

A. NSK Linear Rolling Guide Product	
B. Ball Screws	
C. Monocarrier™	
D. Other	
E. Appendices venengineering.com	

Preface

It is our pleasure to announce the publication of a new catalog which contains all NSK linear motion products. We believe this publication is one way to show our deep appreciation of your patronage.

Market demand for more sophisticated and diversified machines and equipment is rapidly escalating. NSK precision products are not only used widely in these machines, but also are crucial elements.

In response to this trend, ball screws, NSK linear guides, and Monocarriers, which are crucial mechanical components of these machines, are required to be highly reliable, maintenance-free, smaller in size and lightweight. They also are expected to heighten efficiency and satisfy uses in special environment.

Publishing a catalog to introduce our entire product line is especially meaningful under such circumstances.

This is an improved version of the previous catalog; products are categorized, and each product category has two sections. The first section contains an explanation of products for selection and a technical explanation including results of the latest experiments and research to assist thorough technological discussion. The second half is dimension tables. Last, "Other," whose pages are in color, explains special environments and lubrications such as grease, which are general issues for NSK precision products.

We hope abundant NSK products in the new catalog will be your aide in selecting the most suitable products for your purpose. We solicit your continued patronage.

Contents

A. NSK Linear Rolling Guide B. Ball Screws

A-1 Characteristics of NSK Linear Rolling Guides
Comparision of Rolling Guides and Sliding Guides
Structure and Characteristics of NSK Linear Guides
A-2 Types of NSK Linear Rolling Guides
A-3 Selection of NSK Linear Rolling Guides 1. Selection Flow Chart
A-4 NSK Linear Guide™A91
A-5 Technical Description and Dimension Table for NSK Linear Guides 1. General purpose Series A111 2. Miniature Series A185 3. High Rigidity Series A247 4. High-Accuracy Series A305
A-6 Other Linear Rolling Guide Products 1. Linear Rolling Bushing

Ĕ	3-1. Selection Guide to NSK Ball Screv	/
	1. Features of NSK Ball Screws	
ı	2. Structure of a Ball Screw	
ı	3. Ball Screw Series	
ı	4. Procedures to Select Ball Screw	
	5. When Placing Orders	31
R	3-2 Technical Description of Ball Screw	19
٦	1. Accuracy E	
ì	2. Static Load Limitation	
	3. Permissible Rotational Speed	
į	4. Supporting Conditions for Calculation of	, ,
	Buckling Load and Critical Speed	251
	5. Life (Dynamic Load Limitation)	
	6. Preload and Rigidity	
	7. Friction Torque and Drive Torque	
	8. Even Load Distribution in Ball Nut (In Cas	
	of Ball Screws for High-Load Drive)	
	9. Lubrication of Ball Screw	
	10. Dust Prevention for Ball Screw	
	11. Rust Prevention and Surface Treatment	
	Ball Screws	
	12. Ball Screw Specifications for Special	909
	Environment	270
	13. Noise and Vibration	
	14. Installation of Ball Screw	
	15. Precautions for Designing Ball Screw-E	
	16. Shaft End Machining	
	17. Ball Screw Selection Exercise	
	18. Reference	
	19. Guide to Technical ServicesB1	
	20. Precautions When Handling Ball Screws	
	B1	03
В	3-3 Ball Screw Dimension Table	
	1. Standard Ball Screws B1	105
	2. Standard Nut Ball Screws B4	129
	3. Application-Oriented Ball Screws B4	

C. Monocarrier™

C-1 Monocarrier'
1. FeaturesC
2. Classifications and SeriesC
3. AccessoriesC
4. Selection of MonocarrierC1
5. MCM SeriesC2
6. MCH Series······C7
C-2 Toughcarrier™
1. Features
2. Classifications and SeriesC9
3. Accessories
4. Selection of Toughcarrier C9
5. TCH Series Dimension Table for Standard
ProductsC11
6. Accessories ·······C11
7. Motor Bracket Compatibility Table C13
8. Sensor Rail and Top Cover Unit
Combination TableC13
9. Toughcarrier High-Thrust Series
9. Toughteather High-Till ust Selles
C-3 Technical Guide
1. Sensor SpecificationsC13
2. Characteristics and Evaluation Method
C13
3. Special SpecificationsC14
4. Maintenance······C14
5. NSK Clean Greace LG2 Specifications
C14

D. Other

1. Special Environments	D′
2. Lubrication ·····	D13
3. RoHS Compliant ·····	D24

E Appendices: Tables

Conversion from International System of Units (SI)E1
2. Conversion Table between N and kgf E3
3. Conversion Table between kg and lb E4
4. Conversion Table of Hardness E5
5. Deviations of Shafts Use in Common Fits
E7
6. Deviations of Holes Used in Common Fits
E9

NSK Linear Rolling Guide Product

2. Surface treatment A57

1-1 Characteristics of NSK Linear Rolling Guides 1. Comparison of Rolling Guides and Sliding Guides	4. Calculation of mean effective load
GuidesA2	Preload and rigidityA28 Selection of preload
1-2 Types of NSK Linear Rolling Guides	classification
-3 Selection of NSK	5. Application examples of preload
Linear Rolling Guides	6 Load and rating life when the
1. Selection Flow ChartA13	6. Load and rating life when the preload is taken into account
2. Rating Life and Basic Load Rating	A31
2.1 Life and Basic Load Rating A15	7. Calculating friction force by
1. Life	preload
Rating fatigue lifeA15 Basic load ratings in	1. Accuracy standard ···································
compliance with ISO standard	Definition of accuracy
4. Basic dynamic load ratingA15	grade and preloadA34
5. Calculation of rating fatigue life	4. Combination of accuracy grade and preloadA35
6. Dynamic equivalent load ···· A16	5. Maximum Rail Length A37
7. Basic static load rating ······ A16	6. Lubrication ·······A38
8. Basic static moment load ratingA16	1. NSK linear guides equipped with "NSK K1™" lubrication unit ··· A38
9. Basic load rating by load	2. Lubrication A42
directionA16	7. Dust Proof
2.2 How to Calculate the Life A17	1. Standard specification parts · A52
Setting operating condition of	Dust-proof parts A53 Rust Prevention (Stainless Steel
linear guide	and Surface Treatment) A57
Calculate load to a slide ······ A17 Calculation of dynamic	1. Stainless steel

equivalent loadA21

9. Special EnvironmentA60 1. Heat-resistant specificationsA60 2. Vacuum and clean specificationsA60
"NSK linear guides for food processing equipment and
medical devices" for sanitary
4. Specifications for special
environments ···················A63 5. Lubrication and materials ······A64
6. Responsiveness of NSK linear
guides for special environmentsA66
7. Precautions for handling A66
10. Arrangement and Mounting of
Linear GuidesA67
1. Arrangement ····································
3. Installation
4. Assembly random-matching type
linear guide ····································
5. Butting rail specification A77
6. Handling preloaded assembly
A78
11. Drills to Select Linear Guide A79
Single axis material handling
system
Machining center
12. ReterenceA90
A-4 NSK Linear Guide™
1. Structure of NSK Linear Guides A91
2. Characteristics of NSK Linear
GuidesA91
3. Types and Characteristics of NSK

Linear Guides A93

Precautions------A108

4. Guide to Technical Services.... A107

6. Design Precautions.....A109

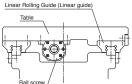
5. Linear Guides: Handling

	-
5 Technical Description	A1:
and Dimension Table for NSK Linear Guides	A9' - <i>F</i>
. General Purpose Series	A1
1.1 NH SeriesA113	-
1.2 VH SeriesA133	Λ3
1.3 NS SeriesΔ153	NU

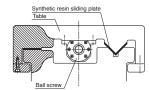
1. General Purpose Series
1.1 NH SeriesA113
1.2 VH Series A133
1.3 NS SeriesA153
1.4 LW SeriesA171
2. Miniature Series
2.1 PU Series
2.2 LU SeriesA197
2.3 PE SeriesA209
2.4 LE SeriesA219
2.5 Miniature LH Series A233
2.6 LL Series A243
3. High Rigidity Series
3.1 RA Series
3.2 RB Series
3.3 LA SeriesA287
4. High-Accuracy Series
4.1 HA SeriesA307
4.2 HS Series A321
5. The Comparative Table of New and
Former Series A335

A-6 Other Linear Rolling Guide Products

1. Linear Rolling Bushing A33	37
2. Roller Pack	17


A-1 Characteristics of NSK Linear Rolling Guides

Characteristics of the NSK linear rolling guides are:


- Designs are simple and economic. This contributes to a highly accurate and low cost guide way system.
- Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology ensure a long-term reliable operation.
- Prompt delivery thanks to a variety of interchangeable components.
- · Users can select the most suitable guide from a wide variety of the ball guides and roller guides.

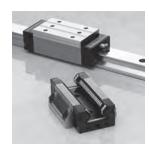
A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes a characteristic comparison between general rolling and sliding guide ways.

Example of rolling guide

Example of sliding guide

Comparative characteristics of rolling and sliding guide ways


Function	Rolling guide	Sliding guide
Friction	 Friction coefficient: 0.01 or lower Difference between static and dynamic friction is small. The fluctuation of friction force due to varying speed is far less than sliding guides. 	Friction is high. The difference between static and dynamic friction coefficient is significant.
Positioning accuracy	, , , ,	Larger lost motion Stick-slip at low speed Difficult to achieve sub-micron positioning
Life	Possible to estimate useful life	Difficult to estimate useful life
Static rigidity	Generally highNo play because of preloadEasy to estimate rigidity	 Rigidity is great against load from a particular direction. There is a mechanical play. Difficult to estimate rigidity
Speed	Wide range of use from low to high speed	Unsuitable for extremely low or high speed
Maintenance, reliability	Long life through a simple maintenance	Precision is lost greatly by a worn out slide way surface.

In response to the demand for a high-speed, high-precision, high-quality, and easy maintenance, rolling guides which have above features are becoming prevalent.

Utilizing the technology we have sharpened in anti-friction rotating bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

NSK

A-1-2 Structure and Characteristics of NSK Linear Guides

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (Fig. 1). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the slide, and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the rails and ball slides for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

Various series are available, and their slide models and size categories are standardized to satisfy any
requirement. Our technology, polished by abundant experience in the use of special materials and
surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (impact-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

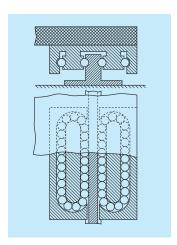


Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure, thus realizing low cost design.

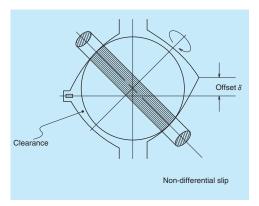


Fig. 3 Two point contacts of the offset Gothic arch groove

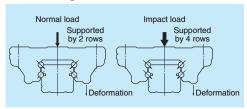


Fig. 5 Shock-resistance

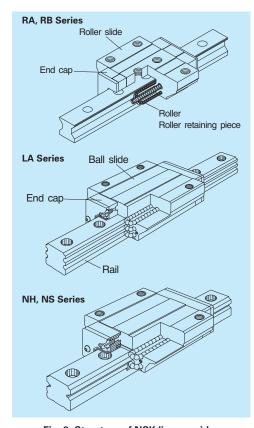


Fig. 2 Structure of NSK linear guides

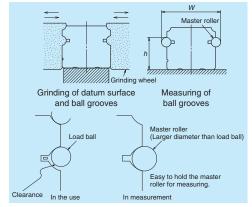


Fig. 4 Processing and measuring grooves

Measuring grooves is easy: you can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

A-2 Types of NSK Linear Rolling Guides

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	NH Series		Ball	High vertical load carrying capacity
NSK Linear Guides	VH Series		Ball	High vertical load carrying capacity
NSK Line	NS Series		Ball	High vertical load carrying capacity
	LW Series		Ball	High vertical load carrying capacity

Note: For customers who have used the former LH or SH (LS or SS) series, NH (NS) series is recommended as a substitute. Please confirm the correlation between NH (NS) series and former ones on the comparative table at A335.

Rigidity: $^{\wedge}_{X}$, Extremely high; $^{\circ}_{Q}$, High; $^{\circ}_{Q}$, Medium; $^{\circ}_{Q}$, Low	
Friction characteristics: O, Low; O, Normal	

Assembly workability: O, Good; O, Fair

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines	A113
			Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines	A133
	0		Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment	A153
	0	0	Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment	A171

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	PU Series		Ball	Four-way equal load carrying capacity
	LU Series		Ball	Four-way equal load carrying capacity
ar Guides	PE Series		Ball	Four-way equal load carrying capacity
NSK Linear Guides	LE Series		Ball	Four-way equal load carrying capacity
	LL Series		Ball	High vertical load carrying capacity
			Ball	Four-way equal load carrying capacity

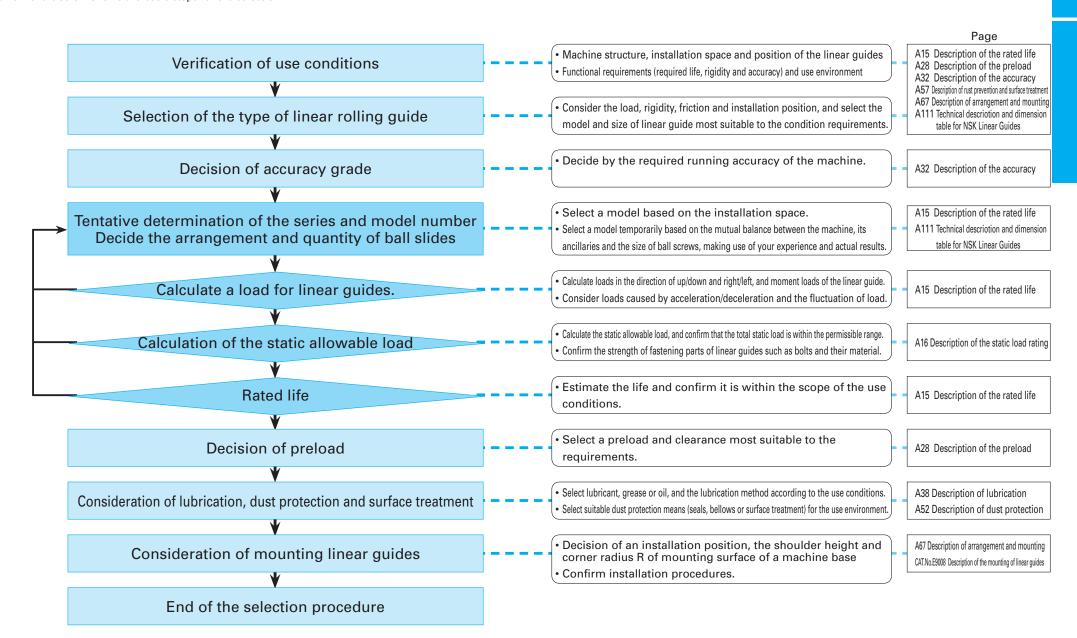
NSK

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
0		©	Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A187
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stage of microscope Miniature robots Pneumatic equipment Computer peripherals	A197
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A209
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stages of microscope Miniature robots Pneumatic equipment Computer peripherals	A219
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A233
	0		Knitting machines Computer peripherals Pneumatic equipment Office equipment	A243

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	RA Series		Roller	Four-way equal load carrying capacity
	RB Series		Roller	Four-way equal load carrying capacity
NSK Linear Guides	LA Series		Ball	Four-way equal load carrying capacity
	HA Series		Ball	Four-way equal load carrying capacity
	HS Series		Ball	High vertical load carrying capacity

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
$\stackrel{\wedge}{\mathcal{A}}$			Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A249
\Rightarrow			Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A271
			Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A287
			Machining centers Precision lathes Various types of NC grinders Electric discharge machines Optical stages LCD manufacturing equipment Die molding machines High-precision measuring equipment	A307
	0		Machining centers Precision lathes Various types of grinders Electric discharge machines Optical stages LCD manufacturing equipment High-precision measuring equipment	A321

YSK	
	Line
ge	ar Gu
	ide


Product	Appearance	Shape	Rolling element	Load carrying characteristics
Linear rolling bushing			Ball	P
Roller pack	(b)		Roller	

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Materials handling equipment Packaging/packing machines Medical equipment Pneumatic equipment Office equipment Assembling machines	A337
			Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A347

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

The flow chart below shows the basic steps for the selection.

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

1. Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. In broad definition, the period until the linear guide becomes unusable is called "life." There are "fatigue life" caused by flaking, and "accuracy life" which the result of wear components.

2. Rating fatigue life

When the linear guide runs under loads, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive stress. This brings about fatigue to the material, and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. The fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation of the fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of the group of linear guides of the same reference number to run without causing flaking when they are independently run under the same conditions. The rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

3. Basic load ratings in compliance with ISO standard

NSK defines the basic load rating in compliance with the ISO standard.

The basic load rating listed in "A-5 Technical Description and Dimension Table for NSK Linear Guides." comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load rating]

ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load rating]

ISO 14728-2; Rolling bearings — Linear motion

rolling bearings
Part 2: Static load ratings

4. Basic dynamic load rating

- ISO international standard, the basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 100 km of rating fatigue life.
- In case of the linear guides, it is a constant load applied to downward direction to the center of the slide.
- For balls as rolling element, some linear guide manufacturers in Japan and Asian countries define the load for the basic fatigue life of 50 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating for 50 km (C_{50}) into the dynamic load rating for 100 km (C_{100}) rated fatigue life.
- For balls as rolling element

 $C_{100} = \frac{C_{50}}{1.26}$

• For rollers as rolling element C_{100} =

5. Calculation of rating fatigue life

 In general, the rating fatigue life "L" can be calculated from the basic dynamic load rating "C" and the load "F" to a slide using the following formula.

[For balls as rolling element] The third power of the index.

For the basic dynamic load rating for 100 km

$$L=100\times\left[\frac{C_{100}}{F}\right]$$

For the basic dynamic load rating for 50 km

$$L=50\times\left(\frac{C_{50}}{F}\right)$$

[For rollers as rolling element] The ten third power of the index

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{C_{100}}{F}\right)^{\frac{1}{3}}$$

For the basic dynamic load rating for 50 km

$$L=50\times\left[\frac{C_{50}}{F}\right]^{\frac{10}{3}}$$

L; Rating fatigue life (km)

 C_{100} ; Basic dynamic load rating for 100 km rated fatigue life (N)

 C_{50} ; Basic dynamic load rating for 50 km rated fatigue life (N)

F; Load to a slide (dynamic equivalent load) (N)

6. Dynamic equivalent load

 Loads applied to the linear guide (slide load) comes from various directions up/down and right/left directions and/or as moment loads.
 Sometimes more than one type of load is applied simultaneously. Sometimes the volume and direction of the load may change.

Various loads cannot be used as they are to calculate the life of the linear guide. Therefore, it is necessary to use a hypothetical load on the slide with a constant volume, which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculation, refer to "A-3-2.2 3. Calculation of dynamic equivalent load"

7. Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place on the rolling elements and on the rolling contact surfaces. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when: [Permanent deformation of the rolling elements]
- + [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In the case of the linear guides, it is a load which is applied in downward direction to the center of the slide.
- Values of the basic static load rating C₀ are shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

8. Basic static moment load rating

 Generally, NSK linear guides use a set of two rails and four slides for the guide way of one axis.
 Under some operating condition, static moment load should be taken into account.

"M_o," which is the limit of static moment load , and calculated from permanent deformation in such use is shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

9. Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating C and the static load rating C_0 respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. In such a case the basic load rating shall be compensated as shown in **Table 2.1**. The basic dynamic load rating of the RA and LA Series is the same in C and C_0 for all load directions, up, down and lateral, while the NH Series, for an example, has different basic load ratings by the load direction as shown in the table.

Table 2.1 Basic load ratings by load direction

Load rating	Basic dy	namic lo	ad rating	Basic st	atic loa	d rating
Load Series direction	Downward	Upward	Lateral	Downward	Upward	Lateral
NH,VH,NS, LW,LH,HS	С	С	0.84 <i>C</i>		0.78 <i>C</i> ₀	
PU,LU,PE,LE,LL, RA,RB,LA,HA	С	С	С	C ₀	C ₀	C _o

A-3-2.2 How to Calculate the Life

1. Setting operating condition of linear guide

- First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- Major operating conditions are as follows. Set all values to calculate applied loads to each slide. (Refer to Table 2.2.)

Axis set up : Horizontal or vertical Rail combination : Single rail or multiple

rail

Applying loads $: F_{xr}, F_{y} \text{ and } F_{z} \text{ (N)}$ Slide span : l (mm)Rail span : L (mm)Position of load action point : X, Y, Z (mm)Center of driving mechanism $: X_{b}, Y_{b}, Z_{b} \text{ (mm)}$ Operating speed : V (mm/sec)Time in acceleration : t (sec)Operating frequency (duty cycle)

2. Calculating load to a slide

 Table 2.2 shows a formula to calculate loads that are going to be applied to each assembled slide into a machine.

The Table shows six typical patterns of linear guide installing structure.

- In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_{xr}, F_{yr}, F_{z}) and the loads which are applied to the slides. $(F_{rr}, F_{sr}, M_{rr}, M_{rr}, M_{yr})$
- Codes in the Tables are as follows:

F.: Vertical loads to the slide (N)

 F_s : Lateral loads to the slide (N)

 M_r : Rolling moment to the slide (N · mm)

 $M_{\scriptscriptstyle D}$: Pitching moment to the slide (N · mm)

 M_{v} : Yawing moment to the slide (N · mm)

Suffixes (1, 2, ...) to the above $F_r - M_v$: Slide number

- F_{xi} : Load applied in X direction (i = 1 to n; n is the number of loads applied in X direction) (N)
- F_{vi} : Load applied in Y direction (j = 1 to n; n is the number of loads applied in Y direction) (N)
- F_{xx} : Load applied in Z direction (k = 1 to n; n is the number of loads applied in Z direction) (N)

Coordinates (X_{xi}, Y_{xi}, Z_{xi}) : Point where load F_{xi} (mm) is applied.

Coordinates (X_{vi}, Y_{vi}, Z_{vi}) : Point where load F_{vi} (mm) is applied.

Coordinates (X_{2k}, Y_{2k}, Z_{2k}) : Point where load F_{2k} (mm) is applied.

l: Slide span (mm)

L: Rail span (mm)

Coordinates (X_b, Y_b, Z_b) : Center of driving mechanism

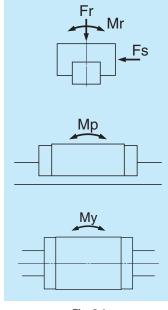


Fig. 2.1

Table 2.2 Loads applied to the slides

	Table 2.2 Loads applied to the slides							
Patterr	Arrangement of slides	Load to slide and deformation at Point A						
1	Fr $Z(Xz,Yz,Zz)$ Fr $Z(Xz,Yz,Zz)$ View U View U Center of driving mechanism $Z(Xb,Yb,Zb)$ Center line of driving mechanism	$Fr_{1} = \sum_{k=1}^{n} Fz_{k} , Fs_{1} = \sum_{j=1}^{n} Fy_{j}$ $Mr_{1} = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $Mp_{1} = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $My_{1} = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$						
2	Fr.1 Fr.2 Fr.1 Fr.2 View U Center of driving mechanism (Xb, Yb, Zb) Fy.1 Fy.2 Center line of driving mechanism	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} + \frac{M2}{l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} - \frac{M2}{l}$ $Fs_{1} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} + \frac{M3}{l} , Fs_{2} = \frac{\sum_{j=1}^{n} Fy_{j}}{2} - \frac{M3}{l}$ $Mr_{1} = \frac{M1}{2} , Mr_{2} = \frac{M1}{2}$ $M1 = \sum_{j=1}^{n} \left\{ Fy_{j} \cdot Zy_{j} \right\} + \sum_{k=1}^{n} \left(Fz_{k} \cdot Yz_{k} \right)$ $M2 = \sum_{i=1}^{n} \left\{ Fx_{i} \cdot (Zx_{i} - Zb) \right\} + \sum_{k=1}^{n} \left(Fz_{k} \cdot Xz_{k} \right)$ $M3 = -\sum_{i=1}^{n} \left\{ Fx_{i} \cdot (Yx_{i} - Yb) \right\} + \sum_{j=1}^{n} \left(Fy_{j} \cdot Xy_{j} \right)$						
3	Frigure 1 (X_{D}, Y_{D}, Z_{D}) Frigure 1 (X_{D}, Y_{D}, Z_{D}) Frigure 2 (X_{D}, Y_{D}, Z_{D}) Frigure 2 (X_{D}, Y_{D}, Z_{D}) Frigure 3 (X_{D}, Y_{D}, Z_{D}) Frigure 4 (X_{D}, Y_{D}, Z_{D})	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} + \frac{M1}{L} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{2} - \frac{M1}{L}$ $Fs_{1} = Fs_{2} = \frac{\sum_{j=1}^{n} Fy_{j}}{2}$ $Mp_{1} = Mp_{2} = \frac{M2}{2} , My_{1} = My_{2} = \frac{M3}{2}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$						

Pattern	Arrangement of slides	Load to slide and deformation at Point A
4	$F_{z}(X_{z},Y_{z},Z_{z})$ F_{rd} F	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} + \frac{M1}{2L} + \frac{M2}{2l} , Fr_{2} = \frac{\sum_{l=1}^{n} Fz_{k}}{4} + \frac{M1}{2L} - \frac{M2}{2l}$ $Fr_{3} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} - \frac{M1}{2L} + \frac{M2}{2l} , Fr_{4} = \frac{\sum_{l=1}^{n} Fz_{k}}{4} - \frac{M1}{2L} - \frac{M2}{2l}$ $Fs_{1} = Fs_{3} = \frac{\sum_{j=1}^{n} Fy_{j}}{4} + \frac{M3}{2l} , Fs_{2} = Fs_{4} = \frac{\sum_{j=1}^{n} Fy_{j}}{4} - \frac{M3}{2l}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M2 = \sum_{i=1}^{n} \{Fx_{i}(Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i}(Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$ $\delta x = Yd \cdot \frac{Fs_{2} - Fs_{1}}{l \cdot Ks} + Zd \cdot \frac{Fr_{1} - Fr_{2}}{l \cdot Kr}$ $\delta y = \frac{\sum_{j=1}^{n} Fy_{j}}{4 \cdot Ks} + Xd \cdot \frac{Fs_{1} - Fs_{2}}{l \cdot Ks} + Zd \cdot \frac{Fr_{1} - Fr_{3}}{L \cdot Kr}$ $\delta z = \frac{\sum_{k=1}^{n} Fz_{k}}{4 \cdot Kr} + Xd \cdot \frac{Fr_{1} - Fr_{2}}{l \cdot Kr} + Yd \cdot \frac{Fr_{1} - Fr_{3}}{L \cdot Kr}$
5	Fr4 Fr5 Fr5 Fr7 Fr7 Fr8 Fr8 A(Xd,Yd,Zd) δz Fr8 Fr8 Center of driving mechanism (Xb,Yb,Zb) $Fr6 Fr7 Fr8 Fr8 Fr8 Fr8 Fr8 Fr8 Fr8 Fr8 Fr8 Fr8$	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} + \frac{M2}{2l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L}$ $Fr_{3} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} - \frac{M2}{2l} , Fr_{4} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} + \frac{M2}{2l}$ $Fr_{5} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} , Fr_{6} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} - \frac{M2}{2l}$ $Fs_{1} = Fs_{4} = \frac{\sum_{j=1}^{n} Fy_{j}}{6} + \frac{M3}{2l} , Fs_{2} = Fs_{5} = \frac{\sum_{j=1}^{n} Fy_{j}}{6}$ $Fs_{3} = Fs_{6} = \frac{\sum_{j=1}^{n} Fy_{j}}{6} - \frac{M3}{2l}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$ $\delta x = Y_{d} \cdot \frac{Fs_{3} - Fs_{1}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{3}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{4}}{L \cdot Kr}$ $\delta y = \frac{\sum_{j=1}^{n} Fz_{k}}{6 \cdot Kr} + X_{d} \cdot \frac{Fs_{1} - Fs_{3}}{l \cdot Kr} + Y_{d} \cdot \frac{Fr_{1} - Fr_{4}}{L \cdot Kr}$

Pattern	Arrangement of slides	Load to slide and deformation at Point A
6	Fr5 Fr6 Fr2 δy Fr7 Fr8 Fr4 δz Fs5 Fs6 Fs7 Fs2 View U Fs8 Fs4 Center of driving mechanism (Xb,Yb,Zb)	$Fr_{1} = \frac{\sum_{k=1}^{n} F_{2k}}{8} + \frac{M1}{4L} + \frac{M2 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{2} = \frac{\sum_{k=1}^{n} F_{2k}}{8} + \frac{M1}{4L} + \frac{M2 \cdot l}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{3} = \frac{\sum_{k=1}^{n} F_{2k}}{8} + \frac{M1}{4L} - \frac{M2 \cdot l}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{4} = \frac{\sum_{k=1}^{n} F_{2k}}{8} + \frac{M1}{4L} - \frac{M2 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{5} = \frac{\sum_{k=1}^{n} F_{2k}}{8} - \frac{M1}{4L} + \frac{M2 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{6} = \frac{\sum_{k=1}^{n} F_{2k}}{8} - \frac{M1}{4L} - \frac{M2 \cdot l}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{7} = \frac{\sum_{k=1}^{n} F_{2k}}{8} - \frac{M1}{4L} - \frac{M2 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fr_{8} = \frac{\sum_{k=1}^{n} F_{2k}}{8} - \frac{M1}{4L} - \frac{M2 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Fs_{1} = Fs_{5} = \frac{\sum_{j=1}^{n} Fy_{j}}{8} + \frac{M3 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fs_{2} = Fs_{6} = \frac{\sum_{j=1}^{n} Fy_{j}}{8} + \frac{M3 \cdot l}{2 \cdot (l^{2} + l'^{2})}$ $Fs_{3} = Fs_{7} = \frac{\sum_{j=1}^{n} Fy_{j}}{8} - \frac{M3 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $Fs_{4} = Fs_{8} = \frac{\sum_{j=1}^{n} Fy_{j}}{8} - \frac{M3 \cdot l'}{2 \cdot (l^{2} + l'^{2})}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$ $\delta x = Yd \cdot \frac{Fs_{4} - Fs_{1}}{l_{2} \cdot Ks} + Zd \cdot \frac{Fr_{1} - Fr_{4}}{l_{2} \cdot Ks}$ $\delta y = \frac{\sum_{j=1}^{n} Fy_{j}}{8 \cdot Ks} + Xd \cdot \frac{Fs_{1} - Fs_{4}}{l_{2} \cdot Ks} + Zd \cdot \frac{Fr_{1} - Fr_{5}}{L \cdot Kr}$ $\delta z = \frac{\sum_{k=1}^{n} Fz_{k}}{8 \cdot Kr} + Xd \cdot \frac{Fr_{1} - Fr_{4}}{l_{2} \cdot Kr} + Yd \cdot \frac{Fr_{1} - Fr_{5}}{L \cdot Kr}$

3. Calculation of dynamic equivalent load

• For the calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.



