Cylinder with Lock

Series CNA
$\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

High locking efficiency

Greater locking efficiency as well as stable locking and unlocking operation has been achieved by arranging a large number of steel ball bearings in circular rows. (Unlocking pressure of $0.25 \mathrm{MPa}$. 0.05 MPa lower than conventional SMC products) In addition, both alignability and stable locking force with respect to piston rod eccentricity are obtained by allowing the taper ring to float.

|High reliability and stable holding force

Outstanding durability and stable holding force are maintained by the use of a brake shoe having superior wear resistance, which has also been substantially lengthened (double the conventional SMC product).

■ Series Variations

| Manual override for unlocking

Even if the air supply is blocked or exhausted, lock release is possible.
The fail safe mechanism locks again when the manual override is released.

Design minimizes the influences of unlocking air quality
A construction which is strong against moisture and drainage in the compressed air has been realized by separating the locking mechanism and the unlocking chamber.
ICan be locked in both directions
An equal holding force can be obtained on either reciprocating stroke of the cylinder.

Series CNA

Model Selection

Precautions on Model Selection

\triangle Warning

1. In order that the originally selected maximum speed is not exceeded, be certain to use a speed controller to adjust the total movement distance of the load so that movement takes place in no less than the applicable movement time.
The movement time is the time that is necessary for the load to travel the total movement distance from the start without any intermediate stops.
2. In cases where the cylinder stroke and the movement distance of the load are different (double speed mechanism, etc.), use the movement distance of the load for selection purposes.

3. The following selection example and procedures are based on use at the intermediate stop (including emergency stops during the operation). However, when the cylinder is in the locked state such as drop prevention, kinetic energy does not act upon it. Under these conditions, use the load mass at the maximum speed (V) of $100 \mathrm{~mm} / \mathrm{s}$ shown in graphs 5 to 7 on page 725 depending on the operating pressure and select models.

Selection Example

- Load mass:

$$
\mathrm{m}=50 \mathrm{~kg}
$$

- Movement distance: $\mathrm{st}=500 \mathrm{~mm}$
- Movement time:
$\mathrm{t}=2 \mathrm{~s}$
- Load condition: Vertical downward = Load in direction of rod extension
- Operating pressure: $\mathrm{P}=0.4 \mathrm{MPa}$

Step (1): From graph (1) find the maximum movement speed of the load.
\therefore Maximum speed $\mathrm{V} \cong 350 \mathrm{~mm} / \mathrm{s}$
Step (2): Select graph (6) based upon the load conditions and operating pressure, and then from the intersection of the maximum speed $V=350 \mathrm{~mm} / \mathrm{s}$ found in Step (1), and the load mass $m=50 \mathrm{~kg}$.
$\therefore \varnothing 63 \rightarrow$ Decided the tube I.D. CNA63 or more.

Step (1) Find the maximum load speed V.

Find the maximum load speed: V (mm/s) from the load movement time: $\mathrm{t}(\mathrm{s})$ and the movement distance: $s t(\mathrm{~mm})$.

Step (2) Find the bore size.

Select a graph based upon the load condition and operating pressure, and then find the point of intersection for the maximum speed found in Step (1) and the load mass. Select the bore size on the line above the point of intersection.

Selection Graph

Graph (4)

Graph (5)

Graph (6)
$0.4 \mathrm{MPa} \leq \mathrm{P}<0.5 \mathrm{MPa}$

Graph (7)
$0.5 \mathrm{MPa} \leq \mathrm{P}$

Cylinder with Lock
 Double Acting, Single Rod
 Series CNA
 $\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

How to Order

CNA $\mathrm{L} 50 \square-100 \mathrm{JN}$-DCDNA $\mathbf{L} 50 \square-100$ JN-D-M9BW

With auto switch

With auto switch e (Built-in magnet) Mounting style e

B	Basic style
L	Axial foot style
F	Rod side flange style
G	Head side flange style
C	Single clevis style
D	Double clevis style
T	Center trunnion style

Built-in Magnet Cylinder Model
If a built-in magnet cylinder without an auto switch is required, there is no need to enter the symbol for the auto switch.
(Example) CDNALN40-100-D

Cylinder with Lock Double Acting, Single Rod

JIS Symbol
Double acting,
Single rod

Made to Order Specifications (For details, refer to pages 1829 to 1954.)

Symbol	Specification
-XA	Change of rod end shape
-XC3	Special port location
-XC4	With heavy duty scraper
-XC11	Dual stroke cylinder/Single rod type
-XC14	Change of trunnion bracket mounting position
-XC15	Change of tie-rod length
-XC35	With coil scraper

Refer to pages 746 to 751 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position
(detection at stroke end) and mounting height
- Operating range
- Switch mounting bracket: Part no.

Specifications

Bore size (mm)	40	50	63	80	100
Lubrication	Not required (Non-lube)				
Action	Double acting				
Proof pressure	1.5 MPa				
Max. operating pressure	1.0 MPa				
Min. operating pressure	0.08 MPa				
Piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$ *				
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: $\quad-10$ to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Air cushion				
Stroke length tolerance	Up to 250: ${ }_{0}^{+1.0}, 251$ to 1000: ${ }_{0}^{+1.4}, 1001$ to 1500: ${ }_{0}^{+1.8}$				
Mounting	Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Center trunnion style				

Lock Specifications

MNB

Bore size (mm)	$\mathbf{4 0}$	50	63	80	100	
Locking action	Spring locking (Exhaust locking)					
Unlocking pressure	0.25 MPa or more					
Lock starting pressure	1.0 MPa or less					
Max. operating pressure	Both directions					
Locking direction	5					
Holding force N	882	1370	2160	3430	5390	

* Be sure to select cylinders in accordance with the procedures on page 724.

Standard Stroke For cases with auto switches, refer to the table of minimum strokes for auto switches mounting on pages 748 and 749 .

Bore size (mm)	Standard stroke (mm) ${ }^{(1)}$	Long stroke (mm) (2)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500$	800
50,63	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600$	1200
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250$, $300,350,400,450,500,600,700$	

Note 1) Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes.
Note 2) Long stroke applies to the axial foot style and the rod side flange style.
When exceeding the stroke range for each bracket, determine the maximum strokes referring to the Selection Table (front matter 29 in Best Pneumatics No. 2).

Stopping Accuracy

Lock type	Piston speed (mm/s)			
	100	300	500	1000
Spring locking	± 0.3	± 0.6	± 1.0	± 2.0

Condition: Lateral, Supply pressure $\mathrm{P}=0.5 \mathrm{MPa}$
Load mass Upper limit of allowed value
Solenoid valve for locking mounted on the unlocking port
Maximum value of stopping position dispersion from 100 measurements

Series CNA

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
Double clevis **	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10

* When ordering foot bracket, order 2 pieces per cylinder.
** Clevis pin, plain washer, and cotter pin are shipped together with double clevis style.

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$70^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}{ }^{*}$

* Maximum ambient temperature for the rod boot itself.

Accessory

Mounting style		Basic style	Foot style	Rod side flange style	Head side flange style	Single clevis style	Double clevis style	Center trunnion style
Standard equipment	Rod end nut	-	-		-	-	-	-
	Clevis pin	-	-	-	-	-	-	

Mass/(): Denotes the values for steel tube.

Bore size (mm)			40	50	63	80	100
Basic mass	Basic style		$\begin{gathered} 1.70 \\ (1.75) \end{gathered}$	$\begin{gathered} 2.70 \\ (2.76) \end{gathered}$	$\begin{gathered} 4.08 \\ (4.12) \end{gathered}$	$\begin{gathered} 7.30 \\ (7.46) \end{gathered}$	$\begin{gathered} 10.80 \\ (11.01) \end{gathered}$
	Foot style		$\begin{gathered} 1.89 \\ (1.94) \end{gathered}$	$\begin{gathered} 2.74 \\ (2.78) \end{gathered}$	$\begin{gathered} 4.42 \\ (4.46) \end{gathered}$	$\begin{gathered} 7.97 \\ (8.13) \end{gathered}$	$\begin{gathered} 11.79 \\ (12.00) \end{gathered}$
	Flange style		$\begin{gathered} 2.07 \\ (2.12) \end{gathered}$	$\begin{gathered} 2.97 \\ (3.01) \end{gathered}$	$\begin{gathered} 4.87 \\ (4.91) \end{gathered}$	$\begin{gathered} 8.75 \\ (8.91) \end{gathered}$	$\begin{gathered} 12.72 \\ (12.93) \end{gathered}$
	Single clevis style		$\begin{gathered} 1.93 \\ (1.98) \end{gathered}$	$\begin{gathered} 2.86 \\ (2.90) \end{gathered}$	$\begin{gathered} 4.71 \\ (4.75) \end{gathered}$	$\begin{gathered} 8.41 \\ (8.57) \end{gathered}$	$\begin{gathered} 12.58 \\ (12.79) \end{gathered}$
	Double clevis style		$\begin{gathered} 1.97 \\ (2.02) \end{gathered}$	$\begin{gathered} 2.95 \\ (2.99) \end{gathered}$	$\begin{gathered} 4.87 \\ (4.91) \end{gathered}$	$\begin{gathered} 8.70 \\ (8.86) \end{gathered}$	$\begin{gathered} 13.10 \\ (13.31) \end{gathered}$
	Trunnion style		$\begin{gathered} 2.15 \\ (2.25) \end{gathered}$	$\begin{gathered} 3.05 \\ (3.15) \end{gathered}$	$\begin{gathered} 4.97 \\ (5.17) \end{gathered}$	$\begin{gathered} 9.00 \\ (9.29) \end{gathered}$	$\begin{gathered} 13.20 \\ (13.59) \end{gathered}$
Additional mass per each 50 mm of stroke	Aluminum tube	Mounting bracket	0.22	0.28	0.37	0.52	0.65
	Steel tube	Mounting bracket except trunnion	0.28	0.35	0.43	0.70	0.87
		Trunnion style	0.36	0.46	0.65	0.86	1.07
Accessory bracket	Single knuckle joint		0.23	0.26	0.26	0.60	0.83
	Double knuckle joint		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19

