Modicon ${ }^{\circledR}$ STB IP 20 distributed inputs/outputs

Catalog
 2010

Schneider

A full range of catalogs for

Detection	Automation	Automation	Operator dialog	Motion and Drives
DD	DD	DD	DD	Dd
Global Detection Electronic and electromechanical sensors	Modicon ${ }^{\circledR}$ Quantum ${ }^{\text {mi }}$ automation platform Catalog 2009	Modicon ${ }^{\circledR}$ Momentum ${ }^{\text {Tw }}$ distributed I/O and control	Control and signalling components	Lexium ${ }^{\circledR} 32$ Servo Drives motion control Catalog 2009/2010
		MKTED205061EN	MKTED208031EN	
MKTED208052EN	MKTED208011EN-US		Control and signalling units	DIA7ED2090405EN-US
Photo-electric sensors Proximity sensors Capacitive proximity sensors Ultrasonic sensors Limit switches Pressure switches Rotary encoders Radio frequency identification Machine cabling accessories	Safety PLCs Safety CPUs Unity" ${ }^{\text {™ }}$ Concept ${ }^{\text {T" }}$ and ProWORX" software	Twido ${ }^{\circledR}$ programmable controller and TwidoSuite ${ }^{\mathrm{mw}}$ software	Control stations \& enclosures	Motion controllers Servo drives and Servo motors Stepper motors and drives Integrated drives Modicon Premium motion control modules
			Cam switches	
			Beacons and indicator banks Pendant control stations	
			Controllers	
		DIA3ED2090202EN	Emergency stops	
	DD		Foot switches	
	Modicon ${ }^{\oplus}$ Premium ${ }^{\text {T" }}$ automation platform Catalog 2010	Controller base Discrete, analog I/O Communication	Dd	Soft starters and variable
			Magelis ${ }^{\text {® }}$	speed drives
	MKTED208054EN-US	DD	Human/Machine Interfaces Catalog 2010	MKTED206111EN
	Unity processors PL7 processors Communication software	Automation functions, relays, interfaces and power supplies	MKTED206071EN-US Operator interface terminals	Soft starters and variable speed drives
	DD	MKTED207031EN	Industrial PCs HMI and SCADA PC-based	Software Software for drives
	Modicon ${ }^{\circledR}$ M340"' automation platform Catalog 2010	Smart relays software		Motor control programming software
		Timing relays ${ }^{\text {Measurement \& control relays }}$	Software	
		Analog interfaces	Vijeo Designer	
	DIA6ED2081007EN-US	Counters	Operator terminal software	
		Plug-in relays		
	PLCs	Interfaces for discrete signals		
	Discrete, analog I/O and application-specific solutions	Power supplies \& transformers		
	Communication	Software		
		PLCs and safety controllers programming software		

Not all products shown in this catalog are available in every country. Check individual country's web site or Sales Office for product availability. See our web site: www.schneider-electric.us/

Schneider

Automation \& Control functions

Motor control	Machine safety
This catalog contains	
Automation and Control function	
products relating to machines	

Open and Modular System
■ Introduction, composition. 6

- Description 9
■ Functions, specifications 15
Network Interface Modules
Selection guide 18
- Introduction, description, specifications 20
- References 23
Internal Bus Extension Modules
$■$ Specifications, references 26
Power Distribution Modules
- Introduction, description, specifications 28
■ References 33
Digital Input/Output Modules
Selection guide 34
■ Introduction, description, specifications 40
■ References 48
■ Connections 52
Analog Input/Output Modules
Selection guide 56
- Introduction, description, specifications 62
- References 70
- Connections 74
Application-specific Modules
■ Parallel Interface for $\mathrm{TeSys}^{\circledR}$ motor starters, model U and TeSys ${ }^{\circledR}$ Quickfit applications 80
■ Parallel Interface for Tego ${ }^{\text {TM }}$ Power applications 86
- Counter module
- Introduction, description, specifications 88
- References, connections 92
Dimensions
- Dimensions 94
Configuration Software
- Introduction 96
- Functions 97
- References 101
Combinations
■ Momentum ${ }^{\text {T" }}$ PLC 171 CBB 97030 processer 102
■ Combination with Magelis ${ }^{\circledR}$ display units and human/machine interface terminals 108
■ High-density I/O modulesand Modicon ${ }^{\circledR}$ Telefast ${ }^{\circledR}$ cabling system ABE 7110
Phaseo ${ }^{\circledR}$ Regulated Power Supplies
- Introduction 116
- Specifications 119
- Combinations of Phaseo power supplies with STB modules 121
- References, dimensions 121
Services
- Automation product certifications 122
■ Power consumption 124
- Product reference index. 127

 trademarks or registered trademarks of Schneider Electric. Other trademarks used herein are the property of their respective owners.

$115 \mathrm{~V} \sim$ or $230 \mathrm{~V} \sim$ digital inputs

115/230 V ~ power distribution
$115 / 230 \mathrm{~V} \sim$ digital outputs

Digital relay outputs
TeSys ${ }^{\circledR}$ U, TeSys ${ }^{\circledR}$ Quickfit and Tego ${ }^{\text {m }}$ Power interface, counter module

Analog inputs

Analog outputs

Modicon ${ }^{\circledR}$ STB connection kit

The Modicon ${ }^{\circledR}$ STB kit references allow you to acquire the following items under a single reference（1）：
－A module
－Its base
－If necessary，a choice of the appropriate screw－type or spring－type connectors

The references are in the following format：

Content	Typical reference
Base，module，screw－type and spring－type connectors	STB •e७ ๑๑ゃ७ K
Base，module，screw－type connectors for 16－channel modules STB DDI 3725 and STB DDO 3705	STB DD• $37 \bullet 5 \mathrm{KS}$
Base，module，spring－type connectors for 16 －channel modules STB DDI 3725，STB DDO 370 and STB EHC 3020 counter module	
NIM network module，base not required，supplied with one connector of each type：screw－type and spring－type	STB Neゃ セゃゃ७

Modicon STB I／O modules without a base or connector are also available under the usual references．
These references are used in the descriptions contained in this catalog（functions， specifications，etc）．
Details of the kits and their contents are given on the＂References＂pages．

Composition of a Modicon ${ }^{\circledR}$ STB station

A Modicon ${ }^{\circledR}$ STB station is made up of one or more segments comprising Power Distribution Modules (PDM) and I/O modules.
A Modicon STB station starts with a network interface module and ends with a bus terminator supplied with this module. A station can be made up of a single segment or a primary segment and up to 6 extension segments, chained by End Of Segment (EOS) and Beginning Of Segment (BOS) extension modules.

On each segment:

■ The PDMs must be placed immediately to the right of the network interface modules or extension modules.
■ The I/O modules are placed to the right of the PDM module supplying them with power.

- Every module, PDM or I/O, is held in a base on the DIN rail (1). Three module and base widths are possible. The overall width needed for a segment on a DIV rail is the combined widths of the network interface module, the bases and any bus termination.

The bases help ensure the continuation of the internal bus, the auto-addressing of the modules, and the separated and isolated distribution of the internal power supplies, actuators and sensors.
The advantages of this arrangement are:
■ Unplugging modules:
\square When switched off (cold swap), modules can be unplugged very quickly. \square When switched on (hot swap), I/O modules can be unplugged provided the network interface module is the standard type.
■ Output power supply independent of inputs: For example, if an output power supply is cut by a Preventa ${ }^{T w}$ safety module, the inputs are still managed.

- Immunity of inputs: For example, the closing of power contactors (controlled by outputs) does not disturb analog input measurements.

The Network Interface Module (NIM)

This module manages communications on the station bus. It acts as a gateway for exchanges with the fieldbus or network master. Eleven NIM models are available for seven fieldbuses or networks: Ethernet TCP/IP (standard only), CANopen, Modbus Plus ${ }^{\text {Tw }}$ (standard only), Fipio ${ }^{\circledR}$ (standard only), InTERBus ${ }^{\circledR}$, Profibus DP ${ }^{T m}$ and DeviceNet ${ }^{\text {T" }}$ interface modules.
(1) Each module, with the exception of the NIM network interface module, requires a base and one or more specific connectors.

Description of basic Modicon ${ }^{\circledR}$ STB Basic Modicon ${ }^{\circledR}$ STB: Single segment

With a basic network interface module it is possible to create a station with only one segment (single segment) with up to 12 I/O modules. This excludes segment power distribution modules, a network interface module and a bus termination.

Single segment basic Modicon STB

In the example above, the single segment contains:
1 STB Nee 1010: A Network Interface Module (NIM). It is placed at the beginning of the primary segment. Each station must have only one NIM module.
2 STB PDT 2105: A Power Distribution Module (PDM). It is installed immediately to the right of the NIM and distributes the $115 / 230 \mathrm{~V} \sim$ to the AC powered I/O modules.
3 STB DA•: Digital I/O modules powered with AC.
4 STB PDT 3105: PDM power distribution module. It is installed after the 115/230 V ~ I/O modules. It distributes the 24 V =- to the DC powered I/O modules.
5 STB AV \bullet and STB ACe: Analog I/O modules powered with DC are installed after the PDM module.
6 STB XMP 1100: Bus termination supplied with the NIM network interface module.
Internal power supply: The NIM network interface module STB Nee provides a $5 \mathrm{~V}=-\mathrm{logic}$ voltage (1.2 A) from an external 24 V -.- power supply.

Standard Modicon ${ }^{\circledR}$ STB configurations Standard Modicon ${ }^{\circledR}$ STB: Single segment

With a NIM standard network interface module it is possible to create a station with only one segment (single segment) with up to 32 I/O modules. This excludes segment power distribution modules, a network interface module and a bus termination.

Single segment standard Modicon STB
In the example above, the primary segment contains:
1 STB Nee 2212: A standard Network Interface Module (NIM). It is placed at the beginning of the primary segment. Each station must have only one NIM module.
2 STB PDT 210•: A Power Distribution Module (PDM). It is installed immediately to the right of the NIM and distributes the $115 / 230 \mathrm{~V} \sim$ to the AC powered I/O modules.
3 STB DA•: Digital I/O modules powered with AC.
4 STB PDT 310•: PDM power distribution module. It is installed after the 115/230 V ~ I/O modules and distributes the 24 V --- to the DC powered I/O modules.
5 STB AV•, STB AC•, STB DD•: Digital or analog I/O modules powered with DC. They are installed after the PDM STB PDT 310• module.
6 STB XMP 1100: Bus termination.
Internal power supply: The auxiliary power supply module STB CPS 2111 supplies a $5 \mathrm{~V}=-$ logic voltage (1.2 A) from an external 24 V --. power supply. The STB CPS 2111 should be associated with an STB PDT •10 \bullet power supply module

Standard Modicon ${ }^{\circledR}$ STB: Primary segment with extension segments

The station bus can support the primary segment with up to 7 extension segments. A standard NIM network interface module supports up to 32 I/O modules (excluding power distribution modules, network interface module, bus termination, auxiliary power supplies, and EOS/BOS bus extension modules).

Standard Modicon STB with 3 segments
The segments of the above Modicon STB configuration comprise:
1 STB Nee 2212: A NIM network interface module. It is placed at the beginning of the primary segment. Each station must have only one NIM module.
2 STB PDT •100: A PDM power distribution module ($24 \mathrm{~V}=-$ or $115 / 230 \mathrm{~V} \sim$). It is installed immediately to the right of the NIM and distributes $24 \mathrm{~V}-\mathrm{-}$ or 115/230 V ~ depending on the type of I/O modules located on the right.
3 STB AV•, STB AC•, STB DD•, STB DA \bullet and STB DR•: I/O modules powered with DC or digital modules powered with AC are placed immediately to the right of the PDM.
4 STB XBE 1100: EOS bus extension module is always installed in the rightmost slot in the primary or extension segment and it extends the station bus to another segment.
5 STB XBE 1300: BOS bus extension module is installed at the beginning of each extension segment.
6 STB XMP 1100: Station bus termination (1).
7 STB XCA 100•: Station bus extension cables.

Internal power supply for secondary segments: The BOS bus extension module STB XBE 1300 provides a 5 V =- logic voltage from an external $24 \mathrm{~V}=$-- power supply.
(1) Supplied with the corresponding NIM network interface module.

Standard Modicon ${ }^{\circledR}$ STB: CANopen extension module - device integration

The CANopen extension module STB XBE 2100 can be used to connect, at the end of the segment, external CANopen devices such as:
\square Modicon ${ }^{\circledR}$ FTB IP67 I/O, in plastic or metal casing

- ATV31/61/71 variable speed drives
\square Festo ${ }^{\circledR}$ CPV-CO2 electro-pneumatic valves
\square Parker ${ }^{\circledR}$ P2M2HBVC11600 electro-pneumatic valves
- Balluff ${ }^{\circledR}$ Micropulse ${ }^{\circledR}$ BTL5 linear encoders
\square Osicoder absolute rotary encoders (1)
The number of CANopen external devices depends on the station's standard network interface module:
CANopen, DeviceNet ${ }^{\text {m" }}$: Up to 7 external devices.
Ethernet TCP/IP Modbus ${ }^{\circledR}$, Modbus Plus ${ }^{\text {m" }}$, InterBus ${ }^{\circledR}$, Profibus DP $^{\text {™ }}$, Fipio $^{\circledR}$ interface modules
Up to 12 external devices.
The data rate of the internal bus is set to 500 Kbps with the Advantys ${ }^{\text {™ }}$ STB SPU 1eeゃ configuration software. This speed applies to Modicon STB modules and external devices.

Standard Modicon STB: Application-specific modules, preferred module and devices

Standard Modicon STB with CANopen devices
A standard network interface module supports up to 32 I/O modules and CANopen devices (excluding power distribution modules, network interface module, bus termination, auxiliary power supplies, EOS/BOS bus extension modules and CANopen STB XBE 2100 extension module).
The station bus can support:
■ Preferred modules (available later). This type of preferred module is installed between two segments.

- Standard CANopen devices.

The station bus illustrated above contains:
1 STB Ne๑ 2212: A Network Interface Module (NIM)
2 STB PDT 3100: A 24 V =-- Power Distribution Module (PDM)
3 STB EHC 3020: 1-channel counter module
4 STB EPI 1145: Parallel interface module
5 STB DDI 3420: Digital input modules
6 STB EPI 2145: Module for TeSys ${ }^{\circledR}$ starter-controllers, model U (3)
7 TeSys U or TeSys Quickfit starter-controller
8 STB XBE 1110: EOS bus extension module This is always installed in the rightmost slot in the primary or extension segment, and is used to extend the station bus to another segment.
9 STB XCA 100•: Station bus extension cables
10 Preferred module
11 STB XBE 1300: BOS bus extension module placed at the beginning of the segment 12STB ACe: Analog I/O modules
13 STB XBE 2100: CANopen extension module (up to 12 devices per station)
14 Modicon FTB IP67 I/O
15 ATV variable speed drive
(1) To obtain the latest list of approved equipment on the Modicon STB station extension, please consult your Regional Sales Office or visit www. schneider-electric.us. To validate a new product, please consult your Regional Sales Office.
(2) Total length of extension CANopen segment: 12 m as standard, 60 m in accordance with the CAN wiring rules described in the CANopen setup document no. 31010857 (in English) available on www.schneider-electric.us.
(3) Refer to the "Automation \& Control - Motor starter solutions - Control and protection components" catalog.

Standard Modicon ${ }^{\circledR}$ STB: TeSys ${ }^{\circledR}$ starter-controller model U, preferred
Modicon ${ }^{\circledR}$ STB provides $\mathrm{TeSys}^{\circledR} \mathrm{U}$ with additional I/O and acts as a gateway to any upstream fieldbus or communication network connected by Modicon STB.

Modicon STB LULC15 communication modules

1 Modicon STB I/O.
2 Network interface module (NIM).
324 V DC power supply for LULC15.
4 End of segment (EOS) STB XBE 1100 used to mount the preferred TeSys U modules.
5 Angled cable with a station bus extension cable connector at each end, providing the bus signals and the internal power supply (LU9RCD•e).
6 Modicon STB LULC15 communication modules.
7 TeSys U starter-controller (LUB•e) with an advanced control unit (LUCB/C/D).
8 TeSys U starter-controller (LUB・ゃ) with a multifunction control unit (LUCM).
9 Angled cable with a station bus extension cable connector at each end, providing the bus signals and the internal power supply (LU9RDD•e).
10 STB XBE 1300 beginning of segment.
11 TeSys U controller (LUTM) with a multifunction control unit (LUCMT).
12 TeSys U termination (LU9RFL15).

Standard Modicon ${ }^{\circledR}$ STB configurations (continued)

NIM network interface modules STB Nee 2212 and STB Nee 1010, located at the beginning of each station, are gateways for exchanging data between the network or bus master PLC and the Modicon ${ }^{\circledR}$ STB automation station.

Standard STB Nee 2212 modules can also be used to configure and address the installation external devices. These settings are stored in the module's internal RAM or Flash memory. Optionally, they can be saved to the 32 Kb removable SIM card STB XMP 4440 - except for the address of the network connection point, to duplicate the configuration from one station to another.

Basic/standard Modicon ${ }^{\otimes}$ STB functions

The table below describes the main functions of the basic and standard Modicon ${ }^{\circledR}$ STB ranges:

Hot swapping
 When a module on the Modicon ${ }^{\circledR}$ STB station is unplugged while the power is on, the behavior of the other modules depends on:
 - the type of NIM network interface module (basic/standard)
 - the parameter settings of standard type I/O modules:
 \square mandatory/optional module
 \square configured fallback type, per channel

Swapping a module	Type of network interface module	
	Basic NIM	Standard NIM (1)
Basic input	Outputs fall back to 0	The other outputs remain operational
Standard input optional	Outputs fall back to 0	The other outputs remain operational (1)
Standard input mandatory	Outputs fall back to 0	Fallback of other outputs according to configuration (1)(2)
Basic output	Outputs fall back to 0	The other outputs remain operational
Standard output optional	Outputs fall back to 0	The other outputs remain operational (1)
Standard output mandatory	Outputs fall back to 0	Fallback of other outputs according to configuration (1)(2)
Power distribution module (PDM)	Prohibited	Prohibited
Network interface module (NIM)	Prohibited	Prohibited
	(1) Fallback level set by the Modicon STB SPU 1••• software on standard I/O modules with a standard NIM. The STB SPU $1 \bullet \bullet \bullet$ software cannot be connected on basic NIM modules. (2) The fallback state is adjustable on standard output modules: - Fallback to 0 for digital modules - Fallback to 1 for digital modules - Fallback to any value on analog outputs - Hold last value on digital and analog outputs	

Operating environment

Modicon ${ }^{\circledR}$ STB devices comply with the following certifications (1):
■ UL

- CSA
- C-Tick
- GOST
- CE

■ FM Class I, division 2, groups A, B, C and D T4A @ $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$
\square ATEX is now available : ATEX 3G - II 3 G Ex nA IIC T4 Ta=0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
They benefit from merchant navy certifications issued by shipping classification societies:

- ABS (USA)
- BY (France)
- DNV (Norway)
- GL (Germany)
- LR (Great Britain)
- RINA (Italy)
- RMRS (IEC, pending)

They are designed for use in industrial environments of pollution class 2, in applications of over voltage category II (as defined in publication IEC 60664-1) and at altitudes of up to 2000 m , without reduction in load.

General environmental specifications

Parameter		Specifications
Protection		IP 20, Class 1. Ref. EN 61131-2
Operating temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to 60 (32 to 140)
		-25 to 70 (-13 to 158) (2)
Storage temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-40 to 85 (-40 to 185)
Maximum relative humidity		95% relative humidity at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{C}\right)$ (without condensation)
Sinusoidal vibration	Hz	10 to 58 at $\pm 0.35 \mathrm{~mm}$ 58 to 150 at 5 g on a 15 mm DIN rail 58 to 150 at 3 g on a 7.5 mm DIN rail
Shock	g	30 peak for 11 ms , semi-sinusoidal wave for 3 shocks per axis. Ref. IEC 88 , reference 2-27

(1) Certifications for all automation products (see page 122).
(2) Temperature range available on certain Modicon STB modules. See the specifications pages.

Note: restrictions on power supply voltage. The power supply voltage of NIM's modules, STB XBE 1100/1300, STB CPS 2111, STB PDT 3100 modules, and any external power supply are limited as follow, depending on the operating temperature range:

- range -25 to $0^{\circ} \mathrm{C}\left(-13\right.$ to $\left.32^{\circ} \mathrm{F}\right)$: the power supply voltage range is --. 20.4 to 30 V .
- range 0 to $60^{\circ} \mathrm{C}$ (32 to $140^{\circ} \mathrm{F}$): the power supply voltage range is $=19.2$ to 30 V .
- range 60 to $70^{\circ} \mathrm{C}\left(140\right.$ to $\left.158^{\circ} \mathrm{F}\right)$: the power supply voltage range is -- 19.2 to 26.5 V .

Selection guide
Modicon ${ }^{\circledR}$ STB distributed I/O solution
Network interface modules

Services used

Operating temperature (3)

Type of NIM module	Standard
Basic (5)	

Pages

Services used
Operating temperature (3)

| STB NIP 2212 | STB NCO 2212 |
| :--- | :--- |$|$ STB NCO 1010

Schnneider

Courtesy of Steven Engineering, Inc. - (800) 258-9200-sales@steveneng.com - www.stevenengineering.com

Data exchange between master PLC and Modicon ${ }^{\circledR}$ STB I/O modules

Modbus Plus ${ }^{\text {m] }}$ network	Fipio ${ }^{\text {® }}$ bus	InterBus ${ }^{\text {® }}$ bus	Profibus DP ${ }^{\text {T" }}$ bus	DeviceNet ${ }^{\text {m" }}$ network
Industrial LAN compliant with the Modbus Plus ${ }^{\text {T" }}$ standard	Open industrial field bus compliant with the FIP standard	InterBus® industrial field bus (generation 4)	Industrial field bus (Profibus DP ${ }^{\text {Tw }}$ V.0)	Network compliant with v.2.0 of the Open DeviceNet ${ }^{\text {T" }}$ Vendor Assoc. (ODVA)
Modbus Plus standard	FIP standard	Isolated RS 485	RS 485	-
1 Mbps	1 Mbps	500 Kbps	9.6 Kbps to 12 Mbps	125, 250 or 500 Kbps
Twisted pair	Shielded twisted pair	Shielded twisted pair	Shielded twisted pair	Twisted pair
32 per segment 64 maximum	32 per segment 128 maximum	512 slaves max. with 254 bus terminal blocks max.	125 slaves	64 slaves
450 m per segment 1800 m with 3 repeaters	1000 m per segment	400 m per segment of the remote bus 12.8 km for the remote bus 50 m for the installation remote bus	$\begin{aligned} & 1200 \mathrm{~m} \text { (} 9.6 \mathrm{Kbps}) \\ & 4800 \mathrm{~m} \text { with } 3 \text { repeaters } \\ & 200 \mathrm{~m} \text { (12 Mbps) } \\ & 800 \mathrm{~m} \text { with } 3 \text { repeaters } \end{aligned}$	1200 m
Standard NIM: 32 modules max extension segments max.	on 1 primary segment and 6	Standard NIM: 32 modules max Basic NIM: 12 modules max. on	on 1 primary segment and 6 1 primary segment	tension segments max.
$24 \mathrm{~V}=-\mathrm{not}$ isolated (19.2 to 30 V)				
Provides 5 V --- logic power to the I/O modules of a station (1200 mA)				
12 devices max. (2)				
- Global data - Peer-to-peer - Peer Cop	- Periodic I/O exchanges - Point-to-Point message - Use of standard profiles (FRD/ FSD/FED)	- Implicit exchange of process data - Logical addressing - Diagnostics	- Slave configuration - Configuration control - Read/write slave I/O data - Diagnostics on Profibus frames	- DeviceNet Object (Class ID3) - Connection Object (Class ID5) - Station Bus Object (Class ID101)
0 to $60^{\circ} \mathrm{C}$ (32 to $140^{\circ} \mathrm{F}$) (4)				

STB NMP 2212
STB NFP 2212
STB NIB 2212
STB NDP 2212
STB NDN 2212 STB NIB 1010 STB NDP 1010

STB NDN 1010

Introduction

The range of NIM network interface modules comprises 4 basic NIM modules and 7 standard NIM modules
Each module is dedicated to a specific network or bus：

Network or bus	Basic network interface module	Standard network interface module
Ethernet network	-	STB NIP 2212
CANopen bus	STB NCO 1010	STB NCO 2212
Modbus Plus $^{\text {Ta }}$ network	-	STB NMP 2212
Fipio $^{\circledR}$ bus	-	STB NFP 2212
INTERBus $^{\circledR}$ bus	STB NIB 1010	STB NIB 2212
${\text { Profibus } \text { DP }^{\text {Tw }} \text { bus }}^{\text {DeviceNet }}$ network	STB NDP 1010	STB NDN 1010

STB Neゃ ゃゃゃ・ references include a power supply connector of each type：one screw－type connector and one spring－type connector．

Power supply for network interface modules

Network interface modules are powered by an external 24 V －－－power supply．
This voltage is converted to 5 V －－－to provide logic power to the I／O modules of the main Modicon ${ }^{\circledR}$ STB segment．
This built－in 5 V logic power supply provides a maximum current of 1.2 A ．
For operations in extended temperature ranges，see page 22.
This current can be increased in each segment of an STB CPS 2111 auxiliary power supply that also provides a maximum current of 1．2 A．For operations in extended temperature ranges，see page 26.
The STB CPS 2111 should be associated with an STB PDT •10• power supply module．

Logic power for the I／O modules in each extension segment is provided by the BOS bus extension module STB XBE 1300 placed at the beginning of these segments． See page 26.