Fig. 2.2

Table 2.3 Loads in the arrangement of linear guides

	ı						
	Arrangement of linear	Loads nec	essary to c	alculate dyı	valent load		
Pattern	guide	Load		Moment load			Dynamic equivalent load
	guide	Up/down (vertical)	Right/left (lateral)	Rolling	Pitching	Yawing	ioau
1		F,	F _s	M _r	$M_{\scriptscriptstyle m p}$	M _y	$F_r = F_r$ $F_{se} = F_s \cdot \tan \alpha$
2		F,	F _s	M _r			$F_{\text{re}} = \mathcal{E}_{\text{r}} \cdot M_{\text{r}}$ $F_{\text{pe}} = \mathcal{E}_{\text{p}} \cdot M_{\text{p}}$ $F_{\text{ye}} = \mathcal{E}_{\text{y}} \cdot M_{\text{y}}$
3		F,	Fs		M _p	M _y	α : Contact angle NH, VH, NS, LW, LH, HS Series $\alpha = 50^{\circ}$
4		F,	Fs				PU, LU, PE, LE, RA, RB, LA, HA Series $\alpha = 45^{\circ}$

ullet Use the dynamic equivalent coefficient $\mathcal E$ in the table below for an easy conversion of moment loads to the dynamic equivalent load.

• The coefficient of each moment direction is as follows.

 \mathcal{E}_r : Rolling direction

 \mathcal{E}_{n} : Pitching direction

 \mathcal{E}_{v} : Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
NH-15	Model	C	C	C	Model	C	c	C	Model	C	c	c
NH15L		<u>.</u>	-		No.			,			-	
NH20L 142	NH15	188	111	132		377		431		79	55	55
NH20L 142 57 68 PU09L 215 136 136 136 136 56 58 58 58 1425 123 51 61 PU12L 163 204 204 RA30L 56 44 44 44 14 14 14 14 1				86	PU07		349		RA25			
NH25L 123 68 81	NH20	142	81	97	PU09	215	222	222	RA25L	71	50	50
NH30A 98 70 83 PU15L 163 125 125 RA35 46 52 52 S2 NH30EF 98 58 69 PU15L 133 174 174 RA35L 46 39 39 NH30EF 98 58 69 PU15L 133 102 102 RA45 37 40 40	NH20L		57	68	PU09L	215	136	136	RA30	56	58	58
NH30A	NH25	123	68	81		163	204	204	RA30L	56		
NH30EF 98 58 69	NH25L	123	51	61	PU12L	163	125	125	RA35	46		
NH30EF 98 58 69	NH30A	98		83	PU15	133	174	174	RA35L	46	39	39
NH35 78	NH30EF	98	58	69	PU15L	133	102	102	RA45	37	40	
NH35L 78 36 43 LU07 286 305 305 RA55L 32 24 24 24 24 24 24 24	NH30L	98		52					RA45L	37	30	30
NH45L 60 38 45 LU09 217 242 242 RA65 26 28 28 28 NH45L 60 30 36 LU09L 217 138 138 138 138 138 135 S1 S1 S1 S1 S1 S1 S1 S	NH35	78	51	61	LU05	385	359	359	RA55	32	33	33
NH45			36	43	LU07	286	305			32	24	24
NH55 51		60				217	242	242	RA65	26	28	28
NH65L 51 25 30	NH45L	60	30	36	LU09L	217	138	138	RA65L	26	19	19
NH65L 51 25 30	NH55	51	31	37	LU09R	217	203	203				
NH65L 43 27 32 LU12L 167 116 116 RB30L 56 44 44 NH65L 43 20 24 LU15 133 174 174 RB35 46 52 52 24 LU15L 133 94 94 RB35L 46 39 39 39 MH15L 188 111 132 RB45 37 40 40 MH15L 188 72 86 PE05 194 277 277 RB45L 37 30 30 30 MH20L 142 81 97 PE07 141 203 203 RB55 32 33 33 MH20L 142 57 68 PE09 123 161 161 RB55L 32 24 24 MH25 123 68 81 PE09L 123 108 108 RB65 26 28 28 MH25L 123 51 61 PE12 90 90 90 MH30A 98 70 83 PE12L 90 90 90 MH30A 98 70 83 PE12L 90 90 90 MH30EF 98 58 69 PE15 50 111 111 LA25 122 76 76 MH30L 98 44 52 PE15L 50 72 72 LA25L 122 47 47 47 47 47 47 47							204		RB30	56	58	58
NH65L 43 20	NH65		27		LU12L	167			RB30L	56	44	44
VH15			20		LU15	133			RB35	46	52	52
VH15L 188		_			LU15L		94	94	RB35L		39	
VH15L	VH15	188	111	132					RB45	37	40	
VH20L 142 81 97			72		PE05	194	277	277			30	30
VH20L	VH20				PE07		203					33
VH25L 123 68			57	68		123						
VH25L 123 51 61 PE12L 90 136 136 RB65L 26 19 19 VH30AP 98 70 83 PE12L 90 80 80 80 80 80 80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RB65</td> <td></td> <td>28</td> <td>28</td>									RB65		28	28
VH30A					PE12					26		
VH30EF 98			70		PE12L							
VH30L 98	VH30EF								LA25	122	76	76
VH35L 78 51 61 CH35L SH35L SH35L					PE15L				LA25L			
VH35L 78 36 43 LE05 196 248 248 LA30L 105 43 43 VH45 60 38 45 LE05S 196 323 323 LA35 84 54 54 VH45L 60 30 36 LE07 141 188 188 LA35L 84 54 54 VH55 51 31 37 LE07S 141 349 349 LA45 60 41 41 VH55L 51 25 30 LE07L 141 122 122 LA45L 60 31 31 LE09 123 149 149 LA55 51 33 33 NS15 177 174 208 LE09S 123 277 277 LA55L 51 26 26 NS20 127 94 112 LE12 90 125 LA65L 43 29 29 </td <td>VH35</td> <td></td> <td>51</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>105</td> <td>63</td> <td>63</td>	VH35		51		1					105	63	63
VH45 60 38 45 LE05S 196 323 323 LA35 84 54 54 VH45L 60 30 36 LE07 141 188 188 LA35L 84 37 37 VH55 51 31 37 LE07S 141 349 349 LA45 60 41 41 VH55L 51 25 30 LE07L 141 122 122 LA45L 60 31 33 34 34 29 29 29<					LE05	196	248	248				
VH45L 60 30 36 LE07 141 188 188 LA35L 84 37 37 VH55 51 31 37 LE07S 141 349 349 LA45 60 41 41 VH55L 51 25 30 LE07L 141 122 L245L 60 41 41 VH55L 51 25 30 LE09L 123 149 149 L455 60 31 31 NS15S 177 116 138 LE09S 123 149 149 L455 51 33 33 NS20S 127 94 112 LE12 90 125 L25 LA65 43 29 29 NS20S 127 94 112 LE12 90 125 125 LA65L 43 29 29 NS20S 127 136 162 LE12 90 23 23					LE05S							54
VH55 51 31 37 LE07S 141 349 349 LA45 60 41 41 VH55L 51 25 30 LE07L 141 122 122 LA45L 60 31 31 NS15 177 116 138 LE09S 123 277 277 LA55L 51 26 26 NS15S 177 174 208 LE09L 123 102 102 LA65L 51 26 26 NS20S 127 94 112 LE12 90 125 125 LA65L 43 29 29 NS20S 127 136 162 LE12S 90 233 233 233 33 33 NS25S 111 70 83 LE12L 90 86 86 HA25 122 33 33 NS25S 111 108 129 LE15S 50 174				36								
VH55L 51 25 30 LEO7L 141 122 122 LA45L 60 31 31 NS15 177 116 138 LE09S 123 149 149 LA55 51 33 33 NS15S 177 174 208 LE09L 123 102 102 LA65L 43 29 29 NS20 127 94 112 LE12 90 125 125 LA65L 43 29 29 NS20S 127 136 162 LE12S 90 125 125 LA65L 43 29 29 NS25S 111 70 83 LE12S 90 233 233 NS25S 111 108 129 LE15 50 102 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 174 174 HA35 84			31									
NS15 177 116 138 LE09S 123 149 149 LA55 51 33 33 NS15 177 174 208 LE09S 123 277 277 LA55L 51 26 26 26 NS15S 177 174 208 LE09L 123 102 102 LA65 43 29 29 NS20 127 94 112 LE12 90 125 125 LA65L 43 20 20 NS20S 127 136 162 LE12S 90 233 233 NS25S 111 70 83 LE12L 90 86 86 HA25 122 33 33 NS25S 111 108 129 LE15 50 102 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 102 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 174 174 HA35 84 23 23 NS25S 175 NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35 76 54 64 HA55 51 16 16 NS35S 76 87 104 LH08 316 269 321 NS30S 76 87 104 LH08 316 269 321 NS30S 76 S76 S7 104 LH08 316 269 321 NS30S 76 S76 S76 S776 S776 S776 S776 S776 S						141				60	31	31
NS15 177 116 138 LE09S 123 277 277 LA55L 51 26 26 NS15S 177 174 208 LE09L 123 102 102 LA65 43 29 29 NS20 127 94 112 LE12 90 125 LA65L 43 29 29 NS20S 127 136 162 LE12S 90 233 233 86 RA25 122 33 33 33 NS25S 111 108 129 LE15 50 102 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 174 174 HA35 84 23 23 NS30S 94 102 121 LE15S 50 174 174 HA45 60 20 20 NS35S 76 87 104 LH08 316 269	11.002	<u> </u>										
NS15S 177 174 208 LE09L 123 102 102 LA65 43 29 29 NS20 127 94 112 LE12 90 125 125 LA65L 43 20 20 NS20S 127 136 162 LE12S 90 233 233 NS25 111 70 83 LE12L 90 86 86 HA25 122 33 33 NS25S 111 108 129 LE15S 50 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 174 174 HA35 84 23 23 NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35S 76 87 104 LH08 316 269 321 HS15 177 45 5	NS15	177	116	138	LF09S							26
NS20 127 94 112 LE12 90 125 125 LA65L 43 20 20 NS20S 127 136 162 LE12S 90 233 233 S3 S4 S3 S3 S3 S4 S3 S3 S4 S3 S3 S4 S4 S3 S3 S3 S4 S4 S3 S3 S4 S4 S3 S3 S4 S4 S3 S3 S4 S4 S4 S3 S3 S4 S4 S4 S3	NS15S				LE09L				LA65			29
NS20S 127 136 162 LE12S 90 233 233 LS25 111 70 83 LE12L 90 86 86 HA25 122 33 34 34 34 34 32 23 33 33 33 33 34 34 34 34 32 23 34 34 34 34 34 34 34 34 34 34 34 34 34 34<	NS20				LE12				LA65L		20	20
NS25 111 70 83 LE15 90 86 86 186 HA25 122 33 33 NS25S 111 108 129 LE15 50 102 102 HA30 105 27 27 NS30 94 102 121 LE15S 50 174 174 HA35 84 23 23 NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35S 76 54 64 LH08 316 269 321 HA55 51 16 16 LW17 66 125 149 LH10 253 203 242 HS15 177 45 54 LW21 59 108 129 HS25 111 33 39 LW27 53 76 91 RA15 105 95 95 HS30 94												
NS25S 111 108 129 LE15 50 102 102 HA30 105 27 27 NS30 94 63 75 LE15S 50 174 174 HA35 84 23 23 NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35 76 54 64 HA55 51 16 16 NS35S 76 87 104 LH08 316 269 321 32 32 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 177 45 54 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1									HA25	122	33	33
NS30 94 63 75 LE15S 50 174 174 HA35 84 23 23 NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35S 76 87 104 LH08 316 269 321 HA55 51 16 16 LW17 66 125 149 LH10 253 203 242 HS15 177 45 54 LW21 59 108 129 HS20 127 39 47 LW27 53 76 91 RA15 105 95 95 HS30 94 27 32 LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28	NS25S				LE 15				HA30			
NS30S 94 102 121 LE15L 50 68 68 HA45 60 20 20 NS35S 76 54 64 HA55 51 16 16 NS35S 76 87 104 LH08 316 269 321 32 3	NS30			75	LE15S				HA35		23	23
NS35 76 54 64 LH08 316 269 321 HA55 51 16 16 NS35S 76 87 104 LH08 316 269 321	NS30S				LE15L						20	20
NS35S 76 87 104 LH08 316 269 321 321 321 322 323 323 324 <td></td>												
LW17 66 125 149 LH10 253 203 242 HS15 177 45 54 LW17 66 125 149 LH12 223 136 162 HS20 127 39 47 LW21 59 108 129 HS25 111 33 39 LW27 53 76 91 RA15 105 95 95 HS30 94 27 32 LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28					I H08	316	269	321	,	- 0.		
LW17 66 125 149 LH12 223 136 162 HS20 127 39 47 LW21 59 108 129 HS25 111 33 39 LW27 53 76 91 RA15 105 95 HS30 94 27 32 LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28			<u> </u>						HS15	177	45	54
LW21 59 108 129 LW27 53 76 91 RA15 105 95 HS30 94 27 32 LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28	TW17	66	125	149		223			HS20		39	
LW27 53 76 91 RA15 105 95 95 HS30 94 27 32 LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28		59		129				.02	HS25			
LW35 32 51 61 RA15L 105 70 70 HS35 76 23 28		53			RA15	105	95	95	HS30			32
					RA15I							
20 20 30 40 20 74 74										, 0		
	_,,,,,		- 00			, 0	, -	7-7				

Definitions of codes appearing at the end of the model number in **Table 2.4**:

: Super-high-load type ; NH45L : Medium load type ; NS25S S No code: High-load type ; NH45_

: Ball slide shape is square ; NH30A (only NH30 and VH30) Α : Ball slide shape is flanged type (EL, FL type) ; NH30EF (only NH30 and VH30) EF : Miniature Series with ball retainer ; LU09R (only LU and LE)

• The formula is determined by the relationship of loads in terms of volume. A full dynamic equivalent load can be easily obtained by using each coefficient.

After obtaining the dynamic equivalent load of the necessary load directions from **Table 2.4**, use the formulas below to calculate full dynamic equivalent loads.

- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load : Fe = 0.5Fr + Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

For the values of each dynamic equivalent load in the formulas above, disregard load directions and take the absolute value.

• It is necessary to include the amount of preload for the calculation of rating life when selecting "Z3 medium preload" or "Z4 heavy preload" as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

4. Calculation of mean effective load

When the load to the slide deviates, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the dynamic equivalent load as it is.

(1) When load and running distance vary stepwise (Fig. 2.3)

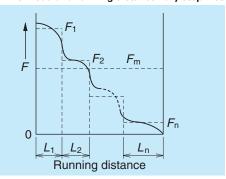


Fig. 2.3 Stepwise load change

Running distance while dynamic equivalent load F_1 is applied: L_1

Running distance while dynamic equivalent load F_2 is applied: L_2

Running distance while dynamic equivalent load F_3 is applied: L_3

.

Running distance while dynamic equivalent load F_n is applied: L_n

From the above, mean effective load Fm can be obtained by the following formula.

In case of ball

In case of roller

$$Fm = \sqrt[3]{\frac{1}{L} (F_1^3 L_1 + F_2^3 L_2 + \dots + F_n^3 L_n)}$$

$$Fm = \frac{10}{3}\sqrt{\frac{1}{L}\left(F_1^{\frac{10}{3}}L_1 + F_2^{\frac{10}{3}}L_2 + \dots + F_n^{\frac{10}{3}}L_n\right)}$$

Fm: Mean effective load of the deviating load (N)

L: Running distance (Σ Ln)

NSK

(2) When load changes almost linearly (Fig. 2.4)

Approximate mean effective load Fm can be obtained by the following formula.

$$Fm = \frac{1}{3} (Fmin + 2Fmax)$$

Fmin: Minimum value of dynamic

equivalent load (N)

Fmax: Maximum value of dynamic

equivalent load (N)

(3) When load changes in sinusoidol pattern (Fig. 2.5)

At time of (a): Fm = 0.65 FmaxAt time of (b): Fm = 0.75 Fmax

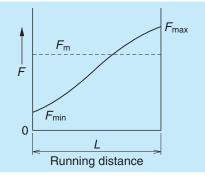
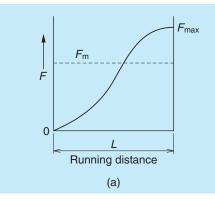



Fig. 2.4 Linear load change

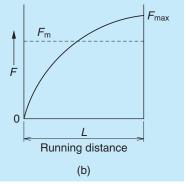


Fig. 2.5 Load that changes in sinusoidal pattern

5. Various coefficients

(1) Load factors

- Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor fw

Impact/Vibration	Load factor
No external impact/	1.0 – 1.5
vibration	1.0 – 1.5
There is impact/	1.5 – 2.0
vibration from outside.	
There is significant	2.0 – 3.0
impact/vibration.	2.0 – 3.0

(2) Hardness coefficient

- For linear guides, in order to function optimally, both the rolling elements and the rolling contact surface must have a hardness of HRC58 to 62 to an appropriate depth.
- The hardness of NSK linear guide fully satisfies HRC58 to 62. Therefore, in most cases it is not necessary to consider hardness. If the linear guide is made of a special material by a customer's request, as the material hardness is lower than HRC58, use the following formula for adjustment.

$$C_{H} = f_{H} \cdot C$$

 $C_{OH} = f_{H} \cdot C_{o}$

 $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient

f_H: Hardness coefficient (Refer to Fig. 2.6)

 C_{OH} : Basic static load rating adjusted by hardness coefficient

 f_{H} : Static hardness coefficient (Refer to Fig. 2.6)

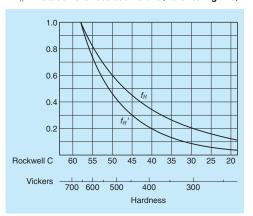


Fig. 2.6 Hardness coefficient

(3) Reliability coefficient

 In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculation.

6. Calculation of rating life

(1) Life Calculating Formula

The life calculating formula in the stroke movement with normal lubrication, the following relationships exist between the slide mean effective load F_m (N), the basic dynamic load rating to load application direction C (N), and the rating fatigue life L (km).

[For balls as rolling element]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{w}} \cdot F_{\text{m}}} \right)$$

[For rollers as rolling element]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{\frac{10}{3}}$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{W}} \cdot F_{\text{m}}} \right)^{\frac{1}{3}}$$

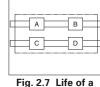
L : Rating fatigue life (km)

 $C_{\mbox{\tiny 100}}$: Basic dynamic load rating for 100 km rated fatigue life (N)

 C_{50} : Basic dynamic load rating for 50 km rated fatigue life (N)

f_H: Hardness coefficient

f_w: Load coefficient


F_m: Average load (N)

Note: Do not use the basic static load rating C_0 and the basic static moment rating M_{R0} , M_{P0} or M_{V0} for a calculation of the life.

(2) Life as an entire guide way system

In those cases when several slides comprise

a single guide way system (such as a single-axis table), the life of the slide to which the most strenuous condition is applied is considered to be the life of the entire system.

system

For example, in Fig. 2.7, if "slide A" is the slide which receives the largest mean

effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered to be the life of "slide A."

7. Examination of the basic static load rating

(1) Examine from the basic static load rating

 Examine the static equivalent load P₀, which is applied to the slide, from the basic static load rating C₀ and the static permissible load factor fs.

$$fs = \frac{C}{P}$$

When the static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate it using formulas below.

For NH, VH, NS, LW, LH and HS Series:

If compressed load and lateral load are combined

$$P_0 = Fr + 1.54Fs$$

If tensile load and lateral load are combined $P_0 = 1.28Fr + 1.54Fs$

For PU, LU, PE, LE, LL, RA, RB, LA and HA Series: $P_0 = Fr + Fs$

 The table below shows guidelines of fs for general industrial use.

Table 2.6

Use conditions	fs
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

- Basic static load rating is not a destructive force to the balls, rollers, rails, or slides. The balls can withstand a load more than seven times larger than the basic static load rating. It is sufficient as a safety factor to the destruction load designed for general machines.
- However, when a heavy load applied to the rail and slide in tension direction, the strength of the bolts which secures the rail and the ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

(2) Examining from static moment load rating

• Also examine the static permissible moment load $M_{\rm po}$ from the basic static moment load $M_{\rm po}$ and the static permissible load factor fs.

$$fs = \frac{M_{P0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

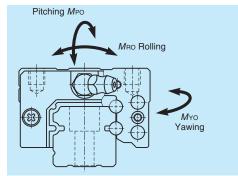
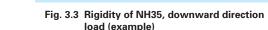


Fig. 2.8 Moment load directions

A-3-3 Preload


1. Objective of preload

- · An elimination of clearance between the raceways and rolling elements vanishes the mechanical play of the linear guide system.
- · When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- · Preloading method The preload is applied by inserting rolling elements slightly bigger than the space of two raceways as shown in Fig. 3.1.

2. Preload and rigidity

of preload.

- example.
- pitching, rolling, and yawing (Fig. 3.5).

Deformation of ball slide (µm)

10

Load (kN)

Fig. 3.5 Moment rigidity

8. Precautions for the design in examining the life

The following points must be heeded in examining the life.

In case of oscillating motion

- · If the rolling elements do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of rolling elements and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- · A grease which prevents fretting is recommended for oscillating stroke operations. When a standard grease is used, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- The load applied to the rolling element rows inside the slide is inconsistent if a pitching or yawing moment load is applied. Loads are heavy on the rolling elements on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- The moment load to a ball slide is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary high load is applied during stroke

- · If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- · When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When the calculated life is extraordinarily short (Less than 3 000 km in calculated

- · In such case, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- · If the linear guides are operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the arrangement of linear guides, the number of slide, and the type of model in order to reduce the load to the slides.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external loading etc.
- · The end cap with high speed specification must be used when the operating speed exceeds the permissible speed. In such a case, please consult NSK.

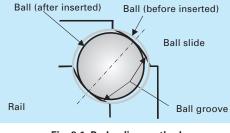


Fig. 3.1 Preloading method

Deformation (preloaded)

Deformation (non-preloaded)

2×√2P

Z0 Preload

Z1 Preload

Z3 Preload

Preload Load to cancel preload

Fig. 3.2 Elastic deformation

- · In NSK linear guides, slight size changes of rolling elements, which are going to be inserted in the slide, control the clearance and amount
- · In NSK linear guides, the rigidity is further increased and the elastic deformation is reduced by applying preload.
- · In general, the load range of ball guide system in which the preload is effective, is about 2.8 times of the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times of the preload.
- Fig. 3.3 shows the relationship between the ball slide deformation and the external vertical load under a specified preload. NH35 is used as an
- · The following show the definition of linear guide rigidity.
- (1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- (2) Moment rigidity: Three moment directions,

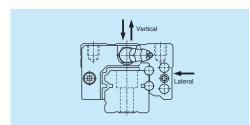
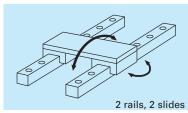
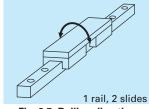




Fig. 3.4 Radial rigidity

- · Since two rails and four slides are used in general as a pair, consideration only for the radial rigidity is sufficient.
- · However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

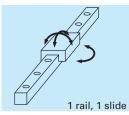


Fig. 3.6 Pitching and vawing direction

Fig. 3.7 Rolling direction Fig. 3.8 All directions

3. Selection of preload classification

- · Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload classification for each series are shown in Table 3.1. Table 3.2 shows the selection criterion of the preload classification.

Table 3.1 Classification of preload in each series

		Preloaded assembly (not random matching)				Random-matching type			
	Preload	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance	
	Series \	Z4	Z3	Z1	Z0	ZH	ZZ	ZT	
	NH, NS		0	0	0	0	0	0	
	VH		0	0	0		0	0	
	LW		(0)	0	0		0	0	
	PU			0	0			0	
	LU			0	0			0	
Dell audala	PE			0	0			0	
Ball guide	LE			0	0			0	
	Miniature LH			0	0				
	LL				0				
	LA	0	0						
	HA		0	0					
	HS		0	0					
Roller guide	RA		0	0		0	0		
noller guide	RB		0						

Table 3.2 Selection criterion of the preload

Classification of preload	Use condition	Applications
Z0 and ZT (Fine clearance)	An application in which a set of two parallel linear guides (four slides/two rails) is used to sustain a unidirectional load with low vibration and impact. An application in which the accuracy is not very necessary but a friction force must be minimized.	Welding machines, Glass processing machines, Packaging/packing machines, Materials handling equipment
Z1 and ZZ (Slight preload)	Moment loads are applied. Application for a highly accurate operation.	Industrial robots, Inspection/measuring equipment, Laser cutting machine, Electric discharge machines, PCB drillers, Chip mounters
Z3, ZH, and Z4 (Medium preload, Heavy preload)	Application in which extremely high stiffness is essential. Application in which vibration and impact load will be applied.	Machining centers, Lathes, Milling machines, Boring machines, Grinders

4. Estimation of the elastic deformation

The followings are the relation between load and deformation.

