking	Using padlocks	Three padlocks
Open Position Locking	Using key locks	Two key locks (optional)
	Using padlocks and key locks	Up to three padlocks and two key locks (optional)

CRADLE LOCKING AND INTERLOCKING

Disconnected Position Locking

 Locking Provisions

The circuit breaker can be locked in the disconnected position by key interlock (optional) or padlock (standard). The key interlock is on the cradle and accessible with the door locked.

- Key interlock, Kirk or Federal Pioneer are available for UL/ANSI circuit breakers; for IEC circuit breakers, Ronis, Castell, or Profalux key locks are available. Captive key when unlocked.
- Locking on disconnected, test, and connected positions is optional for IEC circuit breakers and standard for UL/ANSI circuit breakers.

Door Interlock (NW)

Door Interlock

The door interlock prevents the compartment door from being opened when the circuit breaker is in the connected or test position. If the circuit breaker is put into the connected position with the door open, the door can be closed without disconnecting the circuit breaker. For greater protection, this interlock can be used in conjunction with the open door racking interlock.

Racking Interlock Between Racking Crank and Off Position

The racking interlock is standard for UL and ANSI circuit breakers, and optional for IEC circuit breakers. It prevents insertion of the racking crank unless the OFF push button is pressed.

Cable Door Interlock Kit

This option prevents the compartment door from being opened when the circuit breaker is in the closed position. This kit includes:

Figure 9: Cable Door Interlock Kit Contents

Kit Contents
(A) Panel Interlocking Plate
(B) Circuit Breaker Interlocking Plate
(C) Interlocking Cables
(D) Bolts with Washers
(E) Guide-bolt with Washer

(F) Interlocking Bracket
(G) Calibration Tray

Source Changeover Interlocks

Source changeover interlocks allow mechanical interlocking between two or three circuit breakers. (fixed and drawout)

Figure 10: Source Changeover Interlocks

Interlocking Two Circuit Breakers

- Interlocking Two Mains Using Rods
- Interlocking Two Mains Using Cables

Interlocking Three Circuit Breakers Using Cables

- Interlocking Two Mains and One Generator
- Interlocking Two Mains and One Tie
- Interlocking Three Mains

Two NW Circuit Breakers Interlocked Using Rods

Three NW Circuit Breakers Interlocked Using Cables

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Automatic Spring Discharge Mechanism

Open Door Racking Interlock

The racking interlock prevents racking in the circuit breaker when the door is open. (Insertion of the circuit breaker racking crank is not possible when the compartment door is open.)

Automatic Spring Discharge Mechanism

The automatic spring discharge mechanism is standard for UL and ANSI circuit breakers, and optional for IEC circuit breakers. It releases the closing spring energy when the circuit breaker is moved from the disconnected position to the fully withdrawn position.

Cradle Rejection Kits

The cradle rejection feature (standard) ensures that only the properly designated circuit breaker or switch is matched with the selected cradle assembly.

Figure 11: Cradle Rejection Kits

Rail Padlocking

Rail padlocking is standard for UL, ANSI, and IEC cradles. When used in combination with the disconnected position locking device, rail padlocking prevents the movement of the circuit breaker from the disconnected position to the fully withdrawn position when the padlock hasp is pulled out and locked.

MISCELLANEOUS ACCESSORIES

Mechanical Operation Counter (CDM)

The mechanical operation counter (CDM) registers the total number of operating cycles. One CDM is installed per circuit breaker.

Shutter and Shutter Lock

The shutters automatically block access to the main disconnects when the circuit breaker is in the disconnected, test, or fully withdrawn position. The shutter lock is used to prevent connection of the circuit breaker or to lock the shutters in the closed position.

Door Escutcheon (CDP)

These door escutcheons provide a frame and seal for the circuit breaker.
Figure 12: Door Escutcheons

Transparent Cover (CCP) for Door Escutcheon

The cover is hinged-mounted and locked with a milled head, and is designed to be installed on the door escutcheon.

