UNDERSTANDING COMBITRONICTM TECHNOLOGY

How Combitronic Technology Simplifies Servo Motor Communications and Deployment

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Summary

In January 2011, Animatics Corporation (now Moog, Inc., Animatics) introduced a new servo motor communication technology called "Combitronic[™]", which greatly simplifies conventional servo motor communications while also providing a powerful set of features. Note that the ease of use and features provided by Combitronic technology are not available from any other motor manufacturer in the industry.

This document¹ describes Combitronic technology, its features and how it operates. Program examples are included to show the simple yet powerful control provided by this technology. Additionally, photos and links to web videos are included, which provide actual working examples of this technology.

What is Combitronic Technology?

Combitronic technology is an optional communications protocol that is available for the Moog Animatics' SmartMotor. It operates over a standard "CAN" (Controller Area Network) interface. This is the same basic hardware used in most automobiles as well as in familiar industrial networks such as CANopen[™] and DeviceNet[™].

Combitronic technology may coexist with either CANopen or DeviceNet protocols. However, unlike these common control networks, Combitronic has no master or slave. Each Combitronic-equipped SmartMotor connected to the same network communicates on an equal footing, sharing all information, and therefore, sharing all processing resources.

What are the Primary Features?

The optional Combitronic technology provides the following features:

- Up to 120 SmartMotors can be addressed on a single network
- 1 MHz network bandwidth
- No bus master is required, but one may be used if desired
- No scan list or node list set up is required
- All SmartMotor nodes have full read/write access to all other SmartMotor nodes

^{1.} For those using the online version of this document, there are embedded videos located at the figures marked "Click Image to View Video".

How Does It Work?

Each Combitronic-equipped SmartMotor is fully programmable and capable of being a master to multiple other Combitronic-equipped SmartMotors on the same network. This is not just through a few outgoing commands, I/O handshaking or value assignments, but fully functional, bidirectional communications, which are seamlessly achieved through a given program in any motor.

This optional capability uses a proprietary command structure that resides on top of either the CANopen or DeviceNet protocol. Other than matching baud rates and ensuring unique addresses in each node, there are no other requirements to make it work.

Each Combitronic-equipped SmartMotor is fully programmable and capable of being a master to multiple other Combitronic-equipped SmartMotors on the same network.

In a traditional network, all commands local to a SmartMotor controller are for that motor only. With the optional Combitronic technology, those same commands can be applied to and reference other motors on the same network as if all the motors were being controlled by a central, multi-axis controller. However, from a user's perspective, the difference in this protocol is that it is not register based or data packet based—it simply uses the typical local commands that are amended with a colon and target node address (see the yellow highlights in the following example code).

For example, SmartMotor servos use a single letter G command to start a motion profile. This example shows the differences between starting just the local motor, and then adding Combitronic syntax to start one or all motors on the same network:

G	'Issue	Go in local	motor						
G <mark>:2</mark>	'Issue	Combitronic	Go to	motor 2	2 on	the sam	ne netw	ork	
G <mark>:0</mark>	'Issue	Combitronic	global	Go to	all	motors	on the	same	network

NOTE: With Combitronic technology, no code is required in other nodes on the network. However, for certain Combitronic applications, downloading the same program to all SmartMotors on the network can simplify implementation while providing the full advantages of a multi-axis system.

Examples

The following examples expand on the previously shown Combitronic command capability to illustrate some of the primary features provided by this technology.

Example 1: Trajectory Commands for a Simple Point A to Point B Move

The following code snippets show several examples of trajectory commands for a simple move from point A to point B. The following block of snippets:

- Begins with control of the local axis only
- Controls axis 3 through the addition of Combitronic syntax
- Substitutes a variable for the address in the Combitronic syntax

```
'Simple local axis control:
    VT=100000    'Set velocity target
    ADT=100    'Set accel/decel target
    PRT=10000    'Set relative position distance to move
    MP     'Set mode to Position Mode
    G     'Start moving
'Simple locally commanded remote axis (for axis 3) control:
    VT:3=100000    'Set velocity target
    ADT:3=100     'Set accel/decel target
    PRT:3=10000    'Set relative position distance to move
    MP:3     'Set mode to Position Mode
    G:3     'Start moving
'Simple locally commanded universal remote axis (for axis "q") control:
    VT:q=100000     'Set velocity target
    ADT:q=100     'Set accel/decel target
    PRT:q=10000     'Set relative position distance to move
    MP:q     'Set mode to Position Mode
    G:q     'Start moving
```

In the last code snippet, if the variable "q" was set to zero, all nodes on the network would respond at exactly the same time with no propagation delay between them.