Calculation: (Example) CNALN40-100-D • Base mass 1.89 (Foot style, ø40)

- Additional mass 0.22/50 strokes
- Cylinder stroke 100 strokes
$1.89+0.22 \times 100 / 50=2.33 \mathrm{~kg}$

Construction Principle

Unlocked state

CLJ2
CLM2
CLG1
CL1
MLGC
CNG
MNB

Series CNA

Construction

B section (Piston guide bushing)
$\varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted ater hard anodized
2	Head cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after chromated
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Taper ring	Carbon steel	Heat treated
8	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
10	Brake shoe holder	Special steel	Heat treated
11	Release piston	Aluminum alloy	Hard anodized (ø40, ø50, ø63) Chromated ($\varnothing 80, \varnothing 100$)
12	Release piston bushing	Steel + Special resin	
13	Unlocking cam	Chromium molybdenum steel	Zinc chromated
14	Washer	Carbon steel	Black zinc chromated
15	Retainer pre-load spring	Stainless steel wire	
16	Brake spring	Steel wire	Zinc chromated
17	Clip A	Stainless steel	
18	Clip B	Stainless steel	
19	Steel ball A	Carbon steel	
20	Steel ball B	Carbon steel	
21	Tooth ring	Stainless steel	
22	Bumper	Polyurethane rubber	
23	Type C retaining ring for unlocking cam shaft	Carbon steel	
24	Type C retaining ring for taper ring	Carbon steel	
25	Brake shoe	Special friction material	
26	Unit holding tie-rod A	Carbon steel	Chromated
27	Unit holding tie-rod B	Carbon steel	Chromated
28	Tie-rod	Carbon steel	Chromated
29	Bushing	Copper alloy	
30	Cushion ring A	Rolled steel plate	Zinc chromated
31	Cushion ring B	Rolled steel plate	Zinc chromated
32	Cushion valve	Rolled steel plate	Electroless nickel plated

Component Parts

No.	Description	Material	Note
$\mathbf{3 3}$	Wear ring	Special resin	
$\mathbf{3 4}$	Hexagon socket head plug	Chromium molybdenum steel	Black zinc chromated
$\mathbf{3 5}$	Element	Bronze	
$\mathbf{3 6}$	Piston nut	Rolled steel plate	Zinc chromated
$\mathbf{3 7}$	Tie-rod nut	Carbon steel	Black zinc chromated
$\mathbf{3 8}$	Lock nut	Carbon steel	Nickel plated
39	Rod end nut	Carbon steel	Nickel plated
40	Spring washer	Steel wire	Black zinc chromated
41	Spring washer	Steel wire	Zinc chromated
42	Spring washer	Steel wire	Black zinc chromated
43	Piston seal	NBR	
44	Rod seal A	NBR	
45	Rod seal B	NBR	
46	Release piston seal	NBR	
47	Cushion seal	NBR	
48	Cushion valve seal	NBR	
49	Tube gasket	NBR	
50	Piston gasket	NBR	
51	Piston guide gasket	NBR	
52	Unlocking cam gasket	NBR	
53	O-ring	NBR	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
40	CA1N 40A-PS	Including no. (43), (44), (48) and (49).
50	CA1N 50A-PS	
63	CA1N 63A-PS	
80	CA1N 80A-PS	
100	CA1N100A-PS	

[^0] cylinder section only. These can be ordered using the order number for each bore size.

* Seal kit includes a grease pack ($\varnothing 40$ and $\varnothing 50: 10 \mathrm{~g}$, $\varnothing 63$ and $\varnothing 80: 20 \mathrm{~g}, \varnothing 100: 30 \mathrm{~g}$). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Cylinder with Lock Double Acting, Single Rod
 Series CNA

Dimensions

Basic style (B): CNABN

Series CNA

Dimensions

Axial foot style (L): CNALN

Long Stroke
(mm)

Bore size (mm)	Stroke range (mm)	RT	RY
$\mathbf{4 0}$	501 to 800	-	-
$\mathbf{5 0}$	601 to 1000	-	-
	1001 to 1200	30	76
$\mathbf{6 3}$	601 to 1000	-	-
	1001 to 1200	40	92
$\mathbf{8 0}$	751 to 1000	-	-
	1001 to 1400	45	112
$\mathbf{1 0 0}$	751 to 1000	-	-
	1001 to 1500	50	136

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H_{1}	J	K	KA
40	Up to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8 $\times 1.25$	6	14
50	Up to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8 $\times 1.25$	7	18
63	Up to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 $\times 1.25$	7	18
80	Up to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 $\times 1.75$	11	22
100	Up to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 $\times 1.75$	11	26

| Bore size
 $(\mathbf{m m})$ | LD | LH | $\mathbf{L S}$ | $\mathbf{L T}$ | $\mathbf{L X}$ | $\mathbf{L Y}$ | $\mathbf{M M}$ | \mathbf{N} | \mathbf{P} | \mathbf{Q} | \mathbf{H} | \mathbf{S} | \mathbf{T} | \mathbf{V} | \mathbf{W} | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | $\mathbf{Z Z}$ |
| :---: |
| $\mathbf{4 0}$ | 9 | 40 | 207 | 3.2 | 42 | 70 | $\mathrm{M} 14 \times 1.5$ | 27 | $1 / 4$ | 37 to 39.5 | 51 | 153 | 37.5 | 9 | 8 | 27 | 13 | 24 | 244 |
| $\mathbf{5 0}$ | 9 | 45 | 222 | 3.2 | 50 | 80 | M18 $\times 1.5$ | 30 | $3 / 8$ | 42 to 44.5 | 58 | 168 | 44 | 11 | 0 | 27 | 13 | 31 | 266 |
| $\mathbf{6 3}$ | 11.5 | 50 | 250 | 3.2 | 59 | 93 | $\mathrm{M} 18 \times 1.5$ | 31 | $3 / 8$ | 50 to 51.5 | 58 | 182 | 52.5 | 12 | 0 | 34 | 16 | 24 | 290 |
| $\mathbf{8 0}$ | 13.5 | 65 | 306 | 4.5 | 76 | 116 | $\mathrm{M} 22 \times 1.5$ | 37 | $1 / 2$ | 59.5 to 62.5 | 71 | 218 | 59.5 | 15 | 0 | 44 | 16 | 27 | 349 |
| $\mathbf{1 0 0}$ | 13.5 | 75 | 332 | 6.0 | 92 | 133 | M26 $\times 1.5$ | 40 | $1 / 2$ | 66.5 to 69.5 | 72 | 246 | 69.5 | 15 | 0 | 43 | 17 | 29 | 378 |

With Rod Boot

Wore size (mm)	Stroke range (mm)	\mathbf{e}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	$\mathbf{Z Z}$
$\mathbf{4 0}$	20 to 500	43	11.2	59	$1 / 4$ stroke	252
$\mathbf{5 0}$	20 to 600	52	11.2	66	$1 / 4$ stroke	274
$\mathbf{6 3}$	20 to 600	52	11.2	66	$1 / 4$ stroke	298
$\mathbf{8 0}$	20 to 750	65	12.5	80	$1 / 4$ stroke	358
$\mathbf{1 0 0}$	20 to 750	65	14	81	$1 / 4$ stroke	387

Cylinder with Lock Double Acting, Single Rod

Dimensions
Rod side flange style (F): CNAFN

Series CNA

Dimensions

Head side flange style (G): CNAGN

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BF	BN	BP	BQ	C	D	E	F	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H_{1}
40	Up to 500	30	27	60	22	71	96	1/8	1/8	44	16	32	10	9	12	60	80	42	100	85	15	52	16	12	12	10	8
50	Up to 600	35	32	70	27	81	108	1/4	1/8	52	20	40	10	9	12	70	90	50	110	95	17	56.5	20	13	15	12	11
63	Up to 600	35	32	86	27	101	115	1/4	1/4	64	20	40	10	11.5	15	86	105	59	130	102	17	67	20	18	12	15	11
80	Up to 750	40	37	102	32	119	139	1/4	1/4	78	25	52	14	13.5	18	102	130	76	160	123	21	83	20	23	18	17	13
100	Up to 750	40	37	116	41	133	160	1/4	1/4	92	30	52	14	13.5	18	116	150	92	180	144	21	98	22	25	20	19	16