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Wiring Diagrams

WIRING DIAGRAMS

NOTE: All diagrams are showing circuit breaker open, connected and charged.
Figure 13: Wiring Diagrams for Masterpact NW Circuit Breakers
Trip Unit

```
Trip Unit
```


Markings for Push-in Type Terminals

Cell Switches			Trip Unit								Cell Switches		
CD3	CD2	CD1	COM	UC1	UC2	UC3	UC4	M2C/M6C	SDE2/Res.	SDE1	CE3	CE2	CE1
$\begin{gathered} 68 \\ 834 \end{gathered}$	$\begin{aligned} & \mathrm{O}_{824} \end{aligned}$	$\begin{gathered} 0 \\ 814 \end{gathered}$	$\left\|\begin{array}{cc} 0 & 0 \\ \text { E5 } & \text { E6 } \end{array}\right\|$	$\left\lvert\, \begin{array}{cc} \circ & \circ \\ \text { Z5 } & \text { M1 } \end{array}\right.$	$\begin{array}{cc} \circ & \circ \\ \mathrm{M} 2 & \mathrm{M} 3 \end{array}$	$\begin{gathered} \mathrm{O}_{\mathrm{o}}^{\mathrm{O}} \\ \mathrm{~F} \end{gathered}$	ס	$\begin{gathered} \sigma \text { O } \\ \text { 484/Q3 } \end{gathered}$	$\begin{gathered} \text { O- } \\ \text { 184/K2 } \end{gathered}$	O_{84}^{0}	$\begin{gathered} 6 \bigcirc \\ 334 \end{gathered}$	$\begin{aligned} & 0 \quad 0 \\ & 324 \end{aligned}$	$\begin{aligned} & 0 \text { O } \\ & 314 \end{aligned}$
$\begin{gathered} 0_{8} 0 \end{gathered}$	$\begin{aligned} & 0_{8}^{0} \\ & 822 \end{aligned}$	$\begin{aligned} & 0 \\ & 812 \end{aligned}$	$\left\lvert\, \begin{array}{cl} 0 & 0 \\ \text { E3 } & \text { E4 } \end{array}\right.$	$\left\lvert\, \begin{array}{cc} \circ & O \\ \text { Z3 } & \text { Z4 } \end{array}\right.$	$\begin{array}{cl} \text { O } \\ \text { T3 } & \text { T4 } \end{array}$	$\sigma_{V N}^{O}$	$\mathrm{O}_{\mathrm{V} 2}^{\mathrm{O}}$	$\begin{gathered} \mathrm{O}_{\mathrm{O}} \mathrm{O} \\ 474 / \mathrm{Q} 2 \end{gathered}$	$\begin{aligned} & \sigma_{182} \end{aligned}$	O_{82}°	$\begin{aligned} & 0_{3} 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0_{322} \end{aligned}$	${ }_{312}^{0}$
$\begin{aligned} & 0.0 \\ & 831 \end{aligned}$	$\begin{gathered} 0_{821} \end{gathered}$	$\begin{gathered} 0 \\ 811 \end{gathered}$	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ \text { E1 } & \text { E2 } \end{array}\right.$	$\begin{array}{cc} \text { O } & 0 \\ \text { Z1 } \end{array}$	$\begin{array}{cc} \mathrm{O} & \mathrm{O} \\ \mathrm{~T} 1 & \mathrm{~T} 2 \end{array}$	$\sigma_{\mathrm{F} 1-}$	$\sigma_{V 1}^{0}$	$\begin{gathered} \sigma \quad 0 \\ 471 / Q 1 \end{gathered}$	$\begin{gathered} \hline \bigcirc 0 \\ 181 / K 1 \end{gathered}$	σ_{81}^{0}	$\begin{aligned} & 0.0 \\ & 331 \end{aligned}$	$\begin{aligned} & \sigma \quad 0 \\ & 321 \end{aligned}$	σ_{311}^{0}
or													
CE6	CE5	CE4											
$\begin{aligned} & 06 \\ & 364 \end{aligned}$	$\begin{aligned} & 0 \quad 0 \\ & 354 \end{aligned}$	$\begin{aligned} & 0<0 \\ & 344 \end{aligned}$											
$\begin{gathered} 0_{362} \\ \hline \end{gathered}$	$\begin{aligned} & 0_{352} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 342 \end{aligned}$											
$\begin{aligned} & \text { O } \\ & 361 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 351 \end{aligned}$	$\begin{aligned} & 6 \mathrm{O} \\ & 341 \end{aligned}$											

Markings for Ring Terminals

Cell Switches		
CD3	CD2	CD1
\circ	\circ	\circ
$834 / 832$	$824 / 822$	$814 / 812$
\circ	\circ	\circ
831	821	811