Example 2: Collecting Data or Conditional Code Based on Information from Other Nodes

In all of the previous examples, outgoing commands were used to control one or more motors.

The following snippets show several methods of receiving information (i.e., collecting data from other motors or running conditional code based on information from other motors). Again, note that the standard SmartMotor command only needs to be

The standard SmartMotor command only needs to be modified with a colon and motor address in order to communicate through Combitronic technology.

modified with a colon and motor address in order to communicate through Combitronic technology.

Each snippet collects data from another SmartMotor for use in the local motor. However, the last snippet collects data from both the local motor and a remote motor, and then applies a math function and result to a third motor.

Example 3: Using I/O Commands across the Network

The same communication and control principles apply to I/O commands as shown in this example:

```
'I/O examples across the network
OS(2):3 'Set output 2 on in motor 3
OR(4):2 'Reset output 4 off in motor 2
IF IN(5):11==1 'If input 5 in motor 11 is on
    G:2 'Tell motor 2 to go.
ENDIF
```

WHILE IN(6):4==0 LOOP 'Wait for input 6 in axis 4 to go high

Again, note that no network configuration or host network manager is required. Simple commands with remote addresses provide the capability to freely access and control data across the network. Any motor on the network may do this at any time. Firmware and software allow data to pass freely with full deterministic arbitration of all data packets.

Simple commands with remote addresses provide the capability to freely access and control data across the network at any time.

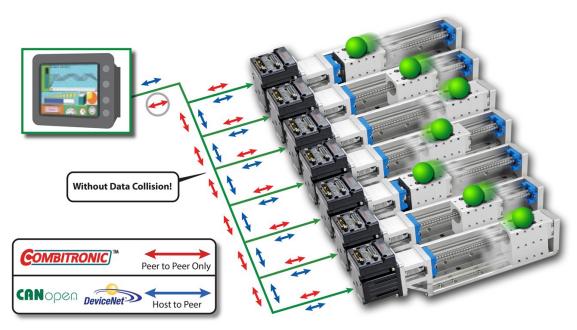
Example 4: Two-Axis Linear Interpolated and Synchronized Motion

A further extension of Combitronic-specific commands is available for multi-axis linear interpolated and synchronized motion from any given axis serving as the master. All calculations and motion profiles are set up by the local axis and use a format similar to single-axis motion profiles:

VTS=100000	'Set 2-axis synchronized path velocity target			
ADTS=100	'Set 2-axis synchronized path accel/decel target			
PTS(x;1,y;2)	'Set target positions "x" & "y" to motors "1" & "2" $$			
GS	'Go synchronized			
TSWAIT	'Wait at this line of code until the			
	' synchronized trajectory is complete			

The PTS command combined with Combitronic technology automatically deals with communications to the associated motor addresses.

Example 5: Three-Axis Linear Interpolated and Synchronized Motion

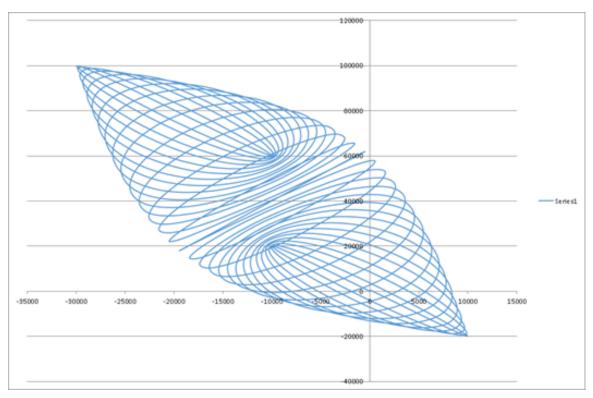

In the previous two-axis example, the X and Y motors move linearly and are synchronized to their destination.