Bore size (mm)	J	K	KA	M	MM	N	P	Q	H	S	T	V	W	ZZ
40	M8 $\times 1.25$	6	14	11	M14 $\times 1.5$	27	1/4	37 to 39.5	51	153	37.5	9	8	216
50	M 8×1.25	7	18	11	M18 $\times 1.5$	30	3/8	42 to 44.5	58	168	44	11	0	238
63	M10 $\times 1.25$	7	18	14	M18 $\times 1.5$	31	3/8	50 to 51.5	58	182	52.5	12	0	255
80	M12 $\times 1.75$	11	22	17	M 22×1.5	37	1/2	59.5 to 62.5	71	218	59.5	15	0	307
100	M12 $\times 1.75$	11	26	17	M26 $\times 1.5$	40	1/2	66.5 to 69.5	72	246	69.5	15	0	336

With Rod Boot

With Rod BOOt				(mm)			
Bore size (mm)	Stroke range (mm)	\mathbf{e}	\mathbf{f}	\mathbf{h}	\boldsymbol{e}	$\mathbf{Z Z}$	
$\mathbf{4 0}$	20 to 500	43	11.2	59	$1 / 4$ stroke	224	
$\mathbf{5 0}$	20 to 600	52	11.2	66	$1 / 4$ stroke	246	
$\mathbf{6 3}$	20 to 600	52	11.2	66	$1 / 4$ stroke	263	
$\mathbf{8 0}$	20 to 750	65	12.5	80	$1 / 4$ stroke	316	
$\mathbf{1 0 0}$	20 to 750	65	14	81	$1 / 4$ stroke	345	

Cylinder with Lock Double Acting, Single Rod
 Series CNA

Dimensions

Single clevis style (C): CNACN

Series CNA

Dimensions
Double clevis style (D): CNADN
BP (Rc, NPT, G) unlocking port

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		A	AL	B	B_{1}	BN	BP	BQ	C	CD	CX		CZ	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H_{1}	J	K	KA
40	Up to 500		30	27	60	22	96	1/8	1/8	44	10	$15_{+0.1}^{+0.3}$		29.5	16	32	10	85	15	52	16	12	12	10	8	M8 $\times 1.25$	6	14
50	Up to 600		35	32	70	27	108	1/4	1/8	52	12	18		38	20	40	10	95	17	56.5	20	13	15	12	11	M8 $\times 1.25$	7	18
63	Up to 600		35	32	86	27	115	1/4	1/4	64	16	25		49	20	40	10	102	17	67	20	18	12	15	11	M10 $\times 1.25$	7	18
80	Up to 750		40	37	102	32	139	1/4	1/4	78	20			61	25	52	14	123	21	83	20	23	18	17	13	M12 $\times 1.75$	11	22
100	Up to 750		40	37	116	41	160	1/4	1/4	92	25		${ }_{+0}^{+0}$	64	30	52	14	144	21	98	22	25	20	19	16	M12 $\times 1.75$	11	26
(mm)																	With Rod Boot										(mm)	
$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	L	MM		N	P	Q	Q	RR	S	T	U	V	W	H	Z	ZZ	Bore size (mm)			Stroke range (mm)		e	f	h		e	Z	ZZ
40	30	M14	$\times 1.5$	27	1/4		039.5	10	153	37.5	16	9	8	51	234	244	40			20 to 500		43	11.2	59		4 stroke	242	252
50	35	M18	$\times 1.5$	30	3/8		044.5	12	168	44	19	11	0	58	261	273	50			20 to 600		52	11.2	66		4 stroke	269	281
63	40	M18	$\times 1.5$	31	3/8		051.5	16	182	52.5	23	12	0	58	280	296	63			20 to 600		52	11.2	66		4 stroke	288	304
80	48	M22 \times	$\times 1.5$	37	1/2	59.5 to	062.5	20	218	59.5	28	15	0	71	337	357	80			20 to 750		65	12.5	80		4 stroke	346	366
100	58	M26	$\times 1.5$	40	1/2	66.5 to	069.5	25	246	69.5	36	15	0	72	376	401	100			20 to 750		65	14	81		4 stroke	385	410

Double Clevis Pivot Bracket

Material: Cast iron

Rotating Angle

Part no.	Bore size $(\mathbf{m m})$	DA	DL	DU	DC	DX	DE	DO	DR	DT	DS	DH	DF	B	$\mathbf{W}_{\mathbf{1}}$	\mathbf{Z}	DD
CA1-B04	$\mathbf{4 0}$	57	35	11	65	15	85	10	9	17	8	40	52	60	10	234	$100_{0}^{+0.058}$
CA1-B05	$\mathbf{5 0}$	57	35	11	65	18	85	10	9	17	8	40	52	70	10	261	$12_{0}^{+0.070}$
CA1-B06	$\mathbf{6 3}$	67	40	13.5	80	25	105	12.5	11	22	10	50	66	85	10	280	$16_{0}^{+0.070}$
CA1-B08	$\mathbf{8 0}$	93	60	16.5	100	31.5	130	15	13.5	24	12	65	90	102	12	337	$20^{+0.084}$
CA1-B10	$\mathbf{1 0 0}$	93	60	16.5	100	35.5	130	15	13.5	24	12	65	90	116	12	376	$25_{0}^{+0.084}$

Bore size (mm)	\mathbf{A}°	\mathbf{B}°	$\mathbf{A}^{\circ}+\mathbf{B}^{\circ}+90^{\circ}$
40			
$\mathbf{4 0}$			
$\mathbf{5 0}$	62°	60°	162°
$\mathbf{6 3}$			
$\mathbf{8 0}$			

Note) 1. There is no mention of cylinder part no. 2. Order it separately from cylinder. 3. Pin, retainer, etc. of double clevis, double knuckle joint clevis are shipped together.

Cylinder with Lock Double Acting, Single Rod

Center trunnion style (T): CNATN

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H_{1}	J	K	KA	MM	N
40	25 to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8 $\times 1.25$	6	14	M14 $\times 1.5$	27
50	25 to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8 $\times 1.25$	7	18	M18 $\times 1.5$	30
63	32 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 $\times 1.25$	7	18	M18 $\times 1.5$	31
80	41 to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 $\times 1.75$	11	22	M 22×1.5	37
100	45 to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 $\times 1.75$	11	26	M26 x 1.5	40

(mm)															With Rod Boot							
Bore size (mm)	P	Q	S	T	TDe8	TT	TX	TY	TZ	V	W	H	Z	ZZ	Bore size (mm)	Stroke range (mm)	e	f	h	ℓ	Z	ZZ
40	1/4	37 to 39.5	153	37.5	$15_{-0.059}^{-0.032}$	22	85	62	117	9	8	51	162	209	40	25 to 500	43	11.2	59	1/4 stroke	170	217
50	3/8	42 to 44.5	168	44	$15_{-0.059}^{-0.032}$	22	95	74	127	11	0	58	181	232	50	25 to 600	52	11.2	66	1/4 stroke	189	240
63	3/8	50 to 51.5	182	52.5	$18_{-0.059}^{-0.032}$	28	110	90	148	12	0	58	191	246	63	32 to 600	52	11.2	66	1/4 stroke	199	254
80	1/2	59.5 to 62.5	218	59.5	$25_{-0.073}^{-0.000}$	34	140	110	192	15	0	71	231	296	80	41 to 750	65	12.5	80	1/4 stroke	240	305
100	1/2	66.5 to 69.5	246	69.5	$25_{-0.073}^{-0.040}$	40	162	130	214	15	0	72	255	326	100	45 to 750	65	14	81	1/4 stroke	264	335

Trunnion Pivot Bracket

Series CNA

Accessory Bracket Dimensions

Y Type Double Knuckle Joint

* Pin and retaining ring are shipped together with double clevis and double knuckle joint.

Material: Cast iron (mm)														
Part no.	Applicable bore size (mm)	A1	E1	D1	L1	MM	RR1	U_{1}	ND	NX	NZ	L	Cotter pin size	Flat washer size
Y-04C	40	22	24	10	55	M14 $\times 1.5$	13	25	12	$16{ }_{+0.1}^{+0.3}$	38	55.5	$ø 3 \times 18 \ell$	Polished round 12
Y-05C	50, 63	27	28	14	60	M18 $\times 1.5$	15	27	12	$16{ }_{+0.1}^{+0.3}$	38	55.5	$ø 3 \times 18$ l	Polished round 12
Y-08C	80	37	36	18	71	M22 $\times 1.5$	19	28	18	$28{ }_{+0.1}^{+0.3}$	55	76.5	$ø 4 \times 25$ l	Polished round 18
Y-10C	100	37	40	21	83	M26 x 1.5	21	38	20	$30_{+0.1}^{+0.3}$	61	83	$\varnothing 4 \times 30 \ell$	Polished round 20

* Knuckel pin, cotter pins and flat washers are packaged with knuckles.