Trip Unit										
COM	UC1	UC2	UC3	UC3a	M2C/M6C	M2Ca/M6Ca	SDE2/Res.	SDE2a	SDE1	SDE1a
$\begin{array}{ll} \circ \\ \text { E5 } & \circ \\ \hline 6 \end{array}$	$\begin{array}{cc} \circ \\ \text { Z } & \text { M } \end{array}$	○	$\begin{aligned} & \circ \\ & \hline \text { F2 } \end{aligned}$	$\begin{aligned} & \circ \\ & \mathrm{VN} \end{aligned}$	484/Q3	474/Q2	184/K2	$\stackrel{\circ}{182}$	$\stackrel{\circ}{84}$	$\begin{gathered} \circ \\ 82 \end{gathered}$
$\begin{array}{ll} \circ & \circ \\ \text { E3 } & \text { E4 } \end{array}$	$\begin{array}{ll} \circ & \circ \\ \text { Z3 } & \text { Z4 } \end{array}$	$\begin{array}{ll} \circ \\ \text { T3 T } \end{array}$	$\begin{aligned} & \hline 0 \\ & \text { F1 } \end{aligned}$		471/Q1		$\stackrel{\circ}{181 / K 1}$		$\stackrel{0}{81}$	
$\begin{array}{ll} \circ & \circ \\ \text { E1 } & \text { E2 } \end{array}$	$\begin{array}{ll} \circ & \circ \\ \text { Z1 } \\ \text { Z2 } \end{array}$	O								

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Wiring Diagrams

NOTE: All diagrams are showing circuit breaker open, connected and charged.
Figure 14: Wiring Diagrams for Auxiliary Connections

Remote Operation					Auxiliary Switches												Cell Switches		
MN/MX2	MX1	XF	PF	MCH	OF24	OF23	OF22	OF21	OF14	OF13	OF12	OF11	OF4	OF3	OF2	OF1	CT3	CT2	CT1
$\begin{gathered} \text { Oర } \\ \text { D2/C12 } \end{gathered}$	$\mathrm{O}_{\mathrm{C} 2}^{\mathrm{O}}$	$\mathrm{O}_{\mathrm{A} 2}^{\mathrm{O}}$	$\begin{aligned} & 0 \mathrm{O} \\ & 254 \end{aligned}$	$\mathrm{O}_{\mathrm{B} 2}^{\mathrm{O}}$	$\begin{gathered} 0 \text { O } \\ 244 \end{gathered}$	$\begin{aligned} & \sigma \mathbf{O} \\ & 234 \end{aligned}$	$\begin{aligned} & \sigma_{2}{ }^{\circ} \end{aligned}$	$\begin{aligned} & \sigma \circ \\ & 214 \end{aligned}$	0_{144}^{0}	$\begin{aligned} & 0 \\ & 134 \end{aligned}$	$\begin{aligned} & 68 \\ & 124 \end{aligned}$	\mathbf{O}_{114}°	${ }_{44}^{0}$	$\begin{gathered} 0 \\ 34 \end{gathered}$	$\begin{gathered} \mathrm{O}_{24} \mathrm{O} \\ \hline \end{gathered}$	$\mathrm{O}_{14} \mathrm{O}$	$\begin{aligned} & 0 \text { O } \\ & 934 \end{aligned}$	$\begin{aligned} & \text { O O } \\ & 924 \end{aligned}$	$\begin{aligned} & \sigma_{914}^{\circ} \end{aligned}$
O\% C 13	$\mathrm{C}_{\mathrm{C} 3}^{\mathrm{O}}$	$\overline{A B}^{O}$	$\begin{aligned} & 0 \\ & 252 \\ & \hline \end{aligned}$	$\mathrm{O}_{\mathrm{B} 3}^{\mathrm{O}}$	$\begin{aligned} & 0 \\ & 242 \end{aligned}$	$\begin{aligned} & \sigma_{232} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 222 \end{aligned}$	$\begin{gathered} \sigma_{0}^{0} \\ 212 \end{gathered}$	σ_{142}^{0}	σ_{132}^{0}	σ_{122}^{0}	σ_{112}^{0}	$\mathrm{O}_{42} \mathrm{O}$	$\mathrm{O}_{32} \mathrm{O}$	$\mathrm{O}_{22} \mathrm{O}$	$\mathrm{O}_{12} \mathrm{O}$	$\begin{aligned} & \sigma_{932} \\ & \hline \end{aligned}$	$\begin{aligned} & 0_{0} 0 \\ & 922 \end{aligned}$	$\begin{gathered} \sigma_{912} \\ \hline \end{gathered}$
$\begin{gathered} \text { Oठ } \\ \text { D1/C11 } \end{gathered}$	${ }_{\mathrm{C} 1}^{\mathrm{O}}$	$\mathrm{O}_{\mathrm{A} 1}^{\mathrm{O}}$	$\begin{aligned} & 0 \\ & 251 \end{aligned}$	$\mathrm{O}_{\mathrm{B} 1}^{\mathrm{O}}$	$\begin{aligned} & 0 \\ & 241 \end{aligned}$	$\begin{aligned} & \sigma_{231} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { O } \\ & 221 \end{aligned}$	σ_{211}^{0}	σ_{141}^{0}	σ_{131}^{0}	$\mathrm{O}_{121}{ }^{\circ}$	σ_{111}^{0}	${ }_{41}$	O_{31}	$\mathrm{O}_{21} \mathrm{O}$	σ_{11}	$\begin{aligned} & \sigma_{931} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O O } \\ & 921 \end{aligned}$	$\begin{gathered} \sigma_{911}^{\circ} \end{gathered}$