The following code snippet shows a similar example expanded to three axes:

The PTS command combined with Combitronic technology automatically deals with communications to the associated motor addresses.

VTS=100000	'Set 3-axis synchronized path velocity target				
ADTS=100	'Set 3-axis synchronized path accel/decel target				
PTS(x;1,y;2,z;3)	'Set target positions x, y & z to motors 1, 2 & 3				
GS	'Go synchronized				
TSWAIT	'Wait at this line of code until the				
	' synchronized trajectory is complete				

The following figure shows an expanded version of the multi-axis synchronized motion concept described in the previous examples. Note that it could be expanded up to 120 axes.



Multi-Axis Synchronized Motion (Click Image to View Video)

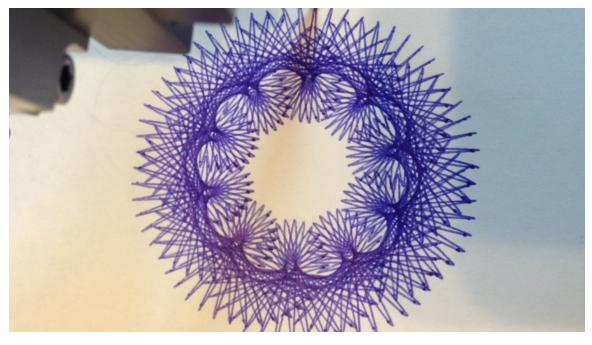
Example 6: Synchronized Motion Using Math Calculations

The following example uses the PTS command along with trig math functions to establish the new target on the fly:

As shown, the PTS command, using Combitronic technology, automatically handles communications to the associated motor addresses. The following figure shows the output graph from this code.

Mathematically-Calculated Synchronized Motion

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com


The following figure shows an ellipse created through PTS¹ and trig math capability. Combitronic technology ties together the processing power of multiple SmartMotors for a full multi-axis system solution.

Ellipse Created through PTS and Trig Math Capability

1. For more information on the PTS command, see the *SmartMotor Developer's Guide*.

The next figure shows a complex master pattern that was created through Combitroniccoordinated camming between multiple axes to provide multi-axis path capability by math function. The initial pattern was created by a subroutine block of code. Then, by simply retargeting the starting point for the subroutine through math calculations, the entire master pattern was created.

"Spirograph" Master Pattern (Click Image to View Video)

Other Design and Implementation Advantages

In addition to the features and benefits previously discussed, the SmartMotor integrated servo with optional Combitronic technology provides the following design and implementation advantages:

- **Reduced Size:** By integrating the controls onto the motor, the control cabinet is reduced in size or eliminated, which makes the machine much smaller.
- **Reduced Cost:** Fewer components and no cabinet cut costs dramatically.

Fewer components to specify, purchase, learn and mount, along with ease of programming provided by Combitronic technology, means reduced development cycles, getting to market faster, and increased competitive advantage.

- **Reduced Development Time:** Fewer components to specify, purchase, learn and mount, along with ease of programming provided by Combitronic technology, means reduced development cycles, getting to market faster, and increased competitive advantage.
- **Reduced Downtime and Field Service:** A traditional control can only be debugged in the cabinet while the machine is down and the factory processes are stopped. However, a SmartMotor integrated servo can be swapped out immediately. Then, while the machine continues to produce, the faulty component can be debugged or simply sent back to the manufacturer for analysis and repair.
- **Increased Reliability:** By reducing the number of components, the machine's reliability is increased. Additionally, the SmartMotor integrated servo requires less wiring, which is a typical failure point in most machines.
- Increased Versatility: In a cabinet-based controller approach, adding additional axes of motion can be difficult due to cabinet space limitations, much additional wiring, and the added burden of programming. However, adding more SmartMotor integrated servos requires no cabinet space and minimal cabling, and the optional Combitronic technology simplifies programming. Further, the additional axes automatically provide more I/O points and processing power.