- Without the preload
- When the rolling element is ball The deformation is proportional to the 2/3 power of the load.
- When the rolling element is roller The deformation is proportional to the 9/10 power of the load.
- With the preload The deformation is directly proportional to the load.

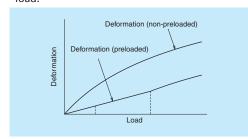


Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Fig. 3.9; the calculation of system deformation can be done using the deformation curve. The factors required for an estimation of the system deformation are listed below. The stiffness of slide is shown on the relevant explanation of each linear guide series.

- <Required conditions to calculate deformation>
- Volume of load
- Direction of load
- Point of load application
- · Position of deformation calculation
- · Arrangement of rails and ball slides
- · Position of a driving mechanism

Please refer to the calculation formula of deformation for typical table structures on the pages A18 to A20.

5. Application examples of preload

Table 3.3 shows typical application for each preload types of the NSK linear guides.

Refer to this table when selecting the preload type for your application.

Table 3.3 Application examples of preload

Type of machine	Application	Heavy preload Z4	Prel Medium preload Z3, ZH	oad Slight preload Z1, ZZ	Fine clearanc Z0, ZT
	Machining centers	0	0		
	Grinders	0	0		
,,	Lathes	0	0		
Ö	Milling machines	0	0		
e t	Drilling machines	0	0		
i.	Boring machines		0		
Machine tools	Gear cutters	0	0		
Σ	Diesinking machines		0	0	
	Laser cutting machines		0	0	
İ	Electric discharge machines		0		
	Punch presses		0	0	
.	Press machines			0	0
Je l	Welding machines		0	0	0
ipir	Painting machines			0	0
d	Textile machines			0	0
d e	Coil winders		0	0	
au	Woodworking machines		0	0	0
sət	Glass processing machines			0	0
į	Stone cutting machines			0	0
nac	Tire forming machines			0 0 0 0	0 0 0 0
Industrial machines and equipment	• ATC			0	0
	Industrial robots		0	0	0
립	Materials handling equipment			0	0
드	Packing machines			0	0
	Construction machines				0
ç,	• Probers		0		
itie	Wire bonders		0	0	
acil	PCB drillers		0	0	
r f	Wafer slicers		0		
ij	Wafer dicers		0		
lg	Chip mounters		0	0	
00	IC handlers			0	
Ē	• Scanners			0	
Š	Lithographic machines		0	0	
Semiconducto	Measuring/inspection equipment			0	
	Three-dimensional measuring equipment		0	0	
ဖွ	Medical equipment			0 0 0 0 0 0 0 0	0
Others	OA equipment			Õ	Õ
ŏ	Railway cars			0	0
j	Stage systems				Õ
	Pneumatic equipment			0	Õ

6. Load and rating life when the preload is taken into account

- It is necessary to include the amount of preload for the calculation of rating life when the Z3 (medium preload) or the Z4 (heavy preload) preload type is specified.
- Full dynamic equivalent load when the preload is taken into account can be obtained by the following formulas.

For balls as rolling element

$$Fe_{P} = P \left(1 + \frac{Fe}{2.83 \times P} \right)^{\frac{3}{2}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking account of preload is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{3}{2}}P$

For rollers as rolling element

$$Fe_{P} = P \left[1 + \frac{Fe}{2.16 \times P} \right]^{\frac{10}{9}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking preload into account is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{10}{9}}P$

7. Calculating friction force by preload

- Dynamic friction force per one slide of the ball quide can be calculated from a preload value.
- The following is a simple calculation to obtain the criterion of dynamic friction force.
 For the slight preload ZZ of a preloaded randommatching type linear guide, use the preload volume of slight preload Z1 type assembly.

F = iP

F: Dynamic friction force (N)

P: Preload (N)

i : Contact coefficient

Use the following contact coefficient values (i) for each series of linear guides.

NH, VH, NS, LW, LH and HS Series

: 0.004 LA and HA Series : 0.010 PU, LU, PE and LE Series : 0.026

 The starting friction force when the slide begins to move depends on lubrication condition.
 Roughly estimate it at 1.5 to 2 times of the dynamic friction obtained by the above method.

Calculation example

In case of NH35AN - Z3

i = 0.004

P = 2350 (N) (refer to NH series preload)

F = iP

 $= 0.004 \times 2350 = 9.4 (N)$

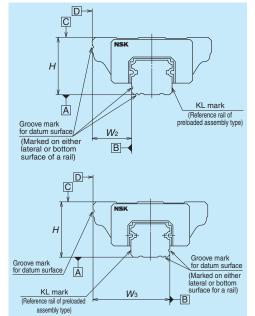
Therefore, the criteria of the dynamic friction force of NH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each Series.

NSK

A-3-4 Accuracy

1. Accuracy standard


The accuracy characteristics of linear guide are specified to each series in the variations of assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear guides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point at where the accuracy is really required. The NSK linear guides can deal with these factors and provide the best suited model for your specific application.

2. Definition of accuracy

• Table 4.1, Fig. 4.1 and Fig. 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

Characteristics	Definition (Figs. 4.1 and 4.2)
Mounting height H	Distance from A (rail bottom datum surface) to C (slide top surface)
Variation of <i>H</i>	Variation of H in slides assembled to the rails of a set of linear guides
Mounting width	Distance from B (rail side datum surface) to D (slide side datum surface).
W_2 or W_3	Applicable only to the reference linear guide.
Variation of W₂ or W₃	Difference of the width (W_2 or W_3) between the assembled slides
	which are installed in the same rail. Applicable only to the reference
	linear guide.
Running parallelism of	Variation of C (slide top surface) to A (rail bottom datum surface) when
slide, surface C to surface A	slide is moving.
Running parallelism of	Variation of D (slide side datum surface) to B (rail side datum surface)
slide, surface D to surface B	when a slide is moving.

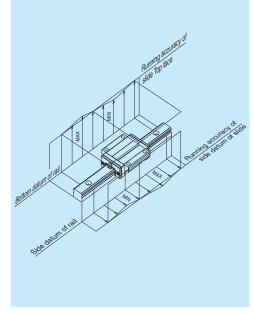
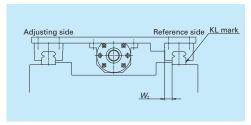



Fig. 4.1 Assembled dimensions

Fig. 4.2 Running parallelism of slide

Mounting width: W_2 and W_3

• Mounting width differs depending on the arrangement of the datum surfaces of the rail and slide on the reference linear guide (indicated as KL on the rail). (Fig. 4.3 and Fig. 4.4)

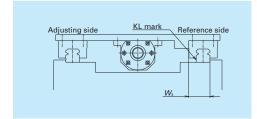


Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Slide

 Running parallelism of slide is common in all series. Specifications of all accuracy grades are shown in Table 4.2. However, applicable accuracy grades differ by series. Please refer to "Table 4.4 Accuracy grade and applicable series" on page A35.

Table 4.2 Running parallelism of slide

Unit: µm

Accuracy grade	Pre	Random-ma	Random-matching type				
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 - 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5 (4)	8	14	16	8	16
800 – 1 000	2.5	5 (4.5)	9	16	18	9	18
1 000 – 1 250	3	6 (5)	10	17	20	10	20
1 250 – 1 600	4	7 (6)	11	19	23	11	23
1 600 – 2 000	4.5	8 (7)	13	21	26	13	26
2 000 – 2 500	5	10 (8)	15	22	29	15	29
2 500 – 3 150	6	11 (9.5)	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

Note: Value of () is the running parallelism of RA and RB Series.

3. Application examples of accuracy grade and preload

Table 4.3 shows examples of accuracy grade and preload of NSK linear guides for specific purposes. Refer to this table when selecting accuracy grade and preload type for your application.

Table 4.3 Application examples of accuracy grade and preload

of Je			Accuracy grade				Prel	oad		
Type of machine		Ultra precision P3	Super precision P4	High precision P5, PH	Precision grade P6	Normal grade PN, PC	Heavy preload Z4	Medium preload Z3, ZH	Slight preload Z1, ZZ	Fine clearance ZO, ZT
	Machining centers		0	0	0		0	0		
	Grinders	0	0	0			0	0		
SIC	Lathes		0	0	0		0	0		
Ď	 Milling machines 		0	0	0		0	0		
e	 Drilling machines 			0	0		0	0		
÷	 Boring machines 		0	0	0		0	0		
Machine tools	Gear cutters		0	0	0		0	0		
ž	 Diesinking machines 		0	0	0			0	0	
	 Laser cutting machines 		0	0	0			0	0	
	 Electric discharge machines 	0	0	0			0	0		
<u>.</u>	Punch pressses			0	0			0	0	
en	Press machines				0	0			0	0
Industrial machines and equipment	 Welding machines 				0	0		0	0	0
Ξ	Painting machines				0	0			0	0
ec	Textile machine				0	0			0	0
nd	Coil winders				0	0		0	0	
S	 Woodworking machines 			0	0	0		0	0	0
ne	 Glass processing machines 				0	0			0	0
.jh	 Stone cutting machines 				0	0			0	0
ηac	 Tire forming machines 					0			0	0
-	• ATC				0	0			0	0
trië	Industrial robots			0	0	0		0	0	
ns	Materials handling equipment				0	0			0	0
pu	Packing machines				0	0			0	0
	 Construction machines 					0				0
es	Probers	0						0	0	
:≜	Wire bonders		0	0				0	0	
faci	PCB drillers			0	0			0	0	
ō	Wafer slicers	0	0					0		
nct	Wafer dicers	0	0					0		
Semiconductor facilities	Chip mounters			0	0			0	0	
.2	IC handlers			0	0				0	
em	Scanners			0	0				0	
Ś	 Lithographic machines 	0	0					0	0	
	Measuring/inspection equipment	0	0	0	0				0	
	Three-dimensional measuring equipment	0	0	0	0			0	0	
Others	 Medical equipment 		0	0	0				0	0
he	OA equipment				0	0			0	0
õ	Railway cars					0			0	0
	Stage systems					0				0
	Pneumatic equipment				0	0			0	0

Note: Only Z1 and Z0 are available for PN grade.

For random-matching type, preload "ZH" and "ZZ" are available for PH grade. For PC grade, "ZH", "ZZ" and "ZT" are available.

4. Combination of accuracy grade and preload

(1) Accuracy grades

- The accuracy grade which matches the characteristic of each series is set for the NSK linear guides.
- Table 4.4 shows the accuracy grades available for each series.
- Refer to "3. Application examples of accuracy grade" which shows cases of appropriate accuracy grade for specific purpose.

Table 4.4 Accuracy grades and applicable series

	Prelo	aded assen	nbly (not ra	ndom mate	ching)	Random-ma	atching type
Series	Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
	P3	P4	P5	P6	PN	PH	PC
NH, NS	0	0	0	0	0	0	0
VH	0	0	0	0	0		0
LA	0	0	0	0			
LW			0	0	0		0
PE, LE		0	0	0	0		0
PU, LU		0	0	0	0		0
Miniature LH		0	0	0	0		
LL					0		
HA	0	0	0				
HS	0	0	0				
RA	0	0	0	0		0*	
RB	0	0	0	0	-		

^{*)} Only RA25 to RA65 are available in random matching.

(2) Preload

- Several classifications of preload that match the characteristic of each series are set for the NSK linear guides.
- The classification of preload for each series are shown in Table 4.5.
- Refer to the specifications of each series for details of radial clearance, preload, and rigidity.
- "3. Application examples of accuracy grade" shows the cases of appropriate preload classifications and accuracy grades for specific purposes.

Table 4.5 Classification of preload

	Preloaded	assembly (ı	not random	matching)	Rand	dom-matching t	type
Series	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
NH, NS		0	0	0	0	0	0
VH		0	0	0		0	0
LA	0	0					
LW		(0)	0	0		0	0
PE, LE			0	0			0
PU, LU			0	0			0
Miniature LH			0	0			
LL				0			
НА		0	0				
HS		0	0				
RA		0	0		0	0	
RB		0					

Notes: 1) Z3 preload classification is only applicable to LW35 and LW50 for LW Series.

- 2) Only RA25 to RA65 are available in random matching.
- 3) The preload code of "Z" is omitted from the specification number. Only the number of preload classification code is specified on the last code of the reference number. (Refer to the reference number of each series.)

(3) Combinations of accuracy grade and preload

• Combinations of accuracy grade and preload are shown in Table 4.6.

Table 4.6 Combinations of accuracy grade and preload type

	Accuracy grade	Preload
Dual and ad accordal.	P3 – P6	Z4 – Z0
Preloaded assembly	PN	Z1, Z0
Random-matching type	PC, PH*1, *2	ZH, ZZ, ZT

^{*1)} The random-matching type is available for the models of RA25 to RA65. PH grade is set for the accuracy. *2) ZH and ZZ preload are available for the PH accuracy grade.

A-3-5 Maximum Rail Length

Genera	General Purpose Series Unit: mm								nit: mm
Series	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
INFI	Stainless steel	1 800	3 500	3 500	3 500				
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
VП	Stainless steel	1 800	3 500	3 500	3 500				
NS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000			
INS	Stainless steel	1 800	3 500	3 500	3 500	3 500			
	Unit: mm								

					U	nit: mm
Series	Size Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

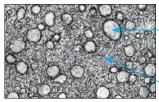
Miniatu	ıre Series						L	Jnit: mm
Series	Size Material	05	07	80	09	10	12	15
PU	Stainless steel	210	375		600		800	1 000
LU	Special high carbon steel				1 200		1 800	2 000
LO	Stainless steel	210	375		600		800	1 000
PE	Stainless steel	150	600		800		1 000	1 200
LE	Stainless steel	150	600		800		1 000	1 200
LH	Stainless steel			375		600	800	

High Ri	High Rigidity Series Unit: mm								
Series	Size Material	15	20	25	30	35	45	55	65
RA	Special high carbon steel	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600
RB	Special high carbon steel				3 900	3 900	3 650	3 600	3 600
LA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960	3 900

High-A	High-Accuracy Series Unit: mm							
Series	Size Material	15	20	25	30	35	45	55
HA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960
HS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000		
по	Stainless steel	1 300	3 500	3 500	3 500	3 500		

A-3-6 Lubrication

1. NSK linear guides equipped with "NSK K1[™]" lubrication unit



NSK K1 lowers machine operation cost, and reduces impact on the environment.

What is "long-term, maintenance-free" operation? Ball screws and linear guides which are equipped with NSK K1 do not require maintenance for five years or up to 10 000 km operational distance.

What is NSK K1 lubrication unit?

NSK K1 is a lubrication device which combines oil and resin in a single unit. The porous resin contains a large amount of lubrication oil. Touching its surface to the raceway of a rail close to the ball contact point NSK K1 constantly supplies fresh oil which seeps from the resin.

Polyolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also being used increasingly at supermarkets for food wrapping.

Lubrication oil

It is mineral oil-based lubricant. The oil has a viscosity of 100 cSt.

Remarkable capacity with new material: NSK K1[™] lubrication unit information

- A NSK K1 lubrication unit (referred to as NSK K1 hereafter) equipped with an NSK linear guide is an outstanding new lubrication material.
- A Newly developed porous synthetic resin contains large volume of lubricant oil that seeps out and enhances lubricating function.
- Simply install NSK K1 inside a standard end seal (rubber).
- We also provide NSK K1 lubrication unit for sanitary environments suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food **Processing Equipment and Medical Devices for** Sanitary Environment".

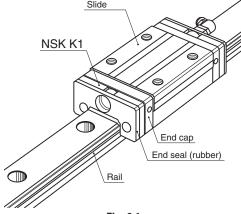


Fig. 6.1

(1) Features

NSK K1 comprises a part of the compact and efficient lubrication unit.

1) Maintenance is required only infrequently

Used with grease, the lubrication function lasts for a long time. Ideal for systems/environments in which replenishing is difficult.

For automotive component processing lines, etc.

2) Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

Food processing/medical equipment, liquid crystal displays/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication unit for sanitary environment suited for food processing machinery. medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

(2) Functions

NSK K1 has various superb functions, NSK's ample test data and field performances confirm NSK K1 abilities.

1) Durability test at high speed, with no other lubrication

Fig. 6.2 shows test results under these conditions. The linear guide operated with no lubricant is unable to travel after a short period because breakage occurs. Equipped with NSK K1, the linear guide easily travels 25 000 km.

Conditions: Sample ; LH30AN (preload Z1) Travel speed ; 200 m/min

3) Good for applications where lubricant is washed away

Used with grease, life of the machine is prolonged even when the machine is washed entirely by water. or in an environments where the machine is exposed to rain or wind.

Food processing equipment, housing/construction machines, etc.

4) Maintains efficiency in dusty environments

In environments where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions is maintained by using NSK K1 in combination with grease.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential

Stroke : 1800 mm No lubricant: Completely degreased, no lubrication NSK K1: Completely degreased, no lubrication + NSK K1

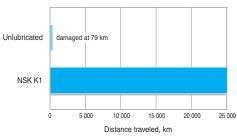


Fig. 6.2 Durability test at high speed, with no **lubrication (lubricated by NSK K1 only)**

2) Immersion test

Fig. 6.3 shows the test results after a linear guide is immersed in water once per week for 24 hours at a time, then traveled for 2 700 km. Without NSK K1, the ball groove sufrace wore out at an early stage and broke. With NSK K1, the wear was reduced to about 1/3 (Table 6.1). This test proves the effect of NSK K1.

: LS30 Stainless steel Conditions: Sample

(preload Z1)

Travel speed ; 24 m/min Stroke : 400 mm

Load : 4 700 N/Slide

Lubricant ; Fully packed with grease

(*) exclusive use for food

proccesing machines

Immersing condition:

Immersed and traveled once per week for 24 hours at a time.

* Grease made in U.S.A.

Characteristic

Consistency: 280 Base oil viscosity: 580 (cSt)

Table 6.1 Comparison in wear of grooves and steel balls (2 700 km) 11.3

			Offic. prii
Lubricating condition	Ball slide groove	Rail groove	Steel balls
With NSK K1	16 – 18	2 – 3	6 – 8
Without NSK K1	30 – 45	9 – 11	17 – 25

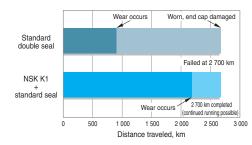


Fig. 6.3 Durability test immersed in water

4) Dust generation

Fig. 6.5 is a comparison of dust generation of NSK K1. The combination of NSK K1 and NSK Clean Grease LG2 (low dust generation grease) generates as little dust as fluorine grease (vacuum grease).

Conditions: Sample : LS20

Travel speed : 36 m/min

3) Durability test with wood chips

Wood chips absorb lubricant. Maintaining lubrication in such environment is extremely difficult. Fig. 6.4 shows that the life when NSK K1 is added to a standard seal is two times longer than the life when two seals are combined (standard double seal).

Conditions: Sample : LH30AN (preload Z1)

> Travel speed : 24 m/min Stroke : 400 mm ; 490 N/Slide Load

Seal specifications/lubricant:

Standard double Seal...Standard double

Seal + AS2 Grease

NSK K1 ---- NSK K1 + Standard

seal + AS2 Grease

Wood chip conditions:

1 ····· Volume of wood chips: Large 2····· Volume of wood chips: Medium

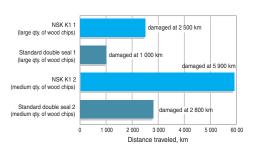


Fig. 6.4 Durability test with wood chips

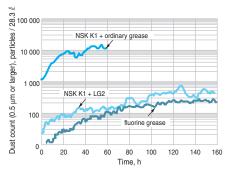


Fig. 6.5 Comparison of dust emission

(3) Specifications

1) Applicable series and sizes

- a) Can be installed in NH, NS, LW, PU, LU, PE, LE, LH, RA, RB, LA, HA, and HS series. It is standard equipment for the VH Series.
- b) Can be used with stainless steel materials and surface-treated items.

2) Standard specifications

- a) NSK K1 is installed between the end seal and end
- (Double-seal specification, and specification with protector are also available upon request.)
- b) NSK standard grease is packed inside the slide.
 (You may specify the type of grease and its volume if required.)
- c) Accuracy and preload classifications are the same as standard items. (Dynamic friction increases slightly due to NSK K1.)

3) Number of installed NSK K1

Normally, one NSK K1 should be installed on both ends of slides. (two K1s for one slide)

However, more NSK K1 may be required under more stringent operating conditions and environment. Please consult NSK for details in such a case.

Precautions for handling

To maintain high fuctionality of the NSK K1, observe the following precautions.

- 1. Temperature range for use: Maximum temperature in use: 50°C

 Momentary maximum temperature in use: 80°C
- 2. Chemicals that should not come into contact with NSK K1:

Do not leave the NSK K1 in an organic solvent, such as hexane and thinner that remove oil, or rust preventive oil that contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, mineral-oil type grease and ester-type grease do not damage NSK K1.

2. Lubrication

Mainly there are two ways of lubrication, grease and oil, for linear guides.

Use a lubricant agent and method most suitable to condition requirements and the purpose to optimize functions of linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, operations in low speeds and in high temperatures.

The following are lubrication methods by grease and by oil.

(1) Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubrication accessories available from NSK are:

- · Various types of grease in bellows tube which can be instantly attached to the hand grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. These are compact and easy to use.

1) NSK grease lubricants

Table 6.2 shows the marketed general grease widely used for linear guides. In addition to these grease, NSK provides special grease for specific conditions and purposes.

Table 6.2 Grease lubricant for linear guides

Туре	Thickener Base oil		Base oil kinematic viscosity mm²/s (40°C)	Range of use temperature (°C)	Purpose
AS2*1	Lithium type Mineral oil		130	-10 - 110	For general use at high load
PS2*2	Synthetic oil Lithium type + synthetic hydrocarbon o		15.9	-50 - 110	For low temperature and high frequency operation
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 - 70	For clean environment
LGU			95.8	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistant

^{*1)} Standard grease of NH, VH, NS, LW, LH, RA, RB, LA, HA, and HS Series.

^{*2)} Standard grease of PU, LU, PE, and LE Series.

[1] NSK Grease AS2

Features

It is environmentally friendly and widely used grease for high-load applications. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is standard grease for general NSK linear guides. It is prevalently used in many applications because of its high base oil viscosity, high-load resistance, and stability in oxidization.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

[2] NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low-temperature operation. It is for a high-speed and light-load application.

Application

It is standard grease for NSK miniature linear guides. It is especially superb for low-temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + Synthetic hydrocarbon oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15.9 mm²/s (40°C)

[3] NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides in clean room. Compared to the fluorine grease which is commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to the fluorine grease in keeping dust volume low. Since the base oil is not special oil but mineral oil, LG2 can be handled in the same manner as general grease.

Application

LG2 is the lubrication grease for linear guides for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page A60 for the detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

[4] NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for linear guides which are used in clean room.

In comparison with the fluorine base grease, which has been used commonly in clean room, LGU has better lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust generation. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30°C to 180°C. This grease cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

[5] NSK Grease NF2

[5] NSK Grease NF2

• Features
It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease suits for linear guides whose application includes oscillating operations. Allowable temperature range is -40°C to 100°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	260°C
Volume of evaporation	0.22% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	0.5% (100°C, 24 hr)
Base oil kinematic viscosity	26 mm²/s (40°C)

Precautions for handling

- Wash the linear guides to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- The clean grease is exclusively used for clean environments at normal pressure.

2) How to replenish grease

Use the grease fitting of a slide if an exclusive grease supply system is not used. Supply the required amount of grease by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If the grease fitting is not used due to the size limitation, apply grease directly to the rail. Remove the seal if possible, and move the slide few strokes so the grease permeates it. A hand grease pump, an exclusive and easy lubricating device for linear guides, is available at NSK.

3) Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

 When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is: All at once, replenish the amount that fills about 50% of the internal space of the slide. This method eliminates waste of grease, and is efficient.

Page A46 shows the internal spaces of slide of each series for your reference.

• When replenishing grease using a grease pump:

Use a grease pump and fill the inside of slide with grease. Supply grease until it comes out from the slide area. Move the slide by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try to run-in the system a few times to spread the grease throughout the system and to remove excess grease from inside. Running-in operation is necessary because the sliding force of the linear guide greatly increases immediately after the replenishment (full-pack state) and may cause problems. Grease's stirring resistance is accountable for this phenomenon. Wipe off excess grease that accumulates at the end of the rail after trial runs, so the grease does not scatter to other areas.

4) Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the slide is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter a slide. New grease should be replenished depending on the frequency of use. The following is a guide of intervals of grease replenishments to linear guides.

Table 6.3 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to be checked	Intervals of replenishments
	Dirt, foreign matters such as	Usually once per year is sufficient. Every 3 000 km for a
3-6 months	cutting chip	system such as material handling equipment that travels
o o montrio		more than 3 000 km per year. Replenish if checking results
		warrant it necessary.

Notes: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance in such occasion.

NH Series

		OTHE. CITI
Series	NH	
Model No.	High-load type	Super-high-load type
15	3	4
20	6	8
25	9	13
30	13	20
35	22	30
45	47	59
55	80	100
65	139	186

Unit: cm³

VH Series

		Unit: cm³
Series	V	Н
Model No.	High-load type	Super-high-load type
15	3	4
20	6	8
25	9	13
30	13	20
35	22	30
45	47	59
55	80	100

NS Series

		Unit: cm	
Series	NS		
Model No.	Medium-load type	High-load type	
15	2	3	
20	3	4	
25	5	8	
30	8	12	
35	12	19	

LW Series

	Onit. Citi
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

Table 6.4 Inside space of the slide

PU, LU Series

			Unit: cm ²
PU		L	U
Standard type	High-load type	Standard type	High-load type
0.1	-	0.1	_
0.1	1	0.1	_
0.2	0.3	0.2	0.3
0.3	0.4	0.3	0.4
0.8	1.1	0.8	1.1
	0.1 0.1 0.2 0.3	Standard type High-load type 0.1 - 0.1 - 0.2 0.3 0.3 0.4	Standard type High-load type Standard type 0.1 - 0.1 0.1 - 0.1 0.2 0.3 0.2 0.3 0.4 0.3

PE, LE Series

oe High-load type
-
0.3
0.5
0.7
1.6

Miniature LH Series

	Unit: cm ²
Series Model No.	LH
08	0.2
10	0.4
12	1.2

RA Series

		Offic. Ci		
Series	RA			
Model No.	High-load type	Super-high-load ty		
15	1	1.5		
20	2	2.5		
25	3	3.5		
30	5	6		
35	6	8		
45	10	13		
55	15	20		
65	33	42		

LA Series

LA GELIES					
		Unit: cn			
Series	LA				
Model No.	High-load type	Super-high-load type			
25	8	12			
30	14	18			
35	21	29			
45	38	48			
55	68	86			
65	130	177			

RB Series

ND Selles	'	Unit: cm³			
Series	RB				
Model No.	High-load type	Super-high-load type			
30	5	6			
35	6	8			
45	10	13			
55	15	20			
65	33	42			

HA, HS Series

		Unit: cm
Series Model No.	НА	HS
15	-	5
20	1	9
25	16	16
30	27	25
35	42	40
45	67	-
55	122	_

5) NSK grease unit

A hand grease pump and lubrication grease contained in a bellows tube (80 g of grease) which can be loaded to the grease pump.

Grease in a bellows tube

[1] Composition of NSK grease unit

Components and grease types are shown below.