Clevis Pin/Knuckle Pin

Material: Carbon steel
(mm)

Part no.	Applicable bore size(mm)		Dd9	L	ℓ	m	$\underset{\text { Drill through }}{\mathbf{d}}$	Applicable cotter pin	Applicable flat washer
	Clevis	Knuckle							
CDP-2A	40	-	$10_{-0.076}^{-0.040}$	46	38	4	3	$\varnothing 3 \times 18 \ell$	Polished round 10
CDP-3A	50	40, 50, 63	$12_{-0.093}^{-0.050}$	55.5	47.5	4	3	$93 \times 18 \ell$	Polished round 12
CDP-4A	63	-	$16_{-0.093}^{-0.050}$	71	61	5	4	$\square 4 \times 25 \ell$	Polished round 16
CDP-5A	-	80	$18_{-0.093}^{-0.050}$	76.5	66.5	5	4	$04 \times 25 l$	Polished round 18
CDP-6A	80	100	$20_{-0.117}^{-0.065}$	83	73	5	4	$64 \times 30 \ell$	Polished round 20
CDP-7A	100	-	$25_{-0.117}^{-0.065}$	88	78	5	4	$\varnothing 4 \times 36 \ell$	Polished round 24

* Cotter pin and flat washer are attached.

I Type Single Knuckle Joint

Material: Sulfur free-cutting steel

Part no.	Applicable bore size (mm)	A	A1	E1	L1	MM	R1	U_{1}	ND	NX
I-04	40	69	22	24	55	M14 $\times 1.5$	15.5	20	$12^{+0.070}$	$16_{-0.3}^{-0.1}$
I-05	50, 63	74	27	28	60	M18 $\times 1.5$	15.5	20	$12_{0}^{+0.070}$	$16_{-0.3}^{-0.1}$
I-08	80	91	37	36	71	M 22×1.5	22.5	26	$18{ }_{0}^{+0.070}$	$28_{-0.3}^{-0.1}$
I-10	100	105	37	40	83	M26 x 1.5	24.5	28	$20{ }_{0}^{+0.084}$	$30_{-0.3}^{-0.1}$

Rod End Nut (Standard equipment)

Material: Rolled stee

Material: Rolled steel						
Part no.	Applicable bore size (mm)	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}	\mathbf{D}
NT-04	$\mathbf{4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4	21
NT-05	$\mathbf{5 0 , 6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2	26
NT-08	$\mathbf{8 0}$	$\mathrm{M} 22 \times 1.5$	13	32	37.0	31
NT-10	$\mathbf{1 0 0}$	$\mathrm{M} 26 \times 1.5$	16	41	47.3	39

Cylinder with Lock
 Double Acting, Double Rod Series CNAW
 $\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

How to Order

Applicable Auto Switch/Refer to pages 1719 to 1827 for further information on auto switches.

	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load		
Type					DC		AC	Tie-rod mounting	Band mounting	$\begin{aligned} & \hline 0.5 \\ & \text { (Nil) } \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 1 \\ (\mathrm{M}) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3 \\ \text { (L) } \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ (Z) \\ \hline \end{array}$				
		Grommet			24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
				3-wire (NPN)				-	G59	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc			
				NP)				M9P	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
								-	G5P	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9B	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
								-	K59	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc			
					-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	-	\bigcirc	-	\bigcirc	\bigcirc	-			
		Terminal		3-wire (NPN)	12 V		-	G39C	G39	-	-	-	-	-			
		conduit		2-wire			K39C	K39	-	-	-	-	-	IC circuit			
	Diagnostic indication (2-color indication)	Grommet		3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		
			Yes					-	G59W	\bigcirc	-	\bigcirc	\bigcirc		\bigcirc		
				3-wire (PNP)				M9PW	-	\bigcirc	-	\bigcirc	\bigcirc		\bigcirc		
				3 -wire (PNP)				-	G5PW	\bigcirc	-	\bigcirc	\bigcirc		\bigcirc		
				2-wire		12 V		M9BW	-	-	-	\bigcirc	\bigcirc	\bigcirc	-		
								-	K59W	\bigcirc	-	-	\bigcirc	\bigcirc			
	Water resistant (2-color indication)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NA	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc			
				3-wire (PNP)				M9PA	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc			
				2-wire		12 V		M9BA	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc			
								-	G5BA	-	-	-	\bigcirc	\bigcirc			
	With diagnostic output (2-color indication)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	G59F	\bigcirc	-	-	\bigcirc	\bigcirc	IC circuit		
	Magnetic field resistant (2-color indication)			2-wire (Non-polar)		-		P4DW	-	-	-	-	\bigcirc	\bigcirc	-		
		Grommet	Yes	3 -wire (NPN equivalent)	-	5 V		-	A96[Z76]**	-	\bigcirc	-	\bigcirc	-	-	IC circuit	-
				2-wire	24 V	12 V	100 V	A93 [Z73]**	-	-	-	-	-	-	-	Relay, PLC	
			No				100 V or less	A90 [Z80] **	-	\bigcirc	-	\bigcirc	-	-	IC circuit		
			Yes				$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	B54	-	-	-	-	-			
			No				200 V or less	A64	B64	-	-	-	-	-			
		Terminal	Yes				-	A33C	A33	-	-	-	-	-		PLC	
		conduit					$100 \mathrm{~V}, 200 \mathrm{~V}$	A34C	A34	-	-	-	-	-		Relay, PLC	
		DIN terminal						A44C	A44	-	-	-	-	-			
	Diagnostic indication (2-color indication)	Grommet				-	-	A59W	B59W	-	-	-	-	-			

[^1]* Solid state auto switches marked with "○" are produced upon receipt of order.

5 m Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 751 for details.
* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785.
* D-A9■/M9 $\square / \mathrm{M} 9 \square \mathrm{~W} / \mathrm{M} 9 \square \mathrm{AL}$ auto switches are shipped together (not assembled). (Only auto switch brackets are assembled at the time of shipment.)

Cylinder with Lock Double Acting, Double Rod

Specifications

$\begin{array}{\|l\|} \hline \text { maseve } \\ \text { order } \\ \hline \end{array}$	Made to Order Specifications (For details, refer to pages 1844 and 1846.)
Symbol	Specification
-xC14	Change of trunnion pivot bracket mounting positio
-XC15	Change of tie-rod length

Refer to pages 746 to 751 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height
- Operating range
- Switch mounting bracket: Part no.

Bore size (mm)	40	50	63	80	100
Fluid	Air				
Type	Non-lube				
Action	Double acting				
Lock operation	Spring locking				
Proof pressure	1.5 MPa				
Max. operating pressure	1.0 MPa				
Min. operating pressure	0.1 MPa				
Piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: $\quad-10$ to $60^{\circ} \mathrm{C}$ (No freezing)				
Cushion	Air cushion				
Stroke length tolerance	Up to 250: ${ }_{0}^{+1.0}, 251$ to 1000: ${ }_{0}^{+1.4}, 1001$ to 1500: ${ }_{0}^{+1.8}$				
Mounting	Basic style, Axial foot style, Rod side flange style, Center trunnion style				

Lock Specifications

Bore size (mm)	$\mathbf{4 0}$	50	63	80	100
Locking action	Spring locking (Exhaust locking)				
Unlocking pressure	0.25 MPa or more				
Lock starting pressure	1.0 MPa				
Max. operating pressure	Both directions				
Locking direction					
Holding force N	882	1370	2160	3430	5390

* Be sure to select cylinders in accordance with the procedures on page 724.

For cases with auto switches, refer to the table of minimum strokes for mounting of auto switches Table on pages 748 and 749 .

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$
$\mathbf{5 0 , 6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$

* Intermediate strokes other than the above are produced upon receipt of order. Spacers are not used for intermediate strokes.

Stopping Accuracy

Lock type	Piston speed (mm/s)			
	100	300	500	1000
Spring locking	± 0.3	± 0.6	± 1.0	± 2.0

Condition: Lateral, Supply pressure $\mathrm{P}=0.5 \mathrm{MPa}$

Load mass Upper limit of allowed value
Solenoid valve for locking mounted on the unlocking port
Maximum value of stopping position dispersion from 100 measurements

Series CNAW

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10

* When ordering foot bracket, order 2 pieces per cylinder.

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$70^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C} *$

* Maximum ambient temperature for the rod boot itself.

Accessory

Mounting		Basic style	Foot style	Flange style	Center trunnion style
Standard equipment	Rod end nut	-	\bigcirc	-	-
	Clevis pin	-	-	-	-
Option	Single knuckle joint	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Double knuckle joint (With pin)	-	\bigcirc	\bigcirc	\bigcirc
	With rod boot	-	\bigcirc	\bigcirc	\bigcirc

* Dimensions are same as double acting, single rod type of Series CNA. (Refer to page 738.)

Mass/(): denotes the values for steel tube.