INTERBus ${ }^{\circledR}$ STB NIB 2212/1010 interface modules

Description

Network interface modules STB Nee 2212/1010
The front panel of the STB N \bullet 2212/1010 network interface modules has the following features:

1 A connector to connect the station to the fieldbus. See photos of different connector types on pages 18 and 19 and specifications on page 23.
2 - All NIM modules except InterBus ${ }^{\circledR}$ network interface modules: Two rotary node addressing selectors on the bus or the network

- INTERBus ${ }^{\circledR}$ STB NIB 2212/1010 network interface modules: One 9-way female SUB-D connector to connect the outgoing bus cable
3 An external 24 V -- power supply connector for the removable screw-type (STB XTS 1120) or spring-type (STB XTS 2120) terminals. External Phaseo ${ }^{\circledR}$ power supplies. See page 6.
4 An LED display block indicating the different states of the station on the bus: power, communication, send/receive data, detected errors, etc.

Indication	Basic NIM modules	Standard NIM modules
Station status: auto-configuration, operational, detected error, etc. (1)	Green RUN LED	Green RUN LED
Power supply: NIM powered up, internal 5 V operational	Green PWR LED	Green PWR LED
Module detected error (2)	Red ERR LED	Red ERR LED
1 to 3 LED status indicators	Depending on bus/ network	Depending on bus/ network
Test mode (3)	-	Yellow Test LED

5 A color-coded identification stripe: yellow
6 A screw for releasing the STB Nee 2212/1010 module from the DIN rail. The NIM module can be removed from the station even if the product is assembled. Simply remove the PDM and then turn this screw a quarter turn.
7 A slot for a removable SIM card STB XMP 4440 (only on STB Nee 2212 standard NIM modules)
8 Standard NIM module: Access flap for the Reset button (4) and the port used to connect a station setup and configuration PC or HMI terminal (read/write data). Can also be used to update the firmware for the network interface module (5). Basic NIM module: Access flap for the Reset button (4) and the port used to connect a PC used only for updating the firmware of the network interface module.

The network interface modules are supplied with:

- An English language mini CD-ROM that contains supporting documentation, a label template and one exchange file per network type
- An STB XMP 1100 bus terminator that is mounted directly on the DIN rail.

The STB SUS 8800 CD-ROM contains specific documentation for each of the 11 network interface modules in 5 languages. These documents can also be downloaded from www.schneider-electric.us.
(1) RUN is on permanently if the module is operational and flashes in various ways in the other states.
If RUN flashes on startup, the NIM module is in the auto-configuration phase.
If RUN flashes for a long time, there is a detected fault on the station. For information about status indications for the NIM module and the station, refer to the "Network interface module applications guide" for the specific network, included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.
(2) ERR is off when the station is OK. Otherwise, ERR flashes or is lit.
(3) Test LED off: station OK. Test LED on: backup of parameters to internal memory or SIM card in progress. Test LED flashing: station in Test mode.
(4) Pressing the Reset button for 4 seconds restores the station to the factory configuration or the configuration contained on the SIM card.
(5) Firmware update of NIM modules available at www.schneider-electric.us.

Network interface modules

Network interface modules

STB NIP 2212

STB NMP 2212

STB NDN 2212/1010

Network interface modules (1)				
Network or bus	Range	Supply voltage	Reference	Weight kg
Ethernet network	Standard	$24 \mathrm{~V}=-$	STB NIP 2212	0.130
CANopen bus	Standard	$24 \mathrm{~V}=$	STB NCO 2212	0.135
	Basic	$24 \mathrm{~V}=-$	STB NCO 1010	0.135
Modbus Plus ${ }^{\text {™ }}$ network	Standard	$24 \mathrm{~V}=-$	STB NMP 2212	0.145
Fipio ${ }^{\text {® }}$ bus	Standard	$24 \mathrm{~V}=-$	STB NFP 2212	0.145
InterBus ${ }^{\text {® }}$ bus	Standard	$24 \mathrm{~V}=-$	STB NIB 2212	0.155
	Basic	$24 \mathrm{~V}=-$	STB NIB 1010	0.155
Profibus DP ${ }^{\text {"w }}$ bus	Standard	$24 \mathrm{~V}=-$	STB NDP 2212	0.140
	Basic	$24 \mathrm{~V}=-$	STB NDP 1010	0.140
$\overline{\text { DeviceNet }{ }^{\text {tw }} \text { network }}$	Standard	$24 \mathrm{~V}=-$	STB NDN 2212 (2)	0.140
	Basic	$24 \mathrm{~V}=-$	STB NDN 1010 (2)	0.140

Separate parts	Type	Reference	Weight kg
Description	Screw-type	STB XTS 1111	-
DeviceNet removable terminals 5 -way	Spring-type	STB XTS 2111	-

 (3)

External 24 V $=-$ SELV power supply	-	See page 121	-
Configuration software (3)		See page 101	-
Magelis ${ }^{\text {® }}$ communication terminal XBT connection cable (3)	See page 109	-	
RS 232C shielded twisted pair 8-way HE 13/ 9-way SUB-D (length 2 m) (3) (4)	Configuration PC	STB XCA 4002	0.210
USB SUB-D cable	Configuration PC with USB port requires STB XCA 4002 (4)	SR2 CBL 06	0.185
User documentation	Multilingual on CD-ROM (English, French, German, Spanish and Italian)	STB SUS 8800	-
Bus terminator	Also supplied with the NIM network interface module	STB XMP 1100	-

STB NIB 2212/1010
(1) Network interface modules are supplied with:

- A suitable power supply connector
- Documentation in English on mini CD-ROM and bus terminator (STB XMP 1100)
(2) DeviceNet 5-way removable terminals STB XTS •111, to be ordered separately
(3) Standard modules only
(4) Supplied with STB SPU $1 \bullet \bullet \bullet$ configuration software. See page 101.

	Bus and netw	ork connection acces	sories		
	CANopen bus (1)				
	Description	Fitted at ends	Length	Reference	Weight
	IP 20 CANopen tap junction	4 SUB-D ports. Screw terminals for connection of trunk cables. Line termination.		TSX CAN TDM4	0.196
' 1	CANopen preformed cordsets	Standard, C \in marking: low smoke emission. Halogen-free	0.3 m	TSX CAN CADD03	0.091
	One 9 -way female SUB-D connector at	Flame-retardant (IEC 60332-1)	1 m	TSX CAN CADD1	0.143
	each end		3 m	TSX CAN CADD3	0.295
			5 m	TSX CAN CADD5	0.440
		Standard, UL certification,	0.3 m	TSX CAN CBDD03	0.086
		(IEC 60332-2)	1 m	TSX CAN CBDD1	0.131
			3 m	TSX CAN CBDD3	0.268
			5 m	TSX CAN CBDD5	0.400
	Ethernet network	(1)			
	Description	Fitted at ends	Length	Reference	Weight kg
	Straight shielded twisted pair cables	2 RJ45 connectors to connect to data terminal equipment	2 m	490 NTW 00002 (2)	-
	for connecting hubs and switches	(DTE)	5 m	490 NTW 00005 (2)	-
490 NTW 000			12 m	490 NTW 00012 (2)	-
			40 m	490 NTW 00040 (2)	-
			80 m	490 NTW 00080 (2)	-
	Modbus Plus"' ${ }^{\text {ne }}$	etwork			
	Description	Use		Reference	Weight kg
	9-way male SUB-D connector	Connection of the Modbus Plus connector		AS MBKT 085	
	Modbus Plus tap	IP 20 junction box for T-connections		990 NAD 23000	0.230
AS MBKT 085		IP 65 junction box for T-connections, supports one RJ45 connector on front panel		990 NAD 23010	0.650
		IP 20 T-connector with two RJ45 connectors for Modbus Plus cable and one 9-way SUB-D connector for devices connected via T -connection		170 XTS 02000	0.260
	Description	Use From To	Length	Reference	Weight kg
	Modbus Plus drop cables	$\begin{array}{ll}\text { IP } 20 & \text { IP } 20 \\ \text { 170XTS } 020 & 00 \\ \text { 170XTS } 02000\end{array}$	0.25 m	170 MCl 02010	-
		T-connector T -connector	1 m	170 MCI 02036	-
			3 m	170 MCl 02120	-
			10 m	170 MCl 02080	-
		STB NMP 2212990 NAD 23000 network tap		990 NAD 21110	0.530
		interface module	6 m	990 NAD 21130	0.530
	(1) For the complete refer to the "Autom catalog. (2) Cable compliant For UL- and CSA	range of CANopen and Ethernet ation \& Control. Machines \& inst with EIA/TIA-568 Category 5 and 22.1-certified cables, add letter U	ables an allations EC 1180 to end of	connection accessorie h industrial communi N 50173 Class D. ference.	s, please cations"

	Bus and network connection accessories (continued)					
	Fipio ${ }^{\text {® }}$ bus					
	Description	Use	Specification		Reference	Weight kg
	Female connectors (9-way SUB-D)	On STB NFP 2212 network interface module	Black poly carbonate IP 20		TSX FP ACC 12	0.040
			Zamak (1)		TSX FP ACC 2	0.080
TSX FPACC 12	Bus connection unit	Trunk cable tap link	Black poly carbonate IP 20		TSX FP ACC 14	0.120
-0			Zamak IP 65 (1)		TSX FP ACC 4	0.660
	Description	Use		Length	Reference	Weight kg
TSX FPACC 4	Drop cables	$8 \mathrm{~mm}, 2$ shielded twisted pairs 150 W		100 m	TSX FP CC 100	5.680
TSX FPACC 14		For standard environments		200 m	TSX FP CC 200	10.920
				500 m	TSX FP CC 500	30.000
	Daisy chain cables	$8 \mathrm{~mm}, 2$ shielded twisted pairs 150 W For standard environments		100 m	TSX FP CA 100	5.680
				200 m	TSX FP CA 200	10.920
				500 m	TSX FP CA 500	30.000
	InterBus ${ }^{\text {® }}$ bus					
	Description	Use		Length	Reference	Weight kg
	Installation remote bus cables	Pre assembled cables to connect 2 network interface modules		0.110 m	170 MCI 00700	-
				1 m	170 MCl 10000	-
	Branch interface	Remote bus to installation remote bus branch connection		-	170 BNO 67100	-
	Remote bus cables	-		100 m	TSX IBS CA 100	-
				400 m	TSX IBS CA 400	-
	Profibus DP ${ }^{\text {m" }}$ bus					
	Description	Use		Length	Reference	Weight kg
	Connectors for STB NDP 2212 network interface module	Line terminator		-	490 NAD 91103	-
		Intermediate connection		-	490 NAD 91104	-
		Intermediate connection with terminal port		-	490 NAD 91105	-
	Profibus DP connection cables	-		100 m	TSX PBS CA 100	-
				400 m	TSX PBS CA 400	-
	DeviceNet ${ }^{\text {m/ }}$ network					
	Description	Use	Type		Reference	Weight kg
	Female connectors (5-way)	For STB NDN 2212 network interface module	Screw-type		STB XTS 1111	-
			Spring-type		STB XTS 2111	-

Specifications, references

Modicon ${ }^{\circledR}$ STB
distributed I/O solution
Internal bus extension modules

Specifications, auxiliary and bus extension power supplies					
Type of module		24 V -./5 V =auxiliary power supply STB CPS 2111	EOS internal bus extension STB XBE 1100	BOS internal bus extension STB XBE 1300	Bus extension to external CANopen devices STB XBE 2100
Power supply	v	$\begin{aligned} & 24= \\ & \text { not isolated } \end{aligned}$	-	$\begin{aligned} & 24=- \\ & \text { not isolated } \end{aligned}$	-
Operating temperature, horizontal mounting	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$\begin{array}{\|l\|} \hline-25 \text { to } 70 \\ (-13 \text { to } 158)(1) \\ \hline \end{array}$	$\begin{aligned} & -25 \text { to } 70 \\ & (-13 \text { to } 158) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-25 \text { to } 70 \\ (-13 \text { to } 158)(1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \text { to } 60 \\ (32 \text { to } 140) \\ \hline \end{array}$
Current consumption on 5 V -.. logic bus	mA	-	25	-	100
Connectors Power supply		2 removable pins	-	2 removable pins	-
Interface		-	Firewire	Firewire	5 removable pins
Input current	mA	400	-	400	-
Voltage range	V	19.2 to 30 -- (1)	-	19.2 to 30 -- (1)	-
Output voltage	V	$5.25-\ldots \pm 0.21 \%$	-	$5.25- - \pm 0.21 \%$	-
Output current	A	1.2 at $5 \mathrm{~V}=-\mathrm{c}$ (2)	-	1.2 at $5 \mathrm{~V}=-\mathrm{c}$ (2)	-
Isolation		No			
Immunity to electromagnetic disturbance (EMC)		Yes according to IEC 61131-2			

STB XBE 1100

STB XBE 1300

The STB CPS 2111 should be associated with an STB PDT •10॰ power supply module.

References			
Description	Use with standard STB	Reference	Weight kg
EOS internal bus extension module	Installed at the end of the segment (except for the last segment on the station)	STB XBE 1100 (3)	-
BOS internal bus extension module	Installed at the beginning of each extension segment	STB XBE 1300 (4)	-
Bus extension module to external CANopen devices	Installed at the end of the last segment to connect standard CANopen devices	STB XBE 2100	-
Auxiliary power supply			
Description	Content	Reference	Weight kg
$24 \mathrm{~V}=/ 5 \mathrm{~V}=1.2 \mathrm{~A}$ auxiliary power supply (5)	screw-type and spring-type	STB CPS 2111 K	-
	Module only	STB CPS 2111	-

STB XBE 2100

STB CPS 2111

(1) STB CPS 2111 and STB XBE 1300 modules:

- range -25 to $0^{\circ} \mathrm{C}\left(-13\right.$ to $\left.32^{\circ} \mathrm{F}\right)$: the power supply voltage range is -20.4 to 30 V .
- range 0 to $60^{\circ} \mathrm{C}$ (32 to $148^{\circ} \mathrm{F}$): the power supply voltage range is -19.2 to 30 V .
- range 60 to $70^{\circ} \mathrm{C}\left(148\right.$ to $\left.158^{\circ} \mathrm{F}\right)$: the power supply voltage range is -- 19.2 to 26.5 V .
(2) 900 mA for operating temperatures in the range 60 to $70^{\circ} \mathrm{C}$.
(3) Replaces EOS extension module STB XBE 1000.
(4) Replaces BOS extension module STB XBE 1200.
(5) Power supply for the I/O module logic, in addition to the $5 \mathrm{~V}=1.2 \mathrm{~A}$ power supplies integrated in the NIM network interface module and the BOS bus extension module. Installed in the primary segment or the extension segments.

Bus extensions: mandatory separate parts					
Description		Used for		Reference	Weight kg
Module bases (width 18.4 mm)		STB XBE 1100		STB XBA 2400	0.028
		STB XBE 1300		STB XBA 2300	0.033
		STB XBE 2100		STB XBA 2000	0.028
		STB CPS 2111		STB XBA 2100	0.033
Description	Used for	Type	Sold in lots of	Reference	Weight kg
2-way removable STB XBE 1200 terminals for 24 V ... supply (1)		Screw-type	10	STB XTS 1120	-
		Spring-type 10		STB XTS 2120	-
5-way removable terminals (1)	STB XBE 2100	Screw-type	20	STB XTS 1110	0.006
		Spring-type	20	STB XTS 2110	0.006
Description		Length		Reference	Weight kg
Station bus extension cables		0.3 m		STB XCA 1001	-
		1.0 m		STB XCA 1002	-
		4.5 m		STB XCA 1003	-
		10.0 m		STB XCA 1004	-
		14.0 m		STB XCA 1006	-
Bus extensions: optional separate parts					
Description	Used for	Type		Reference	Weight kg
Keying pin	Modules	-	60	STB XMP 7700	-
	Removable terminals	-	96	STB XMP 7800	-
Usercustomizable labels (2)	I/O modules and bases	-	25 sheets	STB XMP 6700	-
2.5 mm insulated screwdriver	Removable screw terminals	Chrome vanadium steel	-	STB XTT 0220	-

CANopen extension connection

STB XBE 2100: schematic connection diagram (3)
The CANopen interface fieldbus is located on the front of the STB XBE 2100 extension module.

The pinout should be as indicated in the table below:

$1 \square$	Pin	Signal
N	1	CAN earth ground (0 V)
2 - N	2	CAN low bus signal
$3 \square$ N	3	Optional CAN shielding
$4 \square$	4	CAN high bus signal
$5 \square$	5	No connection (4)

[^0]
Introduction

Basic power distribution modules (PDM) (STB PDT •105) provide power for the I/O module sensors and actuators (1) via the same bus 3. See page 29.

Two basic PDMs are available:
■ The STB PDT 3105 module is dedicated to providing power to the I/O module sensors and actuators requiring a 24 V -.- power supply.
■ The STB PDT 2105 module is dedicated to providing power to the I/O module sensors and actuators requiring a $115 / 230 \mathrm{~V} \sim$ power supply.
Each module has 1 removable fuse.

Standard power distribution modules (STB PDT •100) provide power separately for the I/O module sensors and actuators (1) via the sensor bus 1 and the actuator bus 2. See page 29.

Two standard PDMs are available:
■ The STB PDT 3100 module is dedicated to providing power separately to the I/O
module sensors and actuators requiring a $24 \mathrm{~V}=-$ power supply.
■ The STB PDT 2100 module is dedicated to providing power separately to the I/O
module sensors and actuators requiring a $115 / 230 \mathrm{~V} \sim$ power supply.
Each module has 2 removable fuses.
(1) One power distribution module can supply power to both digital and analog I/O modules simultaneously.

Connecting the power supplies
 Three separate power supplies

Configuration with standard PDM
This configuration allows:

- Disconnection of the I/O power supply while maintaining the power supply to the network interface module (NIM) and thus to the machine bus (for example, in a NIM InterBus ${ }^{\circledR}$ configuration).
- Isolation of the output power from the inputs to increase immunity to electromagnetic interference.
■ Power supply independent of the outputs, enabling connection of a Preventa ${ }^{\text {™ }}$ safety module. If these outputs are disconnected, the inputs continue to be managed.

Separate NIM module and I/O power supplies

This configuration allows disconnection of the I/O power supply while maintaining the power supply to the NIM module and thus to the machine bus (for example, in a NIM InterBus configuration).

One single power supply

Configuration with basic PDM
Low-cost configuration with a single power supply for the NIM module, sensor bus, and actuator bus.

Power distribution modules

Choice of PDM based on I/O modules								
Power distribution module	Voltage	STB I/O modules						STB bus extension modules (1)
		Digital (d Inputs	rete) Outputs Solid state	Relay	Analog Inputs	Outputs	App. specific	
STB PDT 3100	24V=.	DDI 3230 DDI 3420 DDI 3610 DDI 3425 DDI 3615 DDI 3725	DDO 3200 DDO 3230 DDO 3410 DDO 3600 DDO 3415 DDO 3605 DDO 3705	$\begin{aligned} & \text { DRC } 3210 \\ & \text { DRA } 3290 \end{aligned}$	AVI 1255 AVI 1275 AVI 1270 AVI 0300 AVI 1400 ACI 1225 ACI 1230 ACI 0320 ACI 8320 ACI 1400 ART 0200	AVO 1255 AVO 1265 AVO 1250 AVO 0200 AVO 0120 ACO 1225 ACO 1210 ACO 0220	EPI 1145 EPI 2145 EHC 3020	XBE 1100 XBE 1300 XBE 2100 XBE 1000 XBE 1200
STB PDT 2100	$115 \mathrm{~V} \sim$	DAI 5230 DAI 5260	$\begin{aligned} & \text { DAO } 8210 \\ & \text { DAO } 5260 \end{aligned}$	-	-	-	-	
	$230 \mathrm{~V} \sim$	DAI 7220	DAO 8210	-	-	-	-	
STB PDT 3105	24 V -	DDI 3230 DDI 3420 DDI 3610 DDI 3425 DDI 3615	$\begin{aligned} & \text { DDO } 3200 \\ & \text { DDO } 3230 \\ & \text { DDO } 3410 \\ & \text { DDO } 3600 \\ & \text { DDO } 3415 \\ & \text { DDO } 3605 \end{aligned}$	$\begin{aligned} & \text { DRC } 3210 \\ & \text { DRA } 3290 \end{aligned}$	AVI 1255 AVI 1275 AVI 1270 AVI 0300 AVI 1400 ACI 1225 ACI 1230 ACI 0320 ACI 8320 ACI 1400 ART 0200	AVO 1255 AVO 1265 AVO 1250 AVO 0200 AVO 0120 ACO 1225 ACO 1210 ACO 0220	$\begin{aligned} & \text { EPI } 1145 \\ & \text { EPI } 2145 \\ & \text { EHC } 3020 \end{aligned}$	
STB PDT 2105	$115 \mathrm{~V} \sim$	$\begin{aligned} & \text { DAI } 5230 \\ & \text { DAI } 5260 \end{aligned}$	$\begin{aligned} & \text { DAO } 8210 \\ & \text { DAO } 5260 \end{aligned}$	-	-	-	-	
	$230 \mathrm{~V} \sim$	DAI 7220	DAO 8210	-	-	-	-	

(1) STB bus extension modules can be connected to any PDM.

(STB PDT •100 standard module only)
(STB PDT •100 standard module only)

Description

The front panel of the STB PDT $\bullet 10 \bullet$ power distribution modules features:
1 A slot for a user-customizable label
2 A status block with 2 display LEDs (STB PDT 2100/3100 standard modules only):

Indication	Basic PDM modules	Standard PDM modules
Sensor bus power supply (1)	-	Green IN LED
Actuator bus power supply (1)	-	Green OUT LED

3 A color-coded module identification stripe (red for $115 / 230 \vee \sim$, blue for $24 \vee-$)
4 A connector for removable screw-type terminals (STB XTS 1130) or spring-type terminals (STB XTS 2130) used to connect:

- The sensor power supply for STB PDT 2100/3100 standard modules
- The sensor/actuator power supply for STB PDT 2105/3105 basic modules

5 A connector for removable screw-type terminals (STB XTS 1130) or spring-type terminals (STB XTS 2130) used to connect the actuator power supply (STB PDT 2100/3100 standard module only)
6 An STB XBA 2200 mounting base, width 18.4 mm , featuring:

- A slot for a user-customizable label 7
- A captive grounding screw 8

The STB SUS 8800 CD-ROM contains two documentation sets for the power distribution modules in 5 languages:
■ System Hardware Components Reference Guide

- System Planning and Installation Guide

These documents can also be downloaded from www.schneider-electric.us.

IN/OUT LED off: No external power supply or removable fuse inside the PDM has blown. Refer to the "System Hardware Components Reference Guide" included on the STB SUS 8800 CD-ROM or available from our web site: www.schneider-electric.us.

Power distribution modules

Power distribution modules, specifications					
Module type		STB PDT 3100	STB PDT 2100	STB PDT 3105	STB PDT 2105
Range		Standard		Basic	
Supply voltage	V	24 -.- (1)	115/230 ~	24 --	115/230 ~
Operating temperature, horizontal mounting	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & -25 \text { to } 70 \\ & (-13 \text { to } 158)(1) \end{aligned}$	-25 to 60 (-13 to 148)		
Maximum current	A	4 (3)	$\begin{aligned} & 5 \text { to } 30^{\circ} \mathrm{C} \\ & \left(41 \text { to } 86^{\circ} \mathrm{F}\right) \\ & 2.5 \text { to } 60^{\circ} \mathrm{C} \\ & \left(36.5 \text { to } 148^{\circ} \mathrm{F}\right) \end{aligned}$	-	-
	A	8 (3)	$\begin{aligned} & 10 \text { to } 30^{\circ} \mathrm{C} \\ & \left(50 \text { to } 86^{\circ} \mathrm{F}\right) \\ & 5 \text { to } 60^{\circ} \mathrm{C} \\ & \left(41 \text { to } 148^{\circ} \mathrm{F}\right) \end{aligned}$	-	-
	A	6 to 12 according to derating (3)	-	$\begin{aligned} & 4 \text { to } 30^{\circ} \mathrm{C} \\ & 2.5 \text { to } 60^{\circ} \mathrm{C} \end{aligned}$	4
Sensor/actuator bus voltage range	V	19.2 to 30 --- (2) (3)	85 to $265 \sim$ (4)	19.2 to 30 --	85 to $265 \sim$
Hot swapping		No			
Nominal consumption	mA	0 on 5 V --- logic power supply			
Reverse polarity protection		Yes, on the actuator bus	-	Yes, on the actuator bus	-
Built-in overcurrent protection For inputs		By a 5 A time-lag fuse (6)			
For outputs		By a 10 A time-lag fuse (6)		By a 5 A time-lag fuse (6)	
Maximum current on the grounding terminal	A	30 for 2 minutes			
Voltage-detection thresholds		$\geqslant 15 \mathrm{~V} \pm 1 \mathrm{~V}=$	$>70 \mathrm{~V} \pm 5 \mathrm{~V}$	-	
		$<15 \mathrm{~V} \pm 1 \mathrm{~V}$--	$<50 \mathrm{~V} \pm 5 \mathrm{~V} \sim$	-	
Mounting base (included in kits)		STB XBA 2200 width 18.4 mm			

(1) Use 24 V -.- safety extra low voltage (SELV) external power supplies
(2) STB PDT 3100 module only:

- range -25 to $0^{\circ} \mathrm{C}\left(-13\right.$ to $32^{\circ} \mathrm{F}$): the power supply voltage range is --- 20.4 to 30 V .
- range 0 to $60^{\circ} \mathrm{C}$ (32 to $148^{\circ} \mathrm{F}$): the power supply voltage range is --- 19.2 to 30 V .
- range 60 to $70^{\circ} \mathrm{C}\left(148\right.$ to $\left.158^{\circ} \mathrm{F}\right)$: the power supply voltage range is --. 19.2 to 26.5 V .
(3) Take into account the total input and output currents: combined current.