EF24	EF23	EF22	EF21	EF14	EF13	EF12	EF11
0	$\begin{aligned} & 0.0 \\ & 238 \end{aligned}$	$\begin{aligned} & 080 \\ & 228 \end{aligned}$	$\begin{aligned} & 018 \\ & 218 \end{aligned}$	080	080	0	0
$\begin{aligned} & 0.0 \\ & 246 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 236 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 226 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 216 \end{aligned}$	$\begin{array}{r} 0 \\ 146 \end{array}$	0	0_{126}	0
$\begin{aligned} & \sigma_{245}^{0} \\ & 245 \end{aligned}$	$\begin{aligned} & \bar{\sigma} 0 \\ & 235 \end{aligned}$	$\begin{aligned} & \sigma_{20}^{0} \\ & 225 \end{aligned}$	$\overline{\sigma_{215}^{0}}$	$\overline{\sigma_{145}^{0}}$	$\overline{\sigma_{135}^{0}}$	$\overline{\sigma_{125}^{0}}$	$\begin{array}{\|} \hline \sigma_{115}^{0} \end{array}$

CD6	CD5	CD4
080	${ }_{854}$	${ }_{844}$
${ }_{862}$	${ }_{852}$	${ }_{842}$
${ }_{861}{ }^{8}$	${ }_{851}$	${ }_{841}{ }^{\circ}$

CE9	CE8	C7
${ }_{394}{ }^{\circ}$	${ }_{384}$	${ }_{374}{ }^{\circ}$
${ }_{392}$	${ }_{382}$	${ }_{372}$
${ }_{391}{ }^{3}$	${ }_{381}{ }^{3}$	${ }_{371}{ }^{3}$

Markings for Ring Terminals

Remote Operation									Auxiliary Switches								Cell Switches		
MN	MX1	MX1a	XF	XFa	PF	CT1	MCH	MCHa	OF14	OF13	OF12	OF11	OF4	OF3	OF2	OF1	CE3	CE2	CE1
$\begin{aligned} & \hline \circ \\ & \hline \text { D2 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & \hline \circ \\ & \mathrm{C} 3 \end{aligned}$	$\begin{gathered} \circ \\ \text { A2 } \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \circ \\ 252 \end{gathered}$	$\stackrel{\circ}{914 / 912}$	$\begin{gathered} \circ \\ \text { B2 } \end{gathered}$	$\begin{gathered} \circ \\ \text { B3 } \end{gathered}$	$\stackrel{\circ}{144}$	$\begin{gathered} \circ \\ 134 \end{gathered}$	$\stackrel{\circ}{122}$	$\stackrel{\circ}{112}$	$\begin{aligned} & \circ \\ & 44 \end{aligned}$	$\begin{aligned} & \circ \\ & 34 \end{aligned}$	$\begin{aligned} & \hline \circ \\ & 22 \end{aligned}$	$\begin{gathered} \circ \\ 12 \end{gathered}$	©	$\begin{gathered} 0 \\ 324 / 322 \end{gathered}$	$\stackrel{\bigcirc}{314 / 312}$
D1	$\begin{aligned} & \circ \\ & \mathrm{C} 1 \end{aligned}$		- ${ }_{\text {A1 }}$		$\stackrel{\circ}{\circ}$	${ }_{911}^{\circ}$	- ${ }_{\text {B1 }}$		$\stackrel{\bigcirc}{141}$	$\stackrel{\circ}{131}$	$\begin{gathered} \circ \\ 121 \end{gathered}$	${ }_{111}^{\circ}$	$\begin{aligned} & \circ \\ & \hline 41 \end{aligned}$	$\begin{aligned} & \circ \\ & 31 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 21 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 11 \end{aligned}$	331	$\begin{gathered} \circ \\ 321 \end{gathered}$	${ }_{31}^{\circ}$