		Name	(Tube color)	Reference number
NSK Gr	ease Unit			
-	NSK Grease	NSK Grease AS2	2 (Ocher)	NSK GRS AS2
	(80 g in a bellows tube)	NSK Grease PS2	(Orange)	NSK GRS PS2
		NSK Grease LG2	2 (Blue)	NSK GRS LG2
		NSK Grease LGL	J (Yellow)	NSK GRS LGU
		NSK Grease NF2	2 (Gray)	NSK GRS NF2
	NSK Hand Grease Pump	Unit		
	— NSK Hand Grease (Straight nozzle	Pump NSK HGP NZ1 One nozzle	is provided with a ha	NSK HGP and grease pump.)
	Grease nozzle (us	ed with a hand grease pump	p)	
		NSK straight noz	zzle	NSK HGP NZ1
		NSK chuck nozzl	le	NSK HGP NZ2
		NSK drive-in fitti	ing nozzle	NSK HGP NZ3
	_	NSK point nozzle	е	NSK HGP NZ4
			عاده	NSK HGP NZ5
		———— NSK flexible noz	.210	NORTIGI NES
		NSK flexible noz		NSK HGP NZ6

NSK

[2] NSK greases (80 g in a bellows tube)

Refer to pages A43 and D14 for their natures and details.

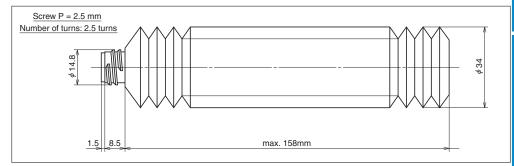


Fig. 6.6 Bellows tube

[3] NSK hand grease pump unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

In a setting of hear let also as a second	I
	worry to make a mistake.
	hand, yet there is no
 Light-weight ····································	·· Can be operated by one

Inserting by high pressure...Insert at 15 Mpa.

 No leakingDoes not leak when held upside down.

• Easy to change grease ···· Simply attach grease in bellows tube.

• Remaining grease ······Can be confirmed through slit on tube.

• Several nozzles ·······Five types of nozzles to choose from.

Specifications

• Discharge rate · · · · · · 15 MPa

• Spout volume ······0.35 cc/shot

Mass of main body······ Without nozzle 240 g
 Provided nozzle 90 g

• Outer diameter of bellows grease tube······ φ 38.1

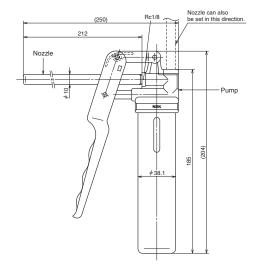


Fig. 6.7 NSK Hand Grease Pump with NSK straight nozzle

b) Nozzles

Table 6.5 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come into contact due to the chucking mechanism at the tip.	R1/8
NSK drive-in fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 11 M6×1.0 2 35 120 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides that do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of slide or slide to inside.	Tip. \$1.5
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is a chuck nozzle. The straight nozzle is not available for use.	14HEX. 14HEX. P1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp 1/8 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8

Table 6.6 Grease fittings used for NSK linear guide

Series	Model No.	Tap hole for grease fitting		Straight nozzle NZ1	Chuck nozzle NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type			0		
NH Series	NH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	VH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
NS Series	NS15	φ3	Drive-in type			0		
140 061168	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW Series	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
PU Series	PU05, 07, 09, 12	_	_				0	
	PU15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	_	_				0	
PE Series	PE05, 07, 09, 12	_	_				0	
	PE15	φ3	Drive-in type			0		
LE Series	LE05, 07, 09, 12, 15	_	_				0	
Miniature	LH08, LH10		_					
LH Series	LH12	φ3	Drive-in type			0		
	RA15, 20	φ3	Drive-in type					
RA Series	RA25, 30, 35*	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0				0
	RB30	φ3	Drive-in type			0		
RB Series	RB35, 45	M6×0.75	B type	0	0			0
	RB55, 65	Rc1/8	B type	0	0			0
LA Series	LA25, 30, 35*	M6×0.75	B type	0	0			0
LA Selles	LA45, 55, 65	Rc1/8	B type	0	0			0
HA Series	HA25, 30, 35*	M6×0.75	B type	0	0			0
TIA JUIUS	HA45, 55	Rc1/8	B type	0	0			0
HS Series	HS15	φ3	Drive-in type			0		
i io oei ies	HS20, 25, 30, 35*	M6×0.75	B type	0	0			0

Note: PU, LU, PE, and LE Series; Apply grease directly to ball groove, etc. using a point nozzle.

^{*)} When using a chuck nozzle, make sure that it does not interfere with the table on linear guides.

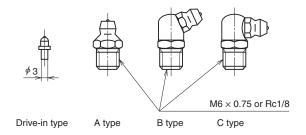


Fig. 6.8 Grease fittings

A long threaded grease fitting is required because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

(2) Oil lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than one for grease lubrication. However, oil mist lubricating system supplies air as well as oil, thus raising the inner pressure of the slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32-68 for the oil mist lubrication system.

ISO VG 68-220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a slide of linear guide per hour can be obtained by the following formula.

In case of all ball type linear guides except LA series

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$

In case of LA, RA, and RB series

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide size code

e.g. When NH45 is used,

n = 45,

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

For the oil lubrication by gravity drip, the oil supply position and installation position of the slide are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has the internal design which allows oil lubricant to flow throughout the system.

Table 6.7 shows the criterion of intervals of oil checks and replenishments.

Table 6.7 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet port.

A-3-7 Dust Proof

1. Standard specification parts

- To keep foreign matters from entering inside the slide, NSK linear guides have end seals on both ends, bottom seals at the bottom surfaces, and an inner seal in the inside of slide.
- The seals for standard specification for each series are shown in **Table 7.1**.
- Seal friction per a standard slide is shown in the technical description of the dust-proof parts of each series.

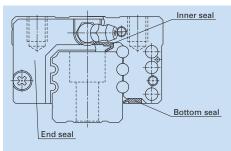


Fig. 7.1

Table 7.1 Standard seals

		End seal	Bottom seal	Inner seal
NH Series	NH15	0	0	-
NH Series	NH20, NH25, NH30, NH35, NH45, NH55, NH65	0	0	Δ
VH Series	VH15	0	0	-
vn Series	VH20, VH25, VH30, VH35, VH45, VH55	0	0	\triangle
NS Series	NS15	0	0	-
No Series	NS20, NS25, NS30, NS35	0	0	Δ
LW Series	LW17, LW21, LW27, LW35, LW50	0	0	-
PU Series	PU05, PU07, PU09, PU12, PU15	0	_	-
LU Series	LU05, LU07, LU09	Δ	-	-
LU Series	LU12, LU15	0	_	-
PE Series	PE05, PE07, PE09, PE12, PE15	0	_	-
LE Series	LE05, LE07, LE09, LE12, LE15	0	_	-
Miniature	LH08, LH10	0	_	-
LH Series	LH12	0	0	-
RA Series	RA15, RA20	0	0	Δ
na series	RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
RB Series	RB30, RB35, RB45, RB55, RB65	0	0	0
LA Series	LA25, LA30, LA35, LA45, LA55, LA65	0	0	Δ
HA Series	HA25, HA30, HA35, HA45, HA55	0	0	0
HS Series	HS15, HS20, HS25, HS30, HS35	0	Δ	-

: Equipped as a standard feature

 \triangle : Available upon request

2. Dust-proof parts

 NSK has the following items for the dust-proof parts. Select a suitable type for the operating environment.

Table 7.2 Optional dust-proof parts

Name	Purpose	Reference page
NSK K1 lubrication unit	Made of oil impregnated resin. Enhances lubricating functions.	A38 – A41
Double seal	It combines two end seals for enhancing sealing function.	A53
Protector	Protect the end seal from hot and hard contaminants.	A54
Rail cap	Prevents foreign matters, such as swarf generated in cutting operation from clogging the rail-mounting holes.	A54
Inner seal	Installed inside a slide, and prevents foreign matters from entering the rolling contact surface.	A55
Bellows	Covers the linear guide.	A55
Rail cover *	Covers the rail top surface, and prevents foreign matters, such as cutting dust, from collecting in the rail mounting holes.	A256

^{*)} The rail cover is available only for RA25 to RA65 of RA series.

(1) Double seal

- · It is a combination of two end seals to enhance seal function.
- · When the double seal is installed, the end seal section becomes thicker than the standard item. Please pay attention to the increase in a slide length when designing the mounting dimension of slide and the table stroke. Please refer to the section of dust-proof components for the dimensional increase in the length direction of each series due to fitting of double seal.
- · Double-seal set: Can be installed to a completed standard ball slide assembly later upon request. It comprises two end seals, two collars, and two machine screws for installation (Fig. 7.2). The product reference numbers of each series are described on the section of dust-proof parts.
- · When attaching a grease fitting to the end cap after the double seal is equipped, you require a connector shown in Fig. 7.2. Please specify the connector set when ordering the linear guides.
- · For VH, RA, RB, LA, HA, and HS Series, the double-seal set can be only installed before shipping from the factory.

Fig. 7.2 Double seal

(2) Protector

- · A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matters from entering the slide.
- Same as the case with the double seal, when the protector is installed, the slide becomes longer. Take this thickness of slide into consideration for determining the relevant dimensions such as the system stroke and the ball slide installation envelope. An increase in the length of the ball slide due to the installation of protector is shown in the technical description of the dust-proof parts of each series.
- · The protectors are available from the stock and we can install them to a completed standard slide assembly upon request. The model numbers of the protectors for ordering are shown in the technical explanation of the dust -proof parts of each series.
- · When attaching a grease fitting to the end cap after the protector is equipped, you require the connector shown in Fig. 7.3. Please specify the connector set when ordering the linear guides.
- · For VH, RA, RB, LA, HA, and HS Series, the protector can only be installed only before shipping from the factory.

(3) Bolt-hole cap to plug the bolt holes for rail mounting

- · After the rail is mounted to the machine base, a bolt-hole cap is used to plug the bolt hole to prevent foreign matters from clogging up the hole and from entering into the slide (Fig. 7.4).
- The bolt-hole cap is made of synthetic resin which has superb in its resistance to oil and abrasion.
- · Sizes of the bolt for the each linear guide model as well as the reference number of the bolt-hole cap are shown in the technical description of the dust-proof parts of each series.
- To insert the cap into the rail bolt hole, use a flat dolly block (Fig. 7.5). Pound the cap gradually until its height becomes flush with the rail top surface.
- You can reorder extra bolt hole caps. Sizes of the bolts and each model number of bolt-hole caps are shown in the technical description of the dust-proof parts of each series.
- · Caps which are made of metal is also available upon request.

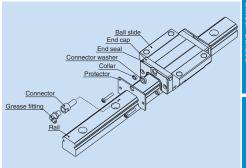


Fig. 7.3 Protector

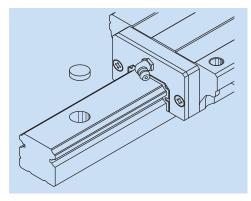


Fig. 7.4

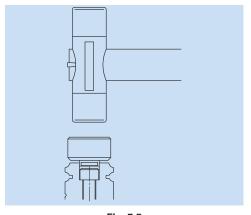


Fig. 7.5

(4) Inner seal

- The end seal installed on both ends of a slide cannot arrest entire contaminant, though the missed amount is negligible. An inner seal protects the rolling contact surface from such contaminant which entered inside the slide (Fig. 7.6).
- The inner seal is installed inside the slide. Therefore, the appearance in size and the shape are the same as the standard slide. (The inner seal is already installed before shipping.)
- · It is strongly recommended to use the bellows and the double seal along with the inner seal to maintain the precision of the linear guide.
- Refer to Table 7.1 for availability of inner seal.

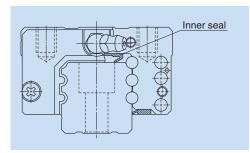


Fig. 7.6 Inner seal when installed

[1] Installation of bellows NH and NS Series

- * Fixing to the ball slide (Fig. 7.7)
- Remove two machine screws (M2) which secure the end seals to the end of the slide (Fig. 7.7). For NS15, hold the end cap by hand. Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- · Then insert a spacer to the hole for securing the end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

Fig. 7.7

(5) Bellows

- A bellows covers entire linear guide. It has been used widely as a way of protection in an environment where foreign matters are prevalent.
- · NSK has bellows exclusively for NH, NS, LW, RA and LA Series. They have a middle bellows and a bellows at both ends. For NH Series, there are low and high type bellows which are in compliance with their slide types.
- The high type is used for AN and BN types. The low type is used for EM, GM, AL and BL types. The top of the high type bellows is slightly lower than the top surface of the slide.
- When a high type bellows is installed to the slide with the height code L (such as AL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger than the low type.
- Special bellows are required when installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK in such a case.
- · When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require the grease fitting, it shall be put on the side of end cap or slide body. Consult NSK for details.
- · For the dimension of bellows, please refer to the section of dust proof parts of each series.

* Fixing to the rail

- · To install bellows for NH and NS Series, lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 7.7). Then secure the mounting plate to the end of the bellows through the tap hole of the fastener.
- · As described above, a bellows can be easily fixed to the end of the rail without adding a tap hole on the end of the rail.
- · Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56.)

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

[2] LW and LA Series

- * Fixing to the ball slide (Fig. 7.8 and Fig. 7.9)
- · Remove two machine screws which secure the end seal. (For LW17 and LW21, hold the end cap by hand while removing the machine screw. Otherwise, the end cap is detached from the slide, and the balls inside may spill over and
- · Insert a spacer to the securing hole of the end

seal, fasten the mounting plate on the end of the bellows using a slightly longer machine screw (provided with the bellows).

* Fixing to the rail

· Make two tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

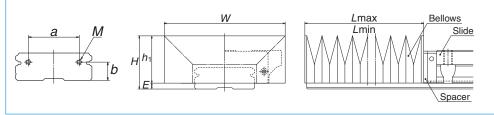


Fig. 7.8

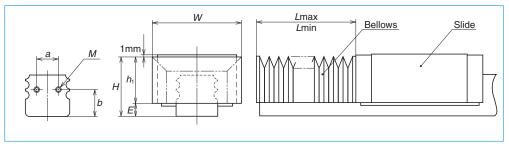


Fig. 7.9

[3] RA Series

· Please refer to page A260.

Calculating length of bellows

- The formula is as follows excluding RA series.
- · A bellows forms one block (BL) with six folds as shown in Fig. 7.10. The stroke is determined by multiplying by an integer of this BL.
- Length when stretched to the maximum length:

Lmax = $7 \times P \times N$ umber of BL

- Length when contracted to the minimum length: Lmin = 17 x Number of BL
- $St = L \max L \min$ Stroke :
- The dimension of P and the number of BL are shown in the bellows dimension table of each series.
- In case of RA series, refer to page A260.

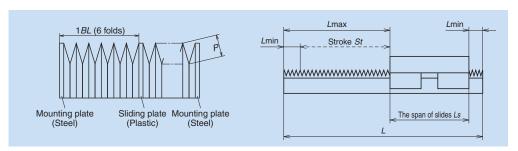


Fig. 7.10

A-3-8 Rust Prevention (Stainless Steel and Surface Treatment)

1. Stainless steel

NSK linear guide is available in stainless steel.

OStainless steel standard series

PU Series PE Series

LE Series Miniature LH Series LL Series

OAvailable in stainless steel

NH Series

NS Series

LU Series

Select from the above when using in the environments which invite rust.

2. Surface treatment

(1) Recommended surface treatment

We recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of the humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent to those treatments for degreasing because it has adverse effect on antirust characteristics.

Refer to the next page for the results of humidity chamber test.

Please consult NSK for other surface treatment.

OLow temperature chrome plating (Electrolytic rust prevention black treatment)

 Used to prevent corrosion, light reflection, and for cosmetic purpose.

OFluoride low temperature chrome plating

- Fluoroplastic coating is provided following the low temperature chrome plating.
- Resistance to corrosion is higher than electrolytic rust prevention film treatment.

(2) Rust prevention of fluoride low temperature chrome plating

The use environment of NSK linear guides is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluororesin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embritlement.
- Product accuracy is less affected due to the thin film which has high-corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

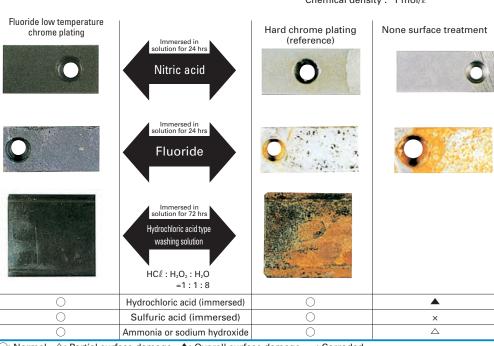
However, do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

Table 8.1 Results of the humidity test

rable of thousand or the nathrally tool							
Test sample			Fluoride low temperature chrome plating			Equivalent to	Standard steel
Char	acteris	stic	(Recommended)		(Reference)	SUS440C material	
		Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	бг	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Ä	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	True Command C	t conditions> esting chamber: High emperature, highly moist hamber de by DABAI ESPEC) emperature: 70°C elative humidity: 95% esting time: 96 h e to "ramp-up" and "ramp- un" conditions of the perature and the humidity up-up: 5 h pp-down: 2 h				O	
		Film thickness	5 μm	0.5 – 7 μm	10 μm	_	_

Rusting A: No rust


B: Not rusted, but slightly discolored

C: Spotty rust D: Slightly rusted E: Completely rusted

Chemical corrosion resistance test

Table 8.2 Results of the corrosion resistance test

Test conditions Rail base material: Equivalent to SUS440C Chemical density: 1 mol/l

○: Normal △: Partial surface damage ▲: Overall surface damage x: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

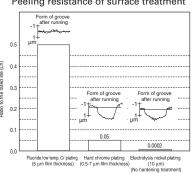


Fig. 8.1 Results of durability test

Total evaluation

Table 8.3 Evaluation

	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating (recommended)	0	0	0	0
Hard chrome plating (reference)		×	\triangle	\triangle
Electroless nickel plating (reference)	0	Δ	×	\triangle
Material equivalent to SUS440C	0	0	0	\triangle
		_		

O: Excellent : Suitable in use \triangle : Not so good for use x: Problem in use

A-3-9 Special Environment

- A-3-9 Special Environment

 1. Heat-resistant specifications

 Standard linear guides use plastic for rolling element recirculation component. The maximum temperature in use for standard linear guides is 80°C.
- Use the linear guide with heat-resistant specifications under temperatures that exceed this limit.

Table 9.1 Comparison of materials: Standard and heat-resistant specifications

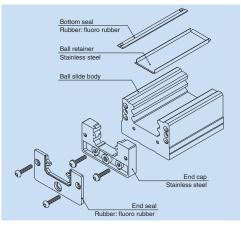
Component	Standard specification	Heat-resistant specification	
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)	
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C	
Retainer	Polyacetals	SUS304	
Retaining wire	SUS304	SUS304	
End cap	Polyacetals	SUS316L	
Return guide	Polyacetals	SUS316L	
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel	

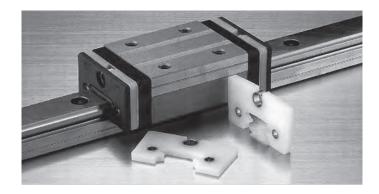
Heat resistant linear guides

NH Series NS Series LW Series LU Series

LE Series

See page A66 for the availability.




Fig. 9.1

2. Vacuum and clean specifications

- · Based on its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in clean environment. Please consult NSK for more details.
- ·Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease, or solid film lubricant is suitable" for vacuum environment.
- · NSK has low-dust generating grease "LG2" and "LGU" which are ideal for clean environment. Refer to page A43 for details.

3. "NSK linear guides for food processing equipment and medical devices" for sanitary environment

Used with NSK K1 for food processing equipment and medical devices and grease for food processing equipment.

What is "NSK K1[™]" for food processing equipment and medical devices?

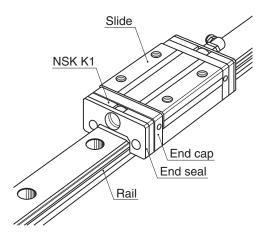
With an amazing innovation lubrication unit, the NSK K1 for food processing equipment and medical devices utilizing the US Food and Drug Administration (FDA) compliant material, provides reliability when used in food processing equipment and medical devices. The newly developed porous synthetic resin contains abundant lubricant.

With the basic function of highly praised NSK K1 lubrication unit for general industry, more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation: it is installed inside the standard end seal.

(1) Features

- 1) The highest grade of category H1 grease of USDA standard is used for NSK K1 lubrication unit.
- *category H1: Lubricants permitted for use where there is possibility of incidental food contact
- *USDA: USDA (The United States Department of Agriculture)
- <Features of grease for food processing machines>
- This grease is approved by USDA H1. (National Science Foundation [NSF] carries out certification for USDA.)
- · Superb water resistance and antirust capability
- · Superb wear resistance
- · Applicable for a centralized oiling system
- 2) Appropriate volume of grease


A supply of appropriate volume of grease reduces grease draining and scattering, and maintains a clean environment.

(2) Available models

Table 9.2 shows available models.

Table 9.2

NH Series	NH15, NH20, NH25, NH30 and NH35
NS Series	NS15, NS20, NS25, NS30 and NS35
LW Series	LW17, LW21, LW27 and LW35
PU Series	PU09, PU12 and PU15
LU Series	LU09, LU12 and LU15
PE Series	PE09, PE12 and PE15
LE Series	LE09, LE12 and LE15
Miniature LH Series	LH12

Precautions for use

To maintain optimal performance of NSK K1 lubrication unit over a long time, please follow the instructions below:

1. Temperatures range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come to contact:

Do not leave NSK K1 lubrication unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust prevention oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil and grease such as mineral-type and ester-type do not damage NSK K1 lubrication unit.

4. Specifications for special environments

Table 9.3 Linear guide specifications

Environment	Condition	NSK linear guide specifications				
Liivii oiiiiioiit	3011011011	Rail, slide	Steel balls/rollers	Ball Recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	material Standard material Standard mater	Standard material	LG2 Grease, LGU Grease	D8
	Atmosphere,	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
	' '				LG2 Grease, LGU Grease	D8
Clean	normal temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere–Vacuum, normal temperature				Fluoride grease	
	Atmosphere–Vacuum up to 200°C					
	Atmosphere–Vacuum, normal temperature				Fluoride grease	
.,	Atmosphere–Vacuum up to 200°C		M			
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	\/	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Charadand markanial	Charadand markanial	Standard material		D5
	Acid, alkali	Standard material Standa	Standard material		Fluoride low temperature chrome plating	D5
		Martensitic stainless steel I	Martensitic stainless steel	Austenitic stainless steel		D5
Corrosion	Acid, alkali, clean				Fluoride low temperature chrome plating	D5
resistance					LG2 Grease, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		FT 1001/ 0	
	up to 150°C			Austenitic stainless steel	ET-100K Grease	
High	Atmosphere Up to 200°C				Fluoride grease	
temperature	Atmosphere Up to 200°C,	Martensitic stainless steel	Martensitic stainless steel		E	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmosphans	Standard material	Standard material	Standard material	Padiation resistant aus	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NCV V1 lubricationit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	NSK K1 lubrication unit	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

5. Lubrication and materials

(1) Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

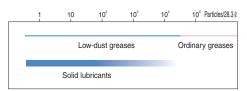


Fig. 9.2 Lubrication in clean environment

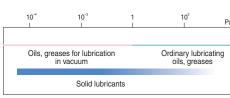


Fig. 9.3 Lubrication in vacuum

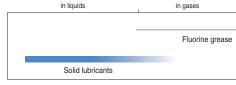


Fig. 9.4 Lubrication in corrosive environment

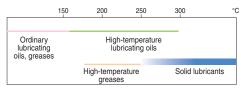


Fig. 9.5 Lubrication in high temperature

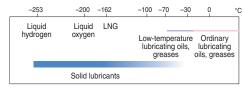


Fig. 9.6 Lubrication in low temperature

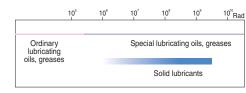


Fig. 9.7 Lubrication in radioactive environment

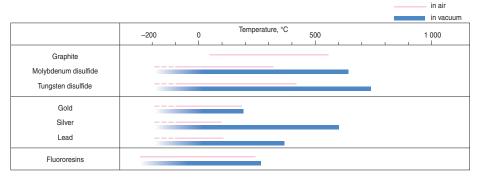


Fig. 9.8 Temperature range for using solid lubricants

(2) Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 9.4 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10°/°C	Young's modulus GPa	Hardness * HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
vacuum environment, corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardened stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

6. Responsiveness of NSK linear guides for special environments

Series	Model No.		environn				tolerate Dust-
Š		Clean	Vacuum	Corrosive	High- temperature	Hygienic	contaminate
	NH15			0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
	NH30	0	0	0	0	0	
NH	NH35	0		0	0	0	
Ì	NH45	0		0	0		
Ì	NH55	0		0			
ĺ	NH65	0		0			
	VH15	0		0			0
Ì	VH20	0		0			0
Ì	VH25	0		0			0
VH	VH30	0		0			0
Ì	VH35	0		0			0
Ì	VH45	Ö		Ó			0
Ì	VH55	Ö		Ó			Ó
	NS15	Ö	0	Ó	0	0	
Ì	NS20	Ŏ	Ŏ	Ô	Ô	Ô	
NS	NS25	Ŏ	Ŏ	Õ	Ô	Ô	
	NS30	Ô	Ŏ	Õ	O*	Ô	
Ì	NS35	Ô		Õ	_	Ô	
	LW17	Õ		Õ	O*	Ô	
Ì	LW21	Ŏ		Ŏ	O*	Ŏ	
LW	LW27	Ŏ		Ŏ	Õ	Ŏ	
	LW35	Ŏ		Ŏ		Ŏ	
ı	LW50	Ŏ		Ŏ			
\neg	PU05	Ŏ		Ŏ			
ı	PU07	Ŏ		Ŏ			
PU	PU09	Ŏ		Ŏ		0	
	PU12	Ŏ		Ŏ		Ŏ	
Ì	PU15	Ŏ		Ŏ		Ŏ	
	LU05	Ŏ		Ŏ			
ł	LU07	ŏ		Ŏ			
ł	LU09 L	ŏ	0	ŏ	0	0	
LU	LU09 R	l ŏ		ŏ		ŏ	
-0	LU12 L	ŏ		ŏ	0	ŏ	
1	LU12_E	1 6		ŏ		ŏ	
1	LU15	1 6		0	0*	ŏ	
\dashv	PE05	1 6	\vdash	0			-
- }	PE07	1 6	_	0			_
PE	PE09	1 6	_	0		0	
'-	PE12	1 6	_	0		0	
}	PE12 PE15	<u> </u>		<u> </u>		Ų	_

es		Special environment which linear guide can					
Series	Model No.	Clean	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminated
	LE05	0		0			
	LE07	0	0	0	O*		
	LE09_L	0	0	0	O*	0	
LE	LE09_R	0		0		0	
LE	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	0	0	0	0	0	
	LE15AR	0		0		0	
Miniature LH	LH08	0		0			
atric	LH10	0		0			
Ĭ.	LH12	0	0	0	O*	0	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
RA	RA30	0		0			
nA	RA35	0		0			
	RA45	0		0			
	RA55	0		0			
	RA65	0		0			
	RB30	0		0			
	RB35	0		0			
RB	RB45	0		0			
	RB55	0		0			
	RB65	0		0			
	LA25	0		0			
	LA30	0		0			
LA	LA35	0		0			
LM	LA45	0		0			
	LA55	0		0			
	LA65	0		0			
	HA25	0		0			
	HA30	0		0			
НΑ	HA35	0		0			
	HA45	0		0			
	HA55			0			
	HS15	0		0			
	HS20	0		0			
HS	HS25	0		0			
	HS30	0		0			
	HS35	0		0			

7. Precautions for handling

Please observe the following precautions to maintain high functions of NSK linear guide.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the products in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or an antirust paper that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in a clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for the details of special environmental use.

^{*)} Applicable except for the dust-proofing parts.