Maximum combined
current (A)

(4) DC power supplies can be shared or separate, or shared with the $24 V=$ power supply of the network interface module.
(5) AC power supplies for a given distribution module from a 3-phase transformer must be connected at the same phase.
(6) Built-in fuse on the power distribution module. Can be replaced with the STB XMP 5600 fuse kit.

STB XBA 2200

STB XTS 1130

STB PDT 3100

STB XTS 2130

STB XSP 3000

STB XSP 3010/3020

References
The STB PDT•10K reference kit includes: screw-type connectors, spring-type connectors and mounting base.

Power distribution modules: connector kits				
Power supply type Voltage	Type	Reference	Weight $\mathbf{k g}$	
$-=$	24 V	Standard	STB PDT 3100 K	0.130
		Basic	STB PDT 3105 K	0.130
\sim	Standard	STB PDT 2100 K	0.129	
		Basic	STB PDT 2105 K	0.129

Power distribution modules:modules only Power supply type Voltage	Type	Reference	Weight $\mathbf{k g}$	
$-=$	24 V	Standard	STB PDT 3100	0.130
		Basic	STB PDT 3105	0.130
\sim	Standard	STB PDT 2100	0.129	
		Basic	STB PDT 2105	0.129

Replacement and optional parts					
Description	Used for	Sold in lots of	Reference	\quad	Weight
---:					
kg					

Removable	Screw-type	10	STB XTS 1130	0.006
terminals (2-pin) (1)	Spring-type	10	STB XTS 2130	0.006
Keying pins	Keying between the power distribution module and its base (sold in lots of 60)	-	STB XMP 7700	-
	Keying between the power distribution module and removable terminals (sold in lots of 24) (2)	-	STB XMP 7810	-
User-customizable label sheets (3)	Bases and modules	25	STB XMP 6700	-
Grounding kit	Grounding for shielded cables. Kit comprises 1 bar (1 m) and 2 lateral supports	1	STB XSP 3000	-
Terminals for grounding kit	Cables with a cross-section of 1.5 to $6 \mathrm{~mm}^{2}$	10	STB XSP 3010	-
	Cables with a cross-section of 5 to $11 \mathrm{~mm}^{2}$	10	STB XSP 3020	-
Insulated screwdriver, 2.5 mm	Screw-type removable terminals	-	STB XTT 0220	-

Phaseo ${ }^{\circledR}$ regulator supplies - single phase switching

Output voltage	Line input voltage 47 to 63 Hz	Nominal power	Nominal current	Reference	Weight $\mathbf{k g}$
$\mathbf{2 4 V}-$.	100 to 240 V	48 to 240 W 2 to 10 A	See page 121	-	

Replacement parts	Reference	Weight kg	
Designation	Description	STB XMP 5600	-
Fuses	$5 \mathrm{~A}($ (lot of 5) and $10 \mathrm{~A}($ lot of 5$)$		

(1) All STB XTS ••・セ connectors can accommodate a flexible wire with a maximum crosssection of $1.5 \mathrm{~mm}^{2}$, including the cable end. For screw-type connectors, the maximum tightening torque is 0.25 Nm .
(2) Supplied with STB XTS 1130/2130 removable terminals.
(3) The template for the user-customizable labels is supplied on the documentation mini-CD-ROM.

Selection guide
Modicon ${ }^{\circledR}$ STB distributed I/O solution
Digital I/O modules

Base (included in kits)

Base (included in kits)	
Power Distribution Modules (PDM) (2)	Voltage

Isolation	$\frac{\text { Channel-to-bus }}{\text { Channel-to-channel }}$
Protection against	Reverse polarity Short circuit and overload Electronic protection of sensor power supply

(1) Adjustable with STB SPU 1•e configuration software.
(2) One Power Distribution Module (PDM) is required per voltage type.
(3) Horizontal mounting.

Selection guide (continued)
Modicon ${ }^{\circledR}$ STB distributed I/O solution
Digital I/O modules

Voltage	
Number of channels	
Outputs	$\frac{\text { Default logic }}{\text { Configurable logic }}$ Internal power supply for 3-wire actuators
Load current	Off-to-on Response time

Two connectors (6-way): STB XTS 1100 (screw-type)
or STB XTS 2100 (spring-type)
STB XBA 1000

$$
\begin{aligned}
& 24 \mathrm{~V}=- \\
& \hline \text { STB PDT 3100/3105 }
\end{aligned}
$$

$1500 \mathrm{~V}=-\mathrm{f}$ for 1 minute	
-	$500 \mathrm{~V}=-\mathrm{f}$ for 1 minute -

Protection against	Reverse polarity Short circuit and overload
Electronic protection of actuator power supply	

Operating temperature (5)

Module range

Type of module

Power Distribution Modules (PDM) (2)	Voltage Reference
Isolation	Channel-to-bus

Page

(1) Requires the STB SPU $1 \bullet \bullet \bullet$ configuration software.
(2) One Power Distribution Module (PDM) is required per voltage type.
(3) Built-in time-lag fuses on the Power Distribution Module (PDM).
(4) If an external power supply is used, 2.5 A time-lag fuses are recommended on each channel. (Fuses are to be supplied by the user.)
(5) Horizontal mounting.

Schneider

Courtesy of Steven Engineering, Inc. - (800) 258-9200-sales@steveneng.com - www.stevenengineering.com

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Digital I/O modules

Number of channels	
Sensor type	
Inputs	$\frac{\text { Default logic }}{}$Configurable logic Type (IEC/EN 61131-2) Internal power supply for 3-wire sensors
Response time	Off-to-on On-to-off
Filter time	

Connection (connectors included in kits)

Base (included in kits)

Power Distribution Modules (PDM) (2)	Voltage

Isolation	Channel-to-bus Channel-to-channel

Protection against	Reverse polarity Short circuit and overload Electronic protection of sensor power supply

Operating temperature (3)

Module range

Type of module

Page

(1) Requires the STB SPU $1 \bullet \bullet \bullet$ configuration software.
(2) One Power Distribution Module (PDM) is required per voltage type.
(3) Horizontal mounting.

Modicon ${ }^{\circledR}$ STB distributed I/O solution Digital I/O modules

Introduction

Modicon ${ }^{\circledR}$ STB digital input/output modules include:

- Input modules

■ Solid state output modules

- Relay output modules

The basic digital I/O module offer includes:
■ 3 digital input modules:

- 4,6 , and $16 \times 24 \mathrm{~V}=$ input channels

■ 3 digital output modules:

- 4,6 , and $16 \times 24 \vee=$ output channels

The standard digital I/O module offer includes:

- 6 digital input modules:

ㅁ 2, 4, and $6 \times 24 \mathrm{~V}$-- input channels
$\square 2 \times 115 \mathrm{~V} \sim$ input channels (2 modules)
$\square 2 \times 230 \mathrm{~V} \sim$ input channels

- 6 solid state digital output modules:
$\square 2 \times 24 \mathrm{~V}=$ - output channels (2 modules)
- 4 and $6 \times 24 \mathrm{~V}$--- output channels
$\square 2 \times 115 \mathrm{~V} \sim$ output channels
$\square 2 \times 115 / 230 \vee \sim$ output channels
■ 2 relay output modules:
$\square 2$ relays with $1 \mathrm{~N} / \mathrm{C}$ contact and $1 \mathrm{~N} / \mathrm{O}$ contact
- 2 relays with $1 \mathrm{C} / \mathrm{O}$ contact

Description

The front panel of digital I/O modules include:
1 A display block providing the following indication:

Indication	Basic I/O modules	Standard I/O modules
Module status: ready, pre-operational, operational	Green RDY LED	Green RDY LED
Module detected error (1)	$-(2)$	Red ERR LED
Status of each channel	Green LEDs IN1 to IN16 or OUT1 to OUT16 depending on module	Green LEDs IN1 to IN16 or OUT1 to OUT16 depending on module

2 A slot for a user-customizable label STB XMP 6700
3 A color-coded module identification stripe (See color codes on page 6.)
4 Two connectors for screw- or spring-type terminals
(1) RDY is on permanently if the module is operational and flashes differently in the other states. If ERR is on or flashing, the module is inoperative.
For information about module and channel status indication, refer to the "System Hardware Components Reference Guide" included on the STB SUS 8800 CD-ROM or available on our web site:www.schneider-electric.us.
(2) Basic I/O modules: A module detected error is indicated by the ERR LED on the station's Network Interface Module (NIM).

Description (continued)
Mandatory parts to be ordered separately or included in kits
I/O module bases in 3 widths depending on the module:

Module size	Width	Base reference
1	13.9 mm	STB XBA 1000
2	18.4 mm	STB XBA 2000
3	28.1 mm	STB XBA 3000

These bases have:
\square A slot for a user-customizable label STB XMP 6700 (1)
$\square 4$ locations for placing the module/base keying pins (1).
Removable terminals

Connector type 2 connectors per module)	5-way	6-way	18-way
Screw terminals	STB XTS 1110 (pack of 20)	STB XTS 1100 (pack of 20)	STB XTS 1180 (pack of 2)
Spring terminals	STB XTS 2110 (pack of 20)	STB XTS 2100 (pack of 20)	STB XTS 2180 (pack of 2)

These removable terminals have between 5 and 18 different ways of coding the module/connector keying pins (1).

Optional parts to be ordered separately
Mechanical keying pins and identifiers
These devices help ensure that each I/O module, base and wiring connectors are properly matched after dismantling or replacement.

Keying of module and base (1)	Keying of module and connectors (1)	Module identification (2)	Base identification (2)
STB XMP 7700	STB XMP 7800	STB XMP 6700	STB XMP 6700

The user-customizable labels STB XMP 6700 make it much easier to recognize I/O modules and their bases.

External cable shielding connector
This optional device allows quick and easy connection of the external cable shielding (1).

Connection and shielding kit Lateral supports and metal bar, length 1 m	STB XSP 3000
Cable clamp size 1 (pack of 10) for shielded cable with external diameter 1.5 to $6 \mathrm{~mm}^{2}$	STB XSP 3010
Cable clamp size 2 (pack of 10) for shielded cable with external diameter 5 to $11 \mathrm{~mm}^{2}$	STB XSP 3020
Digital input modules and digital output modules ($24 \mathrm{~V}--, 115 / 220 \mathrm{~V} \sim$ and 2 A	
relay) include an optional ground connecting accessory.	
For analog modules, it is advisable to use this device as it allows quick and easy	
connection of the external cable shielding (1).	

(1) To find out how to code the keying pins and how to use the EMC kit, refer to the System Planning and Installation Guide included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.
(2) Template file for printing labels on a laser printer (color or black and white) or manual marking with indelible felt pen: included on the mini CD-ROM supplied with each NIM network interface module or available on our web site: www.schneider-electric.us.

Digital I/O modules

Digital output module operating modes				
Output protection and reset following overload or short-circuit				
Modicon ${ }^{\text {® }}$ STB digital output module	Short-circuit and thermal overload protection	Actuator power supply protection	Reset	Diagnostics
Basic modules STB DDO 3415, 3605, 3705	Internal electronic	Via PDM fuse	On elimination of the detected fault	Per group of 2 channels
Standard modules STB DDO 3200, 3230 Actuator powered by the module	Internal electronic	Internal electronic	Userconfigurable (1)	Per channel
Standard modules STB DDO 3200, 3230 Actuator powered externally	Internal electronic	Via external fuse	Userconfigurable (1)	Per channel
Standard modules STB DDO 3410, 3600	Internal electronic	-	-	Per group of 2 channels
Standard modules STB DRC 3210, STB DRA 3290	External fuse	-	Userconfigurable (1)	-
Standard modules STB DAO 8210	External fuse	Via external fuse	Userconfigurable (1)	-
Standard modules STB DAO 5260	External fuse	-	Userconfigurable (1)	-

Behavior of digital output modules upon detected internal communication fault on the station or between PLC and NIM

Digital output STB module	Output fallback
Basic modules STB DDO 3415, 3605, 3705	0 (open output)
Standard modules STB DDO 3200, 3230, 3410, 3600 STB DRC 3210, STB DRA 3290 STB DAO 8210, STB DAO 5260	User-configurable (2)

(1) Reset is user-configurable: automatic on elimination of the detected fault (default factory configuration) or intentional by the PLC.

Each model is independently configurable. This operation requires the Advantys ${ }^{\text {m" }}$ STB SPU $1 \bullet \bullet \bullet$ configuration software.
The tripping data is transmitted to the PLC via the NIM network interface module.
(2) Fallback is user-configurable: to 0 (default factory configuration), to 1, or to "hold last value" for warm standby and hot standby applications. Each output channel of each module is independently configurable.
This operation requires the Advantys STB SPU $1 \bullet \bullet \bullet$ configuration software.

Hot swapping and cold swapping of output modules			
Swapping a module	Hot swap		Cold swap
	Basic NIM	Standard NIM (3)	Any type of NIM
Basic digital output module	The other I/O modules fall back to level 0 (1)	The other I/O modules remain operational (2)	I/O modules and Power Distribution Modules (PDM) can be removed from the station. The removable connectors make it easier to do this.
Standard digital output module not configured "mandatory"	Not applicable (1)	The other I/O modules remain operational (1) (2)	
Standard digital output module configured "mandatory"	Not applicable (1)	Output fallback according to configuration (2) (3) Station in pre-operational mode. The inputs are no longer updated on the network/ fieldbus.	
Power Distribution Module (PDM)	Illegal	Illegal	

(1) The STB SPU $10 \bullet$ configuration software cannot be connected to a basic NIM. Any basic or standard I/O module is reconfigured according to the default factory configuration.
(2) The STB SPU 1 •e configuration software can be connected via a standard NIM. Standard I/O modules can be configured. Basic modules are not configurable (default factory configuration only).
(3) For standard digital output modules, the fallback state is configurable:

- Fallback to level 0
- Fallback to level 1
- Fallback to predefined level of the output range for analog modules
- Hold last value

Modicon ${ }^{\circledR}$ STB
distributed I/O solution
Direct current digital input modules

Specifications of DC digital input modules									
Type of module			STB	DDI 3230	DDI 3425	DDI 3420	DDI 3615	DDI 3610	DDI 3725
Range				Standard	Basic	Standard	Basic	Standard	Basic
Number of channels				2	4		6		16
Nominal input values Voltage			V	24 --					
Type (IEC/EN 61131-2)				Type 2	Type 1+		Type 1		Type 3
Input limit values	Frequency		Hz						
	At state 1	Voltage	V	11 to $30=$			15 to $30=$		$11 \text { to } 30=$
		Min. current	mA	6 2.5	2.5		2		
	At state 0	Voltage	V	$-3 \text { to }+5=-$					
		Max. current	mA	2	1.2		0.5		1.5
Input voltage values	Permanent voltage		V	$30=-$					
	Absolute maximum voltage		V	56 -- for 1.3 ms , decaying pulse					
Typical input current (at $24 \mathrm{~V}-\mathrm{-}$)			mA	7.5	8		4.5		
Input logic	Default			Positive on each channel					
	User-configurable (1)			Positive or negative, selection by channel	-	Positive or negative, selection by channel	-	Positive or negative, selection by channel	-
Input response time	Off-to-on		ms	0.610 with 0.2 input filter time	3.5	0.925 with 0.5 input filter time	5.25	1.21	2.0
	On-to-off		ms	0.625 with 0.2 input filter time	3.8	1.35 with 0.5 input filter time	5.75	1.74	2.0
Swapping	Cold swap			Yes					
	Hot swap			Yes, depending on NIM and whether module is mandatory. See table on page 43					
Protection against reverse polarity				Yes					
Isolation	Between channels and logic bus		V	$\begin{aligned} & 2000=\text { for } \\ & 1 \text { minute } \end{aligned}$	1500 --- for 1 minute				
	Channel-to-channel		V	-					
Input protection				Resistor-limited					
Current supplied by the sensor Electronic short-circuit protection (SCP)			mA	100 per channel	50 per channel	100 per channel	-		
Input filter	Default		ms	1	3	1	5	1	
	User-configurable (1)		ms	1 0.20 0.50 1 2 4 8 16	-	1 0.50 1 2 4 8 16	-		
	Tolerance		ms	± 0.1	-	± 0.25	-		
I/O base (included in kits)				STB XBA 1000					XBT XBA 3000
Power Distribution Module (PDM)	Voltage		V	24 --					
	Model			STB PDT 3100/3105					
	Power supply protection			Integrated time-lag fuse on the PDM module (2)					
Operating temperature, horizontal mounting			${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & -25 \text { to } 70^{\circ} \mathrm{C} \\ & \left(-13 \text { to } 158^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \text { to } 60^{\circ} \mathrm{C} \\ \left(32 \text { to } 148^{\circ} \mathrm{F}\right) \end{array}$	$\begin{array}{\|l\|} \hline-25 \text { to } 70^{\circ} \mathrm{C} \\ \left(-13 \text { to } 158^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	$\begin{aligned} & 0 \text { to } 60^{\circ} \mathrm{C} \\ & \left(32 \text { to } 148^{\circ} \mathrm{F}\right) \end{aligned}$	-25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Current consumption on 5 V -.. logic bus			mA	55	45		45	55	100

(1) Requires the Advantys ${ }^{\text {T" }}$ STB SPU $1 \bullet \bullet \bullet$ configuration software
(2) Basic module: 5 A fuse

Standard module: 10A fuse

(1) Requires the Advantys ${ }^{\text {TM }}$ STB SPU 1••• configuration software
(2) Positive or negative, selection by channel
(3) With standard NIM module only
(4) For basic module STB DDO 3705: automatic reset per groups of 8 channels, 1 to 8 and 9 to 16
(5) $L=$ load inductance (H), I = load current (A), $F=$ switching frequency (Hz)
(6) Fallback state: hold last value, set to predefined value (0 or 1) on each channel individually
(7) Manual or automatic reset, configurable for standard output modules on a station equipped with a standard NIM module
(8) Standard modules: 10 A fuse; basic modules: 5 A fuse
(9) 2.5 A time-lag fuses recommended on each channel, supplied by the user

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Alternating current digital input modules

(1) Requires the Advantys ${ }^{\text {m" }}$ STB SPU $1 \bullet \bullet \bullet$ configuration software
(2) Basic NIM modules do not support hot swapping of input/output modules.
(3) Basic module: 5A fuse

Standard module: 10A fuse

Alternating current and relay digital output modules

Specifications of AC and relay output modules

Type of module		STB	DRC 3210	DRA 3290	DAO 5260	DAO 8210	
Range			Standard				
Number of channels			$2 \mathrm{C} / \mathrm{O}$	$2 \mathrm{~N} / \mathrm{C}$ and N / O	2		
Output nominal values	Voltage	V	24 ---, 115/230 ~		$115 \sim$	115/230 ~	
	Current per channel/contact	A	2 at $24 \mathrm{~V}=-$	7 at $24 \vee=$	2 at $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$		
			2 at $230 \mathrm{~V} \sim$	7 at $230 \mathrm{~V} \sim$	1 at $60^{\circ} \mathrm{C}\left(148^{\circ} \mathrm{F}\right)$		
Output logic	Default		Positive on both channels				
	User-configurable (2)		Positive or negative by channel				
Limit voltage	Permanent	V	5 to $30-$ - 20 to $250 \sim$		74 to 132 ~	20 to $265 \sim$	
	Absolute maximum	V	-		$132 \sim$	$\begin{aligned} & 300 \sim \text { for } 10 \mathrm{~s} \\ & 400 \sim \text { for } 1 \text { cycle } \end{aligned}$	
Response time	Off-to-on		5.25 ms	10 ms	$0.5 \sim$ period	10 ms	
	On-to-off		6.75 ms	10 ms	$0.5 \sim$ period	10.5 ms	
Switching capability		VA	600 (resistive load)	2100 (resistive load)	-		
Relay contact life	Mechanical		10^{6} operations		-		
	Electrical		10^{5} operations (resistive load at max. voltage and current)		-		
Swapping	Cold swap		Yes		mandatory. See table on page 43		
	Hot swap		Yes, depending on NIM and whether module is mandatory. See table on page 43				
Isolation	Between channels and logic bus	V	$1780 \sim$ for 1 minute				
	Channel-to-channel	V	$500 \sim$ for 1 minute		$1780 \sim$ for 1 minute	-	
	Logic bus to actuator bus	V	1500 --- for 1 minute		-		
Output surge protection (internal)			Yes, by GMOV (300 V rms, 385 V ---, 400 Joules max. for $20 \mu \mathrm{~s}$, 0.1 W max.) (1)		External 5 A fuse required	Transient voltage by varistance and RC	
Leakage current (at state 0)		mA	-		2 at $132 \mathrm{~V} \sim$ max.	$\begin{aligned} & 2.5 \text { at } 230 \mathrm{~V} \sim \\ & 2 \text { at } 115 \mathrm{~V} \sim \end{aligned}$	
Maximum peak current per relay/channel		A	Capacitive load of 20 at $\mathrm{t}=10 \mathrm{~ms}$		30 over 1 period 20 over 2 periods		
Minimum load current		mA	50		1	5	
Fallback on detected COM fault	Default state		2 relays de-energized		Both channels to 0		
	User-configurable (2)		Fallback state: hold last value or set to predefined value (0 or 1) on each channel individually				
Reset on detected COM fault	Default state		Manual: Reset by user required				
	User-configurable (2)		-		Manual or automatic reset		
I/O base (included in kits)			STB XBA $2000 \quad$ STB XBA 3000		STB XBA 2000		
Power Distribution Module (PDM)	Coil voltage	V	24 --		-		
	Model		STB PDT 3100/3105		STB PDT 2100/2105		
	Coil protection		10 A time-lag fuse on PDM module		-		
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to $60^{\circ} \mathrm{C}\left(-13\right.$ to $\left.148^{\circ} \mathrm{F}\right)(3)$		0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.148^{\circ} \mathrm{F}\right)$		
Current consumption on 5 V -.. logic bus		mA	55	55	70	45	

(1) For greater protection, an RC circuit, a freewheel diode or a GMOV peak limiter appropriate to the voltage should be mounted in parallel across the terminals of each actuator.
(2) Requires the Advantys ${ }^{\text {Tw }}$ STP SPU $1 \bullet \bullet \bullet$ configuration software.
(3) -25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ in the following conditions:
\square Only one N/O channel at any time, to be managed by the application. Example: control of both directions of motor travel

- Maximum load: 2 A for STB DRC 3210, 4 A for STB DRA 3290
\square Maximum supply voltage 24.5 V -.-

References

The references for input or output modules with connection kit include the following items:

- Suitable base for the module

■ "K" references: screw-type connectors and spring-type connectors
■ "KS" references: screw-type connectors
■ "KC" references: spring-type connectors

Basic digital input modules: connection kits					
Input voltage	Connectors	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$24 \mathrm{~V}=$	screw-type and spring-type	4	Type 1+	STB DDI 3425 K	0.111
		6	Type 1	STB DDI 3615 K	0.112
	screw-type	16	Type 3	STB DDI 3725 KS	0.086
	spring-type			STB DDI 3725 KC	

Standard digital input modules: connection kits Input voltage	Connectors	Number of channels	Compliance with IEC/EN $\mathbf{6 1 1 3 1 - 2}$	Reference	Weight
$\mathbf{k g}$					

Connection kits

References (continued)						
Basic digital output modules: connection kits						
Output voltage	Connectors	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$24 \mathrm{~V}=$	screw-type and	0.25A	4	Yes	STB DDO 3415 K	0.110
	spring-type		6	Yes	STB DDO 3605 K	0.114
	screw-type	0.5A	16	Yes	STB DDO 3705 KS	0.086
	spring-type				STB DDO 3705 KC	

Standard digital output modules: connection kits						
Output voltage	Connectors	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$24 \mathrm{~V}=$	screw-type and spring-type	0.5A	2	Yes	STB DDO 3200 K	0.112
		2A	2	Yes	STB DDO 3230 K	0.116
		0.5 A	4	Yes	STB DDO 3410 K	0.110
			6	Yes	STB DDO 3600 K	0.114

Standard relay output modules: connection kits						
Output voltage	Connectors	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$\begin{aligned} & 24 \mathrm{~V} \ldots \text { or } \\ & 115 / 230 \end{aligned}$	screw-type and	2A	2	Yes	STB DRC 3210 K	0.130
\sim (relay)	spring-type	7 A	2	Yes	STB DRA 3290 K	0.130