Bore size (mm)			40	50	63	80	100
Basic mass	Basic style		$\begin{gathered} 1.84 \\ (1.89) \end{gathered}$	$\begin{gathered} 2.93 \\ (2.99) \end{gathered}$	$\begin{gathered} 4.34 \\ (4.38) \end{gathered}$	$\begin{gathered} 7.76 \\ (7.92) \end{gathered}$	$\begin{gathered} 11.50 \\ (11.71) \end{gathered}$
	Foot style		$\begin{gathered} 2.03 \\ (2.08) \end{gathered}$	$\begin{gathered} 2.97 \\ (3.01) \end{gathered}$	$\begin{gathered} 4.68 \\ (4.72) \end{gathered}$	$\begin{gathered} 8.43 \\ (8.59) \end{gathered}$	$\begin{gathered} 12.49 \\ (12.70) \end{gathered}$
	Flange style		$\begin{gathered} 2.21 \\ (2.26) \end{gathered}$	$\begin{gathered} 3.20 \\ (3.24) \end{gathered}$	$\begin{gathered} 5.13 \\ (5.17) \end{gathered}$	$\begin{gathered} 9.21 \\ (9.37) \end{gathered}$	$\begin{gathered} 13.42 \\ (13.63) \end{gathered}$
	Trunnion style		$\begin{gathered} 2.29 \\ (2.39) \end{gathered}$	$\begin{gathered} 3.28 \\ (3.38) \end{gathered}$	$\begin{gathered} 5.23 \\ (5.43) \end{gathered}$	$\begin{gathered} 9.46 \\ (9.75) \end{gathered}$	$\begin{gathered} 13.90 \\ (14.29) \end{gathered}$
Additional mass per each 50 mm of stroke	Aluminum tube	Mounting bracket	0.30	0.40	0.50	0.71	0.92
	Steel tube	Mounting bracket except trunnion	0.35	0.47	0.55	0.89	1.15
		Trunnion style	0.44	0.58	0.77	1.06	1.35
Accessory bracket	Single knuckle joint		0.23	0.26	0.26	0.60	0.83
	Double knuckle joint		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19
Calculation: (Example) CNAWLN40-100-D Base mass 2.03 (Foot style, $\varnothing 40$) Additional mass 0.03/50 strokes Cylinder stroke 100 strokes $2.03+0.30 \times 100 / 50=2.63 \mathrm{~kg}$							

Cylinder with Lock Double Acting, Double Rod Series CNAW

Construction

B section (Piston guide bushing)
ø50, ø63, ø80, ø100

CLJ2
CLM2
CLG1
CL1
MLGC
CNG
MNB
CNA

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted atter hard anodized
2	Rod cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after chromated
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod A	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Taper ring	Carbon steel	Heat treated
8	Ball retainer	Special resin	
9	Piston guide	Carbon steel	Zinc chromated
10	Brake shoe holder	Special steel	Heat treated
11	Release piston	Aluminum alloy	Hard anodized (ø40, ø50, ø63) Chromated (ø80, ø100)
12	Release piston bushing	Steel + Special resin	
13	Unlocking cam	Chromium molybdenum steel	Zinc chromated
14	Washer	Carbon steel	Black zinc chromated
15	Retainer pre-load spring	Stainless steel wire	
16	Brake spring	Steel wire	Zinc chromated
17	Clip A	Stainless steel	
18	Clip B	Stainless steel	
19	Steel ball A	Carbon steel	
20	Steel ball B	Carbon steel	
21	Tooth ring	Stainless steel	
22	Bumper	Polyurethane rubber	
23	Type C retaining ring for unlocking cam shaft	Carbon steel	
24	Type C retaining ring for taper ring	Carbon steel	
25	Brake shoe	Special friction material	
26	Unit holding tie-rod A	Carbon steel	Chromated
27	Unit holding tie-rod B	Carbon steel	Chromated
28	Tie-rod	Carbon steel	Chromated
29	Bushing	Copper alloy	
30	Cushion ring	Rolled steel plate	Zinc chromated
31	Piston rod B	Carbon steel	Hard chrome plated

Component Parts

No.	Description	Material	Note
32	Cushion valve	Rolled steel plate	Electroless nickel plated
33	Hexagon socket head plug	Chromium molybdenum steel	Black zinc chromated
34	Element	Bronze	
35	Bushing	Copper alloy	
36	Tie-rod nut	Carbon steel	Black zinc chromated
37	Lock nut	Carbon steel	Nickel plated
38	Rod end nut	Carbon steel	Nickel plated
39	Spring washer	Steel wire	Black zinc chromated
40	Spring washer	NBR	
41	Piston seal	NBR	
42	Rod seal A	NBR	
43	Rod seal B	NBR	
44	Release piston seal	NBR	
45	Cushion seal	NBR	
46	Cushion valve seal	NBR	
47	Tube gasket	NBR	
48	Piston gasket	NBR	
49	Piston guide gasket	NBR	
50	Unlocking cam gasket	NBR	
51	O-ring		

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
40	CA1WN 40A-PS	
50	CA1WN 50A-PS	
63	CA1WN 63A-PS	Including no. (41), (42), (46) and (47).
80	CA1WN 80A-PS	
100	CA1WN100A-PS	
* Since the lock section for Series CNA is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size. * Seal kit includes a grease pack ($\varnothing 40$ and $\varnothing 50: 10 \mathrm{~g}, \varnothing 63$ and $\varnothing 80: 20 \mathrm{~g}, \varnothing 100: 30 \mathrm{~g}$). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)		

Dimensions

Basic style (B): CNAWBN

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H_{1}	J	K	KA
40	Up to 500	30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8 $\times 1.25$	6	14
50	Up to 600	35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8 $\times 1.25$	7	18
63	Up to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 $\times 1.25$	7	18
80	Up to 750	40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 $\times 1.75$	11	22
100	Up to 750	40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 $\times 1.75$	11	26

Bore size (mm)	(mm)											With Rod Boot							(mm)
	M	MM	N	P	Q	H	S	T	V	W	ZZ	$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke range (mm)	e	f	h	ℓ	$\underset{(\text { One side) }}{\mathbf{Z Z}}$	$\mathbf{Z Z}$
40	11	M14 $\times 1.5$	27	1/4	37 to 39.5	51	153	37.5	9	8	255	40	20 to 500	43	11.2	59	1/4 stroke	263	271
50	11	M18 $\times 1.5$	30	3/8	42 to 44.5	58	168	44	11	0	284	50	20 to 600	52	11.2	66	1/4 stroke	292	300
63	14	M18 $\times 1.5$	31	3/8	50 to 51.5	58	182	52.5	12	0	298	63	20 to 600	52	11.2	66	1/4 stroke	306	314
80	17	M 22×1.5	37	1/2	59.5 to 62.5	71	218	59.5	15	0	360	80	20 to 750	65	12.5	80	1/4 stroke	369	378
100	17	M 26×1.5	40	1/2	66.5 to 69.5	72	246	69.5	15	0	390	100	20 to 750	65	14	81	1/4 stroke	399	408

Axial foot style (L): CNAWLN GA BP (RC, NPT, G) unlocking port (Unlocked when pressurized)
$\xrightarrow[\text { Rc BQ }]{\text { Plug with breathing hole }} \xrightarrow{G} \xrightarrow{\text { GD }} \xrightarrow{\text { GC }}$

P (Rc, NPT, G)
Cylinder port

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke range (mm)		A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GL1	GR	H_{1}			K	KA	LD	LH	LS	LT
40	Up to 500		30	27	60	22	96	1/8	1/8	44	16	32	10	85	15	52	16	12	12	10	8	M8	x 1.25	6	14	9	40	207	3.2
50	Up to 600		35	32	70	27	108	1/4	1/8	52	20	40	10	95	17	56.5	20	13	15	12	11	M8	$\times 1.25$	7	18	9	45	222	3.2
63	Up to 600		35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	67	20	18	12	15	11	M10 \times	$\times 1.25$	7	18	11.5	50	250	3.2
80	Up to 750		40	37	102	32	139	1/4	1/4	78	25	52	14	123	21	83	20	23	18	17	13	M12 \times	x 1.75	11	22	13.5	65	306	4.5
100	Up to 750		40	37	116	41	160	1/4	1/4	92	30	52	14	144	21	98	22	25	20	19	16	M12 \times	$\times 1.75$	11	26	13.5	75	332	6.0
(mm) With Rod Boot																													
$\begin{aligned} & \hline \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	LX	LY	MM		N	P	Q		H	S	T	V	W	X	Y	ZZ		$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$		Stroke range (mm)		e	f	h	ℓ			$\begin{array}{\|c\|} \hline \text { OZ } \\ \text { Onside) } \end{array}$	$\overline{\text { ZZ }}$
40	42	70	M14	x 1.5	27	1/4		0 39.5	51	153	37.5	9	8	27	13	255			40	20 to	500	43	11.2	59		strok		263	271
50	50	80	M18	x 1.5	30	3/8		to 44.5	58	168	44	11	0	27	13	284			50	20 to	600	52	11.2	66		strok		292	300
63	59	93	M18	x 1.5	31	3/8		to 51.5	58	182	52.5	12	0	34	16	298			63	20 to	600	52	11.2	66		stroke		306	314
80	76	116	M22	x 1.5	37	1/2	59.5 to	to 62.5	71	218	59.5	15	0	44	16	360			30	20 to	750	65	12.5	80		strok		369	378
100	92	133	M26	x 1.5	40	1/2	66.5 to	to 69.5	72	246	69.5	15	0	43	17	390			0	20 to	750	65	14	81		strok		399	408