Application Case Study: High Axis Count Coordinated Motion

Industry: Entertainment

Application: Coordinated Movement of 65 Axes of Motion

Challenge: Provide a cost-effective and aesthetically pleasing technology solution to control 65 coordinated axes of motion required for an art exhibit in the San Jose airport.

65 Coordinated Axes of Motion (Click Image to View Video)

Situation

Coordinated motion of multiple axes is not a straightforward task. When the technology artists behind this motorized sculpture needed an integrated and effective way to choreograph the movement of 65 precisely engineered mechanisms, they recruited the help of Moog Animatics' SmartMotor integrated servos equipped with Combitronic technology.

Problem

The robotic artwork¹, a collaboration between artists Banny Banerjee, Matt Gorbet, Susan LK Gorbet and Maggie Orth, executes complex and precise choreographed patterns of movement such as pulsing to simulate breathing, wave effects, and sequential movements. The 65 motors are networked together and are triggered with high-level commands sent over RS-232. When a motion command is sent, it is echoed from one motor to the next in each serial chain with less than one millisecond delay. Further, no signal integrity is lost as the commands move down the chain, so reliability is greatly improved. SmartMotor servos can simultaneously communicate through RS-232, RS-485, PROFIBUS, Ethernet and CAN buses. This communication flexibility offers a significant cost-effective advantage over traditional component-based motion systems.

Solution

SmartMotor capabilities truly shine when high-axis-count coordinated motion is needed. Class 5 SmartMotor servos have the ability to have one or several masters within a network. With the optional Combitronic communications over the CAN bus, a user may write one program in a motor that can monitor and alter other parameters and data in any other motor in the network in real time.

Field servicing a complex artwork on the ceiling of a functioning airport terminal would be an arduous task if the controllers weren't integrated with the motors, as identification of the exact root cause of a problem could be quite time consuming in a cabinet-based controller system. However, diagnostics are greatly simplified with SmartMotor technology because each node becomes its own machine that can simply be swapped out in case of a failure. All of this translates to reduced MTBF (mean time between failure), and more time allowing your machine(s) to do what is needed.

1. Chronos and Kairos was commissioned by the City of San José Public Art Program, and engineered and fabricated by Monkey Wrench Design of San Francisco.

Conclusion

Combitronic communications combined with the SmartMotor integrated servo represents a major step forward in simplifying multi-axis motion control and motor-to-motor communications. This technology provides the foundation for simple, powerful and robust multi-axis system design:

▲	Enables	Simple to use, simple to deploy, multi-axis system					
	Complex paths & Error handling	Like multi-axis linear interpolation					
	Functions & Interrupts	Camming Function	PTS Function	Globally-triggered Interrupts			
	Combitronic Technology	Motor-to-motor communications					

Combitronic Technology as a Foundation for Multi-Axis System Design

As machine builders are pressured by customers, economic factors and competition to reduce time to market and minimize the machine footprint, this technology will increasingly play an important role in machine design and implementation.

For more information on how the SmartMotor integrated servo with Combitronic technology can benefit your application, please call 408.965.3320 or email us at sales@animatics.com.

About Moog Animatics

Since 1987, Moog Animatics has been designing, manufacturing and marketing motion control products. We bring total automation solutions to numerous industries, including semiconductor, defense, automotive, aerospace, biomedical, textile, security, marine sciences, packaging and many more.

When you need an innovative solution, you need Moog Animatics. We pride ourselves on offering the most creative and complete answers to your motion control questions.

The Moog Animatics headquarters is located in the heart of Silicon Valley, with international offices in Germany and Japan, and a vast network of Moog Animatics-trained Automation Solution Providers around the world.

For more information on Moog Animatics or to discuss your application requirements, please use the contact information provided below.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and the Combitronic logo, are all trademarks of Moog Inc., Animatics.

Copyright © 2015, Moog Inc., Animatics.

Moog Animatics 1421 McCarthy Boulevard Milpitas, CA 95035 Tel: (408) 965 3320 Fax: (408) 965 3319 Email: sales@animatics.com www.animatics.com

Courtesy of Steven Engineering, Inc. - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com