Standard triac output modules: connection kits

Output voltage	Connectors	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
115 V	screw-type and spring-	2A	$\begin{aligned} & 2 \\ & \text { (isolated) } \end{aligned}$	Yes	STB DAO 5260 K	0.067
115/ 230 V	type		2	Yes	STB DAO 8210 K	0.125

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Digital I/O modules
Modules only

STB DDI 3230

STB DDO 3200

STB DRC 3210

STB DRA 3290

References (continued)				
Basic digital input modules: modules only Input voltage	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight
$\mathbf{k g}$				

Standard digital input modules: modules only				
Input voltage	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$24 \mathrm{~V}=$	2	Type 2	STB DDI 3230	0.110
	4	Type 1+	STB DDI 3420	0.111
	6	Type 1	STB DDI 3610	0.112
115 V	2	Type 1	STB DAI 5230	0.120
115 V (external supply)	2 (isolated)	Type 1	STB DAI 5260	0.065
$230 \mathrm{~V} \sim$	2	Type 1	STB DAI 7220	0.122

Basic digital output modules: modules only					
Output voltage	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$24 \mathrm{~V}=$	0.25 A	4	Yes	STB DDO 3415	0.110
		6	Yes	STB DDO 3605	0.114
	0.5A	16	Yes	STB DDO 3705	0.086

Standard digital output modules: modules only

| Output
 voltage | Output
 current | Number of
 channels | Compliance
 with IEC/EN
 61131-2 | Reference | Weight
 $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathbf{2 4 ~ V ~ = - ~}$ | 0.5 A | 2 | Yes | STB DDO 3200 | 0.112 |
| | 2 A | 2 | Yes | STB DDO 3230 | 0.116 |
| | 0.5 A | 4 | Yes | STB DDO 3410 | 0.110 |
| | | 6 | Yes | STB DDO 3600 | 0.114 |

Standard relay output modules: modules only

Output voltage	Output current	Number of channels	Compliance with IEC/EN 61131-2	Reference	Weight kg
$\begin{aligned} & 24 \mathrm{~V}=\text { or } \\ & 115 / 230 \mathrm{~V} \sim \\ & \text { (relay) } \end{aligned}$	2A	2	Yes	STB DRC 3210	0.130
	7 A	2	Yes	STB DRA 3290	0.130

Standard triac output modules: modules only Output voltage	Output current Number of		
channels		\quad	Compliance
:---			
with IEC/EN			
$\mathbf{6 1 1 3 1 - 2}$	\quad Reference \quad	Weight	
---:			
$\mathbf{k g}$			

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Digital I/O modules
Separate parts

STB XBA 1000

STB XBA 2000

STB XBA 3000

STB DDI 3230
STB DDO 3200

STB DRC 3210

STB DRA 3290

References (continued)					
Mandatory separate parts (1)					
Description		Base width	For I/O modules	Reference	Weight kg
I/O bases		13.9 mm	STB DDI STB DDO	STB XBA 1000	0.024
		18.4 mm	$\begin{aligned} & \text { STB DAI } \\ & \text { STB DAO } \\ & \text { STB DRC } \end{aligned}$	STB XBA 2000	0.028
		28.1 mm	STB DRA	STB XBA 3000	0.048
Description	Specifications	Connection type	For I/O modules	Reference	Weight kg
Removable terminals Sold in lots of 20 (2)	6-way	Screw-type	STB DDI STB DDO	STB XTS 1100	0.006
		Spring-type	STB DDI STB DDO	STB XTS 2100	0.006
	5-way	Screw-type	STB DAI STB DAO STB DRC STB DRA	STB XTS 1110	0.006
		Spring-type	STB DAI STB DAO STB DRC STB DRA	STB XTS 2110	0.006
Removable terminals Sold in lots of 2(2)	18-way	Screw-type	$\begin{aligned} & \text { STB DDI } 3725 \\ & \text { STB DDO } 3705 \end{aligned}$	XBT XTS 1180	0.047
		Spring-type	STB DDI 3725 STB DDO 3705	STB XTS 2180	0.034

Optional separate parts Description	Used for	Sold in lots of	Reference	Weight $\mathbf{k g}$
Keying pins	Modules	60	STB XMP 7700	-
	Removable terminals	96	STB XMP 7800	-
User-customizable label sheets (3)	I/O bases and modules	25	STB XMP 6700	-

(1) Except for module/base/connector kits STB D•• •••• K/KS/KC
(2) Connectors can accommodate a flexible wire with a maximum cross-section of $1.5 \mathrm{~mm}^{2}$, including the cable end. For screw connectors, max. tightening torque $=0.25 \mathrm{Nm}$.
(3) The template for the user-customizable labels is supplied on the documentation mini-CD-ROM.

STB DDI 3725

16 two-wire sensors

1 three-wire sensor per input group (1)

(1) Group 1: Contacts 1 to 9 on connector A

Group 2: Contacts 10 to 18 on connectorA
Group 3: Contacts 1 to 9 on connector B
Group 4: Contacts 10 to 18 on connector B

Connections (continued)
AC digital input modules STB DAI 5230

STB DAI 5260
Sensor 1

Sensor 2

(1) Link internal to module

STB DAI 7220

Sensor 1

Sensor 2

Digital I/O modules

(1) Actuator is protected by external fuse (depending on use).
(2) Actuator is protected by fuse integrated in Power Distribution Module (10 A fuse with STB PDT 3100/2100 or 5 A fuse with STB PDT 3105/2105).

DC/AC (relay) digital output modules STB DRC 3210

STB DRA 3290

(1) Link is internal to module.
(2) Actuator is protected by external fuse (depending on use).
(3) Actuator is protected by fuse integrated in Power Distribution Module (10 A fuse with STB PDT 3100/2100 or 5 A fuse with STB PDT 3105/2105).

Selection guide
Modicon ${ }^{\circledR}$ STB distributed I/O solution
Analog input modules

Number of channels

Range

Resolution

Isolation
Response time
Acquisition period

Acquisition or update time
Internal power supply for 3-wire inputs
Connection (connectors included in kits)
Base (included in kits)

Power Distribution Modules (PDM) (1)	Voltage
	Reference

Fallback states	
Protection against	Reverse polarity
	Short circuit and overload Eensor power supply
Operating temperature (3)	
Range	

Type of module

2
0 to $10 \mathrm{~V}-10 \ldots+10 \mathrm{~V}$

10 bits
$30 \mathrm{~V}=-$ (when sensor voltage is separate from logic bus voltage)

5 ms for both channels	
-	
10 ms for both channels	
Yes	
$2 \times$ STB XTS 1100 screw-type or STB XTS 2100 spring-type 6-way connectors	
STB XBA 1000	
$24 \mathrm{~V}=$	
STB PDT 3100/3105	
-	
Yes	
Yes, time-lag fuse on the Power Distribution Module (PDM)	
No	Yes
No	Yes (2)
0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.148^{\circ} \mathrm{F}\right)$	
Basic	Standard

STB AVI 1255 K

STB AVI 1275 K
STB AVI 1270 K

70
(1) One Power Distribution Module (PDM) is required per voltage group.
(2) Requires Advantys" ${ }^{\text {mim }}$ STB SPU $1 \bullet \bullet \bullet$ configuration software.
(3) Horizontal mounting.

STB AVI 0300
STB AVI 1400

Analog input modules

Number of channels

Range

Resolution

Isolation	Channel-to-channel
Response time	
Acquisition period	

Acquisition or update time
Internal power supply for 3-wire inputs
Connection (connectors included in kits)
Base (included in kits)

Power Distribution Modules (PDM) (1)	Voltage
	Reference

Fallback states

Protection against	Reverse polarity Short circuit and overload
Electronic protection of sensor power supply Cut sensor wire detection	
Operating temperature (3)	
Range	

Type of module

Analog input modules
 Current

2	
4 to 20 mA	$0 \ldots 20 \mathrm{~mA}$
10 bits	12 bits

$30 \mathrm{~V}=$ - (when sensor voltage is separate from logic bus voltage)
5 ms for both channels
10 ms for both channels
Yes
$2 \times$ STB XTS 1100 screw-type or STB XTS 2100 spring-type 6-way connectors
STB XBA 1000
$24 \mathrm{~V}=$
STB PDT 3100/3105
-

Yes, time-lag fuse on the Power Distribution Module (PDM)

-	
No	Yes
No	Yes (2)
0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.148^{\circ} \mathrm{F}\right)$	-25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Basic	Standard

STB ACI 1225 K
STB ACI 1230 K

70
roup.
(1) One Power Distribution Module (PDM) is required per voltage
(2) Requires Advantys" ${ }^{\text {T" }}$ STB SPU 1・ゃ७ configuration software.
(3) Horizontal mounting.

4

4 to 20 mA and 0... 20 mA	4 to $20 \mathrm{~mA}, 0 \ldots 20 \mathrm{~mA}$ and HART protocol tolerant	4 to 20 mA and $0 . . .20 \mathrm{~mA}$
15 bits + sign		
$200 \mathrm{~V}=-$		$30 \mathrm{~V}=$ (when sensor voltage is separate from logic bus voltage)
8 ms for 4 channels	80 ms for 4 channels	-
10 ms for 4 channels	85 ms for 4 channels	22 ms for 8 channels
No		Yes

$2 \times$ STB XTS 1100 screw-type or STB XTS 2100 spring-type 6-way connectors
STB XBA 2000
$24 \vee=$
STB PDT 3100/3105
Yes, time-lag fuse on the Power Distribution Module (PDM)

-		Yes, time-lag fuse on the Power Distribution Module (PDM)
No	Yes (4 to 20 mA only)	Yes (2)
Yes (2)		0 to $70^{\circ} \mathrm{C}\left(32\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
-25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$		
Standard		

STB ART 0200 K

Selection guide (continued)
Modicon ${ }^{\circledR}$ STB distributed I/O solution
Analog output modules

Number of channels	
Range	
Resolution	
Isolation	Channel-to-channel
Load current/channel (outputs)	
Response time	
Acquisition period	
Acquisition or update time	
Internal power supply for 3-wire inputs	
Connection (connectors included in kits)	
Base (included in kits)	
Power Distribution Modules (PDM) (1)	Voltage
	Reference
Detected COM fault fallback positions	
Protection against	Reverse polarity
	Short circuit and overload
	Electronic protection of sensor power supply
Operating temperature (4)	
Range	

Type of module

2			
$0 \ldots 10 \mathrm{~V}$	-10 to +10 V	$0 \ldots+10 \mathrm{~V},-10 \ldots+10 \mathrm{~V}$	$1 \ldots 5 \mathrm{~V}$

\section*{| STB AVO 1255 K | STB AVO 1265 K | STB AVO 1250 K | STB AVO 0200 K |
| :--- | :--- | :--- | :--- |}

Page

70

(1) One Power Distribution Module (PDM) is required per voltage group.
(2) Hold last value: reset to 0 V on both channels; go to a predefined value (between 0 V and full scale) on each channel.
(3) By default, reset to zero on both channels. Each channel individually adjustable: hold the value, go to a predefined value between 0 and 100% of the output range. (4) Horizontal mounting.

Introduction

The STB analog inputs allow the acquisition of various analog values encountered in industrial applications.
The STB analog outputs are used to control analog-controlled actuators such as variable speed drives, proportional control valves, etc.

The basic analog I/O module offer includes:
3 analog input modules:
$\square 2$ analog voltage input channels 0 to 10 V
$\square 2$ analog current input channels $\pm 10 \mathrm{~V}$
ㅁ 2 analog current input channels 4... 20 mA
3 analog output modules:

- 2 analog channels, current output $0 . . .10 \mathrm{~V}$
$\square 2$ analog channels, current output $\pm 10 \mathrm{~V}$
■ 2 analog channels, voltage output $4 \ldots 20 \mathrm{~mA}$

The standard analog I/O module offer includes:
8 analog input modules:
$\square 2$ analog voltage input channels $\pm 10 \mathrm{~V}$
$\square 2$ analog current input channels $0 . . .20 \mathrm{~mA}$
$\square 2$ channels for thermocouple, temperature probe or voltage (mV)
$\square 4$ analog input channels 15 bits + sign, current $4 \ldots 20 \mathrm{~mA}$ and $0 . . .20 \mathrm{~mA}$ $\square 4$ analog input channels 15 bits + sign, current 4... 20 mA and $0 \ldots 20 \mathrm{~mA}$, HART protocol tolerant
$\square 4$ analog input channels 15 bits + sign, voltage $1 . .5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5 \mathrm{~V}$ to +5 $\mathrm{V},-10 \mathrm{~V}$ to +10 V
$\square 8$ analog input channels 15 bits + sign, voltage $1 . .5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5 \mathrm{~V}$ to +5 $\mathrm{V},-10 \mathrm{~V}$ to +10 V

- 8 analog input channels 15 bits + sign, current 4 to 20 mA and 0 to 20 mA

■ 5 analog output modules:
$\square 1$ analog channel, current output 4 to $20 \mathrm{~mA}, 15$ bits + sign

- 2 analog channels, current output $0 \ldots 10 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$
- 2 analog channels, current output $0 . . .20 \mathrm{~mA}$
$\square 2$ analog channels, current output 4 ... 20 mA and $0 \ldots 20 \mathrm{~mA}, 15$ bits + sign $\square 2$ analog channels, voltage output $1 . .5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5 \mathrm{~V}$ to $+5 \mathrm{~V},-10 \mathrm{~V}$ to $+10 \mathrm{~V}, 15$ bits + sign

Description

Analog I/O modules have the following on the front panel:
1 A slot for a user-customizable label
2 A display block showing the state of the module (RDY, ERR)

Indication	Basic analog l/O modules	Standard analog $/ /$ modules
Module status (1)	Green RDY LED	Green RDY LED
Module detected error (2)	-	Red ERR LED

3 A color-coded module identification stripe (See color codes on page 6.)
4 Two connectors for screw- or spring-type terminals

The module kits comprise:

■ An STB XBA 1000 mounting base, width 13.9 mm or STB XBA 2000, width 18.4 mm .

Removable terminals (6-way), screw-type STB XTS 1100 or spring-type STB XTS 2100.

To be ordered separately:

■ Grounding of the cable shielding is mandatory. The optional grounding kit STB XSP 3000 can also be used to secure cables in installations subject to severe vibration.

5 Optional grounding kit STB XSP 3000
6 Terminals STB XSP 3010 for cables with cross-section 1.5 to $6 \mathrm{~mm}^{2}$ or STB XSP 3020 for cables with cross-section 5 to $11 \mathrm{~mm}^{2}$.

Optional mechanical keying pins:

- Between I/O module and I/O base: STB XMP 7700
- Between wiring connectors and I/O module: STB XMP 7800

These devices help ensure that the I/O modules, bases and wiring connectors are properly matched after dismantling or replacement.

■ User-customizable label sheets: STB XMP 7600

[^1]Analog input modules

Specifications of analog input modules							
Type of module		STB	AVI 1255	AVI 1270	AVI 1275	AVI 0300	AVI 1400
Type			Basic	Standard	Basic	Standard	
Number of channels			2			4	8
Range			0 to 10 V	$\pm 10 \mathrm{~V}$		1 to 5 V0 to 5 V0 to 10 V-5 V to +5 V-10 V to +10 V	
Resolution		bits	10	11 + sign	$9+$ sign	15 bits + sign	
Isolation	Between channels and sensor bus	V	30 --- (sensor bus power supply separate from sensor power supply)				
	Between channels and logic bus	V	1500 --. for 1 minute				
Maximum input values			$50 \mathrm{~V}=-$				
Response time		ms	5 for both channels			-	
Swapping	Cold swap		Yes				
	Hot swap		Yes, depending on NIM and whether module is mandatory. See table on page 43				
Data format			Compliance with IEC/EN 61131-2				
Update time		ms	10 for both channels			-	22 for all 8 channels
Input filter			Single low-pass filter at 25 Hz cut-off frequency				
Integral linearity		\% of full scale	± 0.2				
Differential linearity			Monotonic				
Input impedance		Ω	400 K				
Current supplied to sensors, per channel		mA	100				
Electronic short-circuit protection			No	Yes	No		
Power supply impedance		k Ω	1 max.				
Absolute accuracy			$\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$		$\pm 0.75 \%$ of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$		
Temperature drift			$\pm 0.01 \%$ of full scale per ${ }^{\circ} \mathrm{C}$				
Addressing			2 words (1 data word per channel)	4 words (2 words per channel)	2 words (1 data word per channel)		
I/O base (included in kits)			STB XBA 1000				
Power Distribution Module (PDM)	Voltage	v	$24=$				
	Model		STB PDT 3100/3105				
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to 60 (32 to 148)			-25 to 70 (-13 to 158)	
Current consumption on 5 V -.. logic bus		mA	30			90	

(1) Basic NIM modules do not support hot swapping of input/output modules.

Analog input modules

Specifications of analog input modules (continued)							
Type of module		STB	ACI 1225	ACI 1230	ACI 0320	ACI 8320	ACI1400
Type			Basic Standard				
Number of channels			2		4		8
Range			4 to 20 mA	0 to $20 \mathrm{~mA} \mathrm{(1)}$	4 to 20 mA and 0 to 20 mA		
Resolution		bits	10	12	15 + sign		
Isolation	Between channels and sensor bus	V	$30-$ - (3)		200 ---		$30-\mathrm{-}$ (3)
	Between channels and logic bus	V	1500 --- for 1 minute		$1780 \sim$ for 1 minute		$\begin{aligned} & 1500=\text { for } \\ & 1 \text { minute } \end{aligned}$
Maximum input values			25 mA at $50 \mathrm{~V}=-$				25 mA
Response time		ms	5 for both channels		-		
Swapping	Cold swap		Yes				
	Hot swap		Yes, depending on NIM and whether module is mandatory. See table on page 43				
Data format			Compliance with IEC/EN 61131-2				
Update time		ms	10 for both channels		10 for all 4 channels	80 for all 4 channels	22 ms for all 8 channels
Cut-off frequency of low-pass input filter		Hz	25		985		
Integral linearity		\% of full scale	$\begin{array}{\|l\|l} \hline \pm 0.2 & \pm 0.1 \end{array}$		± 0.05		± 0.08
Differential linearity			Monotonic		-		Monotonic
Input impedance		Ω	$\leqslant 300$		250		$\leqslant 250$
Current supplied to sensors, per channel		mA	100		25		100
Electronic short-circuit protection			No	Yes			No
Power supply impedance		k Ω	-				
Absolute accuracy			$\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$		$\pm 0.4 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$		$\pm 0.4 \%$ of full scale per ${ }^{\circ} \mathrm{C}$
Temperature drift			$\pm 0.01 \%$ of full scale per ${ }^{\circ} \mathrm{C}$		$\pm 0.005 \%$ per ${ }^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.005 \% \text { of full } \\ & \text { scale per }{ }^{\circ} \mathrm{C} \end{aligned}$
Addressing			2 words (1 word per channel)	4 words (2 words per channel)	8 words (2 words per channel)		16 words (8 data words, 8 status words)
I/O base (included in kits)			STB XBA 1000		STB XBA 2000		
Power Distribution Module (PDM)	Voltage	V	24 --				
	Model		STB PDT 3100/3105				
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$\begin{array}{\|l\|} \hline 0 \text { to } 60 \\ (32 \text { to } 148) \\ \hline \end{array}$	-25 to 70 (-13 to 158)			
Current consumption on 5 V --. logic bus		mA	30		95		90

(1) If the STB ACI 1230 module is configured with the STB SPU 1000 software, a zero offset can be set, e.g. 4 to 20 mA .
(2) Basic NIM modules do not support hot swapping of input/output modules.
(3) Sensor bus power supply separate from sensor power supply.

Analog input modules

Specifications of analog input modules (continued)			
Type of module		STB	ART 0200
Type			Standard
Number of channels			2 multi ranges in any configuration
Range			2, 3 or 4-wire temperature probes: Pt 100, Pt 1000, Ni 100, Ni 1000 and Cu 10
			B, E, J, K, R, S, T thermocouples
			Voltage $\pm 80 \mathrm{mV}$
Resolution		bits	
Isolation	Between channels and sensor bus	V	-
	Between channels and logic bus	V	1500 ~ for 1 minute
Maximum input values			$\pm 7.5 \mathrm{~V}$---
Response time		ms	See details on page 67.
Swapping	Cold swap		
	Hot swap		
Data format			
Update time		ms	See details on page 67.
Cut-off frequency of low-pass input filter		Hz	25
Integral linearity		\% of full scale	See details on page 67.
Differential linearity			
Input impedance		Ω	-
Current supplied to sensors, per channel		mA	100
Electronic short-circuit protection			
Power supply impedance		k Ω	
Absolute accuracy			See details on page 67.
Temperature drift			See details on page 67.
Addressing			2 words (2 words per channel + 1 word for cold-junction compensation)
I/O base (included in kits)			STB XBA 1000
Power Distribution Module (PDM)	Voltage	V	
	Model		
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to 70 (32 to 158)
Current consumption on 5 V -.- logic bus		mA	30

(1) If the STB ACI 1230 module is configured with the STB SPU 1000 software, a zero offset can be set; for example, 4 to 20 mA .
(2) Basic NIM modules do not support hot swapping of input/output modules.
(3) Sensor bus power supply separate from sensor power supply.

Analog input modules

Detailed specifications of STB ART 0200 analog input module											
Thermocouple range				B	E	J	K	R	S	T	
Temperature unit				${ }^{\circ} \mathrm{C}$ (by default) or ${ }^{\circ} \mathrm{F}$							
Nominal values			${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	130 to 1820 -270 to 1000 $(266$ to 3308$)$ $(-454$ to 1832$)$		$\begin{array}{\|l} \hline-210 \text { to } 1200 \\ (-346 \text { to } 2192) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-270 \text { to } 1370 \\ (-454 \text { to } 2498) \end{array}$	$\begin{array}{\|l} \hline-50 \text { to } 1768 \\ (-58 \text { to } 3214) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline-50 \text { to } 1726 \\ (-50 \text { to } 3139) \\ \hline \end{array}$	$\begin{aligned} & -270 \text { to } 400 \\ & (-454 \text { to } 752) \\ & \hline \end{aligned}$	
Resolution				$0.1^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$							
Broken wire detection				Monitored independently on each channel							
Conversion time	With internal cold-junction compensation		ms	$\begin{aligned} & 230 \text { at } 50 \mathrm{~Hz} \\ & 210 \text { at } 60 \mathrm{~Hz} \end{aligned}$							
	With external cold-junction compensation		ms	$\begin{aligned} & 400 \text { at } 50 \mathrm{~Hz} \\ & 360 \text { at } 60 \mathrm{~Hz} \end{aligned}$							
Accuracy (thermocouple detected errors not included)	With internal cold-junction compensation	$\begin{aligned} & \text { at } 25^{\circ} \mathrm{C} \\ & \left(77^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 4.6	± 4.6	± 5.1	± 4	± 3.6	± 4.1	± 4.4	
		$\begin{aligned} & \text { at } 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right) \end{aligned}$	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 6.8	± 6.8	± 7.0	± 5.5	± 4.2	± 5.0	± 6.4	
	With external cold-junction compensation	$\begin{aligned} & \text { at } 25^{\circ} \mathrm{C} \\ & \left(77^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 1.75							
		$\begin{aligned} & \text { at } 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right) \end{aligned}$	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 2.85							
Temperature probe range				Pt 100		\| Pt 1000		Ni 100	Ni 1000	\| Cu 10	
Type				2,3 or 4-wire (3-wire by default)							
Temperature unit				${ }^{\circ} \mathrm{C}$ (by default) or ${ }^{\circ} \mathrm{F}$							
Nominal values	IEC		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-200 to +850 (-328 to 1562) (by default)					-60 to +180 (-76 to 356)		$\begin{array}{l\|} \hline-100 \text { to }+260 \\ (-148 \text { to } 500) \end{array}$
	US/JIS		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-100 to +450 (-148 to 842)				-			
Resolution				$0.1{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$							
Broken wire detection				Monitored independently on each channel							
Max. wiring resistance	4-wire		Ω	50 (IEC/US/JIS)		500 (IEC/US/JIS)		50	500	50	
	2 or 3-wire		Ω	20 (IEC/US/JIS)		200 (IEC/US/JIS)		20	200	20	
Conversion time	3-wire		ms	$\begin{aligned} & 340 \text { at } 50 \mathrm{~Hz} \\ & 300 \text { at } 60 \mathrm{~Hz} \end{aligned}$							
	2 or 4-wire		ms	$\begin{aligned} & 200 \text { at } 50 \mathrm{~Hz} \\ & 180 \text { at } 60 \mathrm{~Hz} \end{aligned}$							
Accuracy (temperature probe tolerances are not included)	$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ internal		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 1				± 1		± 4	
	$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ external		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	± 2				± 1		± 4	
Voltage											
Range			mV	\pm 80 ($\pm 81.92)$							
Resolution				Increments of 0.01 mV							
Conversion time			ms	$\begin{aligned} & 170 \text { at } 50 \mathrm{~Hz} \\ & 150 \text { at } 60 \mathrm{~Hz} \end{aligned}$							
Input impedance			M Ω	10 (standard)							
Accuracy	$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ internal		\% of full scale	± 0.1							
	$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ external		\% of full scale	± 0.15 at ambient temperature							

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Analog output modules

Specifications of analog output modules								
Type of module		STB	AVO 1255	AVO 1265	AVO 1250	AVO 0200		
Type			Basic		Standard			
Number of channels			2					
Range			0... 10 V	$\pm 10 \mathrm{~V}$	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \ldots 5 \mathrm{~V} \\ & 0 \ldots 5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} 0 \ldots . .10 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{array}$	$\pm 10 \mathrm{~V}$
Resolution		bits	10	$9+$ sign	$\begin{aligned} & 11+\text { sign } \\ & \text { or } 12 \\ & \hline \end{aligned}$	15 + sign		
Isolation	Between channels and actuator bus	V	$30=$-- (actuator bus power supply separate from actuator power supply)			200 ---		
	Between channels and logic bus	V	1500 --. for 1 minute					
Output current per channel		mA	5		Up to 5	150		
Response time		ms	3			4		
Swapping	Cold swap		Yes					
	Hot swap		Yes, depending on NIM and whether module is mandatory. See table on page 43					
Data format			Compliance with IEC/EN 61131-2					
Update time		ms	25 for both channels			8		
Conversion time		$\mu \mathrm{s}$	-					
Short-circuit protection on the outputs			Yes					
Integral linearity			$\pm 0.1 \%$ of full scale, typical			$\pm 0.05 \%$ of full scale, typical		
Differential linearity			Monotonic					
Absolute accuracy			$\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$			$\pm 0.3 \%$ of full scale at $25^{\circ} \mathrm{C}$		
Temperature drift			$\pm 0.01 \%$ of full scale per ${ }^{\circ} \mathrm{C}$					
Fallback states	Default	V	0 V on 2 channels					
	User-configurable (1)		-		Hold last value; assign a predefined value			
Fallback mode			Predefined		User configurable			
Addressing			2 output data words		2 output data words and 2 non-adjacent input data bytes (module and channel status diagnostics)	4 words (2 output data words, 2 input status words)		
1/O base (included in kits)			STB XBA 1000			STB XBA 2000		
Power Distribution Module (PDM)	Voltage	V	24 ---					
	Model		STB PDT 3100/3105					
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to 60 (32 to 148)			-25 to 70 (-13 to 158)		
Current consumption on 5 V -..- logic bus		mA	45			265		

(1) Requires Advantys ${ }^{\text {TTM }}$ configuration software.