Cylinder with Lock Double Acting, Double Rod Series CNAW

Dimensions

Bore size (mm)	Stroke range (mm)	A	AL	B	B_{1}	BF	BN	BP	BQ	C	D	E	FD	FT	FV	FX	FY	FZ	GA	GB	GC	GD	GL	GL1	GR	H_{1}	J
40	Up to 500	30	27	60	22	71	96	1/8	1/8	44	16	32	9	12	60	80	42	100	85	15	52	16	12	12	10	8	M8 x 1.25
50	Up to 600	35	32	70	27	81	108	1/4	1/8	52	20	40	9	12	70	90	50	110	95	17	56.5	20	13	15	12	11	M8 $\times 1.25$
63	Up to 600	35	32	86	27	101	115	1/4	1/4	64	20	40	11.5	15	86	105	59	130	102	17	67	20	18	12	15	11	M10 $\times 1.25$
80	Up to 750	40	37	102	32	119	139	1/4	1/4	78	25	52	13.5	18	102	130	76	160	123	21	83	20	23	18	17	13	M12 $\times 1.75$
100	Up to 750	40	37	116	41	133	160	$1 / 4$	1/4	92	30	52	13.5	18	116	150	92	180	144	21	98	22	25	20	19	16	M12 $\times 1.75$

(mm)														With Rod Boot								(mm)
Bore size (mm)	K	KA	M	MM	N	P	Q	H	S	T	V	W	ZZ	$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	d	e	f	h	ℓ	$\begin{gathered} \mathbf{Z Z} \\ (\text { One side) } \end{gathered}$	$\underset{(\text { Both sides) }}{\mathbf{Z Z}}$
40	6	14	11	M14 $\times 1.5$	27	1/4	37 to 39.5	51	153	37.5	9	8	255	40	20 to 500	52	43	15	59	1/4 stroke	263	271
50	7	18	11	M18 $\times 1.5$	30	3/8	42 to 44.5	58	168	44	11	0	284	50	20 to 600	58	52	15	66	1/4 stroke	292	300
63	7	18	14	M18 $\times 1.5$	31	3/8	50 to 51.5	58	182	52.5	12	0	298	63	20 to 600	58	52	17.5	66	1/4 stroke	306	314
80	11	22	17	M22 $\times 1.5$	37	1/2	59.5 to 62.5	71	218	59.5	15	0	360	80	20 to 750	80	65	21.5	80	1/4 stroke	369	378
100	11	26	17	M26 x 1.5	40	1/2	66.5 to 69.5	72	246	69.5	15	0	390	100	20 to 750	80	65	21.5	81	1/4 stroke	399	408

Center trunnion style (T): CNAWTN GA BP (RC, NPT, G) unlocking port (Unlocked when pressurized)

With rod boot

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
<Band mounting style>
D-B5 $\square / B 64$
D-B59W

D-A3 \square

D-G5 $\square / K 59$
D-G5 \square W/K59W
D-G5BAL
D-G59F/G5NTL

D-A44

<Tie-rod mounting style>
D-A9 $\square / A 9 \square V$
D-Z7■/Z80
D-M9■/M9■V
D-Y59 $\square / Y 69 \square / Y 7 P / Y 7 P V$
D-M9 \square W/M9 $\square W V$
D-Y7 $\square W / Y 7 \square W V$
D-M9 \square AL/M9 \square AVL
D-Y7BAL

D-A5 $\square /$ A6 \square
D-A59W

D-A3 \square C
D-G39C/K39C

D-F5 $\square / J 5 \square$
D-F5NTL
D-F5 \square W/J59W
D-F5BA/F59F

* (): Donates the value of D-F5LF.

D-A44C
$\frac{\text { G } 1 / 2}{(\text { Applicable cable O.D. } \varnothing 6.8 \text { to } \varnothing 11.5)} \quad$ Auto switch

D-P4DWL

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switch Proper Mounting Position

* D-A9 \square and D-A9 \square V cannot be mounted on $\varnothing 50$.
* Long stroke is available only for foot style and rod side flange style mounting support.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

CNG
MNB
CNA
CNS
CLS
CLQ

MLU
MLGP
MLIC

Minimum Stroke for Auto Switch Mounting

						n : Number of a	to switch (mm)	
Auto switch model	Number of auto switches mounted		Mounting brackets other than center trunnion	Center trunnion				
				$\varnothing 63$	$\varnothing 80$	$\varnothing 100$		
D-A9 \square	2 (Different surfaces, Same surface), 1			15	75	90	100	110
	n		$\begin{aligned} & 15+40 \frac{(n-2)}{2} \\ & (n=2,4,6,8 \cdots) \end{aligned}$	$\begin{gathered} 75+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 100+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 110+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	
D-A9 \square V	2 (Different surfaces, Same surface), 1		10	75	90	100	110	
	n		$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{gathered} 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{array}{r} 100+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{array}$	$\begin{array}{r} 110+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{array}$	
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { AL } \end{aligned}$	2 (Different surfaces, Same surface), 1		15	80	95	110	115	
	n		$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \end{gathered}$	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 115+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AVL } \end{aligned}$	2 (Different surfaces, Same surface), 1		10	80	95	110	115	
	n		$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 80+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 95+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 110+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 115+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	
D-A5 $\square /$ A6 \square D-F5 $\square /$ J5 \square D-F5 \square W/J59W D-F5BAL/F59F	2 (Different surfaces, Same surface), 1		15	90	100	110	120	
	n (Same surface)		$\begin{gathered} 15+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \end{gathered}$	$\begin{gathered} 90+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 120+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	
D-A59W	2 (Different surfaces, Same surface), 1		20	90	100	110	120	
	n (Same surface)		$\begin{gathered} 20+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 100+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 110+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \\ & \hline \end{aligned}$	
		1	15	90	100	110	120	
D-F5NTL	2 (Different surfaces, Same surface), 1		25	110	120	130	140	
	n (Same surface)		$\begin{array}{r} 25+55 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots) \\ \hline \end{array}$	$\begin{gathered} 110+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots) \end{gathered}$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 130+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	$\begin{aligned} & 140+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \cdots) \end{aligned}$	
$\begin{aligned} & \text { D-B5 } \square / B 64 \\ & \text { D-G5■/K59 } \\ & \text { D-G5■W } \\ & \text { D-K59W } \\ & \text { D-G5BAL } \\ & \text { D-G59F } \\ & \text { D-G5NTL } \end{aligned}$	2	Different surfaces	$\begin{aligned} & \hline \frac{15}{75} \end{aligned}$	90	100	110		
	n	Different surfaces	$\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 90+50 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots) \end{gathered}$	$\begin{array}{r} 100+50 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16, \cdots) \end{array}$	$\begin{gathered} 110+5 \\ (n=4,8, \end{gathered}$	$\begin{gathered} \frac{(n-4)}{2} \\ 12,16 \cdots) \end{gathered}$	
		Same surface	$\begin{aligned} & 75+50(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+ \\ (\mathrm{n}=2, \end{gathered}$	$\begin{gathered} (n-2) \\ 6,8, \cdots) \end{gathered}$	
		1	10	90	100			
D-B59W	2	Different surfaces	20	90	100	110		
		Same surface	75					
	n	Different surfaces	$\begin{gathered} 20+50 \frac{(n-2)}{2} \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 90+50 \frac{(n-4)}{2} \\ (n=4,8,12,16, \cdots) \end{gathered}$	$\begin{aligned} & 100+50 \frac{(n-4)}{2} \\ & (n=4,8,12,16, \cdots) \end{aligned}$	$\begin{array}{r} 110+5 \\ (n=4,8, \end{array}$	$\begin{gathered} \frac{(n-4)}{2} \\ 12,16, \cdots) \end{gathered}$	
		Same surface	$\begin{aligned} & 75+50(\mathrm{n}-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+! \\ (\mathrm{n}=2, \end{gathered}$	$\begin{gathered} (n-2) \\ 6,8, \cdots) \end{gathered}$	
		1	15	90	100			
$\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	2	Different surfaces	35	100	100	110		
		Same surface	100					
	n	Different surfaces	$\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{aligned} & 110+ \\ & (\mathrm{n}=2, \end{aligned}$	$\begin{gathered} \hline(n-2) \\ 6,8, \cdots) \end{gathered}$	
		Same surface	$\begin{gathered} 100+100(n-2) \\ (n=2,3,4, \cdots) \\ \hline \end{gathered}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 110+1 \\ & (n=2, \\ & \hline \end{aligned}$	$\begin{gathered} 0(n-2) \\ 6,8, \cdots) \\ \hline \end{gathered}$	
		1	10	100	100			
D-A44	2	Different surfaces	35	100	100	110		
		Same surface	55					
	n	Different surfaces	$\begin{aligned} & 35+30(n-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+30(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$		
		Same surface	$\begin{aligned} & 55+50(n-2) \\ & (\mathrm{n}=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 110+50(n-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \end{gathered}$		
		1	10	100	100	110		