A-3-10 Arrangement and Mounting of Linear Guide

1. Arrangement

- For NSK linear guides, the datum surfaces of the rail and of the slide are either marked with a "datum surface groove" or with an "arrow."
- In case that two or more linear guides are used together, one linear guide is designated as a reference side guide, and the rest is adjusting side guide(s). The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum surface (Fig. 10.1).
- When the datum surfaces of the reference side rail and slides are pressed to their mounting datum surfaces respectively, the variation of distance (mounting width W_2 or W_3) between the datum surfaces of the rails and that of the slides must be a minimum and therefore, it is specified as the standard. (Figs. 10.2 and 10.3)
- The ways to indicate the datum surfaces of each series are shown in Table 10.1.

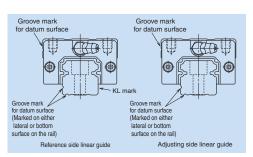


Fig. 10.1 Datum surface

Example of arrangement

 The arrangement of the linear guides must be determined taking into account the table mounting position (horizontal, vertical, inclined, or upside-down), strokes and the size of the machine base to which the table is mounted.
 Table 10.2 shows common arrangement examples and their properties (features/ precautions).

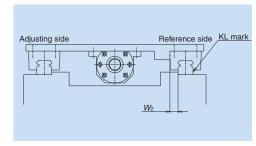


Fig. 10.2 Most common setting of the reference side rail

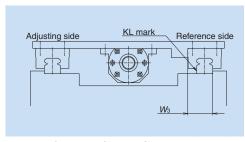


Fig. 10.3 Setting of the reference side rail in certain occasions

Table 10.1 Marks on the rail datum surfaces in each series

Model No. Material	Standard	LU05, 07, 09 PU05, 09, 12, 15 LE07, 09, 12	LU12, 15, NH15, NS15	PU07 LE05, 15 LE09, 12 (with a ball retainer) PE series LH08, 10, 12 LW17, 21 RA15
Special high carbon steel	B	547	B	
Stainless steel	B		B	B

Table 10.2 Arrangement example

Table 10.2 Arrangement example				
Arrangement	Features/Precautions			
Mounting datum surface Table Machine base Machine base Reference side We (Fixed side)	Easy for a highly-accurate installation (recommended arrangement)			
Side side	Easy in highly-accurate installation The lubricant oil may not be supplied to slides. When oil lubricant is used, special care is required to design the oil supply routing.			
Spacer for height adjustment Ws Ws Adjusting side Reference side	Slightly difficult for a highly-accurate installation The life of the linear guides is affected by the mounting accuracy. When oil lubricant is used, special care is required to design the oil supply routing.			
Spacer for height adjustment Adjusting side	Difficult for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.			
Mounting datum of ball slide Table Datum side (Fixed side) We Mounting datum of rail Adjusting side	Rather easy for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.			
Datum side W: Mounting datum of rail (Fixed side) Machine base Adjusting side	• Easy in highly-accurate installation if the linear guides are installed to the machine base first, and then hung them upside down along with the machine base.			

Table

Mounting datum of ball slide

• The slide may detach from the rail and fall down if the linear guide is damaged and rolling elements in

the slide fall out. It is necessary to take preventive

measures against the falling of the ball slide.

2. Mounting accuracy

(1) Accuracy of the mounting base of machine

- The mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting surface accuracy, reducing the error to about 1/3 in average (Fig. 10.4).

(2) Installation error

• Mounting error affects mainly three factors: life, friction and accuracy (**Table 10.3**).

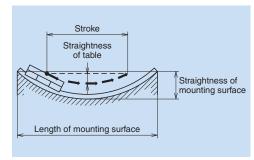


Fig. 10.4

Table 10.3 Influence of mounting error

Factor		Influence
Life	Rail	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, thus lowering the table rigidity.
Friction	00 00 00 00 00 00 00 00 00 00 00 00 00	NH and NS Series are affected very little by mounting error thanks to their small friction. (self aligning capability) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. The mounting error severely affects friction of LA Series with heavy preload.
Accuracy		 When the rigidity of four slides is equal, the theoretical straightness becomes 1/2 of the installation error "e₁". However, this value becomes slightly larger due to the deformation of the rail and the machine base.

(3) Permissible values of mounting error

 Among the three factors of life, friction, and accuracy, which are affected by the mounting error, NSK focuses on the life factor to determine the permissible mounting accuracy. The specifications are based on the following conditions.

For ball linear guides

- The permissible load per ball slide due to the mounting error is 10% of the basic dynamic load rating C_{50} .
- The rated life is 5 000 km.
- The rigidity of the machine base is infinite.

For roller linear guide

- The permissible load per roller slide due to the mounting error is 10% of the basic dynamic load rating C_{100} .
- The rated life is 10 000 km.
- The rigidity of the machine base is infinite.
- C_{50} ; Basic dynamic load rating for 50 km rated fatigue life
- $C_{\mbox{\tiny 100}}$; Basic dynamic load rating for 100 km rated fatigue life
- Figs. 10.5 and 10.6 are representing the mounting errors of e_1 and e_2 . Their permissible values are shown in the description of "5. Installation" of the each series.

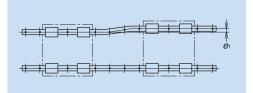


Fig. 10.5

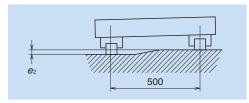


Fig. 10.6

(4) Running accuracy and the influence of even-off effect

· When mounting on a machine base, the linear guide is affected by the flatness of the mounting surface. However, in the case of two-rail/four-slide specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter table stroke,

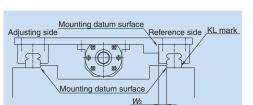


Fig. 10.7

- compared to the rail length, as well as by interaction between the rails and slides.
- · Fig. 10.9 shows an actually measured straightness of the table which uses NSK linear guides. In this case, the final straightness of the table is about 1/5 of the straightness of the mounting surface.

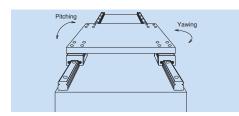


Fig. 10.8

	Straightness in yawing direction	Straightness in pitching direction
Datum side, mounting surface	(x 100 mm) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	(µm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 -2.5 -5.0
Adjusting side, mounting surface	(µm) 1.0 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (×100 mm)	(µm) (×100 mm) (
Datum side, Linear guide	(µm) 1 2 3 4 5 6 7 8 9 10 11 12 13 -0.5 -1.0 -1.3 µm	(µm) 1 2 3 4 5 6 7 8 9 10 11 12 13 -2 -4 -5.4 µm
Adjusting side, Linear guide	(µm) -0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (×100 mm)	(µm) 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table accuracy	(μm) (× 100 mm) (× 10	(μm) 0 -0.5 -1.0 -1.5

Fig. 10.9 Straightness of the table equipped with linear guide

3. Installation

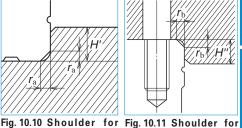
(1) Shoulder height of the mounting surface of the machine base and corner radius r

- · Figs. 10.10 and 10.11, show shoulder height of the mounting surface of the machine base and the size of corner radius. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting surface begins), and horizontally secured to it. Recommended sizes are shown in the clause of "Shoulder height and corner radius r" of each series introduction.
- · The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

(2) Tightening torque of the bolt

- Table 10.4 shows tightening torque of the bolt when the rail is secured to the fixture of race way grinding machine.
- · Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 10.4 Bolt tightening torque (Bolt material: High carbon chromium steel)


Bolt size	Tightening torque	Bolt size	Tightening torque
M2	0.27	M8	22
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520

(3) Installation procedures

- · There are two installation ways depending on the accuracy requirement.
 - a. Installation with high accuracy
 - b. Accuracy is not high, but easy to install
- For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting surface with an oilstone (Fig. 10.12).

Apply machine oil or similar oil with low viscosity to the mounting surface to increase the rust preventive effect.

· Linear guides are precision products. Handle them with care.

the rail datum surface

the slide datum surface

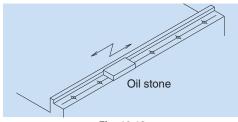


Fig. 10.12

1) Highly accurate installation

A) Rail installation procedures

a) When the machine base has a shoulder for the reference side rail.

[1] Confirm that the rail is reference side rail, and the datum surface of the rail comes to face to face with the shoulder of the machine base. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting surface. Loosely tighten the bolts. At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. When using a shoulder plate, refer to **Table 10.4** for the bolt tightening torque (**Fig. 10.13**).

Refer to "4. Various methods to press linear guide sideways."

[2] For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.

If the datum surface is on the left side as shown in Fig. 10.14, tighten the bolt at the farthest end first, then proceed to the near and

This way, creates a bolt rotating force that presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)

- [3] If the mounting surface of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps [1] [2].
- [4] If there is no shoulder on the mounting surface of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 10.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial indicator from one end of the rail, tightening the bolts one by one.

The measuring table is more stable if secured to two slides, but one slides is sufficient.

Parallelism between two rails can also be checked by the same method in **Fig. 10.15** when there is a shoulder on the surface where the adjusting side rail is installed.

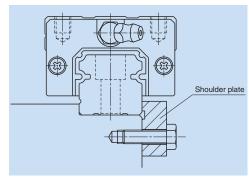


Fig. 10.13 Pressing the rail from sideways

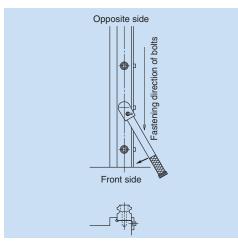


Fig. 10.14 Rail installation

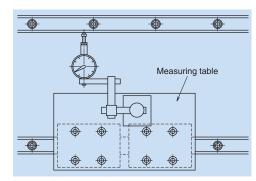


Fig. 10.15 Measuring parallelism

b) When the machine base does not have a shoulder on the side where the reference side rail is installed

- [1] Carefully place the reference side rail on its mounting surface of the machine base. Loosely tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- [2] Place the straight edge almost parallel to the reference side rail which is temporarily secured by the bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- [3] Once the position of the straight edge is determined, use it as the reference. With a dial indicator, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end (**Fig. 10.16**).

- [4] Finally tighten all bolts with specified torque.
- [5] There are two ways for installation of adjusting side rail:
 - 1. Based on the straight edge which is used for reference side rail installation
- 2. Based on the reference side rail which is installed prior to the adjusting side rail.

In both cases, use a dial indicator to measure parallelism.

Other procedures are the same as [1] - [4] above, and the [4] for the case where there is a shoulder on the machine base.

B) Procedures for slide installation

a) When the table has a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten all bolts.
- [2] While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum surface are sufficiently tightly pressed.

If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (**Fig. 10.17**).

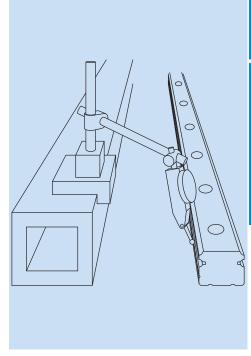


Fig. 10.16

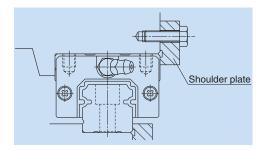


Fig. 10.17 Pressing slide from sideways

- [3] Then, further tighten the bolts for slides on the adjusting side rail.
- Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)
- [4] Finally, tighten all bolts with standard torque.

b) When table does not have a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten bolts to secure the slides.
- [2] Since the table does not have a shoulder, immediately tighten the bolts further to secure slides.
- [3] Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with the specified torque.

2) Easy installation

- [1] Carefully place the reference side rail on the machine base. Then tighten the bolts to the specified torque.
- [2] Loosely tighten the bolts on the adjusting side rail.
- [3] Tighten the slides on the reference side rail and one slide on the adjustment side rail with the specified torque. Leave the rest of the slide on the adjusting side rail loosely tightened (Fig. 10.18).
- [4] While moving the table with each pitch of the bolt for rail: With the specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been firmly tightened.
 - Take this procedure from one end to the other.
- [5] Return the table to the original position once. Then, tighten the rest of the slides on the adjusting side to the specified torque. By the same procedure as in [4], tighten the rest of the rail mounting bolts to the specified torque. Move the table to check any abnormality such as large friction force.

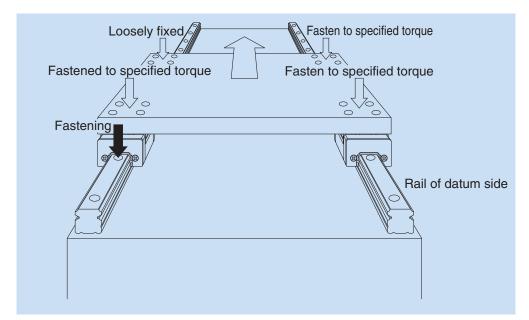


Fig. 10.18 Easy installation

(4) Various methods to press linear guide sideways

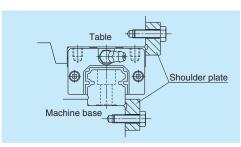



Fig. 10.19 Recommended method

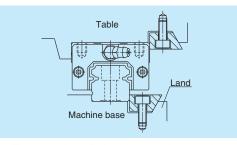
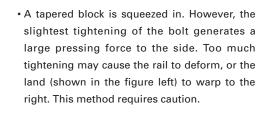



Fig. 10.20 Installation that requires caution

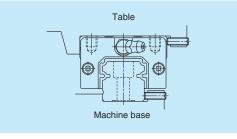


Fig. 10.21

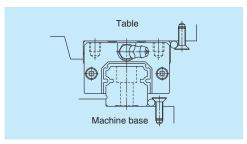


Fig. 10.22

 The bolt that presses rail must be thin due to limited space.

 Press a needle roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

4. Assembly random-matching type linear guide

- Slides of random-matching type are assembled on a provisional rail (an inserting tool) when it is delivered (Fig. 10.23).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures of a random-matching type linear guide

Follow steps as described below.

- (1) Wipe off the rust preventive oil from the rail and slide.
- (2) Please match a groove mark for the datum surface of slide and rail to set a desired assembling state W₂ or W₃.
- (3) Align the provisional rail to the rail in the bottom and side surfaces. Press the provisional rail lightly against the rail, and move the slide over the rail (Fig. 10.23).

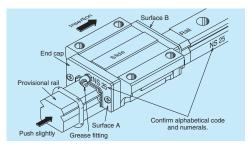


Fig. 10.23 Inserting slide into the rail

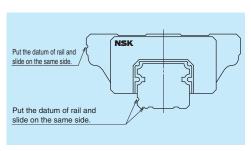


Fig. 10.24

5. Butting rail specification

- A rail which requires the length that exceeds the machine capacity manufactured maximum length comes in butting specification.
- The rails with butting specification are marked with alphabet (A, B, C ...) and an arrow on the opposite side of the mounting datum surface.
 Use the alphabets and arrows for assembly order and direction of the rail (Fig. 10.25).

The random-matching rails for butting specification are only marked with the arrows.

- The pitch of the rail mounting hole on the butting section should be as F in Fig. 10.26.
 When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If the higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

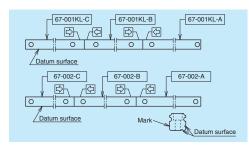


Fig. 10.25

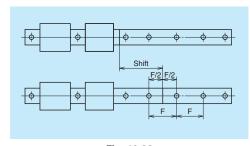


Fig. 10.26

6. Handling preloaded assembly

- In case of the preloaded assembly (not random-matching type), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 10.27.
- The provisional rails for each series and sizes are available.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the cautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not randommatching type) are marked with a reference number and a serial number on the opposite of the datum surface.
- Slides to be combined are also marked with the same serial number (the reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- In case that the slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 10.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 10.29).
- When two or more rails of different reference number are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (Fig. 10.30), sufficient precaution is required.

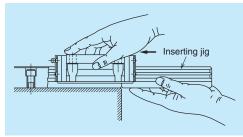


Fig. 10.27

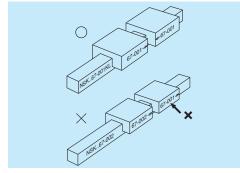


Fig. 10.28

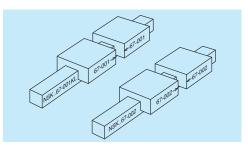


Fig. 10.29 When two rails have the same reference number

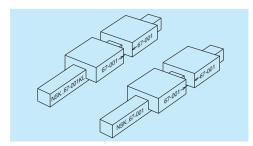
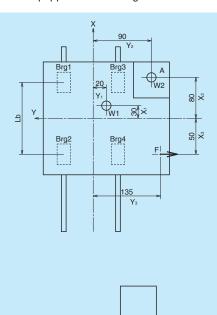



Fig. 10.30 When two rails have different reference number

A-3-11 Drills to Select Linear Guide

1. Single axis material handling system

This section explains the selection of linear guide, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guides.

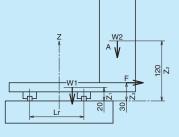


Fig. 11.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown.

Specification of the single axis material handling system

Table weight	W1:150(N)
Weight of the work	W2:200(N)
Acting load	F : 200 (N)

Ball slide span L_b : 100 (mm) Rail span L_r : 90 (mm)

Load point coordinates from the table center (mm)

Load	X axis	Y axis	Z axis
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1 000 mm (1 cycle: 2 000 mm)

 $\begin{array}{lll} \text{Environment} & : 10-30 \ (^{\circ}\text{C}) \\ \text{Travel speed} & : 12 \ (\text{m/min}) \\ \text{Time to reach travel speed} & : 0.25 \ (\text{sec}) \\ \text{Operating hour} & : 16 \ (\text{hr/day}) \\ \end{array}$

(1) Selection of linear guide model

Select a type of linear guide from "A-1-2 Structure and Characteristics of Linear Guide." Since this material handling system has two rails and four ball slides, NH, NS, and PU Series are suitable.

Here, we temporary select PU15 because of the dimensions of mounting space.

(2) Calculating life

Calculate life of the selected PU15AL based on "A-3-2 Rating Life and Basic Load Rating."

Linear guide PU15AL

Basic dynamic load rating C_{100} : 4 400 (N) Basic static load rating C_0 : 6 600 (N)

Load conditions of the linear guide

Table weight W1 : 150 (N)
Weight of the work W2 : 200 (N)
Applied load F : 200 (N)
Rail span L_r : 90 (mm)
Ball slide span L_b : 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec². Therefore, it is not necessary to take into account inertial force brought about by the table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

- 1. There is the work mounted on the table.
- 2. No work mounted on the table.

From Pattern 4 on page A19 in Table 2.2

When a work is mounted on the table Vertical loads

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

$$= F \cdot Z_3 + W1 \cdot Y_1 + W2 \cdot Y_2$$

$$= -200 \times 30 + 150 \times (-20) + 200 \times (-90)$$

$$= -27 \cdot 000 \cdot (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} \cdot (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= $W1 \cdot X_1 + W2 \cdot X_2$
= $150 \times 30 + 200 \times 80$
= $20 \ 500 \ (N \ mm)$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$

$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150 + 200}{4} + \frac{-27000}{2 \times 90} + \frac{20500}{2 \times 100}$$

$$= 40 \text{ (N)}$$

Similarly

$$F_{r2} = -165(N)$$

$$F_{r3} = 340(N)$$

$$F_{r4} = 135(N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} (F_{yj} \cdot X_{yj})$$

$$= F \cdot X_3$$

$$= -200 \times (-50)$$

$$= 10\ 000\ (N \cdot mm)$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly $F_{s2} = F_{s4} = -100(N)$

Vertical load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$
$$= F \cdot Z_3 + W1 \cdot Y_1$$
$$= -200 \times 30 + 150 \times (-20)$$
$$= -9 \ 000 \ (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= $W1 \cdot X_1$
= 150×30
= 4500 (N·mm)

$$F_{r1} = \frac{\sum_{k=1}^{\infty} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot I}$$

$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150}{4} + \frac{-9000}{2 \times 90} + \frac{4500}{2 \times 100}$$

$$= 10 \text{ (N)}$$

Similarly

$$F_{r2} = -35 \text{ (N)}$$

$$F_{r3} = 110 \text{ (N)}$$

$$F_{r4} = 65 (N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_{b}) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$

$$= F \cdot X_{3}$$

$$= -200 \times (-50)$$

$$= 10 000 (N mm)$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2 \cdot L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100 \text{ (N)}$$

For calculation, take into consideration the positive or negative signs (+ or -) for load point coordinates.

Calculation of dynamic equivalent load
Use "A-3-2.2 3. Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of PU15AL,

Vertical direction dynamic equivalent load

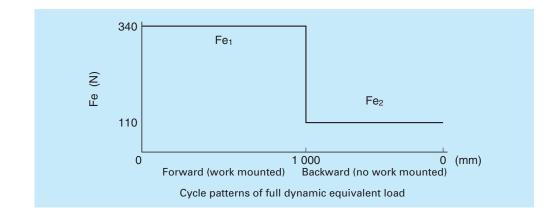
 $F_r = F_r$ Lateral direction dynamic equivalent load

 $F_{so} = F_{s} \cdot \tan \alpha = F_{s}$

Use the formula for full dynamic equivalent load (page A23) to calculate F_a .

Results are shown in the table below.

Unit: N


Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} \left(F_{r1} - F_{r4} \right)$	40	– 165	340	135
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} \left(F_{r1} - F_{r4} \right)$	10	– 35	110	65
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	10	118	110	133

Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take the Slide3.

Therefore;

Work mounted $F_{e1} = 340$ (N) No work mounted $F_{e2} = 110$ (N) Calculation of mean effective load

Based on "A-3-2.2 4. Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

From the cycle pattern, the mean effective load matches the case "(1) When load and running distance vary stepwise." Therefore, use the following formula.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e1}^3 L_1 + F_{e2}^3 L_2 \right)}$$

$$= \sqrt[3]{\frac{1}{2000} \left(340^3 \times 1000 + 110^3 \times 1000 \right)}$$
= 273 (N)

Determine various coefficients

Determine applicable coefficients from "A-3-2.2

5. Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082 G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is HRC58 to 62. Use a hardness coefficient $f_{\rm H} = 1$ and take the value of basic dynamic load rating as it is.

Calculate rating life

Use "A-3-2.2 6. Calculation of basic rating life."

The basic dynamic load rating (C_{100}) of linear auide PU15AL : 4 400 (N)

Mean effective load F_m : 273 (N)

Load factor
$$f_{\rm w}$$
: 1.2
Hardness coefficient $f_{\rm H}$: 1
Rating fatigue life $L=100 \times \left[\frac{f_{\rm H} \cdot C_{100}}{f_{\, \bullet \, F}}\right]^3$

$$\begin{cases} f_{\text{w}} \cdot F_{\text{m}} \end{cases}$$

$$= 100 \times \left[\frac{1 \times 4400}{1.2 \times 273} \right]^{3}$$

= approximately 242 280 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/day.

Convert the above rating fatigue life into hours:

$$\frac{242\ 280 \times 1\ 000}{12 \times 60 \times 16}$$
 = approximately 21 030 (days)

Examine static load

Based on "A-3-2.2 7. Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest.

The basic static load rating (C_0) of linear guide PU15AL: 6 600 (N)

Ball slide No. 3 bears the largest load.

 P_0 at this time:

$$P_0 = F_c + F_c = 340$$

Therefore, static permissible load coefficient fs is:

$$f_{\rm S} = \frac{C_0}{P_0} = \frac{6\,600}{340} = 19.4$$

There is no problem at this value.

(3) Selection of accuracy grade and preload

Based on "A-3-4 3. Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(4) Calculation of deformation

Calculate deformation by the weight of the mounted work W2. From "Rigidity of PU series," the rigidity of linear guide PU15AL with Z1 preload is:

$K_s = K_r = 45 \text{ (N/}\mu\text{m)} = 45 000 \text{ (N/}\text{mm)}$

Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (page A19) Work mounted:

$$\delta_{x1} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{40 - (-165)}{100 \times 45000}$$

$$= 0.0075 \text{ (mm)} = 7.5 \text{ (um)}$$

Similarly,
$$\delta_{y1} = -0.0082$$
 (mm) = -8.2 (μ m)
 $\delta_{z1} = 0.0123$ (mm) = 12.3 (μ m)

No work mounted:

$$\begin{split} \delta_{x2} &= Y_{d} \cdot \frac{F_{s2} - F_{s1}}{L_{b} \cdot K_{s}} + Z_{d} \cdot \frac{F_{r1} - F_{r2}}{L_{b} \cdot K_{r}} \\ &= -90 \times \frac{-100 - 0}{100 \times 45\ 000} + 120 \times \frac{10 - (-35)}{100 \times 45\ 000} \\ &= 0.0032\ (mm) = 3.2\ (\mu m) \end{split}$$

Similarly,
$$\delta_{y2} = -0.0023$$
 (mm) = -2.3 (μ m)

$$\delta_{12} = 0.0039 \text{ (mm)} = 3.9 \text{ (µm)}$$

Therefore, the difference in deformation by whether

there is a mounted work or not is as follows:

$$\delta_x = \delta_{x1} - \delta_{x2} = 7.5 - 3.2 = 4.3 \, (\mu m)$$

$$\delta_{v} = \delta_{v1} - \delta_{v2} = -8.2 - (-2.3) = -5.9 \; (\mu m)$$

$$\delta_{2} = \delta_{21} - \delta_{22} = 12.3 - 3.9 = 8.4 \, (\mu m)$$

2. Machining center

The following is a calculation example of a horizontal type machining center. Arrangements of each axis are shown in Fig. 11.2 (front view) and Fig. 11.3 (side view).

YL,: 410 (mm)

 $YL_{s}: 308 \text{ (mm)}$

ZL: 660 (mm)

ZL_b: 420 (mm)

Operating conditions

Dimensions and load conditions are: X axis column's weight Wx: 7 500 (N) Y axis spindle head's weight Wy: 2 500 (N) Wz: 5500(N) Z axis table's weight

X axis rail span XL,: 450 (mm) X axis ball slide span XL_{b} : 310 (mm)

Y axis rail span Y axis ball slide span Z axis rail span

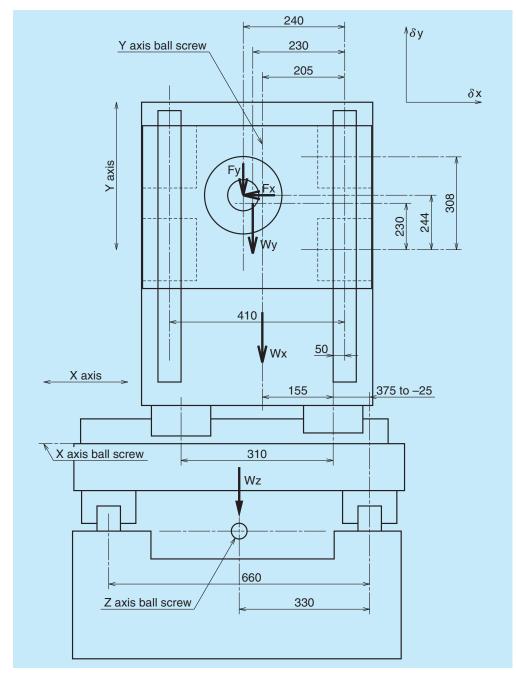
Z axis ball slide span

X axis stroke: 400 (mm) Y axis stroke: 350 (mm) Z axis stroke: 500 (mm)

Average rapid traverse speed: 15 (m/min)

[Max. 30 (m/min)]

Starting accelerating speed : 1 (G)


Milling speed : 2.5 (m/min)

Drilling speed : 0.8 (m/min)

Cutting load

Milling process Fx = Fy = 1000 (N)Drilling process

Fz = 3000 (N)

LY axis ball screw ∮δy 323 30 δz Fz. Y axis stroke 160 336 to 686 Wx 510 _70_ 450 15 210 Z axis X axis ball screw Wz 120 Z axis ball screw 420

Fig. 11.2 Machining center (front view)

Fig. 11.3 Machining center (side view)

(1) Selection of linear guide model

From the operating conditions, the linear guide should be LA Series which is suitable for the machining center.