Analog output modules

Specifications of analog output modules						
Type of module		STB	ACO 0120	ACO 1225	ACO 1210	ACO 0220
Type			Standard	Basic	Standard	
Number of channels			1	2		
Range			4... 20 mA		0... 20 mA (1)	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text { and } \\ & 0 \ldots 20 \mathrm{~mA} \\ & \hline \end{aligned}$
Resolution		bits	15 + sign	10	12	15 + sign
Isolation	Between channels and logic bus	V	1500 -. for 1 minute			
	Between channels and actuator bus	V	500	$30--$ (2)		$200=$
Output current per channel		mA	3.5...20, 38	20		
Response time		ms	4 plus update time	3		-
Swapping	Cold swap		Yes			
	Hot swap		Yes, depending on NIM and whether module is mandatory. See table on page 43			
Data format			Compliance with IEC/EN 61131-2			
Update time		ms	8 at $\pm 0.1 \%$ of final value	25 for both channels		-
Conversion time			-	$900 \mathrm{~ms} \mathrm{at} \pm 0.1 \%$ of final value		4 ms for both channels
Short-circuit protection on the outputs			Yes			-
Integral linearity			$\pm 0.05 \%$ of full scale	$\pm 0.1 \%$ of full scale, typical		$\pm 0.5 \%$ of full scale, typical
Differential linearity			Monotonic			
Absolute accuracy			0.3% of full scale at $25^{\circ} \mathrm{C}$	$\pm 0.5 \%$ of full scale per ${ }^{\circ} \mathrm{C}$		$\pm 0.3 \%$ at $25^{\circ} \mathrm{C}$
Temperature drift			$\pm 0.01 \%$ of full scale per ${ }^{\circ} \mathrm{C}$			$\pm 0.005 \%$ of full scale per ${ }^{\circ} \mathrm{C}$
Fallback states	Default	V	Minimum output (4 mA)	4 mA on 2 channels	Minimum output (0 mA)	
	User-configurable (3)		Hold last value, assign a predefined value	-	Hold last value, assig	a predefined value
Fallback mode			User configurable	Predefined	User configurable	
Addressing			2 words: 1 output data word and 1 input status word	2 output data words	2 output data words plus 1 word for configuring the fallback state	-
I/O base (included in kits)			STB XBA 2000	STB XBA 1000		STB XBA 2000
Power Distribution Module (PDM)	Voltage	V	24 --			
	Model		STB PDT 3100/3105			
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to 70 (-13 to 158)	0 to 60 (32 to 148)		-25 to 70 (-13 to 158)
Current consumption on 5 V -.- logic bus		mA	155	40	40	210

(1) If the STB ACI 1230 module is configured with the STB SPU 1000 software, a zero offset can be set; for example, 4 to 20 mA .
(2) Actuator bus power supply separate from actuator power supply.
(3) Requires Advantys ${ }^{\text {Tw }}$ configuration software.

Modicon ${ }^{\circledR}$ STB distributed I/O solution

Analog input/output modules

Connection kits

References

The Modicon ${ }^{\circledR}$ STB analog input or output modules are available in "K" kit version, which includes the appropriate base for the module, two screw-type connectors and two spring-type connectors.

Standard analog input modules: connection kits						
Input signal	Connectors	Number of channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
$\pm 10 \mathrm{~V}$	Screw-type and spring-type	2	No	11 + sign	STB AVI 1270 K	0.115
		4	Yes	$15+$ sign	STB AVI 0300 K	-
		8	No	$15+$ sign	STB AVI 1400 K	-
0... 20 mA		2	No	12	STB ACI 1230 K	0.116
$4 . . .20 \mathrm{~mA}$ and 0 ... 20 mA		4	Yes	15 + sign	STB ACI 0320 K	-
$4 . . .20 \mathrm{~mA}$ and 0 ... 20 mA , HART tolerant		4	Yes	15 + sign	STB ACI 8320 K	-
Thermocouples $\pm 80 \mathrm{mV}$		2	No	15 + sign	STB ART 0200 K	-

Basic analog input modules: connection kits						
Input signal	Connectors	Number of channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
-10 to +10 V	Screw-type and spring-type	2	No	$9+$ sign	STB AVI 1275 K	0.115
0...10 V		2	No	10	STB AVI 1255 K	0.116
4 to 20 mA		2		10	STB ACI 1225 K	-
		8	No	15 + sign	STB ACI 1400 K	

Analog input/output modules

Connection kits

References (continued)						
Standard analog output modules: connection kits						
Output signal	Connectors	Number of channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \text { or } \\ & \pm 10 \mathrm{~V} \end{aligned}$	Screw-type and spring-type	2	No	12	STB AVO 1250 K	0.116
		2	Yes	15 + sign	STB AVO 0200 K	-
		1	-	$15+$ sign	STB ACO 0120 K	-
0... 20 mA		2	Yes	12	STB ACO 1210 K	0.117
$4 . .20 \mathrm{~mA}$		2	Yes	15 + sign	STB ACO 0220 K	-

$0 . . .20 \mathrm{~mA}$

Basic analog output modules: connection kits
$\left.\left.\begin{array}{lllllll}\begin{array}{l}\text { Output } \\ \text { signal }\end{array} & \text { Connectors }\end{array} \begin{array}{l}\text { Number of Isolation } \\ \text { channels } \\ \text { between } \\ \text { channels }\end{array}\right) \begin{array}{l}\text { Resolution } \\ \text { (bits) }\end{array}\right)$

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Analog input/output modules
Modules only

STB AVI 1270

STBAVO 1250

References (continued)					
Standard analog input modules: modules only					
Input signal	Number o channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
$\pm 10 \mathrm{~V}$	2	No	11 + sign	STB AVI 1270	0.115
	4	Yes	$15+$ sign	STB AVI 0300	-
	8	No	$15+$ sign	STB AVI 1400	-
$0 \ldots . .20 \mathrm{~mA}$	2	No	12	STB ACI 1230	0.116
$4 . . .20 \mathrm{~mA}$ and 0... 20 mA	4	Yes	$15+$ sign	STB ACI 0320	-
$4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 20 \mathrm{~mA}$, HART tolerant	4	Yes	$15+$ sign	STB ACI 8320	-
Thermocouples $\pm 80 \mathrm{mV}$	2	No	15 + sign	STB ART 0200	-

Basic analog input modules: modules only					
Input signal	Number o channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
-10 to +10 V	2	No	$9+$ sign	STB AVI 1275	0.115
$0 . .10 \mathrm{~V}$	2	No	10	STB AVI 1255	0.116
4 to 20 mA	2		10	STB ACI 1225	-
	8	No	15 + sign	STB ACI 1400	-

Output signal	Number of channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
0... 10 V or $\pm 10 \mathrm{~V}$	2	No	12	STB AVO 1250	0.116
	2	Yes	15 + sign	STB AVO 0200	-
	1	-	$15+$ sign	STB ACO 0120	-
0... 20 mA	2	Yes	12	STB ACO 1210	0.117
$4 . . .20 \mathrm{~mA}$ and 0... 20 mA	2	Yes	15 + sign	STB ACO 0220	-

Basic analog output modules: modules only					
Output signal	Number of channels	Isolation between channels	Resolution (bits)	Reference	Weight kg
-10 to +10 V	2	No	$9+$ sign	STB AVO 1265	0.115
0...10 V	2	No	10	STB AVO 1255	0.116
4 to 20 mA	2	No	10	STB ACO 1225	

STB XBA 1000

References (continued)				
Separate parts (1)				
Description	Base width	For I/O modules	Reference	Weight kg
I/O base	13.9 mm	STB AVI STB ACI 1230/1225 STBART STB AVO STB ACO	STB XBA 1000	0.024
	18.4 mm	STB ACI 0320/8320	STB XBA 2000	-
Description	Connection type	For l/O modules	Reference	Weight kg
Removable terminals (6 contacts) (2)	Screw-type	STBAVI 20 STBACI STBART STBAVO STBACO	STB XTS 1100	0.006
	Spring-type	STBAVI 20 STBACI STB ART STBAVO STBACO	STB XTS 2100	0.006

Description	Used for	Sold in lots of	Reference	Weight $\mathbf{k g}$
$\mathbf{2 . 5 ~ m m}$ insulated screwdriver	Removable screw terminals	-	STB XTT 0220	-
Grounding kit	Grounding for shielded cables Consisting of 1 bar (length 1 m$)$ and 2 lateral supports	-	STB XSP 3000	-

Terminals for grounding kit	Cables with cross-section 	10	STB XSP 3010	-
Kables with cross-section	10	STB XSP 3020	-	
$5 \ldots 11 \mathrm{~mm}^{2}$				

(1) Except for module/base/connector kits STBA•• ••••K.
(2) Connectors can accommodate a flexible wire with a maximum cross-section of $1.5 \mathrm{~mm}^{2}$, including the cable end. For screw-type connectors, max. tightening torque: 0.25 Nm .
(3) The template for the user-customizable labels is supplied on the documentation mini CD-ROM.

Connections

Analog input modules

STB AVI 1255/1270/1275
2 isolated analog sensors, external 24 V -.. power supply
2 analog sensors, 24 V -.- supplied by PDM module

Sensor 1

STB AVI 1400
2 isolated analog sensors, external 24 V … power supply

(1) STB XSP 3000 grounding kit with STB XSP 3010/3020 terminals mandatory.

2 analog sensors, 24 V -.- supplied by PDM module

2 analog sensors requiring a power loop

Sensor 1

STB ACI 1400

(1) STB XSP 3000 grounding kit with STB XSP 3010/3020 terminals mandatory.
(2) Internal connection.

Connections (continued)
Analog input modules

STB ART 0200

2 and 3-wire temperature probes

2-wire temperature probes in highly disturbed operating environments

2-wire thermocouple and voltage sensor (mV)

4-wire temperature probes

(1) STB XSP 3000 grounding kit with STB XSP 3010/3020 terminals mandatory. (2) Double-shielded cable.
$+$

Connections (continued)

Analog output modules

STB AVO 1255/1265/1250
2 isolated analog actuators 2 analog actuators, 24 V ... supplied by the PDM

Actuator 1

Actuator 2

STB AVO 0200
2 non isolated analog actuators, external 24 V ... power
2 non isolated analog actuators, external 24 V -.. power supply
supply

$\begin{array}{r}1 \\ +1 \\ +1 \\ \hline 1\end{array}$

Connections（continued）
Analog output modules
STB ACO 0120
1 sink actuator 1 source actuator

Actuator 1

B	
回配	2
回配	3
回断	4
回配	5
回欰	

1 source actuator，external 24 V －－power supply

Actuator 1

（1）STB XSP 3000 grounding kit with STB XSP 3010／3020 terminals mandatory

Connections (continued)

Analog output modules

STB ACO 0220

2 isolated analog actuators, external 24 V … power supply 2 analog actuators, 24 V … supplied by the PDM

ctuator 2

Actuator 2

2 analog actuators, $\mathbf{2 4} \mathrm{V}$.-. supplied by the PDM

Actuator 1

Actuator 2

STB ACO 1225/1210
2 isolated analog actuators, external 24 V -.. power supply
2 analog actuators, 24 V ... supplied by the PDM

(1) STB XSP 3000 grounding kit with STB XSP 3010/3020 terminals mandatory.
(2) Internal connection.

Modicon ${ }^{\circledR}$ STB
distributed I/O solution
Parallel interface module STB EPI 2145
TeSys ${ }^{\circledR}$ U controller and $\mathrm{TeSys}^{\circledR}$ Quickfit applications

Description

The STB EPI 2145 application-specific parallel interface module is a component of the Modicon ${ }^{\circledR}$ STB station designed for the remote connection of TeSys ${ }^{\circledR}$ U startercontrollers and TeSys ${ }^{\circledR}$ Quickfit prewired motor starters.

The STB EPI 2145 application-specific parallel interface module includes:
1 An LED display block indicating the various states of the starter-controllers or TeSys Quickfit prewired motor starters

Indication	Standard STB EPI 2145 module
Module status (1)	Green RDY LED
Module detected error (2)	Red ERR LED
Selector switch position 4 (3)	Green LEDs S1 and S2
State of outputs	Green LEDs O1/5, O2/6, O3/7, O4/8
$\mathbf{2}$ Slot for a user-customizable label	
3 A color-coded identification stripe (black)	
4 A selector switch used to view each motor starter state	
54 RJ45 connectors for connection of:	
■ TeSys model U starter-controllers	
$\square 4$ direct motor starters with TeSys Quickfit components	
$\square 2$ reversing motor starters with TeSys Quickfit components; for example, 12 inputs	
and 8 outputs in each of these configurations	

The STB EPI 2145 K module kit comprises:

■ STB XBA 3000 base, width 28.1 mm . This base includes a slot for a usercustomizable label.

To be ordered separately:

■ Optional mechanical keying pins between the module and the I/O base:
STB XMP 7700. This device helps to ensure that the module and its base are properly matched if disassembled or replaced.
■ Sheets of user-customizable labels: STB XMP 7600
■ RJ45 cables between the STB EPI 2145 module and each TeSys U
(1) RDY is permanently on if the module is operational. If RDY is off, the PDM is not supplying power. If RDY is flashing, the module is not functional.
(2) If ERR is on or flashing, the module has an internal detected error.

For information about module and channel status indication, refer to the "System Hardware Components Reference Guide" included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.
(3) S1: Output bank 1 (outputs 1 to 4)

S2: Output bank 2 (outputs 5 to 8)

Modicon ${ }^{\circledR}$ STB
 distributed I/O solution

Parallel interface module STB EPI 2145

TeSys ${ }^{\circledR}$ U controller and TeSys ${ }^{\circledR}$ Quickfit applications

TeSys ${ }^{\circledR}$ U starter control application
 Introduction of the TeSys ${ }^{\circledR} \mathrm{U}$ starter-controller

The TeSys ${ }^{\circledR} \mathrm{U}$ starter-controller is a direct motor starter that performs the following functions:

- Protection and control of single-phase or three-phase motors:
- Disconnects power
\square Protects against overcurrent and short circuits
\square Protects against thermal overload
- Performs power switching
- Application control:
- Provides protection alarms and application monitoring: duration of use, number of detected faults, motor current values, etc.
\square Provides a logging function

Structure of a TeSys U starter with an STB EPI 2145 module (1)

The starter-controller functions are implemented with a click-lock adjustment, thus eliminating wiring of:

- A power base 2 (LU2B + LU9 BN11)
- A $24 \mathrm{~V}=3$ control unit (LUC B/D/C/M ••BL) for 0.09 to 15 kW motors
- A parallel communication module (LUF C00) 4

■ Options (additional contacts, reverser blocks) 5, including LU9 M1•
Combined with a TeSys U starter, each of the 4 channels of the STB EPI 2145 application-specific module features:
■ 2 outputs:
\square Starter control
\square Reversal control

- 3 inputs:
\square State of circuit breaker (position of lever)
\square Presence of detected faults (short circuit, thermal)
\square State of main contactor (closed/open)
(1) $\mathrm{TeSys}^{\circledR} U$ components: refer to the Starters and Basic TeSys \cup Equipment catalog

Modicon ${ }^{\circledR}$ STB
 distributed I/O solution

Parallel interface module STB EPI 2145
TeSys ${ }^{\circledR}$ Quickfit components for motor starters

(1) Refer to the Motor Starter Solutions - Control and Protection Components catalog

Modicon® STB distributed I/O solution

Parallel interface module STB EPI 2145

TeSys ${ }^{\circledR}$ U controller and $\mathrm{TeSys}^{\circledR}$ Quickfit applications

Specifications				
Module type				STB EPI 2145
Cold swapping				Yes
Hot swapping				Yes, depending on NIM and mandatory specification of module. See table on page 43.
Connection				Via 4 RJ45 connectors
Power supply				Via STB PDT 3100/3105 24 V --. power distribution module
Protection				Via fuse of STB PDT 3100/3105 power distribution module
Operating temperature, horizontal mounting			${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to 70 (-13 to 158)
Consumption	On $5 \vee-$ - logic bus		mA	110
	On 24 V -.. sensor bus		mA	100 max.
	On $24 \vee$-.. actuator bus		mA	50 min . (with 8 outputs at state 0); 80 mA per output at state 1 (220 mA max., for 150 ms)
Input specifications				
Number				12
Nominal values	Voltage		$\mathrm{V}=$	24
Limit values	At state 1	Voltage	V	15 to 30
		Current	mA	2 min .
	At state 0	Voltage	V	-3 to +5
		Current	mA	0.5 max.
Protection				Resistor-limited
Output specifications				
Number				8
Nominal voltage			V-..	24
Starter-controller compatibility				TeSys ${ }^{\text {® }}$ U 12 A (LUB 12 base) and 32 A (LUB 32 base) TeSys bases can be equipped with one of the following $24 \mathrm{~V}=-$ control units: - Standard LUCA \bullet BL - Advanced LUCB \bullet BL, LUCC $\bullet \bullet B L$ and LUCD••BL - Multifunction LUCM••BL
Motor starter compatibility				With TeSys ${ }^{\circledR}$ Quickfit prewiring components, components with spring-type terminals. Systems for motor starters, from 0 to 25 A , up to $11 \mathrm{~kW} / 400 \mathrm{~V}$. The relevant motor starters are realized by combining: - GV2 ME circuit breakers, with a use limit of 80% of the maximum intensity at an ambient temperature of $60^{\circ} \mathrm{C}$, up to 690 V standard LUCA $\bullet \bullet B L$ - With model d (LC1) contactors from 9 to 25A - With TeSys Quickfit LAD9 AP3•७ control connection module and LU9R•७ cables
Short circuit and overload protection				Yes, per channel

Modicon ${ }^{\circledR}$ STB distributed I/O solution

Parallel interface module STB EPI 2145
TeSys ${ }^{\circledR}$ starter-controller model U and
TeSys ${ }^{\circledR}$ Quickfit applications

References

The STB EPI 2145 module is available in the STB EPI 2145 K kit version with a custom base and four RJ45 connectors.

Module for TeSys ${ }^{\circledR}$ U starter-controllers: connector kit			
Power supply type	Voltage	Reference	Weight kg
-	24 V	STB EPI 2145 K	0.165

Module for TeSys U starter-controllers: module only		
Power supply type Voltage	Reference	Weight kg
--	STB EPI 2145	0.165

Mandatory separate parts				
Description	Use	Length	Reference	Weight kg
Connection cables An RJ45 connector at each end	For connection of the STB EPI 2145 module to the TeSys U starter controller(1) and TeSys ${ }^{\circledR}$ Quickfit (2)	0.3 m	LU9 R03	0.045
		1 m	LU9 R10	0.065
		2 m	490 NTW 00002	-
		3 m	LU9 R30	0.125
		5 m	490 NTW 00005	-
		12 m	490 NTW 00012	

Optional separate parts Description	Use	Sold in lots of	Reference	Weight kg
Base $\mathbf{2 8 . 1} \mathbf{~ m m ~}$	Application-specific module mounted on DIN rail	-	STB XBA 3000	0.048
Keying pin	For application- specific module	60	STB XMP 7700	-
Sheets of user-customizable labels (3)	Bases and I/O modules	25	STB XMP 6700	-

[^2]
Parallel interface module STB EPI 2145

TeSys ${ }^{\circledR}$ starter-controller model U applications

TeSys ${ }^{\circledR}$ U starter-controllers: Remote control

Simple connection of an STB EPI 2145 parallel interface module to 4 TeSys U starter-controllers for remote control via PLC.

For each TeSys U starter-controller:

- LU 9BN11 or LU 9BM1: supplied with TeSys U base
- LUF C00, parallel communication module: to be
ordered separately
■ 1 RJ45 cable (1)
(1) Cables: See references on page 84.

TeSys ${ }^{\text {Tm }}$ U local and remote control

Schematic diagram of simple switching between remote control via Modicon ${ }^{\circledR}$ STB EPI 2145 and local control by operator: scheme for one TeSys U startercontroller.

The reference 0 V is supplied by the STB EPI 2145 parallel interface module via the cable to LUF C00. (1)

1) $24 V$--- power supply of the Modicon STB automation station common to the STB PDT 310• power distribution module.
(2) Cables: See references on page 84.

TeSys ${ }^{\text {Tw }} \mathbf{U}$ local control, remote control, and maintenance

Schematic diagram of switching between remote control via Modicon STB EPI 2145 and local control by operator: scheme for one TeSys U starter-controller.

The 24 V -- power supply is local to the TeSys U starter-controller. (1)
In the absence of remote control, with the Modicon STB automation station is switched off or disconnected, the operator can control the running of the motor.
(1) 24 V --- power supply local to the TeSys U starter-controller and common to the STB PDT 310 \bullet power distribution module.
(2) Cables: See references on page 84.

Introduction

The STB EPI 1145 parallel interface module is a component of the Modicon ${ }^{\circledR}$ STB station designed for the remote connection of 8 motor starters (or 4 motor starters in each direction). TeSys ${ }^{\circledR}$ motor starters, model D use the Tego ${ }^{\text {m" }}$ Power installation assistance system.

The Tego ${ }^{\text {tw }}$ Power System

Tego Power is a modular system to help install TeSys model d motor starters by providing prewired control and power circuits. This Quickfit technology enables cable-free connections to spring terminals for model d contactors (9 to 32 A) and GV2 M2 motor circuit breakers.

Tego Power with Quickfit technology enables you to create motor starter assemblies up to $15 \mathrm{~kW} / 400 \mathrm{~V}$.

Structure of the Tego Power system

The Tego Power system differentiates the power section from the control section. ■ The power kit comprises:
\square One specific mounting plate for 2 to 8 motor starters

- Two connection modules
\square One power splitter box with a power supply terminal
The contactor for each motor starter is activated by one of the 8 outputs of the STB EPI 1145 parallel interface.
■ The control kit comprises:
\square One control splitter box for the 2 to 8 motor starters
\square One connection module
The 2 return outputs of each motor starter (contactor status, circuit breaker status) are connected to 2 of the 16 inputs to the STB EPI 1145 parallel interface.

Description

The STB EPI 1145 parallel interface comprises:
1 An LED display block indicating the various states of the motor starters.

Indication	Standard STB EPI 1145 module
Module status (1)	Green RDY LED
Module detected error (2)	Red ERR LED
Selector switch position 4 (3)	Green LEDs S1 and S2
State of outputs	Green LEDs O1/5, O2/6, O3/7, O4/8

2 Slot for user-customizable label
3 A color-coded identification stripe (black)
4 A selector switch used to view each motor starter state
5 An HE 10 connector (30-way) to connect to a Tego Power system via STB XCA 3002/3003 cables ($1 \mathrm{~m} / 2 \mathrm{~m}$)

To be ordered separately:

■ STB XBA 2000 base, width 18.4 mm . Includes a slot for a user-customizable label.
■ Optional mechanical keying pin between the module and the STB XMP 7700
base. This device helps to ensure that the module and its base are properly matched if disassembled or replaced.
■ Sheets of customizing labels: STB XMP 7600
■ A cable between the STB EPI 1145 module and the Tego Power block.