Minimum Stroke for Auto Switch Mounting

							n : Number of	o switch (mm)				
Auto switch model	Number of auto switches mounted		Mounting brackets other than center trunnion	Center trunnion								
			$\varnothing 40$	$\varnothing 50$	$ø 63$	$\varnothing 80$	$\varnothing 100$					
$\begin{aligned} & \text { D-A3■C } \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$	2	Different surfaces		20	100		100	120				
		Same surface	100									
	n	Different surfaces	$\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$		$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 120+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots) \\ \hline \end{gathered}$					
		Same surface	$\begin{aligned} & 100+100(n-2) \\ & (n=2,3,4,5 \cdots) \end{aligned}$	$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$		$\begin{aligned} & 100+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$	$\begin{aligned} & 120+100(n-2) \\ & (n=2,4,6,8, \cdots) \end{aligned}$					
		1	10	100		100	120					
D-A44C	2	Different surfaces	20	100		100	120					
		Same surface	55									
	n	Different surfaces	$\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$		$\begin{gathered} 100+35(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 120+35(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$					
		Same surface	$\begin{aligned} & \hline 55+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$		$\begin{gathered} 100+50(n-2) \\ (n=2,4,6,8, \cdots) \end{gathered}$	$\begin{gathered} 120+50(n-2) \\ (n=2,4,6,8, \cdots) \\ \hline \end{gathered}$					
		1	10	100		100	120					
$\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / \text { Y7P } \\ & \text { D-Y7 } \square \end{aligned}$	2 (Different surfaces, Same surface), 1		15	80	85	90	95	105				
		n	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 105+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$				
$\begin{aligned} & \text { D-Y69 } \square / Y 7 P V \\ & \text { D-Y7 } \square W V \end{aligned}$		ifferent surfaces, me surface), 1	10	65		75	80	90				
	n		$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{array}{r} 65+30 \\ (n=4,8 \\ \hline \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 12,16 \cdots) \end{aligned}$	$\begin{gathered} 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 80+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$				
D-Y7BAL	2 (Different surfaces, Same surface), 1		20	95		100	105	110				
		n	$\begin{gathered} 20+45 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{array}{r} 95+45 \\ (\mathrm{n}=4,8 \\ \hline \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 12,16 \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 100+45 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 105+45 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 110+45 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots) \end{gathered}$				
D-P4DWL	2 (Different surfaces, Same surface), 1		15	120		130	140					
	n		$\begin{gathered} 15+65 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \end{gathered}$	$\begin{array}{r} 120+6 \\ (\mathrm{n}=4,8 \\ \hline \end{array}$	$\begin{aligned} & \frac{(n-4)}{2} \\ & 12,16 \cdots) \end{aligned}$	$\begin{gathered} 130+65 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$	$\begin{gathered} 140+65 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \end{gathered}$					

Series CNA

Operating Range

Auto switch model	Bore size (mm)				
	40	50	63	80	100
D-A9 $\square /$ A9 \square V	7	-	9	9	9
D-M9 $\square / M 9 \square V$ D-M9 \square W/M9 \square WV D-M9 \square AL/M9 \square AVL	4.5	5	5.5	5	6
D-Z7口/Z80	8	7	9	9.5	10.5
$\begin{array}{\|l} \hline \text { D-A3 } \square / A 44 \\ \text { D-A3 } \square \text { C/A44C } \end{array}$	9	10	11	11	11
D-A5 $\square /$ /A6 \square					
D-B5 $\square /$ B64					
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
$\begin{array}{\|l} \hline \text { D-Y59 } \square / Y 69 \square \\ \text { D-Y7P/Y7■V } \\ \text { D-Y7 } \square W / Y 7 \square W V \\ \text { D-Y7BAL } \end{array}$	8	7	5.5	6.5	6.5

Auto switch model	Bore size (mm)				
	40	50	63	80	100
D-F5 $\square / J 5 \square / F 59 F$ D-F5 \square W/J59W D-F5BAL/F5NTL	4	4	4.5	4.5	4.5
$\begin{aligned} & \text { D-G5 } \square / K 59 / G 59 F \\ & \text { D-G5 } \square \text { W/K59W } \\ & \text { D-G5NTL/G5BAL } \end{aligned}$	5	6	6.5	6.5	7
$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-G39C/K39C } \end{aligned}$	9	9	10	10	11
D-P4DWL	4	4	4.5	4	4.5

* D-A9 \square and D-A9 $\square \mathrm{V}$ cannot be mounted on $\varnothing 50$.
* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion.)
There may be the case it will vary substantially depending on an ambient environment.

Auto Switch Mounting Bracket Part No.

<Tie-rod Mounting>

Auto switch model	Bore size (mm)				
	$\varnothing 40$	$\varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$
D-A9 $\square /$ A9 \square V D-M9 $\square /$ M9 \square V D-M9 \square W/M9 \square WV D-M9 \square AL/M9 \square AVL	BA7-040	BA7-040	BA7-063	BA7-080	BA7-080
D-A5 $\square / A 6 \square / A 59 W$ D-F5 $\square / J 5 \square / F 5 \square W / J 59 W$ D-F5NT/F5BAL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3 \square C/A44C/G39C/K39C	ВАЗ-040	ВАЗ-050	ВАЗ-063	ВАЗ-080	BA3-100
$\begin{aligned} & \text { D-Z7 } \square / Z 80 \\ & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BAL } \end{aligned}$	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080
D-P4DWL	BAP2-040	BAP2-040	BAP2-063	BAP2-080	BAP2-080

<Band Mounting>

Auto switch model	Bore size (mm)				
	$\varnothing 40$	$\varnothing 50$	$\varnothing 63$	$\varnothing 80$	$\varnothing 100$
D-A3 $\square / A 44 / G 39 / K 39$	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
D-B5 $\square / B 64 / B 59 W ~$ D-G5 $\square / K 59 / G 5 ~$ W/K59W D-G5BAL/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10

* D-A9 \square and D-A9 $\square V$ cannot be mounted on $\varnothing 50$.
* Auto switch mounting bolt is attached to D-A3■C/A44C/G39C, and K39C. To order, indicate as shown below, according to the cylinder size.
(Example) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50:$ D-A3 $\square \mathrm{C}-5$
ø63: D-A3 $\square \mathrm{C}-6, \varnothing 80: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-8, \varnothing 100: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-10$
To order the auto switch mounting brackets separately, use the part number shown above

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket and band separately, since it is not included.)

BBA1: For D-A5/A6/F5/J5 types
BBA3: For D-B5/B6/G5/K5 types
D-H5BAL/G5BAL auto switches are set on the cylinder with the stainless steel screws above when shipped
When an auto switch is shipped independently, BBA1 or BBA3 is attached
Note 1) Refer to pages 1813 and 1821 for the details of BBA1 and BBA3.
Note 2) When using D-M9■AL and D-M9■AVL/Y7BAL, do not use the steel set screws which is included with
the auto switch mounting brackets above (BA7- $\square \square \square$, BA4- $\square \square \square$). Order a stainless steel screw set
(BBA1) separately, and select and use the M4x6L stainless steel set screws included in the BBA1.

- The above figure shows the mounting example of $\mathrm{D}-\mathrm{A} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V}) \mathrm{L}$.

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.
For detailed specifications, refer to pages 1719 to 1827.

Auto switch type	Model	Electrical entry (Fetching direction)	Features
Read	D-A93V, A96V	Grommet (Perpendicular)	-
	D-A90V		Without indicator light
	D-A53, A56, B53, Z73, Z76	Grommet (In-line)	-
	D-A67, Z80		Without indicator light
Solid state	D-M9NV, M9PV, M9BV	Grommet (Perpendicular)	-
	D-Y69A, Y69B, Y7PV		
	D-M9NWV, M9PWV, M9BWV		Diagnostic indication (2-color indication)
	D-Y7NWV, Y7PWV, Y7BWV		
	D-M9NAVL, M9PAVL, M9BAVL		Water resistant (2-color indication)
	D-Y59A, Y59B, Y7P	Grommet (In-line)	-
	D-F59, F5P, J59		
	D-Y7NW, Y7PW, Y7BW		Diagnostic indication (2-color indication)
	D-F59W, F5PW, J59W		
	D-F5BAL, Y7BAL		Water resistant (2-color indication)
	D-F5NTL, G5NTL		With timer
	D-P5DWL		Magnetic field resistant (2-color indication)

[^2]MNB

* Normally closed ($\mathrm{NC}=\mathrm{b}$ contact), solid state auto switch ($\mathrm{D}-\mathrm{F9G} / \mathrm{F9H} / \mathrm{Y} 7 \mathrm{G} / \mathrm{Y} 7 \mathrm{H}$ type) are also available. For details, refer to pages 1746 and 1748.
* Wide range detection type, solid state auto switches (D-G5NBL type) are also available. Refer to page 1776 for details.