Select below temporarily from shaft diameter of ball screw:

X axis LA55

Y axis LA35

Z axis LA65

(2) Selection of accuracy grade and preload

For machining center, select accuracy grade P5 and preload Z3.

(3) Calculation of life expectancy

Examination shall be done in three cases, no cutting load, milling process, and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0
Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 2. Calculating load to a ball slide."
X axis: Loads to be considered Wx and Wy Y axis: Loads to be considered Wy Z axis: Loads to be considered Wx, Wy, and Wz

nit:	N

Literature Ni

Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1 156	955	4 045	3 844
A dais	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3 860	3 890	6 985
2 0/15	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N) Similarly,

X axis: Loads to be considered Wx, Wy, Fx, and Fy Y axis: Loads to be considered Wy, Fx, and Fy Z axis: Loads to be considered Wx, Wy, Wz, Fx,

and *F*y

The table below shows the calculation of each load coordinates at stroke end which imposes most strict condition.

					Unit: N
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	2 277	-1 039	6 539	3 224
A dais	Lateral direction Fs	997	-997	997	-997
Y axis	Vertical direction Fr	252	-1 040	1 040	-252
1 dxl3	Lateral direction Fs	54	-554	54	-554
Z axis	Vertical direction Fr	-771	3 796	4 453	9 020
2 0/15	Lateral direction Fs	486	-986	486	-986

In case of drilling process: Fz = 3 000 (N)

X axis: Loads to be considered Y axis: Loads to be considered Z axis: Loads to be considered Wx, Wy, and Fz Wx, Wy, Wz, and Fz

The table below shows calculation of each load coordinates at a stroke end which imposes most strict condition.

Unit: N

	Axis	Load direction	Slide1	Slide2	Slide3	Slide4
	X axis	Vertical direction Fr	4 256	4 055	945	744
	Λ αλίδ	Lateral direction Fs	919	581	919	581
	Y axis	Vertical direction Fr	305	938	561	1 195
		Lateral direction Fs	102	-102	102	-102
	Z axis	Vertical direction Fr	4 872	-247	7 997	2 878
	2 0.115	Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 3. Calculation of dynamic equivalent load," the necessary loads, Fr and Fse are, as the linear guide model is LA Series, obtained as follows.

Vertical dynamic equivalent load Fr = Fr

Lateral dynamic equivalent load

Fse = Fs • tan α = Fs

From the above, calculate Fe using formulas for full dynamic equivalent loads shown in page A23. From calculation, the largest full dynamic equivalent loads are as follows.

Axis	Largest full dynamic equivalent load Fe (N)				
AXIS	No cutting load	For milling process	For drilling process		
X axis	4 045	7 038	4 716		
Y axis	173	1 317	1 246		
Z axis	6 985	9 513	8 417		

Calculation of full dynamic equivalent load taking account of preload

It is necessary to include the amount of preload for the calculation of rating life when Z3 preload is specified. Consider each preload and calculate full dynamic equivalent load. Calculate Fep using formulas in "A-3-3 6. Load and rating life when the preload is taken into

account'

Preload P (X axis linear guide LA55): 8 100 (N)
Preload P (Y axis linear guide LA35): 3 450 (N)
Preload P (Z axis linear guide LA65): 13 800 (N)
From the above, the full dynamic equivalent loads taking preload into account are smaller than the load at which preload is relieved.

A i -	Largest full dynamic equivalent load Fe (N)				
Axis	No cutting load	For milling process	For drilling process		
X axis	10 336	12 104	10 724		
Y axis	3 542	4 171	4 131		
Z axis	17 663	19 138	18 494		

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set the mean effective load to 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: $12\ 104 \times 0.7 = 8\ 473\ (N)$ Y axis: $4\ 171 \times 0.7 = 2\ 920\ (N)$ Z axis: $19\ 138 \times 0.7 = 13\ 397\ (N)$

Determine various coefficients

Determine them based on "A-3-2.2 5. Various coefficients."

For this case the factors are following.

Load coefficient $f_{\rm w}$: 1.5 Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate the rating life from "A-3-2.2

6. Calculation of rating life."

Basic dynamic load rating C₁₀₀

(X axis linear guide LA55): 111 000 (N)

Basic dynamic load rating C₁₀₀

(Y axis linear guide LA35): 49 000 (N)

Basic dynamic load rating C₁₀₀

(Z axis linear guide LA65): 206 000 (N)

Load coefficient f_w: 1.5 Hardness coefficient f .: 1

Rating fatigue life
$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{3}$$

From this,

In case of X axis Lx = 66617 (km)

In case of Y axis $L_{Y} = 140012$ (km)

In case of Z axis Lz = 107722 (km)

In case of roller linear guides, refer to "A-3-2.2 6.

Calculation of rating life" (page A25).

Examination of static loads based on "A-3-2.2 7" Basic static load rating C_0

(X axis linear guide LA55): 215 000 (N)

Basic static load rating Co

(Y axis linear guide LA35): 98 000 (N)

Basic static load rating Co

(Z axis linear guide LA65): 420 000 (N)

Examine a case of high-load milling process with large load.

X axis
$$fs = \frac{C_0}{P_0} = \frac{C_0}{(F_1 + F_2)} = \frac{215\ 000}{(6\ 539 + 997)} = 28.5$$

Similarly,

Y axis $f_{S} = 61.5$

Z axis fs = 42.0

Therefore, there is no problem.

(4) Calculation of deformation

Calculate deformation at the processing points. (The stroke position is the stroke end positions on Y axis and X axis.)

Rigidity of X axis linear guide LA55Z3: 1 400 (N/µm) Rigidity of Y axis linear guide LA35Z3: 825 (N/µm) Rigidity of Z axis linear guide LA65Z3: 1 730 (N/µm)

Calculate using Pattern 4 in Table 2.2.

Load conditions	Deformation	Deform	Deformation of each axis (µm)		
Load Conditions	direction	X axis	Y axis	Z axis	(µm)
Table weight	δx	-0.2	-0.1	-3.1	-3.4
alone	δγ	-4.6	-0.3	-4.2	-9.1
aione	δz	-4.3	-0.1	-4.9	-9.3
	δ×	-9.9	-1.3	-6.7	-17.9
Milling process	δγ	-6.4	-1.7	-5.2	-13.3
	δz	-6.1	-0.4	-7.7	-14.2
Drilling process	δx	-0.9	-0.3	-4.6	-5.8
	δγ	1.4	0.8	2.8	5.0
	δz	5.5	1.2	7.6	14.3

Therefore, deformation at processing points at time of milling is:

$$\delta x = -17.9 - (-3.4) = -14.5 (\mu m)$$

$$\delta y = -13.3 - (-9.1) = -4.2 (\mu m)$$

$$\delta z = -14.2 - (-9.3) = -4.9 (\mu m)$$

Deformation at processing points at time of drilling is:

$$\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$$

 $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$ $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

calculate the life again.

If a rating life of this long period is not required, select a smaller linear guide model, and

To reduce deformation at the processing point, select a linear guide model with higher rigidity, and then calculate the life again.

A-3-12 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for user convenience.

"Motion & Control" is compiled to introduce NSK products and its technologies.

For inquiries and orders of "Motion & Controls," please contact your local NSK sales offices, or Representatives.

Table 12.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (1997 -)

Issue No.	Date of Publication	Articles related to linear guides
No.5	Dec. 1998	Development of the NSK K1 Seal for Linear Guides
No.8	May. 2000	NSK Linear Guides for High-Temperature Environments
No.9	Oct. 2000	Recent Developments in Highly Precise NSK Linear Guides
No.9	Oct. 2000	High-Performance Seals for NSK Linear Guides
No.11	Oct. 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides
INO. I I	OCI. 2001	High Load Capacity Mini LH Series of NSK Linear Guides
No.12	Apr. 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1 [™] Lubrication Unit
No.12	Apr. 2002	NSK S1 Series [™] NSK Linear Guides and Ball Screws
No.13	Oct. 2002	Translide [™] -New Rolling Element Linear Motion Bearing-
No.14	May. 2003	New Generation of NSK Linear Guides Miniature PU Series
No.15	Dec. 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series
No.16	Aug. 2004	Numerical analysis Technology & NSK Linear Guides for Machine Tools
No.16	Aug. 2004	NSK RA Series Roller Guide
No.18	Aug. 2005	New Generation of NSK linear Guides Miniature PU Series/PE Series
No.20	Aug. 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides
		Technological Trends of NSK Linear Guides for Industrial Machines
No.21	Dec. 2009	Highly Accurate HS Series of Ultra-Precision NSK Linear Guides
		Linear Guides for Food Machine and Medical Devices
		Technological Trends of NSK Linear Guides for Industrial Machines
No.22	Mar. 2011	High-Accuracy HS Series of Ultra-Precision NSK Linear Guides
		NSK Linear Guides for Food Processing Equipment and Medical Devices
No.23	Jun. 2013	Technological Trends in Linear Motion Rolling Guides for Machine Tools
No.24	Dec. 2014	Slight-Preload Type RA Series Roller Guides of NSK Linear Guides
No.25	Son 2015	Precision-Grade, Medium-Preload, Random-Matching NSK linear Guides
110.25	Sep. 2015	Random-Matching, Miniature PU and PE Series of NSK Linear Guides
No.26	Apr. 2016	NSK Roller Guides Equipped with V1 Seals
110.26	Apr. 2016	Random-matching, High-Precision-Grade RA Series Roller Guides
No.27	Nov. 2016	NH Series and NS Series NSK Linear Guides: More than Twice the Life of
140.27	Nov. 2016	Conventional NSK Linear Guides

A-4 NSK Linear Guide™

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (Fig. 1). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (Fig. 2). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the slide. Then, the balls or rollers go through a passage made in the slide and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

· High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- · Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

· Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball or roller slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (shock-resistance)

· When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

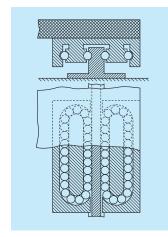


Fig. 1 • French Patent in 1932.

Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

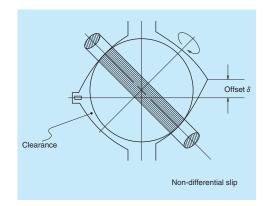


Fig. 3 Two contact point at offset Gothic arch groove

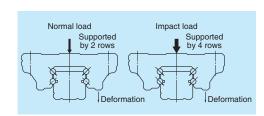


Fig. 5 Shock-resistance

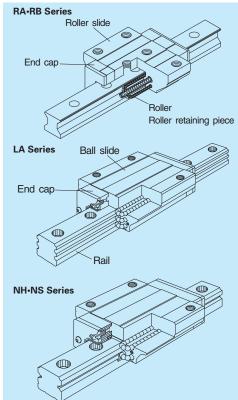


Fig. 2 Structure of NSK linear guides

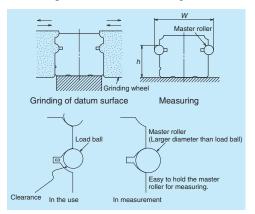


Fig. 4 Processing and measuring grooves

Measuring grooves accuracy is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

3. Types and Characteristics of NSK Linear Guides

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
High vertical load carrying capacity type	Self-aligning type	NH	AL BL		I	
High vertical lo	Self		EM GM			
				n-load type	EM E	L ₁

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A335.

Characteristics	Applications	Page
The NH series is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel standard type is also available for small sizes (NH15 to NH30).	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Measuring equipment Inspecting equipment Semiconductor manufacturing equipment LCD manufacturing equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Flat surface grinders NC lathes Machining centers Automatic tool changers	A113

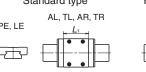
Page	_
	inear Gu

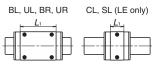
Category		Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
High vertical load carrying capacity type	Self-aligning type	VH	AL BL		↓ ←	
High vertical loa	Self-∢		EM GM			

High-load type AN, AL

Characteristics	Applications	Page				
The VH series delivers outstanding dust-proof functionality and thus ensures long operating life under contaminated environments. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and the raceway is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Penetration of fine contaminants is less than 1/10 of the existing products. Operating life under contaminated environments is more than 5 times longer.	 Automotive manufacturing equipment Press machines Machine tools loader/un-loader Tire molding machines Woodworking machines Automatic doors 	A133				
Super-high-load type BN, BL GM L1						

Category	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	Characteristics	Applications	Page															
	NS																CL AL		↓		The NS series is low in height, and is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. Compact and low profile. The contact angle between the ball and the groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load direction prevalent in most operations.	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines	
High vertical load carrying capacity type Self-aligning type		NS JM EM	Ø Sø	 The DF contact structure greatly absorbs the installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel type is also available. 	Measuring equipment Inspection equipment Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines	A153																	
ğ king ç			High-load typ	e / 1		Medium-load type CL																	
al load carr																							
High vertio			EM	<u>L</u> 1	\exists	JM L1																	
High moment capacity type	LW	EL		↓ ←		High-moment rigidity and low profile products are most suited for a single rail linear guideway system. Random-matching of rails and ball slides is available as a standard. The wide rail contributes to a high rolling moment carrying capacity and to great moment rigidity of a single rail linear guideway system. Balls contact at two points in the Gothic arch groove, thus keeping friction to a minimum. High resistance against shock load Standardized random-matching type allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment LCD manufacturing equipment Conveyor systems Medical equipment Microscope XY stages	A171															


A97


table at A335.

substitute. Please confirm the correlation between NS series and former ones on the comparative

Characteristics	Applications	Page			
Low inertia and low dust generation miniature series. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying system of optical fibers Miniature robots Computer peripherals 	A187			
Miniature series Extremely compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	Pneumatic equipment	A197			
 Wide rail miniature with low inertia and low dust generation. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. 	 Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying optical fibers Miniature robots 	A209			
Miniature wide series Super-small size in wide rail type Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides.	 Computer peripherals Pneumatic equipment 	A219			
Standard type High-load type Medium-load type AL, TL, AR, TR BL, UL, BR, UR CL, SL (LE only) PE, LE L1 L1 L1 L1 L1 L1 L1 L1 L1					

Category		Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
	Standard type	PU	AL AR TR UR BL		↓ ←	
	₹5	LU	AL TL AR TR BL UL		↓ ← †	\$5.0
Miniature type	capacity type	PE	AR TR UR BR		↓ → ←	\$ \$
	High moment capacity type	LE	AL TL AR TR BL UL CL SL		↓ → 2	
				Standard type AL, TL, AR, TR PU, LU	High-load type BL, UL, UR	

NSK	
-----	--

						-	
	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	Characteristics Applications	Page
	LH	AN		+ +		 High vertical load carrying capacity and selfaligning type miniature series The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. A ball retainer is a standard equipment. (LH10~12) Stainless steel type is standard. Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Medical equipment Optical stages Microscope XY stages Miniature robots Computer peripherals Pneumatic equipment Pneumatic equipment 	A23:
:	LL	PL		↓ → □ □ ← 1		 The LL series is a compact and lightweight miniature linear guide for press molding. Rails and ball slides are made of thin steel plate, and thus making them very light. Stainless steel is the standard material. Platter pen heads Robot hands Pneumatic equipment 	A243
		AN BN		_		The RA series roller guides have realized the world highest load capacity. Super-high rigidity and smooth motion contribute to higher performance of machine tools. Unique and optimum design of rollers and other component facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time.	
	RA	AL BL		-	45°	The installation of retaining piece achieves smooth motion. Standardized random-matching type allows separate purchase of rails and roller slides. High-load type AN, AL EM EM L L EM	A24
		EM GM		T	'	Super-high-load type BN, BL GM L 1	

Four-way equal load carrying capacity type

Super-rigid type

Category

Self-aligning type

Lightweight type

Miniature type

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	
.ype			AL TL BL UL		\$		
Four-way equal load carrying capacity type	Super-rigid type	RB	EM GM			45°	
l load (uper-ri	ND		High-load type AL•TL (excluding L_1	RB55AL) RB55AL	1	
ır-way equa	S			EM			
Fou							
Four-way equal load carrying capacity type	gid type		AN BN				
		rigid type	Super-rigid type	LA	AL BL		↓
	Super-		EL GL		1		
				FL HL			

Characteristics	Applications	Page
The RB series can contribute to lower center of gravity of machines, while maintaining the load capacity of the RA series. Unique and optimum design of rollers and other component facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time. The installation of retaining piece achieves smooth motion.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	A271
Super-high-load type BL (excluding RB55 and RB65) UL L GM L GM L T T T T T T T T T T T T	RB55BL•RB65BL L ₁	AZ/I
As well as providing a low friction operation, the LA series provides a top class high-load capacity for the ball linear guides. The series is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support the load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best suited for machine tools.	Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders	
Super-high-load type	L, FL	A287

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
Four-way equal load carrying capacity type			AN		_	
	h-precision type		AL		→	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
our-way equal load c	Super rigidity, high-precision type	НА	EM		•	*
Fc				AN, AL	L.	
acity type	on type		AL		↓	
High vertical load carrying capacity type	Self-aligning, super-precision type	нѕ	EM		→	
High	Se			AL 3	Lı	

Characteristics	Applications	Page
The HA Series ball guide with high-precision and high-load carrying capacity, featuring highmotion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. High motion accuracy is realized by the feature of super-finished ball groove (optional). End seals, bottom seals, and inner seals of high dust-proof specification are the standard equipment. Best suited for high-grade machine tools.	 Die molding machines High precision processing machine Heavy cutting machine tools Gear cutters Press machines Various types of NC grinders 	A307
EM Lı		
The HS Series ball guide with high-precision featuring high-motion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is the main load acting direction in most operations, increases by this design. The DF contact structure greatly absorbs the installation error in the perpendicular direction of rail. Thanks to the offset Gothic arch groove, balls make contacts at two points, thus keeping friction low.	High precision processing machines Electric discharge machines Various types of NC grinders LCD manufacturing equipment	A321
EM L.		

4. Guide to Technical Services

(1) CAD drawing data

NSK offers CAD data for linear guides. Please download it from the website of NSK.

NSK website

http://www.nsk.com

- · Data in drawings are filed in the actual size (some parts are simplified). You can use these data without processing.
- · Drawings are three-views projection.
- · Dimension lines are omitted to render the data as standard drawing for database.

Data offered by CAD

NSK linear guides

NH Series

VH Series

NS Series

LW Series

PU Series

LU Series PE Series

LE Series

Miniature LH Series

RA Series

RB Series

LA Series

HA Series

HS Series

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or Representative in your area.

5. Linear Guides: Handling Precautions

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

(1) Lubrication

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil and put lubricant inside of slide before using. For seal lubrication products, put lubricant on the rail.
- b. Do not mix greases of different brands.
- c. If your linear guide is rust prevention specifications, put lubricant inside of slide before using.

(2) Handling

Do not drop.

Do not give impact.

- a. Slides for random-matching are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the linear guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. The slide may move by simply leaning the rail. Make sure that the slide does not disengage from
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

(3) Precautions in use

Do not contaminate. | Temperature limitation.

Do not hang upside down.

- a. Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear guide to prevent sticking resolvent or coolant when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heatresistant type linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

(4) Storage

Store in the correct position.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

6. Design Precautions

The following points must be heeded in examining the life.

In case of oscillating stroke

- If the balls or rollers do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented in such a case but it can be mitigated.
- We recommend anti-fretting grease for oscillating stroke operations. Even in a case using a standard grease, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the ball or roller rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the balls or rollers on each end of the row.
- In such a case, a heavy load lubricant grease or oil is recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per ball or roller.
- Moment load is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When calculated life is extraordinarily short (Less than 3 000 km in calculated life.)

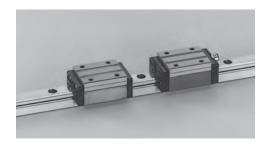
- In such a case, the contact pressure to the balls or rollers and the rolling contact surface is extraordinarily high.
- When a linear guide is operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the number of slides, the arrangement of slides, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31. Please consult NSK for details.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min.
 However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. In such a case, please consult NSK.

A-5 Technical Description and Dimension Table for NSK Linear Guides

 1. NH Series
 A113


 2. VH Series
 A133

 3. NS Series
 A153

 4. LW Series
 A171

A-5-1 General Purpose Series

A-5-1.1 NH Series

1. Features

(1) Improve rating life dramatically

Based on the LH series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-theart tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LH Series, the load rating capacity of the NH series has increased to 1.3 times, while the life span has increased to twice*1. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

(2) Ball circulation path with excellent high-speed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NH series is suited for high-speed applications compared with the LH Series.

(3) All mounting dimensions are the same as those for the LH and SH Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NH Series remain the same as those of the conventional LH series and SH series. So, the new NH Series linear guides can be used without making any design changes.

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact

bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

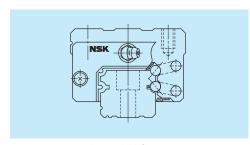


Fig. 1 NH Series

Fig. 2 Enlarged illustration of the offset Gothic arch groove

Note: For customers who have used the former LH or SH series, NH series is recommended as a substitute. Please confirm the correlation between NH series and former ones on the comparative table at A335.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes

Each size of NH Series has various models of ball slides, rendering the linear guide available

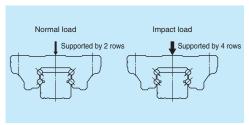


Fig. 3 When load is applied

for numerous uses.

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery. High precision grade and medium preload types are also available in randam matching.

(Special high-carbon steel products)

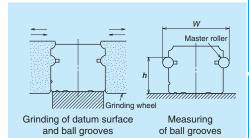


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Ball slide	Chana/installation mathed	Type (Upper row, Rating: L High-load type	ower row, Ball slide length) Super-high-load type
Model	Shape/installation method	Standard	Long
AN BN		AN L1	BN L ₁
AL BL		AL	BL L1
EM GM		EM L ₁	GM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide		Table 1	Unit: µm	
	Proloaded assembl	v (not random matching)	Random-matching type	

	Prel	oaded asser	nbly (not ran	ng)	Random-ma	atching type	
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 – 500	2	3	6	10	12	6	12
500 – 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5	8	14	16	8	16
800 – 1 000	2.5	5	9	16	18	9	18
1 000 – 1 250	3	6	10	17	20	10	20
1 250 – 1 600	4	7	11	19	23	11	23
1 600 – 2 000	4.5	8	13	21	26	13	26
2 000 – 2 500	5	10	15	22	29	15	29
2 500 – 3 150	6	11	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High precision PH and Normal PC grade.

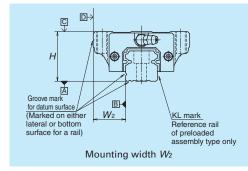
Tolerance of preloaded assembly

, , , , , , , , , , , , , , , , , , ,	Та	ıble 2			Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown	in Table 1, Fig.	5 , and Fig . 6	

Tolerance of random-matching type

	P					
	Tabl	Unit: µm				
Accuracy grade	High pred	ision grade PH	Normal	grade PC		
Characteristics Model No.	NH15, 20, 25, 30, 35	NH45, 55, 65	NH15, 20, 25, 30, 35	NH45, 55, 65		
Mounting height H	±20	±30	±20	±30		
Variation of mounting height H	15①	20①	15①	20①		
	30②	35②	30②	35②		
Mounting width W_2 or W_3	±30	±35	±30	±35		
Variation of mounting width W ₂ or W ₃	20	20	25	30		
Running parallelism of surface C to surface A		See Table 1, Fig. 5 and Fig. 6				

Note: ① Variation on the same rail ② Variation on multiple rails


NSK

(3) Combinations of accuracy and preload

Table 4

	Table 4									
				Ac	curacy gra	de				
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade		
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC		
Wi	th NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC		
Wit	NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC		
	Fine clearance			0						
	Z0					0	_	_		
	Slight preload	0	0	0	0	0				
	Z1						_	_		
	Medium preload			0						
oad	Z3					_	_	_		
Preload	Random-matching type with fine clearance							0		
	ZT	_	_	_	_	_	_	O		
	Random-matching type with slight preload						0			
	ZZ				_	_	0			
	Random-matching type with medium preload									
	ZH	_	_	_	_	_				

(4) Assembled accuracy

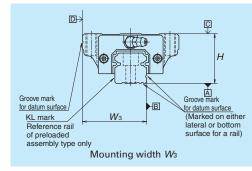
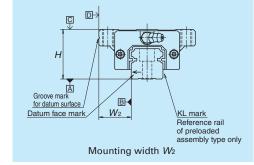



Fig. 5 Special high carbon steel

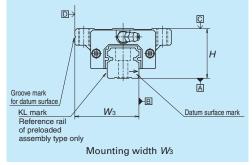


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Slight preload ZZ and Fine clearance ZT.

Preload and rigidity of preloaded assembly

Table 5

			I GIDIC O					
		Duele	L (NI)	Rigidity (N/μm)				
	NH55 AL, AN, EM NH65 AN, EM NH15 BN, GM NH20 BN, GM NH25 BL, BN, GM NH30 BL, BN, GM NH35 BL, BN, GM NH45 BL, BN, GM NH55 BL, BN, GM	Preio	ad (N)	Vertical	direction	Lateral direction		
		Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
		Z1	Z3	Z1	Z3	Z1	Z3	
	NH15 AN, EM	78	490	137	226	98	186	
	NH20 AN, EM	147	835	186	335	137	245	
be	NH25 AL, AN, EM	196	1 270	206	380	147	284	
d t	NH30 AL, AN	245	1 570	216	400	157	294	
h-load	NH30 EM	294	1 770	265	480	186	355	
	NH35 AL, AN, EM	390	2 350	305	560	216	390	
. <u>5</u>	NH45 AL, AN, EM	635	3 900	400	745	284	540	
	NH55 AL, AN, EM	980	5 900	490	910	345	645	
uper-high-load type	NH65 AN, EM	1 470	8 900	580	1 070	400	755	
	NH15 BN, GM	98	685	196	345	137	284	
tγ	NH20 BN, GM	196	1 080	265	480	196	355	
	NH25 BL, BN, GM	245	1 570	294	560	216	400	
9	NH30 BL, BN, GM	390	2 260	360	665	265	480	
igh	NH35 BL, BN, GM	490	2 940	430	795	305	570	
r-h	NH45 BL, BN, GM	785	4 800	520	960	370	695	
nbe	NH55 BL, BN, GM	1 180	7 050	635	1 170	440	835	
Š	NH65 BN, GM	1 860	11 300	805	1 480	550	1 040	

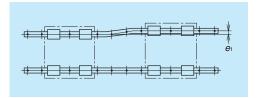
Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Tab	le 6	Unit: µm
Model No.	Fine clearance ZT	Slight preload ZZ	Medium preload ZH
NH15	-4 — 15	-4 — 0	<i>−</i> 7 <i>— −</i> 3
NH20		-5 — O	-8 — -3
NH25		-5 — O	-9 — -4
NH30		-7 — 0	-12 <i>-</i> -5
NH35	-5 — 15	-7 — 0	−12 − − 5
NH45		-7 — 0	-14 <i>-</i> -7
NH55	NH55	-9 — O	-18 — <i>-</i> 9
NH65		-9 — 0	−19 — −10

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

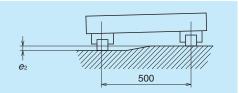

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades. Table 7 Length limitations of rails

								וווונו וווווו	
Series	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
INH	Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error



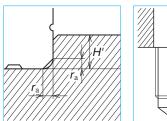

Fig. 7

Fig. 8

	Table 8								
Value	Preload		Model No.						
value	FreiOau	NH15	NH20	NH25	NH30	NH35	NH45	NH55	NH65
Darmingible values of	Z0, ZT	22	30	40	45	55	65	80	110
Permissible values of	Z1, ZZ	18	20	25	30	35	45	55	70
parallelism in two rails e ₁	Z3, ZH	13	15	20	25	30	40	45	60
Permissible values of	Z0, ZT	375μm/500mm							
parallelism (height) in two rails ea	71 77 73 7H				330um/	500mm			

Table 8

(2) Shoulder height of the mounting surface and corner radius r

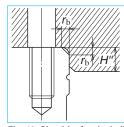


Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

Table 9

Unit: mm

Model No.	Corner radius	s (maximum)	Shoulder height		
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
NH15	0.5	0.5	4	4	
NH20	0.5	0.5	4.5	5	
NH25	0.5	0.5	5	5	
NH30	0.5	0.5	6	6	
NH35	0.5	0.5	6	6	
NH45	0.7	0.7	8	8	
NH55	0.7	0.7	10	10	
NH65	1	1	11	11	

m/min

6. Maximum allowable speed

An indication of the standard maximum allowable speed aiming at 10,000km operation with NH series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Ia	Table To Maximum allowable speed							
15	20	25	30	35	45	55		

Series Size	15	20	25	30	35	45	55	65
NH			300			20	00	150

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

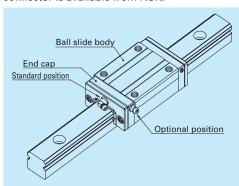


Fig. 12 Mounting position of lubrication accessories A119

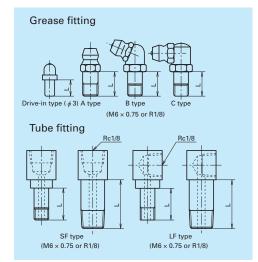


Fig. 11 Grease fitting and tube fitting

		Table 11		Unit: mm			
Model	Dust-proof	Dimension L					
No.	specification	Grease fitting		fitting			
140.	opcomoution	/Drive-in type	SF type	LF type			
	Standard	5	-	-			
NH15	With NSK K1	10	-	_			
ппі	Double seal	*	_	_			
	Protector	*	_	-			
	Standard	5	-	_			
NH20	With NSK K1	12	-	_			
INHZU	Double seal	10	_	_			
	Protector	10	_	_			
	Standard	5	5	5			
NULOE	With NSK K1	12	12	12			
NH25	Double seal	10	9	9			
	Protector	10	9	9			
	Standard	5	6	6			
	With NSK K1	14	12	13			
NH30	Double seal	12	10	11			
	Protector	12	10	11			
	Standard	5	6	6			
	With NSK K1	14	12	13			
NH35	Double seal	12	10	11			
	Protector	12	10	11			
	Standard	8	13.5	17			
	With NSK K1	18	20	21.5			
NH45	Double seal	14	16	17			
	Protector	14	13.5	17			
	Standard	8	13.5	17			
NH55	With NSK K1	18	20	21.5			
	Double seal	14	16	17			
	Protector	14	13.5	17			
	Standard	8	13.5	17			
	With NSK K1	20	22	25.5			
NH65	Double seal	16	18	19			
	Protector	16	13.5	17			

*) A connector is required for this model. Please contact NSK.