[^3]
Modicon ${ }^{\circledR}$ STB distributed I/O solution

Parallel interface module STB EPI 1145
Tego ${ }^{\text {m" }}$ Power applications

Specifications

(1) For other Tego Power components, refer to the Motor Starter Solutions - Control and Protection Components catalog.
(2) For a set of 8 motor starters, use 2 APP2R4E splitter boxes
(3) The template for the user-customizable labels is supplied on the documentation mini CD-ROM.

Introduction

Counting parts or events, grouping objects, controlling incoming and outgoing data streams, and measuring lengths or positions all require counting functions. The STB EHC 3020 counter module performs these functions for a Modicon ${ }^{\circledR}$ STB automation station (controlled by a master connected to the station) with a maximum counting frequency of 40 kHz .
The STB EHC 3020 module, with 1 counter channel, accepts as input typical $24 \mathrm{~V}=-$ sensors (proximity sensors, photoelectric sensors, incremental encoders or mechanical contacts) (1). As output, the module features 2 solid-state $24 \mathrm{~V}=-0.5 \mathrm{~A}$ outputs.
The Advantys ${ }^{\text {TM }}$ configuration software is used to select one of the six functions the module can perform.

Description

The front panel of the STB EHC 3020 counter module features:
1 A display block with 8 display LEDs:

Indication	Standard STB EHC $\mathbf{3 0 2 0}$ module
Module status(2)	Green RDY LED
Module detected error (3)	Red FLT LED
State of the 2 outputs	Green OUT1 and OUT2 LEDs
State of the 2 counter inputs	Green INA and INB LEDs
State of the reset input	Green RST LED
State of the EN enable input	Green EN LED

2 Slot for user-customizable labels
3 Color-coded module identification stripe (black)
4 A connector for an STB XTS 2150 18-pin removable spring-type terminal block (to be ordered separately)

The STB EHC 3020 KC module kit includes:

■ STB XBA 3000 base, width 28.1 mm . Includes a slot for user-customizable labels
■ STB XTS 215018 removable spring-type terminals

To be ordered separately:

■ A grounding kit, recommended for connecting the cable shielding
5 STB XSP 3000 grounding kit
6 STB XSP 3010 terminal for cables with a cross-section of 1.5 to $6 \mathrm{~mm}^{2}$ or STB XSP 3020 terminal for cables with a cross-section of 5 to $11 \mathrm{~mm}^{2}$

- Optional mechanical keying pin between the module and the STB XMP 7700 base. This device helps to ensure that the module and its base are properly matched if disassembled or replaced.
■ Sheets of user-customizable labels: STB XMP 7600
(1) The counting frequency is limited to 400 Hz with mechanical contacts.
(2) RDY is permanently on if the module is operational. If RDY is off, the PDM is not supplying power. If RDY is flashing, the module is not functional.
(3) If FLT is on or flashing, the module has a detected internal fault. For information about module and channel status indication, refer to the System Hardware Components Reference Guide included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.

Modicon ${ }^{\circledR}$ STB
distributed I/O solution
STB EHC 3020 counter module

Operation

Counter channel block diagram

Depending on the counting function used (see functional specifications on page 90), the I/O for the STB EHC 3020 module are assigned to:

- Input IN A, connected to a sensor
- Inputs IN B, EN, and RST, connected to a sensor or activated by the Modicon ${ }^{\circledR}$ STB master via the fieldbus

The 16 -bit counter value is compared to the two threshold values (configured with the configuration software) and is used to activate the OUT 1 and OUT 2 outputs without requiring processing by the bus master controller.
Reports such as the counting value or the two status bits (counter status, compare status) are sent to the bus master controller.

Functional specifications		
Configurable functions	Number	1 of the 6 configurable functions (using the Advantys ${ }^{\text {T" }}$ configuration software)
	Frequency meter	This basic function measures the frequency received on the IN A input. This frequency is always expressed in hertz (number of pulses per second), with a precision of 1 Hz . Also measures the speed in units per second. The number of points to be received on the IN A input, corresponding to one unit, must be defined from 1 to 255. The maximum frequency on the IN A input is 40 kHz in both cases (without filtering). Response time: < 0.2 s (frequency $2 / 40 \mathrm{kHz}$), < 1 s (frequency 0.2 kHz)
	Count events	This function provides the value of the number of pulses received on the IN A input per unit of time. The unit of time is configurable: $0.1 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$, or 1 minute. The IN B input can be used to reset the internal time basis that provides the unit of time. The maximum number of pulses counted during a unit of time is up to 65,535 . The minimum pulse duration on the IN A input is $10 \mu \mathrm{~s}$ (without filtering). Response time: < 0.5 ms
	Measure time periods	Measures the elapsed time during an event or between two events (on the IN A input) according to the selectable time base of $10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$, or 1 ms . The maximum event duration is 0.655 s , 6.55 s , or 65.5 s , respectively. The maximum frequency on the IN A input is 200 Hz . Response time: $<0.5 \mathrm{~ms}$
	Down counting	The IN B input starts or restarts the counter by resetting it to the setpoint value defined by the high threshold value. When the counter is running, any pulse received on the IN A input decreases the counter. The counter stops when it reaches 0 . The maximum setpoint value is 65,535 . The maximum frequency on the IN A input is 40 kHz (without filtering). Response time: < 0.5 ms
	Loop (modulo) counting	The IN B input starts or restarts the counter by resetting it to 0 . The IN B input also captures the previous counting value before the counter is reset to 0 . When the counter is running, any pulse received on the IN A input increases the counter. The counter turns back to zero automatically when the pulse number received equals the modulo defined by the high threshold value. The maximum modulo value is 65,535 . The maximum frequency on the IN A input is 40 kHz (without filtering). Response time: $<0.5 \mathrm{~ms}$
	Up/down counting	The RST input starts or restarts the counter by resetting it to the preset value. When the counter is running, counting increases or decreases according to the pulses received on the IN A and IN B inputs (by default, IN A increases the counter and IN B decreases the counter). By configuration: \square Input IN B can define the counting direction of the pulses received on IN A. - Inputs IN A and IN B can receive signals from an incremental encoder. The counter value is limited to a low limit of 0 and a high limit of 65,535 . Response time: < 5 ms
	OUT1 and OUT2 output functions	According to the requirements, each of the counter module's two outputs can be configured for one of the following operating modes: No direct action The output is activated when the counter value is less than the low threshold. The output is activated when the counter value is between the low threshold and the high threshold. The output is activated when the counter value is greater than the high threshold. A pulse is generated on the output when the down-counter passes the low threshold. A pulse is generated on the output when the up-counter passes the low threshold. A pulse is generated on the output when the down-counter passes the high threshold. A pulse is generated on the output when the up-counter passes the high threshold. The output is activated when the counter is placed in RUN mode. This option is only available for the down-counter function. The output is activated when the counter is placed in STOP mode. The output is activated when the captured value is less than the low threshold. This option is only available for the modulo function. - The output is activated when the captured value is between the low threshold and the high threshold. This option is only available for the modulo function.

Specifications				
Electrical specifications				
Module type			STB EHC 3020	
Frequency on counter inputs		kHz	1 channel, 40 max. (1)	
Swapping	Cold swap		Yes	
	Hot swap		Yes, depending on NIM and mandatory specification of module. See table on page 43.	
Mounting base			STB XBA 3000	
Power Distribution Module (PDM) required	Voltage provided	V	24	
	Reference		STB PDT 3100/3105	
Operating temperature, horizontal mounting		${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to 70 (-13 to 158)	
Consumption on the logic $5 \mathrm{~V}=-$ bus		mA	100	
Isolation	Between station bus and I/O	V -	500	
Input specifications				
Input type			Counter inputs (IN A and IN B) \quad Auxiliary inputs (RST and EN)	
Nominal values	Voltage	V -	24 (range 19.2 to 30 V)	
	Current	mA	6	
Limit values	At state 1		11 to $30 \mathrm{~V}=-\mathrm{-}$, current 2 mA , minimum (at 11 V ---)	
	At state 0		-3 to $5 \mathrm{~V}=-$, current 1.5 mA , maximum	
Logic			Positive	
Filter time	Analog	μs	2.5 25	
	Digital	ms	None (max. count 40 kHz) 0.40 (max. count 1 kHz) 1.20 (max. count 400 Hz)	-
Output specifications				
Output type			Outputs OUT 1 and OUT 2	
Nominal voltage		V --	24 (range 19.2 to 30 V)	
Nominal current		A	0.5 (1 A per module)	
Logic			Positive (by default), positive on 1 or 2 channels, negative on 1 or 2 channels (configurable)	
Response time			See functional specifications on page 90.	
Leakage current	At state 0	mA	0.1 maximum	
Voltage drop	At state 1	V	3 maximum	
Maximum load inductance		Henry	0.5 at 4 Hz or $\mathrm{L}=0.5 / \mathrm{I}^{2} \mathrm{x}$ F where L: load inductance, I: load-in current, and F: switching frequency	
Short-circuit and overload Type per channel protection			By current limiter (1.1 A, typical/1.5 A, maximum) and electronic tripping (manual or automatic reset)	
Default fallback positions	Default		Set to state 0 for both channels	
	Configured		Hold last value, set to state 0 or 1	

(1) Use of grounding kit is mandatory for counting at 40 kHz .

STB XBA 3000

STB EHC 3020

References			
Description	Input type	Reference	Weight kg
Counter module $1 \times 40 \mathrm{kHz}$ channel 28.1 mm base Spring-type connector	$2 / 3$ wire detectors $24 \vee-$ Incremental encoder 24 V .-. Mechanical contacts	STB EHC 3020 KC	-
Counter module $1 \times 40 \mathrm{kHz}$ channel		STB EHC 3020	-
Mandatory separate parts (1)			
Description	Use	Reference	Weight kg
Removable terminals(1)	18 spring-type	STB XTS 2150	-

Optional separate parts				
Description	Use	Sold in lots of	Reference	Weight kg
28.1 mm base	Module mounted on DIN rail		STB XBA 3000	-
Grounding kit (2)	Grounding for shielded cables Consisting of 1 bar (length: 1 m) and 2 lateral supports	-	STB XSP 3000	
Terminals for grounding kit	Cable cross-sections 1.5 to $6 \mathrm{~mm}^{2}$	10	STB XSP 3010	-
	Cable cross-sections 5 to $11 \mathrm{~mm}^{2}$	10	STB XSP 3020	-
Keying pin	Counter module	60	STB XMP 7700	-
Sheets of usercustomizable labels (3) SFIb	Bases and I/O modules	25	STB XMP 6700	-

(1) Connectors can accommodate a flexible wire with a maximum cross-section of $1.5 \mathrm{~mm}^{2}$, including the cable end.
(2) Grounding kit recommended (mandatory for high-frequency counting).
(3) The template for the user-customizable labels is supplied on the documentation mini-CD-ROM

Note: The $24 V$-- power supply of the sensors and actuators is provided to the module by the STB PDT 3100 power distribution module via the Modicon ${ }^{\circledR}$ STB station's sensor and actuator buses

```
Grounding kit recommended.
```


STB EHC 3020

STB PDT 3100/2100 and 3105/2105

 STB AVI/ART/AVO STB ACI 1230/1225 STB ACO 1210/1225

(1) STB XBA 1000/2000/3000 bases
(2) STB XTS 11•0/21•0 connectors

STB EPI 1145

(1) With HE10 connector (30-way)

Abstract

Introduction Advantys ${ }^{\text {T" }}$ STB SPU $1 \bullet \bullet \bullet$ software is the configuration and debugging tool for the Modicon STB, OTB (IP20 protection) and FTB/FTM (IP67 protection) range of distributed I/O solutions. It also enables debugging and diagnostics of distributed I/O stations during operation.

With respect to the Modicon STB range, the Advantys STB SPU $1 \bullet \bullet \bullet$ software can be used to: - Define I/O modules making up a Modicon STB automation station

■ Configure standard modules (Basic modules have a permanent default configuration.) - Configure the reflex functions handled at the station level

■ Optimize station performance by assigning priorities for the processing of certain modules - Designate mandatory modules; for example, modules that must be present and functioning correctly for the station to operate correctly - Declare external CANopen devices in the station. These include Modicon FTB

IP67 monobloc I/O splitter boxes; electropneumatic valves by Festo ${ }^{\circledR}$, Parker ${ }^{\circledR}$, and Bosch; ATV 31/312/61/71 variable speed drives; Balluff${ }^{\circledR}$ linear encoders; Osicoder absolute rotary encoders; other CANopen V4.0 devices. ■ Check the configuration for compliance and power consumption (also available for basic network interface modules)

User interface

The main screen of the Advantys configuration and debugging software provides easy, intuitive access to available tools.

The last two items are available only if the station is in online mode.
5 Catalog browser for Modicon STB components, sorted by category (networks, power supply, digital I/O, etc.)
6 Field power supply, logic power supply and I/O \& HMI image area resource analysis window
7 Log window displaying the results of operations performed by the configuration software during a work session on a station
8 Status bar

Dual-port Ethernet Modbus/TCP NIM

STB ACI 1400 module with 8 analog input channels

Dual-port Ethernet Modbus/TCP NIM

"/O Image" tab

Functions
 Module editor

The editor provides access to between 5 and 7 tabs, depending on the module types and whether the station is connected to the network or fieldbus. The basic tabs are: General, Parameters, I/O Image, Diagnostics and Options.

"General" tab

This read-only tab (station online or offline) provides general information and displays the main technical specifications of the selected module.

"Parameters" tab

This tab, accessible when the station is offline, contains the operating parameters for the selected module. Some parameters can be changed by the user. Among other things, you can:
■ Select the display format for parameters: decimal or hexadecimal

- Assign user label: free text field for up to 50 characters (1)

■ Configure modules: the type of I/O module determines which items can be configured (items in cells with white backgrounds). Depending on the type of module, the main parameters are:
\square Digital input modules: filter time and choice of positive or negative logic for each channel
\square Digital output modules: the behavior upon short circuit or overload (manual or automatic reset), the choice of positive or negative logic for each channel, the default fallback position for each channel (0 or 1 state)
\square Analog input modules: with the operating range, the offset, the maximum count, the filtering average and the channel operation (Enable/Disable) for each channel \square Analog output modules: with the data format, the output range, the channel operation (Enable/Disable), and the default fallback value (hold last value or assume a predefined value) for each channel
\square Application-specific modules: for TeSys ${ }^{\circledR}$ motor starters, model U or TeSys Quickfit, the choice of positive or negative logic for each channel, the behavior upon output short circuit or overload (manual or automatic reset), and the default fallback position for each channel (0 or 1 state)
\square Counter module: the definition of the counting function and its operation (see page 89)
\square Network interface modules: the amount of memory reserved for data exchanges with the HMI terminal (directly connected to the network interface module). This data can also be accessed by the station master: If a Modicon STB station has a CANopen extension, a parameter allows you to define the address of the last standard CANopen device connected to the station.
You can access the online help for the selected module to learn about the limit values and the operation of these parameters.

"I/O Image" tab

This tab allows you to read and modify the I/O data of a module when the island is online. You can also write a customize label for any of the data items listed on the I/O Image tab. This feature allows you to pre-symbolize important memory locations in the Island before the application is written.
(1) A utility is available to enable the export of user labels (under CANopen) to the memory of Premium ${ }^{\text {m" }}$ PLCs (under Unity Pro ${ }^{\text {T" }}$ or PL7 ${ }^{\text {T" }}$ software). Please consult your Regional Sales Office.

"Options" tab

"/O Mapping" tab (part of the standard modules)

User Defined Label Editor

IO Image Overview

Power supply and memory resource analysis

Functions (continued)
 "Diagnostics" tab

This tab allows the user to perform diagnostics for the station connected to the PC terminal where the Advantys ${ }^{\text {™ }}$ configuration and debugging software resides.

"Options" tab

This tab, accessible when the island is offline, provides the user with options to configure I/O or network interface module.
■ Prioritize the selected I/O module in a group of fast-solve modules that are scanned by the NIM more frequently than other modules. By default, the software automatically prioritizes the first 10 prioritizable modules. If the island consists of more than 10 prioritizable modules, you must prioritize the modules manually.
■ Designate the selected I/O module as mandatory. If a mandatory module fails or is removed from the Island, the entire Island bus will switch to pre-operational mode and stop. It will return to its operational state only if you reinstall the same functional module, or a new module of the same type, at this exact location on the bus.
■ Mark the selected I/O module as Virtual Placeholder. The Virtual Placeholder allows you to remove certain physical Island I/O modules from a base configuration while keeping the identical process image. Thus, you can define an Island with various options removed without changing the PLC program which controls the Island.
■ Configure run-time parameters (on network interface module), this reserves a set of registers in the fieldbus image. These registers allow the user to control the transfer of parameters at application program level using normal I/O operations.
These registers are indicated in the I/O Image as RTP.
■ Set maximum node ID on the CANopen extension (on network interface).

"I/O Mapping" tab (part of the standard modules)

You can edit the I/O mapping of the selected module using the I/O Mapping tab in the Module Editor. This dynamic I/O mapping allows you to optimize the Island's process image on a module-by-module basis.

User Defined Label Editor

This tab allows you to assign user labels in a single editor to all module data items on the island.
This editor enable the import/export of user labels in CSV format.

I/O Image Overview

It provides a utility with an overview of the I/O data and status allocation for all modules on the Island. It also gives you a view of any data that may be written to the Island bus or read by the fieldbus master. It contains Fieldbus Image tab containing the fieldbus view and Modbus Image tab containing the Modubus view depending on the network interface type. Each view has input and output table.

Analysis of the station memory and power supply resources

At any time during the configuration process, you can view the following information expressed as a percentage:

- Power consumption at various voltages:
$\square 5 \mathrm{~V}=-\mathrm{logic}$ voltage supplied by the STB Nee network interface module
$\square 5 \mathrm{~V}=-$ logic voltage supplied by the STB XBE 1200/1300 BOS bus extension module
- 5 V --- logic voltage supplied by the STB CPS 2111 auxiliary power supply module, this module should be associated with an STB PDT $\bullet 10 \bullet$ power supply module. - $24 \mathrm{~V}=-$ voltages supplied by the STB PDT 3100/3105 power distribution module(s)
ㅁ 115/230 V ~ voltages supplied by the STB PDT 2100/2105 power distribution module(s)
■ Usage of the memory built into the network interface module
- Image field for inputs and outputs
\square Field dedicated to the human machine interface

Downloading of configuration data

The software enables bi-directional transfer of configuration data:
■ From the PC to the RAM and Flash memory of the station network interface module in order to make the station operational. If the network interface module includes the STB XMP 444032 KB removable memory card, data will be written to the card, providing a backup.
■ From the station network interface module to the PC

Access via RTP to external components such as ATV variable speed drives, etc.

"Absent" modules will actually be installed as needed.

Bill of Materials

Printing: Selection of stations and elements to be inserted in the design report

Functions (continued)
 RTP run-time parameters

The RTP (Run-Time Parameters) function enables access from the PLC to data (1) of the external CANopen components connected to an STB station.
The main uses are:
■ Writing the parameters of a component: Inoperative Device Replacement (IDR) operation
■ Reading the variables for the monitoring and diagnostics of any object connected to the station

"Absent" modules

This function of the Advantys STB SPU 1ゃeゃ configuration and debugging software allows you to declare I/O modules that will not actually be included in the station at the outset. This means that:
■ "Virtual" module slots are reserved in the station configuration.
■ The exchange data of the "virtual" modules are included in tables of exchanges with the PLC.
The physical modules can be integrated into the automation station as actual requirements increase.

Export of user labels ("tags")

The Advantys ${ }^{\text {T" }}$ software allows you to create tags (symbol names) for objects and I/O parameters of the Modicon STB configuration, including external devices connected to the CANopen bus.
The "File/export" function exports these names at the same time as the mapping, regardless of the fieldbus or network used. This information can be used directly on controllers. This eliminates the need to declare I/O objects again and promotes consistency in the naming of machinery or equipment.
User labels can be exported in CSV format.

Import/export of station mapping files

This function allows you to carry out mapping and export it in the format of any PLC programming software, regardless of the fieldbus or network.

Bill of Materials

The Bill of Materials provides the description of a selected island including mandatory and optional components. In addition to getting a printout of the Bill of Materials using the Print function, the information for the Bill of Materials can be exported to a CSV file.
It is possible to customize the output of the Bill of Materials according to your preferred:
■ Calculation algorithm (based on kits or individual parts)

- Amount of module information
- Type of connectors (spring or screw)
- Extension cable length selection

The default type of connectors is the screw type.

Design report printout

This function allows you to select topics to be sent to a printer or to a PDF or editable RTF file. The following items can be selected:

- Graphic image of the station
- Any portion of the station information:
\square List of mandatory components, including accessories, such as bases, connectors, etc. \square List of optional components, such as labels, keying pins, memory cards, etc.
- Information about the workspace
- Information about the station
\square Image of the station
\square List of components
\square Fieldbus I/O image
\square Modbus I/O image
\square Reflex actions
\square Resource usage
\square Resource power supply details
\square Resource configuration details
\square Module details
\square Notes

[^4]
Functions (continued)

Test mode

There are two test modes:
\square PLC offline test: Bus or network communication is disconnected.
The outputs can be controlled directly from the Advantys application connected via the Modbus ${ }^{\circledR}$ port on the network interface module.
■ Online test: Bus or network communication is operational. The outputs can be forced directly from the Advantys application. This mode can be accessed by entering a configurable password.
These test modes allow you to import the station configuration and read the error messages and I/O states.

Update at: www.schneider-electric.us

The Advantys STB SPU $1 \bullet e \bullet$ configuration and debugging software and the databases of its module catalog are available on our web site: www.schneider-electric.us. From the web site, you can:
■ Download the Advantys STB SPU 1000 software application for a free 21-day trial - For officially registered software, obtain function updates and updates for the catalog of components that can be connected to Modicon STB automation stations

Reflex functions editor

For applications requiring short response times ($<3 \mathrm{~ms}$), the Modicon ${ }^{\circledR}$ STB distributed I/O solution allows you to create reflex functions using the configuration and debugging software. These reflex functions act directly at the level of the station output modules and therefore are not taken into account or processed by the station master. These reflex functions can be associated with "priority" I/O modules to help ensure reliable response times.
A Modicon STB station can call up to 10 reflex functions. These functions are created from blocks whose inputs are activated by digital or analog input channels and whose results activate a digital or analog output channel. You can nest two reflex functions.

Reflex types and function blocks
Various types of function blocks are available:

Boolean logic blocks: XOR block, AND blocks with 4 inputs and 1 output

Up/down counter blocks: on a rising or
falling edge, from 0 to 65,535

Digital latch blocks: on state 0 or 1 or on rising or falling edge, storing of state 0 or 1

Timer/monostable blocks: when working, when idle, upon activation and upon deactivation

Comparison blocks on signed integers $(-32,768$ to 32,767$)$: $\mathrm{i}<, \mathrm{i}\rangle,\langle\mathrm{i}\rangle, \mathrm{i}<$, and i$\rangle$

Analog latch blocks: on state 0 or 1 or on rising or falling edge, storing of signed integer (0 to 65,535) or unsigned integer ($-32,768$ to 32,767)

Documentation: A document entitled "Reflex actions" is available on the STB SUS 8800 CD-ROM and on our web site: www.schneider-electric.us.

References

The Advantys ${ }^{\text {Tw }}$ configuration and debugging software is multilingual and compatible with the following operating systems:

- 32 bit Windows XP® ${ }^{\circledR}$ Professional SP3
- 32 bit Windows Vista ${ }^{\circledR}$ Business SP1
- 32 bit Windows Vista ${ }^{\circledR}$ Ultimate SP1

■ 32 bit Windows ${ }^{\circledR} 7$ Professional
■ 32 bit Windows ${ }^{\circledR} 7$ Ultimate
■ 32 bit Windows ${ }^{\circledR} 7$ Enterprise
Online help is available in 5 languages: English, French, German, Spanish, and Italian. Internet Explorer ${ }^{\circledR}$ (Version 4.0 or later) is required to access the online help.

Trial period

For STB SPU 1•e๑, you must register the software with Schneider Electric within 21 days to obtain permanent user rights.
During the trial period of 21 days, all services are available. Once the trial period has expired, online services are not available anymore without registration. All other product families have full functionality.

Custom user registration

Custom user registration can be accessed free-of-charge online, via e-mail, fax, or telephone for pack types from the single-station version to the site version. This allows you to receive customized updates within your company.