*When remote operation features are used, make sure there is a minimum of four seconds for the spring charging motor (MCH) to completely charge the circuit breaker closing springs prior to actuating the shunt close (XF) device.

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Wiring Diagrams

ADDITIONAL WIRING INFORMATION

Alarm Contacts (OF1, OF2, OF3 and OF4 are standard equipment)	
OF4	OF24: Open/Closed circuit breaker or switch
OF3	Open/Closed circuit breaker or
OF2	swition contact
OF1	or
	$\frac{\text { EF24: Combined connected and closed contact }}{}$
	$\frac{\text { OF23 or EF23 }}{\text { OF2 or EF22 }}$
	$\frac{\text { OF21 or EF21 }}{\text { OF14 or EF14 }}$
	$\frac{\text { OF13 or EF13 }}{\text { OF12 or EF12 }}$
	$\frac{\text { OF22 or EF22 }}{\text { OF11 or EF11 }}$

Cradle Contacts					
CD3		CE3	Connected	CT3	
CD2	Disconnected position contacts	CE2	position	CT2	Test position contacts
CD1		CE1	contacts	CT1	
or				or	
$\begin{aligned} & \text { CE6 } \\ & \text { CE5 } \\ & \text { CE4 } \end{aligned}$	Connected position contacts			CE9	Connected position contacts
				CE8	
				CE7	
				or	
				CD6	Disconnected
				CD5	position
				CD4	contacts

Remote Operation	
SDE	Electrical fault alarm contact
RES	Remote reset
MN	Undervoltage trip device
MX	Shunt trip
XF	Shunt close
PF	Ready-to-close contact
MCH	Spring-charging motor

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Dimensional Drawings

SECTION 1- DIMENSIONAL DRAWINGS

ENCLOSURE INFORMATION

Table 26: Minimum Enclosure Information

Number of Poles	Circuit Breaker	Circuit Breaker Enclosure Dimensions$(H \times W \times D)$		Ventilation Area					
				Top		Bottom		Front Face	
		in.	mm	in. ${ }^{2}$	mm^{2}	in. ${ }^{2}$	mm^{2}	in. ${ }^{2}$	mm^{2}
3 -pole	UL Listed	$18.37 \times 30.00 \times 15.75$	$466.6 \times 762.0 \times 400$	16.62	10720	16.62	10720	-	-

UL 3-POLE DRAWOUT CIRCUIT BREAKERS

Figure 15: 800-2500 A Master Drawing

1. Minimum to withdraw circuit breaker.
2. Distance to drawout position.
3. Circuit breaker mounting surface.
4. Minimum for circuit breaker racking handle.

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 16: 800-2500 A Rear Connected "T" Vertical (RCTV)

Figure 17: 800-2500 A Rear Connected "T" Horizontal (RCTH)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Dimensional Drawings

Figure 18: 3000-4000 A Rear Connected "T" Horizontal (RCTV)

Figure 19: 3000-4000 A Rear Connected "T" Horizontal (RCTH)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Dimensional Drawings

Figure 20: Drawout Cradle Mounting

Figure 21: Door Cutout

Figure 22: Door Escutcheon Hole Pattern

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

UL 3-POLE FIXED CIRCUIT BREAKERS

Figure 23: 800-4000 A Master Drawing

Figure 24: 800-2500 A Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Dimensional Drawings

Figure 25: 800-2500 A Rear Connected "T" Horizontal (RCTH)

Figure 26: 3000-4000 A Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 27: 3000-4000 A Rear Connected "T" Horizontal (RCTH)

Figure 28: Door Cutout

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 29: Circuit Breakers Mounting