L * Wide range detection type, solid state auto switches (D-G5NBL type) are also available. Refer to page 1776 for details.

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Design of Equipment and Machinery

© Warning

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders.
Devise a safe structure by attaching protective covers that prevent direct contact with the human body, or in cases where there is a danger of contact, provide sensors or other devices to perform an emergency stop, etc., before contact occurs.
2. Use a balance circuit, taking cylinder lurching into consideration.
In cases such as an intermediate stop, where a lock is operated at a desired position within the stroke and air pressure is applied from only one side of the cylinder, the piston will lurch at high speed when the lock is released. In such situations, there is a danger of causing human injury by having hands or feet, etc. caught, and also a danger for causing damage to the equipment. In order to prevent this lurching, a balance circuit such as the recommended pneumatic circuits (page 753) should be used.

Selection

© Warning

1. When in the locked state, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.
Use caution, because an external action such as an impacting load, strong vibration or turning force, may damage the locking mechanism or reduce its life.
2. Consider stopping accuracy and the amount of over-run when an intermediate stop is performed.
Due to the nature of a mechanical lock, there is a momentary lag with respect to the stop signal, and a time delay occurs before stopping. The cylinder stroke resulting from this delay is the overrun amount. The difference between the maximum and minimum overrun amounts is the stopping accuracy.
-Place a limit switch before the desired stopping position, at a distance equal to the overrun amount.

- The limit switch must have a detection length (dog length) of the overrun amount $+\alpha$.
- For SMC's auto switches, the operating range is between 8 and 14 mm . (It varies depending on a switch model.)
When the overrun amount exceeds this range, selfholding of the contact should be performed at the switch load side.
*For stopping accuracy, refer to page 727.

3. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.
To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.

Specific Product Precautions 2

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Mounting

© Caution

2. Caution on using the basic style or replacing the support bracket.
The lock unit and cylinder rod cover are assembled as shown in the figure below. For this reason, it cannot be installed as in the case of common air cylinders, by using the basic type and screwing the cylinder tie-rods directly to machinery.
Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.
Use socket wrench for replacing the mounting bracket or tightening tie-rod for unit mounting.

Bore size (mm)	Mounting bracket nut			Unit holding tie-rod	
	Nut	$\begin{array}{\|c} \text { Width } \\ \text { across flats } \end{array}$	Socket	$\begin{aligned} & \text { Width } \\ & \text { across flats } \end{aligned}$	Socket
40	$\begin{array}{\|c} \text { JIS B } 1181 \text { Class } 3 \\ \text { M8 } \times 1.25 \end{array}$	13	JIS B 4636 2 point angle socket 13	10	JIS B 4636 2 point angle socket 10
50				13	JIS B 4636 2 point angle socket 13
63	$\begin{array}{\|c} \hline \text { JIS B } 1181 \text { Class } 3 \\ \text { M10 } 31.25 \end{array}$	17	JIS B 4636 2 point angle socket 17	13	JIS B 4636 2 point angle socket 13
80, 100	$\begin{array}{\|c} \hline \text { JIS B } 1181 \text { Class } 3 \\ \text { M12 } \times 1.25 \end{array}$	19	JIS B4636 2 point angle socket 19	17	JIS B 4636 2 point angle socket 17

Adjustment

© Caution

1. Adjust air balance for cylinder. Balance the load by adjusting the air pressure in the cylinder rod side and head side after the lock is released when the load is mounted on cylinder. When you have this air balance, cylinder ejection at lock release can be avoided.
2. Adjust mounting position for detection area of auto switch etc. When intermediate stop is done, adjust the mounting position for detection area of auto switch etc., with consideration of over-run distance to required stop position.

Pneumatic Circuit

© Warning

1. Be certain to use an pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.
In order to prevent cylinder lurching after a lock stop, when restarting or when manually unlocking, a circuit should be used to which will apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.
2. Use a solenoid valve for unlocking which has a large effective area, as a rule 50% or more of the effective area of the cylinder drive solenoid valve.
The larger the effective area is, the shorter the locking time will be (the overrun amount will be shorter), and stopping accuracy will be improved.
3. Place the solenoid valve for unlocking close to the cylinder, and no farther than the cylinder drive solenoid valve.
The shorter the distance from the cylinder (the shorter the piping), the shorter the overrun amount will be, and stopping accuracy will be improved.
4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock.
When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.
If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
6. Basic circuit
1) [Horizontal]
2) [Vertical]
[Load in the direction of rod extension] [Load in the direction of rod retraction]

$-\mathrm{X} \square$

Individual

-X \square

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Pneumatic Circuit

\triangle Caution

1. 3 position pressure center solenoid valve and regulator with check valve can be replaced with two 3 port normally open valves and a regulator with relief function.

[Example]

1) [Horizontal]

2) [Vertical]
[Load in the direction of rod extension] [Load in the direction of rod retraction]

Manually Unlocking

© Warning

1. Never operate the unlocking cam until safety has been confirmed. (Do not turn to the FREE side.)

- When unlocking is performed with air pressure applied to only one side of the cylinder, the moving parts of the cylinder will lurch at high speed causing a serious hazard.
- When unlocking is performed, be sure to confirm that personnel are not within the load movement range and that no other problems will occur if the load moves.

2. Before operating the unlocking cam, exhaust any residual pressure which is in the system.
3. Take measures to prevent the load from dropping when unlocking is performed.

- Perform work with the load in its lowest position.
- Take measures for drop prevention by strut, etc.

\triangle Caution

1. The unlocking cam is an emergency unlocking mechanism only. During an emergency when the air supply is stopped or cut off, this is used to alleviate a problem by forcibly pushing back the release piston and brake spring to release the lock.
2. When installing the cylinder into equipment or performing adjustments, etc., be sure to apply air pressure of 0.25 MPa or more to the unlocking port, and do not perform work using the unlocking cam.
3. When releasing the lock with the unlocking cam, it must be noted that the internal resistance of the cylinder will be high, unlike normally unlocking with air pressure.

Bore size (mm)	Cylinder internal resistance (N)	Cam operating torque $($ standard) $(\mathrm{N} \cdot \mathrm{m})$	Width across flats (mm)
$\mathbf{4 0}$	108	5.9	5
$\mathbf{5 0}$	275	11.8	6
$\mathbf{6 3}$	432	12.8	7
$\mathbf{8 0}$	686	20.6	7
$\mathbf{1 0 0}$	765	23.5	9

4. Be sure to operate the unlocking cam on the FREE side (clockwise direction), and do not turn with a torque greater than the maximum cam operating torque. There is a danger of damaging the unlocking cam if it is turned excessively.
5. For safety reasons, the unlocking cam is constructed so that it cannot be fixed in the unlocked condition.

[Principle]
If the unlocking cam is turned counter clockwise with a tool such as an adjustable angle wrench, the release piston is pushed back and the lock is released. Since the lever will return to its original position when released and become locked again, it should be held in this position for as long as unlocking is needed.

Series CNA Specific Product Precautions 4
Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Maintenance

© Caution

1. Replacement of lock unit for Series CNA is possible. To order Series CNA lock units for maintenance, use the order numbers given in the table below.

Bore size (mm)	Lock unit part no.
$\mathbf{4 0}$	CNA 40D-UA
$\mathbf{5 0}$	CNA 50D-UA
$\mathbf{6 3}$	CNA 63D-UA
$\mathbf{8 0}$	CNA 80D-UA
$\mathbf{1 0 0}$	CNA100D-UA

* But, suffix "L" to the end of part number for 1001 stroke or more on CDNAF50 to 100. (Example: CNA100D-UAL)

2. How to replace lock unit
1) Loosen the tie-rod nuts (4 pcs.) on the cylinder head cover side by using a socket wrench.
For the applicable socket, refer to the table below.

Bore size (mm)	Nut	Width across flats dimension	Socket
$\mathbf{4 0 , 5 0}$	JIS B 1181 Class 2 M8 x 1.25	13	JIS B 4636 + 2 point angle socket 13
$\mathbf{6 3}$	JIS B 1181 Class 2 M10 x 1.25	17	JIS B 4636 + 2 point angle socket 17
$\mathbf{8 0 , 1 0 0}$	JIS B 1181 Class 2 M12 x 1.75	19	JIS B 4636 + 2 point angle socket 19

2) Remove the tie-rods, head cover and cylinder tube.

3) Apply 0.3 MPa or more of compressed air to the unlocking port, and pull out the piston rod assembly.

4) Similarly, apply 0.3 MPa or more of compressed air to the unlocking port of the new lock unit, and replace the new lock unit's temporary axis with the previous piston rod assembly.

5) Reassemble in reverse order from steps 2) and 1).

[^0]: * Since the lock section for Series CNA is normally replaced as a unit, kits are for the

[^1]: * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 $\begin{array}{ll}1 \mathrm{~m} \ldots . . & \text { M (Example) M9NWM } \\ 3 \mathrm{~m} \ldots . . & \text { (Example) M9NWL }\end{array}$

[^2]: * With pre-wired connector is available for solid state auto switches. For details, refer to pages 1784 and 1785.