Description	Use	Reference	Weight kg
Advantys configuration and debugging software	Single station - 1 workstation: Includes 1 cable and 1 CD-ROM	STB SPU 1000	-
	3 stations: Includes 3 cables and 3 CD-ROMs	STB SPU 1003	-
	10 stations: Includes 10 cables and 10 CD-ROMs	STB SPU 1011	-
	10 workstations on one site Unlimited registration capacity: Includes 10 cables and 10 CD-ROMs	STB SPU 1130 (1)	-
Subscription to Advantys configuration and debugging software - Duration: 1 year	1 station	STB BBS 1000	-
	3 stations	STB BBS 1003	-
	10 stations	STB BBS 1011	-
	10 workstations on one site Unlimited registration capacity	STB BBS 1130 (2)	-
Documentation			
User documentation (3)	Multilingual on CD-ROM	STB SUS 8800	-
Replacement part			
Connection cable from PC to NIM network interface module	Length 2 m	STB XCA 4002	-
References, Alliance SI program			
Description	Use	Reference	Weight kg
Advantys configuration and debugging software	10 workstations on one site for a member of the Alliance SI program. Includes 10 cables and 10 CD-ROMs	STB SPU 1010	-
Subscription to Advantys configuration and debugging software - Duration: 1 year	10 workstations on one site for a member of the Alliance SI program	STB BBS 1010	-

(1)Replaces STB SPU 1100 reference.
(2) Replaces STB BBS 1100 reference.
(3) The following two documents are available on the STB SUS 8800 CD-ROM and on our web site:www.schneider-electric.us:

- Advantys Configuration and Debugging Software: Quick Start Guide
- Advantys Configuration and Debugging Software: User Manual

Momentum ${ }^{\text {m }}$ PLC 171 CBB 97030 processor Open and modular system

171 CBB 97030

Introduction

The Momentum ${ }^{\text {T"I }} 171$ CBB 97030 processor integrates both a full programmable controller, an Ethernet switch with $4 \times 10 / 100$ Mbps ports, and a Modbus ${ }^{\circledR}$ serial communication port. Supporting a wide temperature range from -20 to $70^{\circ} \mathrm{C}(-4$ to $158^{\circ} \mathrm{F}$), and powered with $24 \mathrm{~V}--$, it also has a realtime clock and a battery for backing up the memory.

Processor

- $0.25 \mathrm{~ms} /$ Kinstructions

■ Concept ${ }^{\text {Tw }}$ software IEC 61131-1 and ProWORX ${ }^{\text {Tw }}$ software 32 LL984

- Realtime control using Ethernet:
- Distributed I/O connectivity
\square Peer-to-peer interprocessor communication
- Realtime clock
- Battery for backing up data

■ 19.2 to 42.5 V -- power supply

Communication

- Integrated Ethernet switch with 4 ports

■ 10/100 Mbps, half/full duplex autonegotiated
■ RS232/RS485 Modbus serial communication port

- Simple menu-driven configuration

This integration results in:

- A reduction in the number of components required, simplification of the wiring, lower setup costs
■ Unrivalled flexibility in designing system architectures: the Momentum 171 CBB 97030 processor's compact dimensions make it ideal for installation where space is limited or in small machines
■ Direct high-performance Ethernet connectivity to the I/O, other control systems and HMI terminals
■ Faster response times on high-traffic networks thanks to its half/full duplex communication with autonegotiation
■ Setup made easy by simple menu-driven configuration

Applications

Ethernet 10/100 Mbps communication supports the Modbus TCP/IP protocol, offering connectivity to the distributed I / O and host systems, communication with other peer processors, drives, operator and programming terminals, as well as simple browser access to embedded web pages.
The Modbus serial communication port can be used to connect the processor to any RS232 or RS485 device in master or slave mode.
The processor program can be expressed in one of the five IEC 61131-1 languages in the Concept environment or as a ProWorX 32 Ladder 984 logic diagram.

These capacities make it the ideal processor for distributed I/O and device systems on Ethernet; for example, intelligent sub-system connected to a master or supervision processor, multiprocessor distributed processing applications, etc. The Momentum 171 CBB 97030 processor is suitable for a wide variety of applications:
■ Conveying, handling

- Packaging
- Water/waste treatment
- Infrastructure
- Pumping, RTU, heating, air conditioning
- Batch/process control
- Data acquisition, monitoring

Momentum ${ }^{\text {m" }}$ PLC 171 CBB 97030 processor Open and modular system

The system can include up to 3 Momentum ${ }^{\text {mw }}$ or Modicon ${ }^{\circledR}$ STB I/O stations.

Single-processor processing system with distributed devices

Modicon ${ }^{\circledR}$ STB distributed I/O solution
Momentum ${ }^{\text {m" }}$ PLC 171 CBB 97030 processor Open and modular system

The system can include an existing M1E processor. Up to 14 processors in peer-to-peer communication.

Processing system extended by a second Ethernet switch

Extending the Ethernet network allows additional devices to be connected.

Description

14 RJ45 10/100 Mbps Ethernet ports
24 Ethernet activity LEDs
34100 Mbps speed indicator LEDs
41 processor running status LED
51 LAN status LED
6124 V power supply status LED
7 RS232/RS485 Modbus ${ }^{\circledR}$ serial link port
824 V power supply connector

Abstract

Web server A PC equipped with a browser is what you need to access the Web server hosted by the Momentum ${ }^{\text {w }} 171$ CBB 97030 processor and its 4 pages of information updated in real time: - Processor home page - Processor configuration, system status

■ Ethernet transmission/reception statistics - Links to Schneider Electric web sites

Device configuration

The Ethernet I/O scanner software provides a simple, menu-driven way of configuring Momentum 171 CBB 97030 processor communication with the I/O devices connected to it:
■ IP address

- Timeout and transaction repetition rate
- Address of the first processor register where data is to be read/written
- Length of exchanges in number of words

■ Ethernet I/O scanner is included in both Concept ${ }^{T \mathrm{Tm}}$ and ProWORX ${ }^{T M}$ software.

Modicon ${ }^{\circledR}$ STB
 distributed I/O solution

Momentum ${ }^{\text {me }}$ PLC 171 CBB 97030 processor
Open and modular system

Environment			
Processor			171 CBB 97030
Temperature	Operation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-20 to +70 (-4 to 158)
	Storage	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-40 to +70 (-40 to 158)
Relative humidity			5 to 95% at $60^{\circ} \mathrm{C}$, non-condensing, 24 hrs
Altitude		m	2000
Mechanical resistance (immunity)	Vibration		$\begin{aligned} & 57 \ldots 150 \mathrm{~Hz} \text { at } 1 \mathrm{~g} \\ & 10 \ldots . .57 \mathrm{~Hz} \text { at } 0.075 \mathrm{~mm} \text { d.a. } \end{aligned}$
	Shock		± 15 gn peak, 11 ms , semi-sinusoidal wave
Conformity			UL, CSA, CE, FM Class 1 Div. 2, Groups A, B, C and D, and IP20 compliant with IEC 529
Specifications			
Processor			Base 186
Word length		bit	16
Material			Lexan
Power supply	Voltage	V -	19.2...42.5
	Power consumption	mA	100 at $24 \mathrm{~V}=$ -
IFR immunity/EMI susceptibility/Electrostatic discharge			CE compliant for open equipment. Open equipment to be installed in a standard industrial enclosure, with access restricted to qualified maintenance personnel
Dielectric strength	RS232		Not isolated from the logical 0 V
	Ethernet ports		500 V --- for one minute
LED indicators	PLC RUN		Logic calculations performed
	PLC LAN ST		Ethernet - processor internal communication established
	$4 \times$ Link/Active		Ethernet port activity
	$4 \times 100 \mathrm{MB}$		Ethernet port communication at 100 Mbps
Processor speed		MHz	50
Switch	Type		Unmanaged
	Topology		Star
Communication ports Nos. 1 to 4	Type		Ethernet
	Protocol		Modbus TCP/IP
	Speed		10/100 Mbps with auto negotiation
	Connector		RJ45
	Medium		Shielded twisted pair, category 5E
	Error detection		CRC-32
	Module status		Normal I/O mode
	Addressing		Unique IEEE (MAC) global address User-defined IP address
	Type of operations		Master-Slave
No. 5	Type		RS232/RS485
	Protocol		Modbus
	Speed		19200 bps
	Connector		RJ45
	Medium		2 or 4-wire
	Error detection		CRC-16
	Type of operations		Master-Slave
	Topology		Multi-drop
Capacities	Program memory	Kb	IEC: 200
			984 LL: 18
	Registry memory		26032 registers
	Inputs/Outputs:		8192 input points, 8192 output points. The actual number of I/O that can be connected to the 171 CBB 97030 processor depends on the number of distributed I/O stations and the type of I/O.
	Ethernet devices		64
	Scan time	ms/K	0.25 instructions
Mounting			On symmetrical DIN rail, 35 mm wide
Weight		kg	0.190
Dimensions		mm	$75.2 \times 143 \times 43$
Transparent Ready ${ }^{\text {® }}$ service	Web class		B
	Web services		4 embedded web pages Home page Controller configuration: system information Ethernet statistics: display of transmission/reception statistics Links to Schneider Electric web sites
	Messaging		Maximum message length: 125 words Capacity: 4000 I/O messages per second

Dimension diagram

Reference	Reference	Weight kg
Description	$\mathbf{1 7 0}$ CBB $970 \mathbf{3 0}$	0.190

STB NCO 2212 (cover open) and STB XCA 4002 cable

Application

A Magelis ${ }^{\circledR}$ XBT terminal or display unit can be connected directly to a Modicon ${ }^{\circledR}$ STB station via the Modbus programming port.

PLC
Modicon STB distributed I/O station with standard NIM communication module STB
Nee 2212
Modbus ${ }^{\circledR}$ serial cable and adaptor if required (see compatibility table on next page)
Magelis XBT display unit or HMI terminal

Functions

With this architecture, the XBT terminal or display unit is the Modbus serial link master; the Modicon STB standard communication module is the slave.

The connection allows:

1
Data transfer between the Magelis XBT terminal and the PLC via the exchange area defined by the user in the Modicon STB memory. Two word tables have to be configured (sizes, labels) in the memory of the NIM communication module using the Advantys ${ }^{\circledR}$ STB SPU 1•eゃconfiguration software:

- One written by the terminal and read by the PLC (HMI->PLC)
- The other written by the PLC and read by the terminal (PLC->HMI)

The Modicon STB distributed I/O station is used as a neutral gateway between the PLC and the terminal.
The terminal can display information coming from the PLCs and, conversely, control automatic functions in the normal way.

Display of the following Modicon STB data on the Magelis terminal:

- Input and output values
- Internal states

When the Modicon STB is in "Test" mode, writing of the station's output values

Note: Functions 2 and 3 :

- Do not require communication to be established between the PLC and the

Modicon STB station

- Cannot be performed simultaneously

XBT GT2220

Connection cables					
Magelis ${ }^{\circledR}$ family	Type	Size	Adaptor	Length	Cable
XBT N (1)	Compact display units		-	2.5 m	XBT $\mathbf{Z 9 8 8}$
XBT R (2)	Compact terminals				
XBT RT (3)		3.9"	-	2 m	XBT Z988
XBT GT1•	Graphic terminals	3.8 "	XBT ZG 939	2.5 m	XBT Z988
XBT GT2•	Touch screen graphic terminals	5.7"	-	2 m	STB XCA 4002
XBT GT4•		7.5"			
XBT GT5•		10.4"			
XBT GT6•		12.1"			
XBT GT7•		15"			
XBT GK2•	Graphic terminals with keypad	5.7"	-	2 m	STB XCA 4002
XBT GK5•		10.4"			
XBT GTW450	Open graphic terminals	8.4"	-	2 m	STB XCA 4002
XBT GTW750		15"			

(1) Except XBT N200 and XBT N400
(2) Except XBT R400
(3) Except XBT RT400

Modicon ${ }^{\circledR}$ STB distributed I/O solution

High-density I/O modules and the Modicon Telefast ${ }^{\circledR}$ ABE 7 pre-wired system

Application

Using the Modicon ${ }^{\circledR}$ Telefast ${ }^{\circledR}$ ABE 7 pre-wired system rationalizes and simplifies enclosure wiring.
Far less space is required in the enclosure and the Modicon Telefast ABE 7 base replaces the connection terminals at the bottom of the enclosure.
Designed for the 16-way high-density modules STB DDI 3725 and STB DDO 3705, Modicon Telefast ABE7 HE10 connectors offer a simple wiring solution simple when combined with standard Telefast cables, Modicon Telefast ABE7 blocks and Twido Telefast blocks for the following voltages:

- 24 V =-
- $48 \mathrm{~V}=-\mathrm{and} 48 \mathrm{~V} \sim$
- 110 V ~
- 230 V ~

1 Modicon STB I/O station incorporating an STB DDI 3725 and/or STB DDO 3705 high-density module
2 STB XTS 5•10 (DDI) or STB XTS 6•90 (DDO) HE10 connector
3 TSX CDP•02 rolled ribbon cable (100 mA max.) or TSX CDP•03 connection cable (500 mA max.) equipped with two 20-way HE10 connectors.
4 Modicon Telefast ABE 7 connector or adaptor base
Examples of cables available (non-exhaustive list):

TSX CDP053	TSX CDP103
TSX CDP203	TSX CDP303
TSX CDP503	TSX CDP102
TSX CDP202	TSX CDP302
ABF T20E050	ABF T20E100
ABF T20E200	ABF H2OH100
ABF H2OH200	ABF H2OH300

Note: For more information about the Modicon Telefast ABE 7 pre-wired system, please refer to the "Interfaces, I/O splitter boxes and power supplies" catalog.

References			
Input connector for STB DDI 3725			
Description	Use	Reference	Weight kg
HE10 connector for 16-input	To Twido ${ }^{\text {® }}$ Sub base	STB XTS 5510	
	To Modicon ${ }^{\circledR}$ Telefast ${ }^{\circledR}$ ABE 7 base	STB XTS 6510	
Output connector for STB DDO 3705			
Description	Use	Reference	Weight kg
HE10 connector for 16 -output module STB DDO 3705	To Twido Sub base	STB XTS 5610	

Modicon ${ }^{\circledR}$ STB distributed I/O solution

High-density I/O modules and the Modicon Telefast ${ }^{\circledR}$ ABE 7 pre-wired system

Other wiring solution

1 Modicon ${ }^{\circledR}$ STB I/O station incorporating a high-density module STB DDI 3725 and/or STB DDO 3705
2 STB XTS 1180 (screw-type) or STB XTS 2180 (spring-type) 18-way connector
3 TSX CDP 301 (3 m), TSX CDP 501 (5 m) or TSX CDP 1001 (10 m) pre-wired cable with HE 10 connector at one end and flying leads at the other end Cross-section $0.324 \mathrm{~mm}^{2}$, AWG 24
4 Modicon ${ }^{\circledR}$ Telefast ${ }^{\circledR}$ ABE 7 connector or adaptor base (see compatibility table opposite)

Note: For more information about the Modicon Telefast ABE 7 pre-wired system, please refer to the "Power supplies, splitter boxes and interfaces" catalog.

Modicon ${ }^{\circledR}$ STB distributed I/O solution
High-density I/O modules and the Modicon Telefast ${ }^{\circledR}$ ABE 7 pre-wired system

The Modicon STB module can supply 24 V -- power to the Modicon Telefast block provided the current does not exceed 50 mA per group of 4 channels. Otherwise an external power supply will be required and only the 0 V reference should be connected between the Modicon STB module and the Modicon Telefast ABE 7 block.
(1) Sold in pairs (2 connectors per module)

Examples of combinations for logic input module STB DDI 3725	
Voltage Modicon ${ }^{\circledR}$ Telefast ${ }^{\circledR}$ v ABE 7 base	
$48=$	ABE7 S16E2E1
$48 \sim$	ABE7 S16E2E0
$115 \sim$	ABE7 S16E2F0
230 to $240 \sim$	ABE7 S16E2M0

Examples of combinations for logic output module STB DDO 3705				
	Voltage	Current per channel	Modicon Telefast ABE 7 base	Relay
	\mathbf{V}	A		

(1) Empty bases

Modicon ${ }^{\circledR}$ STB distributed I/O solution

High-density I/O modules and the Modicon Telefast ${ }^{\circledR}$ ABE 7 pre-wired system

STB DDI 3725 module - TSX CDP ©01 connections

The inputs must be powered via the Modicon ${ }^{\circledR}$ STB DDI 3725 module. (1)

STB DDI 3725		TSX CDP •01	
Left connector	Channel	HE 10	
A	IN		
Terminal no.		Terminal no.	Wire color
1	PDM V1 + (1)	17 (2)	White/grey
2	11	1	White
3	-	-	-
4	12	2	Brown
5	-	-	-
6	13	3	Green
7	-	-	-
8	14	4	Yellow
9	PDM V1 -	18 (3)	Grey/brown
10	-	-	-
11	15	5	Grey
12	-	-	-
13	16	6	Pink
14	-	-	-
15	17	7	Blue
16	-	-	-
17	18	8	Red
18	-	-	-

STB DDI 3725		TSX CDP •01	
Right connector	Channel	HE 10	
B	IN		
Terminal no.		Terminal no.	Wire color
1	PDM V1 + (1)	19 (2)	White/pink
2	19	9	Black
3	-	-	-
4	110	10	Purple
5	-	-	-
6	111	11	Grey/pink
7	-	-	-
8	112	12	Red/blue
9	PDM V1 -	20 (3)	Pink/brown
10	-	-	-
11	113	13	White/green
12	-	-	-
13	114	14	Brown/green
14	-	-	-
15	115	15	White/yellow
16	-	-	-
17	116	16	Yellow/brown
18	-	-	-

(1) Wires 17 and 19 in cable TSX CDP•01 (terminals 1 on the STB DDI 3725 connectors) should only be connected if the following two conditions are met:

- No external power supply connected to the Telefast ${ }^{\circledR}$ ABE 7 base

Consumption does not exceed 50 mA per group of 4 channels
(2) Terminals 17 and 19 on the HE10 connector connected inside the ABE 7 base
(3) Terminals 18 and 20 on the HE10 connector connected inside the ABE 7 base

STB DDO 3705 module - TSX CDP 001 connections

The outputs must be powered via the Modicon ${ }^{\circledR}$ Telefas ${ }^{\ominus}$ ABE 7 base.

STB DDO 3705		TSX CDP •01	
Left connector	Channel	HE 10	
A	OUT (1)		
Terminal no.		Terminal no.	Wire color
1	OUT 1	1	White
2	PDM V -	20 (2)	Pink/brown
3	OUT 2	2	Brown
4	-	-	-
5	OUT 3	3	Green
6	-	-	-
7	OUT 4	4	Yellow
8	-	-	-
9	NC	-	-
10	OUT 5	5	Grey
11	-	-	-
12	OUT 6	6	Pink
13	-	-	-
14	OUT 7	7	Blue
15	-	-	-
16	OUT 8	8	Red
17	-	-	-
18	NC	-	-

STB DDO 3705		TSX CDP •01	
Right connector	Channel	HE 10	
B	OUT (1)		
Terminal no.		Terminal no.	Wire color
1	OUT 9	9	Black
2	PDM V-	18 (2)	Grey/brown
3	OUT 10	10	Purple
4	-	-	-
5	OUT 11	11	Grey/pink
6	-	-	-
7	OUT 12	12	Red/blue
8	-	-	-
9	NC	-	-
10	OUT 13	13	White/green
11	-	-	-
12	OUT 14	14	Brown/green
13	-	-	-
14	OUT 15	15	White/yellow
15	-	-	-
16	OUT 16	16	Yellow/brown
17	-	-	-
18	NC	-	-

(1) NC: Not connected
(2) Terminals 18 and 20 on the HE10 connector connected inside the ABE 7 base

2/3 A power supply

5 A power supply

$10 A$ power supply

ABL 7 power supplies

The $A B L 7$ range of power supplies is designed to provide the DC voltage required by the control circuits of automation system equipment. Split into three families, this range meets the needs encountered in industrial, commercial and residential applications. Single-phase or 3-phase (1), of the electronic switch mode type, they provide an output current quality that is suitable for the loads supplied and compatible with the line supply available in the equipment. Clear guidelines are given for selecting the protective devices that are often used with them, thus providing a comprehensive solution.

Phaseo ${ }^{\circledR}$ switch mode power supplies

These switch mode power supplies are totally electronic and regulated. The use of electronics makes it possible to significantly improve the performance of these power supplies. The power supplies provide the following features:
■ Very compact size

- Integrated overload, short-circuit, overvoltage and undervoltage protection
- Very wide range of permissible input voltages, without any adjustment required
- High degree of output voltage stability
- High efficiency
- LED indicators on the front panel

Phaseo power supplies are available in single-phase and 3-phase versions (1). They deliver a voltage that is accurate to 3%, whatever the load and whatever the type of line supply, within a range of 85 to 264 V for single-phase or 360 to 550 V for 3 -phase. Conforming to IEC standards and UL-and CSA-certified, they are suitable for universal use. The inclusion of overload and short-circuit protection makes downstream protection unnecessary if discrimination is not required.
ABL 7 RE and ABL 7 RP supplies are also equipped with an output undervoltage control that causes the product to trip if the output voltage drops below 19 V to help ensure that the voltage delivered is always usable by the actuators being supplied. Products are equipped with an output voltage adjustment potentiometer to compensate for any line voltage drops in installations with long cable runs. These power supplies are designed for direct mounting on 35 mm and $75 \mathrm{~mm} _$rails.

The single-phase power supplies referenced in this catalog are specially adapted for use with the Modicon ${ }^{\circledR}$ STB modules for automation stations (network interface modules and power distribution modules).

■ ABL 7RE universal single-phase supplies:
\square Power between $48 \mathrm{~W}(2 \mathrm{~A})$ and 240 W (10 A)
\square Compact size
\square For machine equipment
\square Suitable for use in automation system environments based on any Modicon ${ }^{\circledR}$ PLC platforms requiring a 24 V --- supply

■ ABL 7RP universal single-phase supplies:

- Power between 60 W (2.5 A) and 240 W (10 A)
- Output voltage available: 12, 24, and 48 V --
- Input filter (PFC) for commercial and residential environments (conforming to standard EN 61000-3-2)
- Two operating modes possible for handling of overloads and short circuits:
"AUTO" mode provides automatic restarting of the power supply on elimination of the detected fault
"MANU" mode requires manual resetting of the power supply to restart. Resetting is achieved by switching off the line supply power.

[^5]
Use of $24 \mathrm{~V}=$

- The use of $24 \mathrm{~V}=$ - enables protected installations (PELV) to be implemented. PELV includes a protective measure against direct and indirect contact with dangerous voltage. Specifications relating to these installations are defined in publication NF C 12-201 and in standard IEC 364-4-41.
- The application of these measures to the electrical equipment in machines is defined in standard NF EN 60204-1 with the following requirements:
\square The voltage used must be less than 60 VDC in dry environments and 30 VDC in damp environments
\square One side of the PELV circuit, or one point of the source, must be connected to the equipotential protection circuit associated with higher voltages.
\square Switchgear and control gear designed to help ensure a sufficient separation between power circuits and control circuits must be used.

■ PELV circuits require a sufficient separation between the power circuits and the control circuits. This sufficient separation is designed to prevent the development of hazardous voltages in $24 \vee-$ - safety circuits.

- The relevant reference standards are:
- IEC 61558-2-6 and EN 61558-2-6 (safety transformers)
- IEC 664 (isolation coordination)

Schneider-electric power supplies meet these requirements.

■ Moreover, to help ensure that these products will operate correctly with respect to the reinforced isolation requirements, it is recommended that they be mounted and wired as indicated below:
\square They should be placed on a grounded mounting plate or rail.
\square They should be connected using flexible cables, with a maximum of two wires per connection, and tightened to the nominal torque.
\square Conductors of the correct insulation class must be used.

- If the DC circuit is not connected to an equipotential protection conductor, an earth ground leakage detector will indicate any accidental insulation faults (please consult your Regional Sales Office).

Operating voltage

■ The permissible tolerances for the operating voltage are listed in publications IEC 1131-2 and DIN 19240.

■ For nominal voltage Un=24 V ---, the extreme operating values must fall between -15% to $+20 \%$ of Un, whatever the supply fluctuations in the range of -10% to $+6 \%$ (as defined by standard IEC 38) and load variations in the range 0-100\% of In.

Schneider-electric 24 V --- power supplies are designed to provide a voltage within this range.

- It may be necessary to use a voltage measurement relay to detect when the normal voltage limits are being exceeded and to deal with the consequences of this (please consult your Regional Sales Office).

Selection of power supplies

Consider the following characteristics when selecting a power supply:

- Required output voltage and current
- Line voltage available in the installation

This may, however, result in several products being selected as suitable. Other selection criteria must therefore be taken into account.

There are 3 possible power supply options for Modicon ${ }^{\circledR}$ STB modules:

- Option 1: One single power supply for the network interface module, sensors, and actuators. Advantages: Simple and low-cost.
■ Option 2: Two power supplies: 1 for the network interface module and 1 for the sensors/actuators. Advantage: Separation of the bus and fieldbus.
- Option 3: Three power supplies: 1 for the network interface module, 1 for the sensors, and 1 for the actuators. Advantage: Suitable for applications requiring minimum interference at the inputs. See power supply combination table on page 121.

Quality of the line supply

The Phaseo ${ }^{\circledR}$ range is the ideal solution because it helps to ensure accuracy to 3% of the output voltage, whatever the load current and the input voltage. In addition, the wide input voltage range of Phaseo power supplies allows them to be connected to line supplies within this range, without any adjustment required. The Phaseo RP family can also be connected to 110 and 220 V --- emergency supplies.

Harmonic pollution (power factor)

The current drawn by a power supply is not sinusoidal. This results in harmonic currents that pollute the line supply. European standard EN 61000-3-2 limits the harmonic currents produced by power supplies. This standard covers devices between 75 W and 1000 W , drawing up to 16 A per phase and connected directly to the public distribution system. Devices connected downstream of a private, low voltage, general transformer are therefore excluded.

Regulated switch mode supplies always produce harmonic currents. A filter circuit (Power Factor Correction or PFC) must therefore be added to comply with standard EN 61000-3-2.
Phaseo ABL 7RP power supplies conform to EN 61000-3-2 and can therefore be connected directly to public distribution systems.