IEC 3-POLE DRAWOUT CIRCUIT BREAKERS

Figure 30: 1000-2000 A Type "C" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 31: 1000-2000 A Type "C" Rear Connected "T" Horizontal (RCTH)

Figure 32: 4000 A Type " C " Rear Connected "T" Vertical (RCTV)

Masterpact
 NW DC Circuit Breakers
 Dimensional Drawings

Figure 33: 1000-2000 A Type "D" Rear Connected "T" Vertical (RCTV)

Figure 34: 1000-2000 A Type "D" Rear Connected "T" Horizontal (RCTH)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 35: 4000 A Type "D" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

IEC 4-POLE DRAWOUT CIRCUIT BREAKERS
Figure 36: 1000-2000 A Type "E" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 37: 1000-2000 A Type "E" Rear Connected "T" Horizontal (RCTH)

Figure 38: 4000 A Type "E" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers
 Dimensional Drawings

IEC 3-POLE FIXED CIRCUIT BREAKERS

Figure 39: 1000-2000 A Type "C" Rear Connected "T" Vertical (RCTV)

Figure 40: 1000-2000 A Type "C" Rear Connected "T" Horizontal (RCTH)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

Figure 41: 4000 A Type "C" Rear Connected "T" Vertical (RCTV)

Figure 42: 1000-2000 A Type "D" Rear Connected "T" Vertical (RCTV)

50

Masterpact
 NW DC Circuit Breakers Dimensional Drawings

Figure 43: 1000-2000 A Type "D" Rear Connected "T" Horizontal (RCTH)

Figure 44: 4000 A Type "D" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Dimensional Drawings

IEC 4-POLE FIXED CIRCUIT BREAKERS
Figure 45: 1000-2000 A Type "E" Rear Connected "T" Vertical (RCTV)

Figure 46: 1000-2000 A Type "E" Rear Connected "T" Horizontal (RCTH)

Figure 47: 4000 A Type "E" Rear Connected "T" Vertical (RCTV)

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Trip Curves

TRIP CURVES

Figure 48: Trip Curves —Micrologic ${ }^{\circledR}$ DC1.0 Instantaneous Protection, $\mathrm{U}=\mathbf{5 0 0} \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=5 \mathrm{~ms}$ (IEC) or 8 ms (UL)

Masterpact
 t^{\circledR}
 NW DC Circuit Breakers Trip Curves

Figure 49: Trip Curves -Micrologic ${ }^{\circledR}$ DC1.0 Instantaneous Protection, U = 750/900 Vdc, L/R = 5 ms

1250-2500 A Sensors

2500-5400 A Sensors

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Trip Curves

Figure 50: Trip Curves -Micrologic ${ }^{\circledR}$ DC1.0 Instantaneous Protection, $\mathbf{U}=500 \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$

1250-2500 A Sensors

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Trip Curves

Figure 51: Trip Curves —Micrologic ${ }^{\circledR}$ DC1.0 Instantaneous Protection, $\mathrm{U}=\mathbf{7 5 0 / 9 0 0}$ Vdc, $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$

1250-2500 A Sensors

2500-5400 A Sensors

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers

Trip Curves

Figure 52: Trip Curves ${ }^{\text {memem Micrologic }}{ }^{\circledR}$ DC1.0 Instantaneous Protection, $\mathrm{U}=\mathbf{5 0 0} \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=\mathbf{3 0} \mathbf{~ m s}$

1250-2500 A Sensors

2500-5400 A Sensors

5000-11,000 A Sensors

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Trip Curves

Figure 53: Trip Curves -Micrologic ${ }^{\circledR}$ DC1.0 Instantaneous Protection, $\mathrm{U}=\mathbf{7 5 0} / 900 \mathrm{Vdc}, \mathrm{L} / \mathrm{R}=\mathbf{3 0} \mathrm{ms}$

1250-2500 A Sensors

2500-5400 A Sensors

SELECTION

INTRODUCTION

Overview of Selection Procedure

1. Select the completely assembled circuit breaker (circuit breaker frame + trip unit):

- The frame ampere rating required
- The system voltage
- The interruption rating required
- The grounding system
- The connections