Electromagnetic compatibility

Levels of conducted and radiated emissions are defined in standards EN 55011 and EN 55022.
Products in the Phaseo range have Class B certification and can be used without any restrictions due to their low emissions.

Behavior in the event of short circuits

Phaseo power supplies are equipped with an electronic protection device. This protection device resets itself automatically on correction of the detected fault (around 1 second for $A B L 7 R E / R P$) eliminating the need to take action or change a fuse. In addition, the Phaseo ABL 7RP ranges allow the user to select the reset mode in the event of a detected fault:
■ In the "AUTO" position, resetting is automatic

- In the "MANU" position, resetting occurs after elimination of the detected fault and after switching the line supply power off and back on.
This feature allows Phaseo ABL 7RP power supplies to be used in installations where the hazards associated with untimely restarting are significant.

Selection of reset mode

Reset mode is selected using the microswitch on the front panel of the product.

Technical specifications				
Power supply type			ABL 7RE	ABL 7RP
Approvals			UL, CSA, TÜV, CTick	
Compliance with Safety			UL 508, CSA 22.2 no. 950	
standards	EMC		EN 50081-1, IEC 61000-6-2 (EN 50082-2)	
LF harmonic currents			-	EN 61000-3-2
Input circuit				
LED indication				Orange LED
Input values	Nominal voltage	V	100 to 240 ~	100 to 240 ~ compatible with 110 to 220 -- (1)
	Permissible voltages	V	85 to $264 \sim$ single-phase	85 to 264 ~, compatible with 100 to 250 -- (1)
	Permissible frequencies	Hz	47 to 63	
	Efficiency at nominal load		> 85\%	
	Current consumption $\mathrm{Ue}=240 \mathrm{~V}$ $\mathrm{Ue}=100 \mathrm{~V}$	A	$\begin{aligned} & 0.6(48 \mathrm{~W}) / 0.83(72 \mathrm{~W}) \\ & 1.2(120 \mathrm{~W}) / 2.5(240 \mathrm{~W}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4(72 \mathrm{~W}) / 0.6(120 \mathrm{~W}) \\ & 1.3 \text { (240 W) } \end{aligned}$
		A	$\begin{aligned} & 1.2(48 \mathrm{~W}) / 1.46(72 \mathrm{~W}) \\ & 1.9(120 \mathrm{~W}) / 3.6(240 \mathrm{~W}) \end{aligned}$	0.8 (72 W)/1 (120 W)/2.8 (240 W)
	Current on power-up	A	< 30	
	Power factor		0.65, approximately	0.98, approximately
Output circuit				
LED indication			Green LED	Green LED
Nominal output voltage (U out)		V	24 --	12, 24, and 48
Nominal output current		A	2/3/5/10	2.5/5/10
Accuracy	Output voltage		Adjustable from 100 to 120\%	
	Line and load regulation		$\pm 3 \%$	
	Residual ripple - interference	mV	<200 (peak-peak)	
Micro-breaks	Holding time at I max and Ve min	ms	> 10	> 20
Temporary overloads	Permissible inrush current (U out > 19 V)		See page 121	
Protection against	Short circuits		Permanent/automatic restart	Permanent/automatic restart or restart after switching off line supply power
	Overload		1.1 In	
	Overvoltage		Tripping if $\mathrm{U}>1.5 \mathrm{Un}$	
	Undervoltage		Tripping if $U>0.8 \mathrm{Un}$	
Operating and environmental specifications				
Connections	Input	mm^{2}	$2 \times 2.5+$ earth ground	
	Output	$\mathrm{mm}^{\mathbf{2}}$	$2 \times 2.5+$ earth ground, multiple output depending on model	
Ambient conditions	Storage temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to +70 (-13 to 158)	
	Operating temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to +60 (32 to 148) [derating from $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, mounted vertically]	
	Maximum relative humidity		95% without condensation or dripping water	
	Degree of protection		IP 20 conforming to IEC 529	
	Vibration		Conforming to EN 61131-2	
Operating position			Vertical	
MTBF at $40^{\circ} \mathrm{C}$			> 100,000 h	
Connections	Serial		Possible	
	Parallel		Possible (maximum temperature $50^{\circ} \mathrm{C}$)	
Dielectric strength	Input/Output		$3000 \mathrm{~V} / 50$ and 60 Hz 1 minute	
	Input/earth ground		$3000 \mathrm{~V} / 50$ and 60 Hz 1 minute	
	Output/earth ground (and output/ output)		$500 \mathrm{~V} / 50$ and 60 Hz 1 minute	
Input fuse incorporated			Yes, not interchangeable	
Emission			EN 50081-1	
	Conducted		EN 55011/EN $55022 \mathrm{cl.B}$	
	Radiated		EN 55011/EN $55022 \mathrm{cl.B}$	
Immunity			IEC 61000-6-2 (generic)	
	Electrostatic discharge		EN 61000-4-2 (4 kV contact/8 kV air)	
	Electromagnetic		EN 61000-4-3 level 3 (10 V/m)	
	Conducted interference		EN 61000-4-4 level 3 (2 kV) ,	61000-4-6 level 3, EN 61000-4-8 level 4.
	Line interference		EN 1000-4-11 (voltage drops and cuts)	

(1) Compatible input voltage not indicated on the product.

Load limits

Derating

The ambient temperature is a determining factor that limits the power an electronic power supply can deliver continuously. If the temperature surrounding the electronic components is too high, their life span will be significantly reduced. Conversely, a power supply can deliver more than its nominal power if the ambient temperature remains largely below the nominal operating temperature.
The nominal ambient temperature for $\mathrm{Phaseo}^{\circledR}$ power supplies is $50^{\circ} \mathrm{C}$. Above this, derating is necessary up to a maximum temperature of $60^{\circ} \mathrm{C}$.
The adjacent graph shows the power P (in relation to the nominal power Pn) that the power supply can deliver continuously as a function of the ambient temperature (on the vertical axis). Derating must be taken into account for extreme operating conditions:
■ Intensive operation (output current permanently close to the nominal current, combined with a high ambient temperature)
■ Output voltage rising above 24 V (for example, to compensate for line voltage drops)
■ Parallel connection to increase the total power

General rules to be complied with

Intensive operation
Rise in output voltage
Parallel connection to increase the power

See derating on graph at left.

 Example for ABL 7RE:- Without derating, from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
- Derating of nominal current by 2% per additional ${ }^{\circ} \mathrm{C}$, up to $60^{\circ} \mathrm{C}$
The nominal power is fixed. Increasing the output voltage means that the current delivered must be reduced.
The total power is equal to the power sum the power supplies used, but the maximum ambient temperature for operation is $50^{\circ} \mathrm{C}$. To improve heat dissipation, the power supplies must not be in contact with each other.

There must be adequate convection around the products to assist cooling. A clearance of 50 mm must be maintained above and below Phaseo power supplies, as well as a clearance of 15 mm on the sides.

Temporary overloads

ABL 7RE and ABL 7RP power supplies: Protection of the power supply line

Line supply type	$115 \mathrm{~V} \sim$ single-phase			$230 \mathrm{~V} \sim$ single-phase		
Protection type	Thermal-magnetic circuit breaker		gG fuse	Thermal-magnetic circuit breaker		gG fuse
	GB2	C60N		GB2	C60N	
ABL 7RE2402	GB2 •B07	MG24517 (1)	2A	GB2 DB06	MG24517 (1)	2A
ABL 7RE2403	GB2 •B07	MG24517 (1)	2A	GB2 DB06	MG24518 (1)	2 A
ABL 7RE2405	GB2 •B08	MG24518 (1)	4A	GB2 DB07	MG24518 (1)	2 A
ABL 7RE2410	GB2 •B12	MG17454 (1)	6A	GB2 DB08	MG24516 (1)	4A
ABL 7RP2403	GB2 •B07	MG24517 (1)	2A	GB2 DB07	MG17453 (1)	2A
ABL 7RP2405	GB2 •B07	MG24517 (1)	2A	GB2 DB07	MG24516 (1)	2A
ABL 7RP2410	GB2 •B09	MG24519 (1)	4A	GB2 DB07	MG24516 (1)	2 A

(1) UL-certified circuit breaker.

Combinations of Phaseo ${ }^{\circledR}$ single-phase power supplies with Modicon ${ }^{\circledR}$ STB modules

If the nominal current values for $\mathrm{Phaseo}^{\circledR}$ power supplies are exceeded, multiple power supplies can be used to power NIM, BOS, CPS, and PDT modules in accordance with the rules defined above (1, 2 or 3 power supplies).

Note:

■ The STB CPS 2111 should be associated with an STB PDT •10 \bullet power supply module.
■ 24 V --- power supplies. The input current of these power supplies is as follows:
\square NIM network interface module STB Nee: 0.4 A

- BOS bus extension module STB XBE 1200: 0.3 A
- Auxiliary power supply STB CPS 2111: 0.3 A
- Power distribution modules. The maximum current is as follows:
- STB PDT 3100 for power supply to sensors: 4 A at $30^{\circ} \mathrm{C}, 2.5 \mathrm{~A}$ at $60^{\circ} \mathrm{C}$
\square STB PDT 3100 for power supply to actuators: 8 A at $30^{\circ} \mathrm{C}, 5 \mathrm{~A}$ at $60^{\circ} \mathrm{C}$
- STB PDT 3105 for power supply to sensors/actuators: 4 A at $30^{\circ} \mathrm{C}, 2.5 \mathrm{~A}$ at $60^{\circ} \mathrm{C}$
- ABL 7RE power supply: built-in auto-protect with auto-reset

■ ABL 7RP power supply: built-in auto-protect with auto-reset or manual reset. EN 61000-3-2-compliant

References (1)

ABL 7RE2405 ABL 7RP2405

ABL 7RE single-phase regulated switch mode power supplies							
Line input voltage 47 to 63 Hz	Output voltage	Nominal power	Nominal current	Auto-protect reset	Conforming to standard EN 61000-3-2	Reference	Weight
V	V =--	W	A				kg
100 to 240 ~ single-phase wide range	24	48	2	Auto	No	ABL 7RE2402	0.520
		72	3	Auto	No	ABL 7RE2403	0.520
		120	5	Auto	No	ABL 7RE2405	1.00
		240	10	Auto	No	ABL 7RE2410	2.20

(1) For other Phaseo power supplies, refer to the "Automation \& Control - Interfaces, I/O splitter boxes, and power supplies" catalog.
(2) Compatible input voltage not indicated on the product.

Dimensions

ABL 7RE24••/ABL 7RP24••

Technical information

Automation products certifications

In some countries, certification of certain electrical components is enforced by law. A standard conformity certificate is then issued by the official organization. Each certified product must carry approval symbols when enforced. Use on board merchant navy vessels generally requires prior approval (= certification) of an electrical device by certain marine classification authorities.

Key	Certification body	Country
CSA	Canadian Standards Association	Canada
C-Tick	Australian Communication Authority	Australia
GOST	Gost Standard Scientific Research Institute	C.I.S., Russia
UL	Underwriters Laboratories	USA
Key	Classification authority	Country
IACS	International Association of Classification Societies	International
ABS	American Bureau of Shipping	USA
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
LR	Lloyd's Register	United Kingdom
RINA	Registro Italiano Navale	Italy
RMRS	Russian Maritime Register of Shipping	C.I.S.

The table below shows the situation as of 01/03/2008 for certifications obtained or pending from organizations for base PLCs. An overview of certificates for Schneider Electric products is available on our web site: www.schneider-electric.us

Product certifications

(1) Hazardous locations: UL 1604, CSA 22.2 no. 213 or FM 3611, certified products are acceptable for use in hazardous locations of Class I, division 2, groups A, B, C, D or unclassified only.
(2) Depending on product, consult our web site: www.schneider-electric.us
(3) cULus North American certification (Canada and USA).
(4) Certified for use in applications up to and including SIL3 according to IEC 61508.
(5) Except Universal power supplies and Function modules: UL certification pending.
(6) Except TWD NOI 10M3 AS-Interface module, only C \in.

Local certifications		
BG	Germany	TSX DPZ 10D2A safety module (Modicon ${ }^{\circledR}$ TSX Micro ${ }^{\text {mw }}$ PLC). TSX PAY 262/282 safety modules (Modicon Premium ${ }^{\text {m" }}$ PLC).
SIMTARS	Australia	Modicon TSX Micro automation platform Modicon Premium automation platform (PL7)
AS-Interface	Europe	TWD NOI 10M3 master module (Twido® ${ }^{\text {PLC }}$). TSX SAZ 10 master module (Modicon TSX Micro). TSX SAY 1000 master modules (Modicon Premium).

Technical information

Automation products certifications Community regulations

(1) Also meets US Navy requirements, ABS-NRV part 4.
(2) Depending on product, consult our web site: www.schneider-electric.us
(3) Modicon ${ }^{\circledR}$ Premium ${ }^{\text {TM }}$ PLC, also KRS (Korean register of Shipping) certified.
(4) Exceptions: compact bases TWD LC॰७ 40DRF, Extreme base TWD LEDCK1

I/O module TWD DAI 8DT, analog I/O modules TWD AMI 2LT/4LT/8HT, TWD ARI 8HT,
TWD AVO 2HT, TWD AMM 6HT, communication modules 499 TWD 01100, TWD NCO1M,
TWD NOI 10M3 and taps TWD XCA ISO/T3RJ.

Community regulations

European directives

The opening of European markets implies a harmonization of regulations in the various European Union member states.
European Directives are documents used to remove obstacles to the free movement of goods and their application is compulsory in the European Union
Member states are obliged to transcribe each Directive into their national legislation and, at the same time, to withdraw any conflicting regulations.
The Directives, particularly those of a technical nature, only set objectives, called "general requirements".
The manufacturer must take necessary measures to help ensure that his products conform to the requirements of each Directive relating to his equipment. As a general rule, the manufacturer affirms that his product conforms to the necessary requirements of the Directive(s) by applying the C $€$ label to his product. The C ϵ marking is applied to Schneider-electric products where relevant.

The significance of $\subset \in$ marking

- The C \in marking on a product means that the manufacturer certifies that this product conforms to the relevant European Directives. It is necessary so that a product subject to a Directive(s) can be marketed and freely moved within the European Union
- The C€ marking is intended solely for the national authorities responsible for market regulation.

For electrical equipment, conformity of the product to standards indicates that it is suitable for use

One or more Directives, as appropriate, may apply to our products, in particular:

- The Low Voltage Directive 2006/95/EC.
- The Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 2004/108/EC.
- Directive C ATEX 94/9/EC

Principle

The $5 \mathrm{~V}=$-- required for the logic power supply to the I/O modules is supplied by the following modules:

■ Network interface module (NIM) placed at the beginning of the primary segment

- BOS bus extension module placed at the beginning of each extension segment

■ CPS auxiliary power supply placed within a segment

The NIM, BOS, and CPS modules use their 24 V --- power supply to deliver a maximum current of 1200 mA at a logic voltage of 5 V --

The power consumption per segment must be calculated to help ensure that the current required by the I/O modules does not exceed the current supplied by the different power supply modules. If necessary, add an STB CPS 2111 auxiliary power supply to the segment(s).

Instructions for using the table on the next page

For each segment:
■ In the Number column, indicate the required number of I/O modules for each reference.
■ In the Total column calculate the total current based on that number.

- In box 1, enter the grand total of these values (mA).

■ The total in box 1 must be less than or equal to 1200 mA , box 2 . If it is greater, add an auxiliary power supply, box 3 .

The Advantys ${ }^{\text {™ }}$ STB SPU $1 \bullet \bullet \bullet$ configuration and debugging software calculates the power consumption automatically. You can also use an Excel spreadsheet available from your Regional Sales Office or from our web site: www.schneider-electric.us.

Network interface modules	
Ethernet TCP/IP	STB NIP 2212
CANopen	STB NCO 2212
	STB NCO 1010
Modbus Plus ${ }^{\text {ma }}$	STB NMP 2212
Fipio ${ }^{\text {® }}$	STB NFP 2212
InterBus ${ }^{\text {® }}$	STB NIB 2212
	STB NIB 1010
Profibus DP ${ }^{\text {w" }}$	STB NDP 2212
	STB NDP 1010
DeviceNet ${ }^{\text {t"I }}$	STB NDN 2212
	STB NDN 1010
BOS bus extension module	STB XBE 1200
Auxiliary power supply module	STB CPS 2111 K

Combined with base	Removable terminals (1)
XBA 1000	XTS•100
XBA 1000	XTS•100
XBA 1000	XTS•100
XBA 1000	XTS •100
XBA 1000	XTS•100
XBA 3000	XTS •180
XBA 2000	XTS •110
XBA 2000	XTS •110
XBA 2000	XTS •110
XBA 1000	XTS•100
XBA 1000	XTS •100
XBA 3000	XTS•180
XBA 2000	XTS •110
XBA 1000	XTS•100
XBA 1000	XTS •100
XBA 1000	XTS•100
XBA 2000	XTS•100
XBA 2000	XTS •100
XBA 1000	XTS •100
XBA 1000	XTS •100
XBA 2000	XTS •100
XBA 2000	XTS•100
XBA 2000	XTS •100
XBA 1000	XTS•100
XBA 1000	XTS•100
XBA 1000	XTS•100
XBA 1000	XTS •100
XBA 2000	XTS •100
XBA 2000	XTS•100
XBA 1000	XTS•100
XBA 1000	XTS •100
XBA 2000	XTS•100
XBA 2000	-
XBA 3000	-
XBA 3000	XTS 2150
XBA 2400	-
XBA 2000	XTS •110

Power distribution modules (standard/basic)

PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105

PDT 2100/2105 PDT 2100/2105 PDT 2100/2105
PDT 3100/3105 PDT 2100/2105 PDT 2100/2105 PDT 3100/3105 PDT 3100/3105
PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 PDT 3100/3105 $\frac{\overline{\text { PDT 3100/3105 }}}{\frac{\text { PDT 3100/3105 }}{\text { PDT 3100/3105 }}}$ PDT 3100/3105
$\overline{-}$

Number of
I/O modules
in the
segment

Power consumption in $\mathrm{mA} \mathrm{at} 5 \mathrm{~V}-\mathrm{-}$ Per I/O module Total

55	
45	
45	
$\frac{55}{45}$	
100	
40	
45	
40	

50	
45	
70	
70	
90	
90	
135	
70	
45	
55	
55	

Total current consumption per segment

Primary segment
1200 mA

1	
170 BNO 67100	25
170 CBB 97030	107
170 MCI 00700	25
170 MCI 02010	24
170 MCI 02036	24
170 MCI 02080	24
170 MCI 02120	24
170 MCI 10000	25
170 XTS 02000	24
4	
490 NAD 91103	25
490 NAD 91104	25
490 NAD 91105	25
490 NTW 00002	24
490 NTW 00005	84
490 NTW 00012	24
490 NTW 00040	24
490 NTW 00080	24
4	

9
| 990 NAD 21110
990 NAD 21130
990 NAD 23000
990 NAD 23010

A

ABE 7•
ABL 7RE2402
ABL 7RE2403
ABL 7RE2405
ABL 7RE2410
ABL 7RP2403
ABL 7RP2405
ABL 7RP2410
APP 2R2E
APP 2R4E
AS MBKT 085

\section*{L
 | LU9 R03 |
| :--- |
| LU9 R10 |
| LU9 R30 |}

S

SR2 CBL 06
STB ACI 0320
STB ACI 0320 K
STB ACI 1225
STB ACI 1225 K
STB ACI 1230
STB ACI 1230 K STB ACI 1400 STB ACI 1400 K STB ACI 8320 STB ACI 8320 K STB ACO 0120 STB ACO 0120 K STB ACO 0220 STB ACO 0220 K

STB ACO 1210	72	STB DDO 3605
STB ACO 1210 K	71	STB DDO 3605 K
STB ACO 1225	72	STB DDO 3705
STB ACO 1225 K	71	STB DDO 3705 KC
STB ART 0200	72	STB DDO 3705 KS
STB ART 0200 K	70	STB DRA 3290
STB AVI 0300	72	STB DRA 3290 K
STB AVI 0300 K	70	STB DRC 3210
STB AVI 1255	72	STB DRC 3210 K
STB AVI 1255 K	70	STB EHC 3020
STB AVI 1270	72	STB EHC 3020 KC
STB AVI 1270 K	70	STB EPI 1145
STB AVI 1275	72	STB EPI 2145
STB AVI 1275 K	70	STB EPI 2145 K
STB AVI 1400	72	STB NCO 1010
STB AVI 1400 K	70	STB NCO 2212
STB AVO 0200	72	STB NDN 1010
STB AVO 0200 K	71	STB NDN 2212
STB AVO 1250	72	STB NDP 1010
STB AVO 1250 K	71	STB NDP 2212
STB AVO 1255	72	STB NFP 2212
STB AVO 1255 K	71	STB NIB 1010
STB AVO 1265	72	STB NIB 2212
STB AVO 1265 K	71	STB NIP 2212
STB BBS 1000	101	STB NMP 2212
STB BBS 1003	101	STB PDT 2100
STB BBS 1010	101	STB PDT 2100 K
STB BBS 1011	101	STB PDT 2105
STB BBS 1130	101	STB PDT 2105 K
STB CPS 2111	26	STB PDT 3100
STB CPS 2111 K	26	STB PDT 3100 K
STB DAI 5230	50	STB PDT 3105
STB DAI 5230 K	48	STB PDT 3105 K
STB DAI 5260	50	STB SPU 1000
STB DAI 5260 K	48	STB SPU 1003
STB DAI 7220	50	STB SPU 1010
STB DAI 7220 K	48	STB SPU 1011
STB DAO 5260	50	STB SPU 1130
STB DAO 5260 K	49	STB SUS 8800
STB DAO 8210	50	
STB DAO 8210 K	49	STB XBA 1000
STB DDI 3230	50	STB XBA 2000
STB DDI 3230 K	48	
STB DDI 3420	50	
STB DDI 3420 K	48	STB XBA 2100
STB DDI 3425	50	STB XBA 2200
STB DDI 3425 K	48	STB XBA 2300
STB DDI 3610	50	STB XBA 2400
STB DDI 3610 K	48	STB XBA 3000
STB DDI 3615	50	STB XBE 1100
STB DDI 3615 K	48	STB XBE 1300
STB DDI 3725	50	STB XBE 2100
STB DDI 3725 KC	48	STB XCA 1001
STB DDI 3725 KS	48	STB XCA 1002
STB DDO 3200	50	STB XCA 1003
STB DDO 3200 K	49	STB XCA 1004
STB DDO 3230	50	STB XCA 1006
STB DDO 3230 K	49	STB XCA 3002
STB DDO 3410	50	STB XCA 3003
STB DDO 3410 K	49	STB XCA 4002
STB DDO 3415	50	
STB DDO 3415 K	49	STB XMP 1100
STB DDO 3600	50	STB XMP 4440
STB DDO 3600 K	49	STB XMP 5600

8001 Knightdale Blvd Knightdale, NC 27545 Tel: 919-266-3671

19 Waterman Avenue Toronto, Ontario M4B 1Y2 Tel: 416-752-8020

The information and dimensions in this catalog are provided for the convenience of our customers. While this information is believed to be accurate, Schneider Electric reserves the right to make updates and changes without prior notification and assumes no liability for any errors or omissions.

Design: Schneider Electric
Photos: Schneider Electric

[^0]: (1) The STB XTS •••• connectors can accommodate a flexible wire with a maximum cross-section of $1.5 \mathrm{~mm}^{2}$, including the cable end. Max. tightening torque $=0.25 \mathrm{Nm}$ for screw-type connectors.
 (2) Template for user-customizable labels:

 - Supplied with the documentation mini-CD-ROM provided with the NIM network interface modules
 Available on www.schneider-electric.us
 (3) Observe the recommendations in the "Modicon STB System Hardware Components Reference Guide", included on the STB SUS 8800 CD-ROM and available on www.schneider-electric.us.
 (4) This spare pin can be used to distribute the 24 V of external devices.

[^1]: (1) RDY LED on: Module OK. RDY LED off: No power from PDM. RDY LED flashing: Detected fault present.
 (2) ERR LED on: Internal detected error. ERR LED off: Module OK. ERR LED flashing: Module detected error. Refer to the "System Hardware Components Reference Guide" included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.

[^2]: (1) TeSys U forward only and forward/reverse require only 1 cable.
 (2) TeSys Quickfit forward only requires 1 cable, TeSys Quickfit forward/reverse requires 2 cables.
 (3) The template for the user-customizable labels is supplied on the documentation mini CD-ROM.

[^3]: (1) RDY is permanently on if the module is operational. If RDY is off, the PDM is not supplying power. If RDY is flashing, the module is not functional.
 (2) If $E R R$ is on or flashing, the module has an internal detected error.

 For information about module and channel status indication, refer to the System Hardware Components Reference Guide included on the STB SUS 8800 CD-ROM or available on our web site: www.schneider-electric.us.
 (3) S1: Output bank 1 (outputs 1 to 4) S2: Output bank 2 (outputs 5 to 8)

[^4]: (1) Data: Configuration and adjustment parameters and variables

[^5]: (1) For 3-phase power supplies, refer to the Automation \& Control - Interfaces, I/O Splitter Boxes, and Power Supplies catalog.