2. Select circuit breaker frame options, if required.
3. Select cradle options, if required.

Table 27: Circuit Breaker Accessory Options

Accessories Available for the Circuit Breaker and Cradle

- Shunt close
- Shunt trip
- Undervoltage trip
- Fixed time delay
- Adjustable time delay
- Spring-charging motor
- Auxiliary contacts (standard)
- Ready-to-close contact
- Overcurrent trip switch (standard)
- Rack in interlock
- Key locks for circuit breaker and cradle
- Padlock attachment (circuit breaker + cradle)
- Mechanical interlocks
- Cradle position switches
- Door interlock
- Operations counter
- Safety Shutter
- Cradle rejection kit (standard)
- Rail Padlocking

FACTORY-ASSEMBLED CIRCUIT BREAKERS AND SWITCHES

Table 28: UL 489 Listed Circuit Breakers

Frame Rating (A)	Model Number	Interrupting Rating
		$600 \mathrm{~V} \mathrm{dc} \mathrm{unloaded} \mathrm{(500} \mathrm{~V} \mathrm{dc} \mathrm{loaded)}$
800	NW08N	35 kA
1200	NW12N	
1600	NW16N	
2000	NW20N	
2500	NW25N	
3000	NW30N	
4000	NW40N	

Table 29: IEC 60947-2 Rated Circuit Breakers

Frame Rating (A)	Model Number	Interrupting Rating								
		L/R $\leq 5 \mathrm{~ms}$			$L / R \leq 15 \mathrm{~ms}$			L/R $\leq 30 \mathrm{~ms}$		
		500 Vdc	750 Vdc	900 Vdc	500 Vdc	750 Vdc	900 Vdc	500 Vdc	750 Vdc	900 Vdc
1000	NW10N	85 kA	-	-	35 kA	-	-	25 kA	-	-
	NW10H	100 kA	85 kA	85 kA	85 kA	50 kA	35kA	50 kA	50 kA	25 kA
2000	NW20N	85	-	-	35 kA	-	-	25	-	-
	NW20H	100 kA	85 kA	85 kA	85 kA	50 kA	35 kA	50 kA	50 kA	25 kA
4000	NW40N	85	-	-	35 kA	-	-	25	-	-
	NW40H	100 kA	85 kA	85 kA	85 kA	50 kA	35 kA	50 kA	50 kA	25 kA

Switch Selection

Table 30: IEC 60947-3 Rated, Non-automatic Switch

Frame Rating (A)	Model Number	Making Capacity Icm	Withstand Current Icw (1 s)
1000	NW10HA	85 kA	85 kA
2000	NW20HA	85 kA	85 kA
4000	NW40HA	85 kA	85 kA

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Selection

REQUEST FOR QUOTATION FORM
Page 1 of 2
For faster quote processing, please use the following request for quotation form. For each section, check the applicable box or enter values corresponding to your choice. Note: this request for quotation form does not take into account incompatibilities. Order to be placed on CSSS.

Date		Customer Name:	RFQ No.:
From	Location	Account No.:	Q2C No.:
Phone No.	Fax No.	Contact Name:	Phone No.:
Messages		Location:	Fax No.:
UL Listed Circuit Breaker	Qty	Cradle Secondary Disconnects	
NW08		Choose one:	
NW12		Push-in terminal (standard)	
NW16		Ring terminal (UL option only)	

Masterpact Type	NW20		
	NW25		
	NW30		
	NW40		
Circuit Breaker Interruption Rating		N only available	
Load Connection		Type C only available	
Type of Equipment	Fixed Drawout chassis		
Type of Connection	Vertical	Top	Bottom
	Horizontal	Top	Bottom

Accessories for Remote Operation

Wiring for Cradle (Complete only if ordering cradle without circuit breaker)

Wiring for additional overcurrent trip switch (SDE2) or electrical reset (RES)	
Wiring for undervoltage trip (MN) or additional shunt trip (MX2)	
(Wiring for shunt trip (MX), shunt close (XF) and spring-charging motor (MCH)	
Wiring for ready-to-close contact (PF)	
Wiring for four additional form C auxiliary switches (push-in terminals) or	

Wiring for four additional form C auxiliary sW
$2 a+2 b$ auxiliary switches (ring terminals (OF)
Wiring for eight additional form C auxili9ary switches (Push-in terminals) (OF)

Manufacturing Numbers Provided with Quotation
Circuit Breaker:
Cradle: \qquad

62

Masterpact ${ }^{\circledR}$ NW DC Circuit Breakers Selection

Schneider Electric Conditions of Sale Apply

Schneider Electric USA

3700 Sixth St SW Cedar Rapids, IA 52404 USA