8. Dust-proof components

(1) Standard specification

The NH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

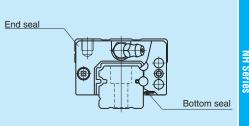


Fig. 13

Table 12 Seal friction per ball slide (maximum value)

	. oour i		poi baii	onao (i		···· vaia	٠,	Unit: N
Series Size	15	20	25	30	35	45	55	65
NH	8	9	10	10	12	17	22	29

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

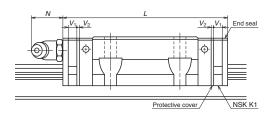


Table 13

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N	
NULLE	Standard	AN, EM	55	65.6			(5)	
NH15	Long	BN, GM	74	84.6	4.5	0.8	(5)	
	Standard	AN, EM	69.8	80.4	4.5		(4.4)	
NH20	Long	BN, GM	91.8	102.4	4.5	0.8	(14)	
NILIOE	Standard	AL, AN, EM	79.0	90.6	F 0	0.0	(1.4)	
NH25	Long	BL, BN, GM	107	118.6		0.8	(14)	
	Standard	AL, AN	85.6	97.6				
NH30	Standard	EM	98.6	110.6	5.0	1.0	(14)	
	Long	BL, BN, GM	124.6	136.6				
NULOF	Standard	AL, AN, EM	109	122		4.0	(4.4)	
NH35	Long	BL, BN, GM	143	156	5.5	1.0	(14)	
NULAE	Standard	AL, AN, EM	139	154	0.5	1.0	/15)	
NH45	Long	BL, BN, GM	171	186	6.5	1.0	(15)	
NUISE	Standard	AL, AN, EM	163	178	0.5	4.0		
NH55	Long	BL, BN, GM	201	216	6.5	1.0	(15)	
NULOE	Standard	AN, EM	193	211	0.0	4.0	(4.0)	
NH65	Long	BN, GM	253	271	8.0	1.0	(16)	

Notes: 1) NSK K1 for food and medical equipments are available for NH15 to NH35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

NH Series

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of double seals, a connector as showing in **Fig.14** is required.

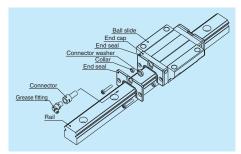


Fig. 14 Double seal

Table 14 Double-seal set

Model No.	Referer	Increased thickness V ₃ (mm)	
NH15	LH15WS-01	*	2.5
NH20	LH20WS-01	LH20WSC-01	2.5
NH25	LH25WS-01	LH25WSC-01	2.8
NH30	LH30WS-01	LH30WSC-01	3.6
NH35	LH35WS-01	LH35WSC-01	3.6
NH45	LH45WS-01	LH45WSC-01	4.3
NH55	LH55WS-01	LH55WSC-01	4.3
NH65	LH65WS-01	LH65WSC-01	4.9

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing in Fig.15 is required.

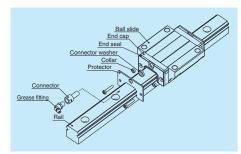


Fig. 15 Protector

Table 15 Protector set

Model No.	Refere	Increased thickness V ₄	
Model No.	Without connector	With connector	(mm)
NH15	LH15PT-01	*	2.7
NH20	LH20PT-01	LH20PTC-01	2.9
NH25	LH25PT-01	LH25PTC-01	3.2
NH30	LH30PT-01	LH30PTC-01	4.2
NH35	LH35PT-01	LH35PTC-01	4.2
NH45	LH45PT-01	LH45PTC-01	4.9
NH55	LH55PT-01	LH55PTC-01	4.9
NH65	LH65PT-01	LH65PTC-01	5.5

*) For installation of a connector to a drive-in type grease fitting, contact NSK.

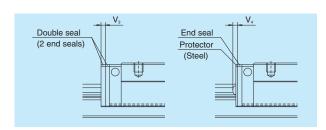


Fig. 16

NSK

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
Wodor No.	secure rail	reference No.	/case
NH15	M4	LG-CAP/M4	20
NH20	M5	LG-CAP/M5	20
NH25	M6	LG-CAP/M6	20
NH30, NH35	M8	LG-CAP/M8	20
NH45	M12	LG-CAP/M12	20
NH55	M14	LG-CAP/M14	20
NH65	M16	LG-CAP/M16	20

(6) Inner seal

Inner seal is only available for models shown in the table below.

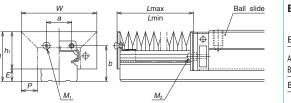
Table 17

Series	Model No.
NH	NH20, NH25, NH30, NH35, NH45, NH55, NH6

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M₁ set screws, two of M₂ set screws, and two collars for M₂ set screws as showing Fig. 7.7 on page A55, is supplied with ellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing Table 18, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.


 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NH20	LH20FS-01
NH25	LH25FS-01
NH30	LH30FS-01
NH35	LH35FS-01
NH45	LH45FS-01
NH55	LH55FS-01
NH65	LH65FS-01

Dimension tables of bellows NH Series

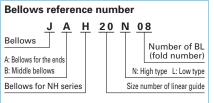


Fig. 17 Dimensions of bellows

Table 19 Dimensions of bellows

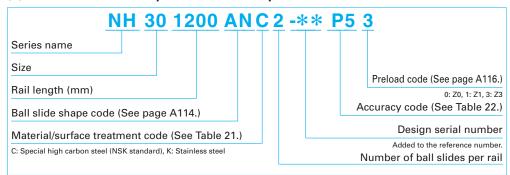
Unit: mm

Model No.	Н	h ₁	Е	W	P	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth	
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16	
JAH25L	35	28	7	51	10	16	26	17	M3 × 5	M3 × 18	
JAH25N	39	32	/	61	15	10	20	17	IVIS X S	IVIS X 10	
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22	
JAH30N	44	35	9	66		10 31		17	1V14 X 0	1VI4 X ZZ	
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23	
JAH35N	54	44.5	9.0	82	20	24	24 34	17	1V14 X U	1014 X 23	
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28	
JAH45N	69	55	14	103	25	32	44.5	17	OXCIVI	IVIO X ZO	
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30	
JAH55N	79	64	13	121	30	40	50.5	17	IVIO X 8	1VIO X 30	
JAH65N	89	73	16	131	30	48	61	17	M6×8	M6 × 35	

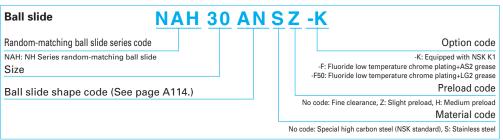
Table 20 Numbers of folds (BL) and lengths of bellows

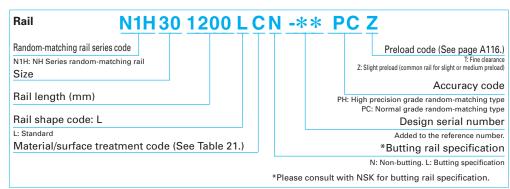
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
IVIIOEI	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAH25L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHZUN	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAHSUL	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHJUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSSL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHSSIN	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAI 143L	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAI 14511	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHOSE	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAI 19914	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
IVHEEN	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAH65N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

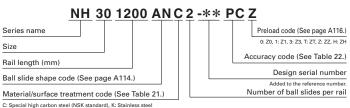
(2) Reference number for random-matching type

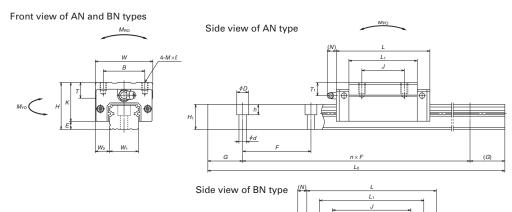
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T", "slight preload Z" and "medium preload H" are available (refer to page A116).

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 21 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (NH15 to NH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special


Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.


Table 22 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

10. Dimensions NH-AN (High-load type / Standard) NH-BN (Super-high-load type / Long)

	А	ssemb	oly					Ball slic	de							
Model No.	Height			Width Length			Mounting hole					Grease	fittin	ıg	Width	Height
Model No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	T ₁	N	W_1	H ₁
NH15AN NH15BN	1 22	4.6	9.5	34	55 74	26	26	M4×0.7×6	39 58	23.4	8	φ 3	8.5	3.3	15	15
NH20AN NH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	50 72	25	12	M6×0.75	5	11	20	18
NH25AN NH25BN	1 (1(1)	7	12.5	48	79 107	35	35 50	M6×1×9	58 86	33	12	M6×0.75	10	11	23	22
NH30AN NH30BN	1 45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	59 98	36	14	M6×0.75	10	11	28	26
NH35AN NH35BN	l hh	9.5	18	70	109 143	50	50 72	M8×1.25×12	80 114	45.5	15	M6×0.75	15	11	34	29
NH45AN NH45BN	1 /()	14	20.5	86	139 171	60	60 80	M10×1.5×17	105 137	56	17	Rc1/8	20	13	45	38
NH55AN NH55BN	1 20	15	23.5	100	163 201	75	75 95	M12×1.75×18	126 164	65	18	Rc1/8	21	13	53	44
NH65AN NH65BN	1 90	16	31.5	126	193 253	76	70 120	M16×2×20	147 207	74	23	Rc1/8	19	13	63	53

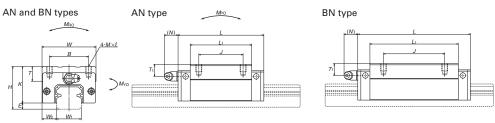
Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide

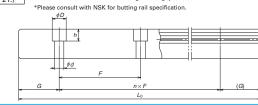
NAH 30 AN S Z -K

Random-matching ball slide series code


NAH: NH Series random-matching ball slide
Size

Ball slide shape code (See page A114.)

Option code

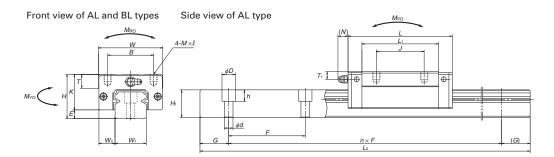

X: Equipped with NSK K1

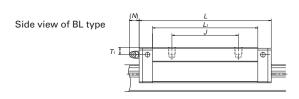
-F: Fluoride low temperature chrome plating-XSZ grease
-F50: Fluoride low temperatu

Reference number for rail of random-matching type

Rail	N1H30 1200 L (<u> </u>
Random-matching	rail series code	Preload code (See page A116.)
N1H: NH Series ran	ndom-matching rail	T: Fine clearance.
Size		Z: Slight preload (common rail for medium preload) Accuracy code
Rail length (m	nm)	PH: High precision grade. PC: Normal grade Design serial number
Rail shape co	de: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surfa	ace treatment code (See Table 21.)	N: Non-butting. L: Butting specification
	,	*Please consult with NSK for butting rail specification.

U	nit:	m


Rail					Basic load rating									
Pitch	Mounting	G	Max. length	2)Dyn	amic	Static		Static		Ball	Rail			
	bolt hole		L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	Λ	1 _{PO}	٨	$\Lambda_{\rm YO}$	slide		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	4.5×7.5×5.3	20	2 980 (1 800)	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.18 0.26	1.6	
60	6×9.5×8.5	20	3 960 (3 500)	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.33 0.48	2.6	
60	7×11×9	20	3 960 (3 500)	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.55 0.82	3.6	
80	9×14×12	20	4 000 (3 500)	41 000 61 000	32 500 48 500	51 500 91 500	490 870	350 1 030	2 290 5 600	292 865	1 920 4 700	0.77 1.3	5.2	
80	9×14×12	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.5 2.1	7.2	
105	14×20×17	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3.0 3.9	12.3	
120	16×23×20	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300	2 510 4 350	13 700 22 100	4.7 6.1	16.9	
150	18×26×22	35	3 900	239 000 310 000	190 000 246 000	281 000 410 000	6 150 8 950	4 950 10 100	27 900 51 500	4 150 8 450	23 400 43 500	7.7 10.8	24.3	


²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

³⁾ High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

NH 30 1200 AL C 2 -** PC Z Series name Size Rail length (mm) Ball slide shape code (See page A114.) Material/surface treatment code (See Table 21.) C: Special high carbon steel (NSK standard), K: Stainless steel

	A:	ssemb	ly					Ball slic	de							
Model No.	Height			Width	Length	Mounting hole						Grease	fittin	g	Width	Height
WIOGOT IVO.		_														l
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	K	T	Hole size	T_1	Ν	W_1	H_1
NH25AL NH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	58 86	29	12	M6×0.75	6	11	23	22
NH30AL NH30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	59 98	33	14	M6×0.75	7	11	28	26
NH35AL NH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	80 114	38.5	15	M6×0.75	8	11	34	29
NH45AL NH45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	105 137	46	17	Rc1/8	10	13	45	38
NH55AL NH55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	126 164	55	15	Rc1/8	11	13	53	44

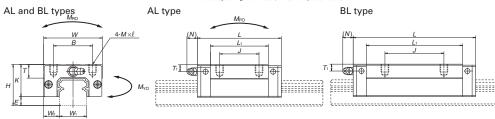
Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide

NAH 30 AL S Z -K

Random-matching ball slide series code


NAH: NH Series random-matching ball slide

Size

Ball slide shape code (See page A114.)

Option code

-F. Fluoride low temperature chrome picting-4SZ grease
-F96: Fluoride low temperature chrome picting-4SZ gr

Reference number for rail of random-matching type

Rail N1H30 1200 L C N -** PC Z

Random-matching rail series code

N1H: NH Series random-matching rail
Size

Rail length (mm)

Rail shape code: L

L: Standard

Material/surface treatment code (See Table 21.)

Preload code (See page A116.)

Preload code (See page A116.)

The raceasance.

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Accuracy code

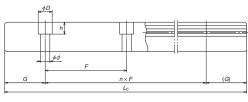
Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

Accuracy code

Accuracy code


Accuracy code

Pt: High preload (common rail for mean please)

Accuracy code

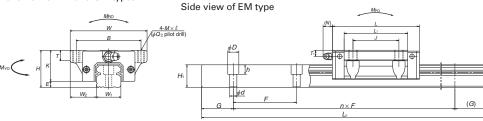
Accurac

Unit: mm

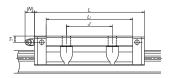
Rail					Basic load rating									
Pitch	Mounting	G	Max. length	2)Dyn	Dynamic Static Static moment (N·m)							Ball slide	Rail	
	bolt hole		L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	٨	1 _{PO}	N	1 _{YO}			
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	7×11×9	20	3 960	33 500	26 800	46 000	360	320	1 840		1 540		3.6	
	,,,,,,,,,		(3500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	0.0	
80	9×14×12	20	4 000	41 000	32 500	51 500	490	350	2 290		1 920	0.69	5.2	
00	0/11/1/2	20	(3500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	0.2	
80	9×14×12	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2	
00	0/14/12	20	7 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	7.2	
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3	
103	14,20,17	22.5	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.0	
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9	
120	10/23/20	30	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.3	

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload of random-matching type are available for high-carbon steel products.

NH-EM (High-load type / Standard) NH-GM (Super-high-load type / Long)


NH 30 1200 EM C 2 -** PC Z Series name Preload code (See page A116.) 0: Z0. 1: Z1. 3: Z3. T: ZT. Z: ZZ. H: ZH Size Accuracy code (See Table 22.) Rail length (mm) Design serial number Ball slide shape code (See page A114.) Added to the reference number Material/surface treatment code (See Table 21.) Number of ball slides per rail

C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of EM and GM types

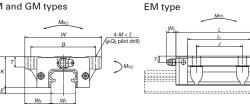
	As	sem	bly					Ball	slide								
Model No.	Height			Width	Length		N	Mounting hole					Grease	fittin	g	Width	Height
iviodei ivo.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
NH15EM NH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	39 58	19.4	8	φ 3	4.5	3.3	15	15
NH20EM NH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	50 72	25	10	M6×0.75	5	11	20	18
NH25EM NH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	58 86	29	11 (12)	M6×0.75	6	11	23	22
NH30EM NH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	72 98	33	11 (15)	M6×0.75	7	11	28	26
NH35EM NH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	80 114	38.5	12	M6×0.75	8	11	34	29
NH45EM NH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	105 137	46	13	Rc1/8	10	13	45	38
NH55EM NH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	126 164	55	15	Rc1/8	11	13	53	44
NH65EM NH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

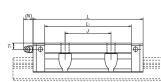
2) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

NAH 30 EM S Z -K Ball slide


Random-matching ball slide series code NAH: NH Series random-matching ball slide

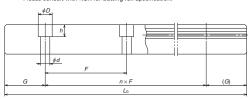
Ball slide shape code (See page A114.)


-K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating+AS2 grease -F50: Fluoride low temperature chrome plating+LG2 grease Preload code No code: Fine clearance, Z: Slight preload, H: Medium prel

No code: Special high carbon steel (NSK standard), S: Stain

EM and GM types

Reference number for rail of random-matching type


N1H30 1200 L C N -** PC Z Rail

Random-matching rail series code N1H: NH Series random-matching rail Size Rail length (mm) Rail shape code: L Material/surface treatment code (See Table 21.)

Preload code (See page A116.) Accuracy code Design serial number Added to the reference number *Butting rail specification

N: Non-butting. L: Butting specification
*Please consult with NSK for butting rail specification.

Unit: mm

Rai						Basi	c load r	ating				We	ight
Pitch		G	Max. length	3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		L_{0max} .	[50km]	[100km]	C_0	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980 (1 800)	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150		480 965	0.17 0.25	1.6
60	6×9.5×8.5	20	3 960 (3 500)	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	1 / h
60	7×11×9	20	3 960 (3 500)	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	3.6
80	9×14×12	20	4 000 (3 500)	47 000 61 000	37 500 48 500	63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
80	9×14×12	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
105	14×20×17	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600		8 150 13 100	3 3.9	12.3
120	16×23×20	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300		13 700 22 100	5 6.5	16.9
150	18×26×22	35	3 900	239 000 310 000	190 000 246 000	281 000 410 000	6 150 8 950	4 950 10 100	27 900 51 500	4 150 8 450	23 400 43 500		24.3

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

Csi, the basic dynamic load rating for 50 km rated fatigue life Cim; the basic dynamic load rating for 100 km rated fatigue life

The basic static load rating shows static permissible load.

A-5-1.2 VH Series

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various foreign matters.

(2) NSK K1[™] lubrication unit (standard)

Outstanding lubrication support of NSK K1 further improves sealing capability and durability. Additional NSK K1 units can be mounted for specific usage conditions and environments.

(3) Tapped holes on a rail bottom surface (optional)

In addition to standard mounting bolt holes (counterbores on a rail top surface), a specification for tapped holes on a rail bottom surface for enhanced sealing capability is available for the VH Series. (Refer to the dimension table.)

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load

is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Random matching type

Random-matching of rails and ball slides are available.

(9) Improve rating life dramatically

New ball groove geometry is introduced,

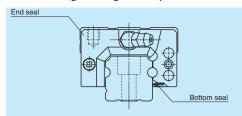


Fig. 1 VH Series

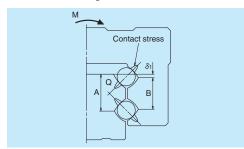


Fig. 2 Enlarged illustration of the offset Gothic arch groove

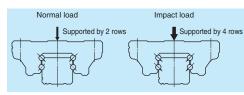


Fig. 3 When load is applied

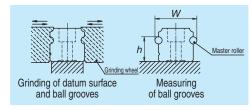


Fig. 4 Rail grinding and measuring

which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased. As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice*1.

*1: Representative values of series.

Comparison with NSK standard products

Less than 1/10 the level of fine contaminants

Results of dust-proof tests reveal that the entry of fine contaminants is reduced to less than one-tenth of existing standard series due to improvements in sealing capability.

Test sample : VH30AN Speed : 16.7 mm/sec Contaminant : Graphite powder

(average grain size: 0.037 mm) +

Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Series extended more than five times longer than the existing standard series, as shown in the graph.

: VH30AN, preload code Z1 Test sample (preload of 245 N) Rail orientation : Horizontal (wall mount)

Speed : 500 mm/sec Lubrication : AS2 grease

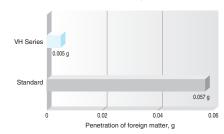
(prepacked AS2 only) Contaminant : Rubber fragments

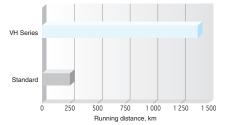
Durability test with fine wood particles

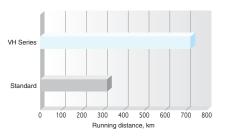
Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Series is more than doubled

compared to the standard series, as shown in the graph.

Test sample : VH30AN


Rail orientation


(preload of 3 200 N) : Horizontal (wall mount)


Speed : 400 mm/sec Lubrication : AS2 grease

(prepacked AS2 only)

Contaminant : Fine wood particles

Before the passage of ball slide (Heavily contaminated with wood particle)

After the passage of ball slide (All contaminant particles are swept away)

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended. A134

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L High-load type Standard	ower row, Ball slide length) Super-high-load type Long
AN BN		AN L ₁	BN L ₁
AL BL		AL	BL <u>L1</u>
EM GM		EM L ₁	GM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1									
		Preloaded assembly (not random matching)							
Rail length (mm) over or less	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN	Normal grade KC			
- 50	2	2	2	4.5	6	6			
50 - 80	2	2	3	5	6	6			
80 – 125	2	2	3.5	5.5	6.5	6.5			
125 – 200	2	2	4	6	7	7			
200 – 250	2	2.5	5	7	8	8			
250 – 315	2	2.5	5	8	9	9			
315 – 400	2	3	6	9	11	11			
400 - 500	2	3	6	10	12	12			
500 - 630	2	3.5	7	12	14	14			
630 - 800	2	4.5	8	14	16	16			
800 – 1 000	2.5	5	9	16	18	18			
1 000 – 1 250	3	6	10	17	20	20			
1 250 – 1 600	4	7	11	19	23	23			
1 600 – 2 000	4.5	8	13	21	26	26			
2 000 – 2 500	5	10	15	22	29	29			
2 500 – 3 150	6	11	17	25	32	32			
3 150 – 4 000	9	16	23	30	34	34			

(2) Accuracy standard

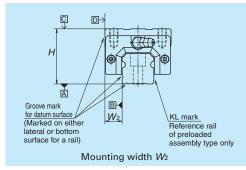
The preloaded assembly has five accuracy grades; Ultra precision K3, Super precision K4, High precision K5, Precision K6, and Normal KN grades, while the random-matching type has Normal KC grade only.

• Tolerance of preloaded assembly

Table 2								
Accuracy grade Characteristics	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Ta	ible 1, Fig. 5 an	d Fig . 6				

• Tolerance of random-matching type: Normal grade KC

	Table 3	Unit: µm
Model No. Characteristics	VH15, 20, 25, 30, 35	VH45, 55
Mounting height H	±20	±30
Variation of mounting height H	15① 30②	20① 35②
Mounting width W_2 or W_3	±30	±35
Variation of mounting width W ₂ or W ₃	25	30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 , F i	g. 5 and Fig. 6


Note: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

	TUDIO T								
		Accuracy grade							
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade		
With NSK K1 lubrication unit		K3	K4	K5	K6	KN	KC		
	Fine clearance								
	Z0			0			_		
	Slight preload								
	Z1								
Preload	Medium preload								
Prel	Z3					_			
	Random-matching type with fine clearance								
	ZT		_	_		_			
	Random-matching type with slight preload								
	ZZ				_				

(4) Assembled accuracy

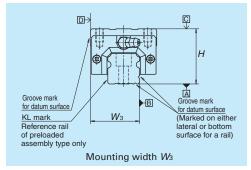
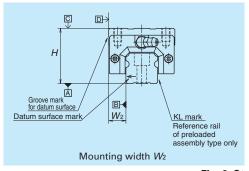



Fig. 5 Special high carbon steel

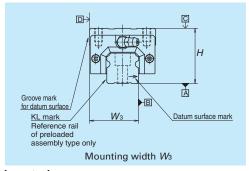


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Fine clearance ZT and Slight preload ZZ.

· Preload and rigidity of preloaded assembly

	lable 5									
Preload (N)										
	Model No.	Preioa	Preioad (N)		direction	Lateral	Lateral direction			
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
		Z1	Z3	Z1	Z3	Z1	Z3			
	VH15 AN, EM	78	490	137	226	98	186			
40	VH20 AN, EM	147	835	186	335	137	245			
type	VH25 AN, AL, EM	196	1 270	206	380	147	284			
ad t	VH30 AN, AL	245	1 570	216	400	157	294			
High-load	VH30 EM	294	1 770	265	480	186	355			
4jg F	VH35 AN, AL, EM	390	2 350	305	560	216	390			
_	VH45 AN, AL, EM	635	3 900	400	745	284	540			
	VH55 AN, AL, EM	980	5 900	490	910	345	645			
type	VH15 BN, GM	98	685	196	345	137	284			
	VH20 BN, GM	196	1 080	265	480	196	355			
oac	VH25 BN, BL, GM	245	1 570	294	560	216	400			
늄	VH30 BN, BL, GM	390	2 260	360	665	265	480			
-ji	VH35 BN, BL, GM	490	2 940	430	795	305	570			
Super-high-load	VH45 BN, BL, GM	785	4 800	520	960	370	695			
S	VH55 BN, BL, GM	1 180	7 050	635	1 170	440	835			

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 μm .

· Preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance	Slight preload
wiodei No.	ZT	ZZ
VH15	-4 - 15	-4 - 0
VH20		- 5 - 0
VH25		- 5 - 0
VH30	_5 – 15	−7 − 0
VH35	-5 - 15	−7 − 0
VH45 VH55		-7 - 0
		-9 - 0

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Series

VH

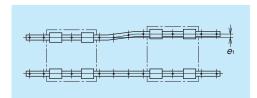

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table / Length limitations of rails								
Size								
Material	15	20	25	30	35	45	55	
Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

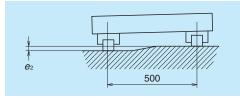


Fig. 7

Fig. 8

			Table	8 8				Unit: µm
\	Preload				Model No.			
Value	Freioau	VH15	VH20	VH25	VH30	VH35	VH45	VH55
Permissible values of	Z0, ZT	22	30	40	45	55	65	80
	/1 //	18	20	25	30	35	45	55
parallelism in two rails e ₁	Z3	13	15	20	25	30	40	45
Permissible values of	Z0, ZT			37!	5 μm/500 r	nm		
parallelism (height) in two rails e2	Z1, ZZ, Z3			330) μm/500 r	nm		

(2) Shoulder height of the mounting surface and corner radius r

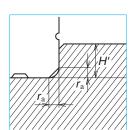


Fig. 9 Shoulder for the

rail datum surface

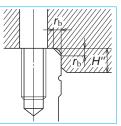


Fig. 10 Shoulder for the ball slide datum surface

		Unit: mm			
Model No.	Corner radiu	s (maximum)	Shoulder height		
Model INO.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
VH15	0.5	0.5	4	4	
VH20	0.5	0.5	4.5	5	
VH25	0.5	0.5	5	5	
VH30	0.5	0.5	6	6	
VH35	0.5	0.5	6	6	
VH45	0.7	0.7	8	8	
VH55	0.7	0.7	10	10	

(3) Specification for tapped holes on a rail bottom surface

- · Special high carbon steel is available for this specification.
- · Applicable accuracy grades are precision grade (K6) and normal grades (KN and KC) only.
- The minimum rail length for production is 400 mm.
- · The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

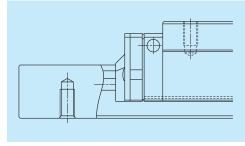


Fig. 11

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 12 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

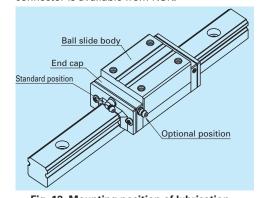


Fig. 13 Mounting position of lubrication accessories

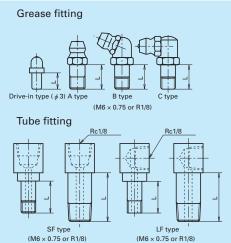


Fig. 12 Grease fitting and tube fitting

		Table 10		Unit: mm				
Model	Dust-proof	Dimension L						
No.	specification	Grease fitting	Tube	Tube fitting				
INO.	specification	/Drive-in type	SF type	LF type				
	Standard*	10	-	_				
VH15	Double seal	**	_	_				
	Protector	**	_	_				
	Standard*	12	-	-				
VH20	Double seal	18	_	_				
	Protector	18	-	-				
	Standard*	12	15	16				
VH25	Double seal	18	23	24.5***				
	Protector	18	17	18				
	Standard*	14	18	17.5				
VH30	Double seal	22	25	24.5				
	Protector	22	19.5	19				
	Standard*	14	15	15				
VH35	Double seal	22	25	24.5				
	Protector	22	21.5	22				
	Standard*	18	22	21.5				
VH45	Double seal	22	32	32				
	Protector	28	28	30				
	Standard*	18	20	20				
VH55	Double seal	22	32	32				
	Protector	28	28	30				

^{*)} NSK K1 units are mounted as a standard specification for VH series.

^{**)} A connector is required for grease fitting. Please contact

^{***)} Only available for AN and BN type ball slides.

7. Dust-proof components

(1) Standard specification

To keep foreign matters from entering inside the ball slide, VH Series has an end seal on both ends, and bottom seals at the bottom.

Two NSK K1, one at each end, are installed as the standard equipment.

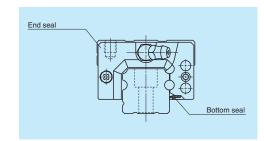


Fig. 14

Tab	le 11	Seal	friction	per ball	slide (r	naximum	value)
Size	15		20	25	30	35	

14

	Unit: N
45	55
33	11

23

17

(2) Double seal and protector

Size

Series

VH

For VH Series, double-seal and protector can be installed only before shipping from the factory. Please consult NSK when you require them.

15

11

20

13

Table 12 shows the ball slide length when a double seal set and a protector are installed.

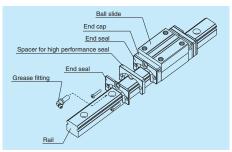


Fig. 15 Double seal

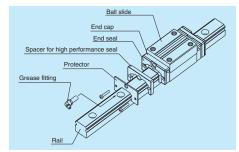


Fig. 16 Protector

Table 12 Dimension of installing dust-proof optional components

Unit: mm

Model No.	Ball slide	Ball slide		Ball slide length L	
woder no.	length	model	Standard	Double seal installation	Protector installation
VH15	Standard type	AN, EM	70.6	81.6	77
VHID	Long type	BN, GM	89.6	100.6	96
VH20	Standard type	AN, EM	87.4	100.4	94.2
VIIZU	Long type	BN, GM	109.4	122.4	116.2
VH25	Standard type	AN, AL, EM	97	110	104.4
VHZ5	Long type	BN, BL, GM	125	138	132.4
	Standard type	AN, AL	104.4	120.4	114.8
VH30	Standard type	EM	117.4	133.4	127.8
	Long type	BN, BL, GM	143.4	159.4	153.8
VH35	Standard type	AN, AL, EM	128.8	144.8	139.2
VIISS	Long type	BN, BL, GM	162.8	178.8	173.2
VH45	Standard type	AN, AL, EM	161.4	180.4	174.2
V 1143	Long type	BN, BL, GM	193.4	212.4	206.2
VH55	Standard type	AN, AL, EM	185.4	204.4	198.2
VH55	Long type	BN, BL, GM	223.4	242.4	236.2

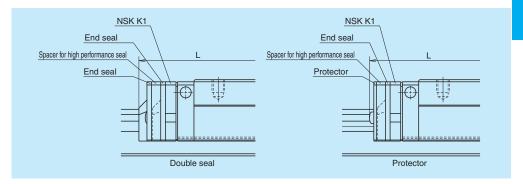


Fig. 17

(3) Cap to plug the rail mounting bolt hole Table 13 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
VH15	M4	LG-CAP/M4	20
VH20	M5	LG-CAP/M5	20
VH25	M6	LG-CAP/M6	20
VH30, VH35	M8	LG-CAP/M8	20
VH45	M12	LG-CAP/M12	20
VH55	M14	LG-CAP/M14	20
VH25 VH30, VH35 VH45	M8 M12	LG-CAP/M8 LG-CAP/M12	20 20 20 20

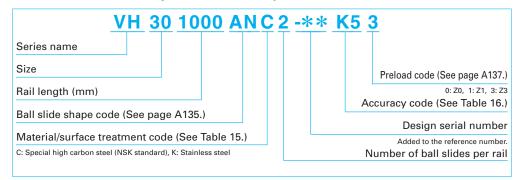
(4) Inner seal

The availability of inner seal is limited to the models shown below.

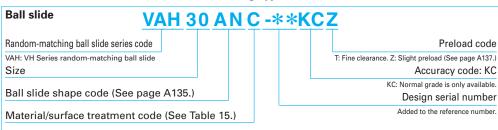
Table 14

Series	Model No.
VH	VH20, VH25, VH30, VH45, VH55

8. Design Precautions


Because the product is used under severe operating conditions that require high performance end seals, please inform NSK about your service conditions using the technical data sheet on page A152.

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

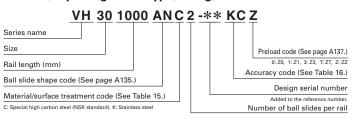
Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail V1H 30 1000 L	<u>CN -** PC Z</u>
Random-matching rail series code	Preload code (See page A137.)
V1H: VH Series random-matching rail Size	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard Material/surface treatment code (See Table 15.)	*Butting rail specification N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, the preload code of "fine clearance T" and "slight preload Z" is only applicable (refer to page A137).


Table 15 Material/surface treatment code

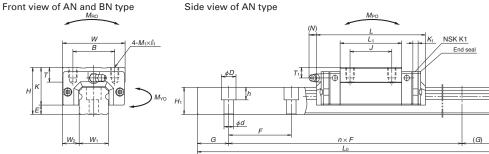
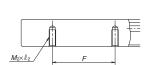
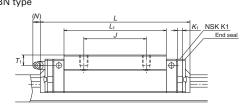

Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
K	Stainless steel + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
Н	Stainless steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special

Table 16 Accuracy code


Accuracy	Standard (with NSK K1)
Ultra precision grade	K3
Super precision grade	K4
High precision grade	K5
Precision grade	K6
Normal grade	KN
Normal grade (random-matching type)	KC


Note: Refer to page A38 for NSK K1 lubrication unit.

Specification for tapped holes on a rail Side view of BN type

	A	ssem	bly	oly Ball slide													
Model No	Height			Width	Length		Мо	unting hole					Gre	ase t	itting	Width	Height
Wodel No	1																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	Κ	Τ	<i>K</i> ₁	Hole size	T_1	Ν	W_1	H_1
VH15AN VH15BN	1.78	4.6	9.5	34	70.6 ⟨ 77⟩ 89.6 ⟨ 96⟩	26	26	M4×0.7×6	39 58	23.4	8	4.5	φ 3	8.5	1 〈 8.2〉	15	15
VH20AN VH20BN	1,30	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	M5×0.8×6	50 72	25	12	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25AN VH25BN	1 40	7	12.5	48	97 (104.4) 125 (132.4)		35 50	M6×1×9	58 86	33	12	5	M6×0.75	10	9.6 (12.9)	23	22
VH30AN VH30BN	45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	59 98	36	14	5	M6×0.75	10	11.4 (14.2)	28	26
VH35AN VH35BN	1 55	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	80 114	45.5	15	5.5	M6×0.75	15	10.9 (13.7)	34	29
VH45AN VH45BN	/0	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	105 137	56	17	6.5	Rc1/8	20	12.5 (14.1)	45	38
VH55AN VH55BN	I SU	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	126 164	65	18	6.5	Rc1/8	21	12.5 (14.1)	53	44

Notes: 1) Figure inside () is the dimension when equipped with the protector.

- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

NSK

Reference number for ball slide of random-matching type

Ball slide

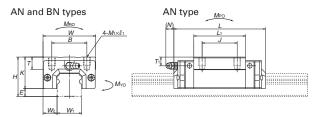
VAH 30 AN C -**KCZ

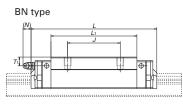
Random-matching ball slide series code

VAH: VH Series random-matching ball slide
Size

Ball slide shape code (See page A135.)

Material/surface treatment code (See Table 15.)

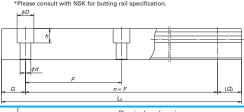

Preload code (See page A137.)


T: Fine clearance. Z: Slight preload
Accuracy code: KC

KC: Normal grade is only available.

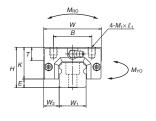
Design serial number

Added to the reference number.

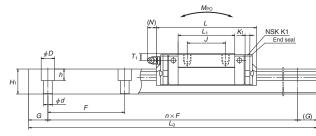


Reference number for rail of random-matching type

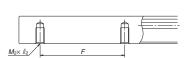
Rail	V1H30 1000 L C	<u>N -** PC Z</u>
Random-matching	rail series code	Preload code (See page A137.)
V1H: VH Series ran	ndom-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (n	nm)	PC: Normal grade is only available. Design serial number
Rail shape co	ode: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surfa	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.
		4D

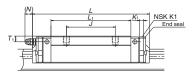

ı	Init:	mn

	Rail				Basic load rating							We	Weight	
Pitch		Tapped hole	G	Max. length	4)Dyr	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	i0km] [100km]		M_{RO}	٨	1 _{PO}	Λ	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700	108	94.5	575	79.5	480	0.18	1.6
- 00	4.00/7.000.0	1010/0.0/0	20	[1 800]	18 100	14 400	32 000	166	216	1 150	181	965	0.26	1.0
60	6.0 E.0 E	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.33	2.6
60	6×9.5×8.5	IVIOXIXIU	20	[3 500]	30 000	24 000	50 500	340	420	2 230	355	1 870	0.48	2.0
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	3.6
60	/ / / / / / / / / / / / / / / / / / / /	IVIOXIXIZ	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.0
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2
80	9X14X12	IVI8X1.25X15	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2
80	9X14X12	IVIOX1.20X17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	7.2
105	14,20,47	M12×1.75×24	22 5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
105	14XZUX17	V ZX ./ 3XZ4	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9
120	10x23x20	IVIT4XZXZ4	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9


⁴⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

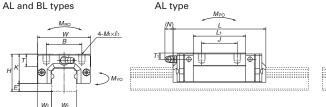
 C_{∞} ; the basic dynamic load rating for 50 km rated fatigue life C_{∞} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

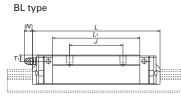

Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

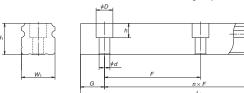
Side view of BL type


	A	ssem	bly					Ball	slide)							
Model No	Height			Width	lth Length		Mounting hole					Grease f		fitting	Width	Height	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	K ₁	Hole size	<i>T</i> ₁	N	W_1	H ₁
VH25AL VH25BL	36	7	12.5	48	97 (104.4) 125 (132.4)	1 35	35 50	M6×1×6	58 86	1.70	12	5	M6×0.75	6	9.6 (12.9)	23	22
VH30AL VH30BL	42	9	16	60	104.4 (114.8) 143.4 (153.8)		40 60	M8×1.25×8	59 98		14	5	M6×0.75	7	11.4 (14.2)	28	26
VH35AL VH35BL	48	9.5	18	70	128.8 (139.2) 162.8 (173.2)	1 6()	50 72	M8×1.25×8	80 114	138 P	15	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45AL VH45BL	60	14	20.5	86	161.4 (174.2) 193.4 (206.2)		60 80	M10×1.5×10	105 137	46	17	6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55AL VH55BL	70	15	23.5	100	185.4 (198.2) 223.4 (236.2)	1 / わ	75 95	M12×1.75×13	126 164	lhh l	15	6.5	Rc1/8	11	12.5 (14.1)	53	44


Notes: 1) Figure inside () is the dimension when equipped with the protector.

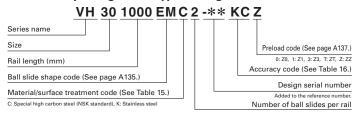
- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

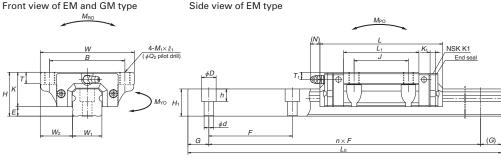
Reference number for ball slide of random-matching type


VAH 30 AL C-**KCZ Ball slide Random-matching ball slide series code Preload code (See page A137.) VAH: VH Series random-matching ball slide T: Fine clearance. Z: Slight preload Accuracy code: KC KC: Normal grade is only available. Ball slide shape code (See page A135.) Design serial number Added to the reference number. Material/surface treatment code (See Table 15.)

Reference number for rail of random-matching type

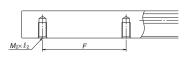
le (See page A137.)
rance. Z: Slight preload
grade is only available. yn serial number
the reference number rail specification
L: Butting specification
ail specification.

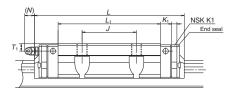

Unit: mm


	Rail						Bas	ic load	rating		'		We	ight
Pitch	Mounting	Tapped hole	G	Max. length	⁴⁾ Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole			L _{Omax} .	[50km]	[100km]	C _o	M _{RO}	Λ	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.46	3.6
00	7.7.11.7.5	IVIOXIXIZ	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	3.0
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.69	5.2
- 00	3/14/12	1010×1.25×15	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2
00	3/14/12	1010×1.25×17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2
105	1/1/20/17	M12×1.75×24	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
100	14820817	10112X1.73X24	22.5	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9
120	10/23/20	IVI 14XZXZ4	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9

⁴⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

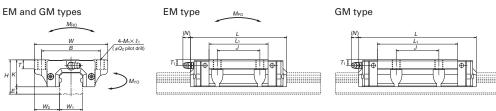
 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


VH-EM (High-load type / Standard) VH-GM (Super-high-load type / Long)



Specification for tapped holes on a rail

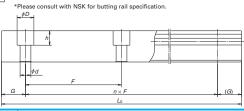
Side view of GM type


	As	ssem	bly					Ва	ll slid	е								
Model No	Height			Width	Length		Ν	Nounting hole						Gre	ease	fitting	Width	Height
IVIOGEI IVO								$Q_1 \times \ell_1$						Hole				
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	L ₁	Κ	T	K ₁	size	T_1	Ν	W_1	H_1
VH15EM VH15GM	24	4.6	16	47	70.6 (77) 89.6 (96)	38	30	M5×0.8×7	4.4	39 58	19.4	8	4.5	φ 3	4.5	1 〈 8.2〉	15	15
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	50 72	25	10	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25EM VH25GM	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	M8×1.25×10 [M8×1.25×11.5]	6.8	58 86	29	11 [12]	5	M6×0.75	6	9.6 (12.9)	23	22
VH30EM VH30GM	42	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	M10×1.5×12 [M10×1.5×14.5]	8.6	72 98	33	11 [15]	5	M6×0.75	7	11.4 (14.2)	28	26
VH35EM VH35GM	48	9.5	33	100	162.8 (1/3.2)	82	62	M10×1.5×13	8.6	80 114	38.5	12	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45EM VH45GM	60	14	37.5	120	193.4 (206.2)	100	80	M12×1.75×15	10.5	137	46	13	6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	126 164	55	15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type


VAH 30 EM C -**KCZ Ball slide Random-matching ball slide series code Preload code (See page A137.) VAH: VH Series random-matching ball slide T: Fine clearance. Z: Slight preload Accuracy code: KC KC: Normal grade is only available. Ball slide shape code (See page A135.) Design serial number Added to the reference number. Material/surface treatment code (See Table 15.)

Reference number for rail of random-matching type

Rail	V1H30 1000	LCN-*	** PC Z
Random-matching	rail series code		Preload code (See page A137.)
V1H: VH Series ran	ndom-matching rail		T: Fine clearance. Z: Slight preload
Size			Accuracy code: PC
Rail length (r	nm)		PC: Normal grade is only available. Design serial number
Rail shape co	de: L		Added to the reference number.
L: Standard		_	*Butting rail specification
Material/surf	ace treatment code (See Table	(5.)	N: Non-butting. L: Butting specification
		*Please	e consult with NSK for butting rail specification.

Unit:	mr

	Rail						Bas	ic load	rating				We	ight
Pitch		Tapped hole	G	Max. length	⁵Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C_{0}	M_{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150			0.17 0.25	1.6
60	6×9.5×8.5	M6×1×10	20	3 960 [3 500]	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230			0.45 0.65	1 7 h
60	7×11×9	M6×1×12	20	3 960 [3 500]	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	1	1 540 3 100		1 36
80	9×14×12	M8×1.25×15	20	4 000 [3 500]	47 000 61 000	37 500 48 500	63 000 91 500	600 870	505 1 030	3 150 5 600		2 650 4 700	l .	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350		3 800 7 000		7.2
105	14×20×17	M12×1.75×24	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600		8 150 13 100		12.3
120	16×23×20	M14×2×24	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000					13 700 22 100		16.9

⁵⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{rso} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

_	Graphi	te milling mach	ine		Location	Table	axis	
O		Condition	_					
		Condition (a) Ball or Roller s						
peratir	ng Conditions	b) Rail motion			Mounting	Orientation	a) Vertical (b) Horizontal	c) Wa ll
troke ir	n Normal Use	(Dlagas indicate)		mm]	mounting	Onomation	d) Upside-down e) Incline	ed f) Other
		(Please indicate of a) Grease (Bra					a) Automatic) Grease gun
ubricar	nt	b) Oil (Bra)	Lubricatin	g Method		nin)
peratir	ng Duration	2	years	mor	nths			
line	ear Guid	de Enviro	nment (A	Accessorie	es & C	Contami	ination)	
ontami		Graphite p		Contamina		Particle size	20 - 60un	
Ontain	THO IT				IIII SIZE	Fallicie Size		
ause o	f Contaminati	on	ly on the rail so ence with photog					
ounter	measures	a) Telescopio			c) Dust coll	ector -) Dust-resistant lubricant	
	ady assembled	1 1)		,	
omp l ete a	after inspection)	(Please supp	ly drawings to de	monstrate dust coun	termeasures	s)		
	ear Gui	de Dimens	sions					
Line			540 mm	No. of Slides/Rail		2	Accuracy Grade	P6
Line lodel	VH25AN	Rail Length	0.70 111111					
lodel		•		Duet-Proof Access	ories a) D	louble seal (h	Mounting hole can c) Prof	actor d\ Rallo
odel reload	Z1	Rail Length Max. Speed	20 mm/sec	Dust-Proof Accesso	ories a) D	ouble seal 6) Mounting hole cap c) Prot	ector d) Bello
odel reload	Z1	•		Dust-Proof Accesso	ories a) D	ouble seal 🧴	Mounting hole cap c) Prof	ector d) Bello
	Z1	•		Dust-Proof Accesso	ories a) D	ouble seal 🕠	Mounting hole cap c) Prof	ector d) Bello
odel reload	Z1	•		Dust-Proof Accesso	ories a) D	ouble seal (b	Mounting hole cap c) Prot	ector d) Bello
odel reload emarks	Z1	Max. Speed		Dust-Proof Accesse	ories a) D	ouble seal <u>(</u>	Mounting hole cap c) Prof	ector d) Bello
odel reload emarks	ability	Max. Speed	20 mm/sec	Dust-Proof Accessed	ories a) D	ouble seal 6	Mounting hole cap c) Prof	ector d) Bello
odel reload emarks	Z1	Max. Speed Fest Schedule	20 mm/sec		ories a) D	ouble seal 5	Mounting hole cap c) Prot	ector d) Bello
odel reload emarks	ability	Max. Speed Fest Schedule	20 mm/sec				Mounting hole cap c) Prot	ector d) Bello

NSK Ltd. NSK Ltd. Company Name: Date: Sales Manager Sales Representative Department: Name: Address: Tel: Fax: Sign Sign

□ In order to improve wear life in contaminated environments, NSK require dust-proof accessories (covers, lubricating oil, dust

Linear guide wear life is greatly impacted by contamination entering the slide, offset load from misalignment, as well as lubricating

condition. The final durability comes to need the evaluation confirmation with the actual machine.

collectors, etc) in addition to the recommended seal exchange.

NSK Ltd.

/lodel:					Loc	cation:				
Ор	erating (Condition	S							
Operati	ing Conditions	a) Ball or Roller sl b) Rail motion	ide motion					a) Vertical b) Horiz	rontal d	c) Wall
Stroke	in Normal Use	(Please indicate of		nm]	Moi	unting (Orientation	d) Upside-down e		•
Lubrica	ant	a) Grease (Brai	nd:) Lub	ricating	Method	a) Automatic	b) Gi	rease gun
Operati	ing Duration	b) Oil (Blui	years		months		<u> </u>	1 3111	,	
l in	ear Guid	le Enviro	nment (A	Accesso	ories	& C	ontam	ination)		
Contarr					minant Si		Particle size			
Cause	of Contaminatio		ence with photogi	ranhe)						
(For a l re comp l ete	ermeasures eady assembled paragraphic after inspection)	0,00.0.	ly drawings to de)	ust co ll e asures)		d) Dust-resistant lubric	ant	
Model		Rail Length	mm	No. of Slides/	Rail			Accuracy Gra	ıde	
Preload		Max. Speed	mm/sec	Dust-Proof Ac	cessories	a) Do	uhle seal h) Mounting hole cap	c) Protecto	or d\ Bello
Remark	rability T	Schedule	d duled (Reason:)
	L	, 101 001101	`		ntamina	ed En	vironments			,
			Lillear Guic	40 000 III 00						
				ead the below		he relev	ant boxes			

Company Name: Department:	Date: Name:		NSK Ltd. Sales Representative	NSK Ltd. Sales Manager
Address:	Tel:	Fax:	Sign	Sign

NSK Ltd.

A152

A-5-1.3 NS Series

1. Features

(1) Improve rating life dramatically

Based on the LS series characterized by reliability and performance, a significant increase in durability has been attained. New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the LS Series, the load rating capacity of the NS series has increased to 1.3 times, while the life span has increased to twice¹. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of series.

(2) Ball circulation path with excellent highspeed property

By reexamining the design practice for the ball circulation path, we have attained smooth ball circulation and reduced noise level. So, NS series is suited for high-speed applications compared with the LS Series.

(3) All mounting dimensions are the same as those for the LS and SS Series

Regarding the mounting dimensions (mounting parts' dimensions), such as the mounting height, mounting width, mounting hole diameter/pitch of the linear guide, etc., the mounting dimensions of the NS Series remain the same as those of the conventional LS series and SS series. So, the new NS Series linear guides can be used without making any design changes.

(4) High self aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity against the load in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top 2 rows, where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant models and sizes come in series.

Each size of NS Series has several ball slide models, rendering the linear guide available for numerous uses. The NS Series also has standardized long stainless- steel rail (maximum 3 500 mm).

(10) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High precision grade and medium preload types are also available in random matching. (Special high-carbon steel products)

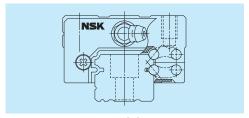


Fig. 1 NS Series

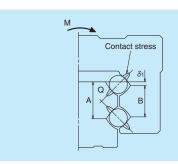


Fig. 2 Enlarged illustration of the offset Gothic arch groove

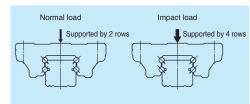


Fig. 3 When load is applied

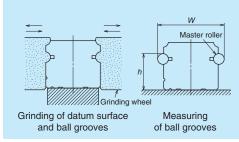


Fig. 4 Rail-grinding and measuring

2. Ball slide shape

Dall alla			ower row, Ball slide length)
Ball slide Model	Shape/installation method	Medium-load type	High-load type
Model		Standard	Long
AL CL		CL L1	AL
EM JM		JM L1	EM L1

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, JL, FL and KL models.

Note: For customers who have used the former LS or SS series, NS series is recommended as a substitute. Please confirm the correlation between NS series and former ones on the comparative table at A335.

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: µm

							o mer pinn
	Random-ma	atching type					
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 - 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 - 500	2	3	6	10	12	6	12
500 – 630	2	3.5	7	12	14	7	14
630 - 800	2	4.5	8	14	16	8	16
800 – 1 000	2.5	5	9	16	18	9	18
1 000 – 1 250	3	6	10	17	20	10	20
1 250 – 1 600	4	7	11	19	23	11	23
1 600 – 2 000	4.5	8	13	21	26	13	26
2 000 – 2 500	5	10	15	22	29	15	29
2 500 – 3 150	6	11	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

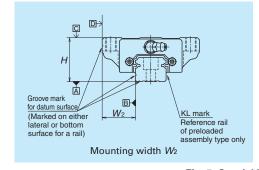
Tolerance of preloaded assembly

,	Т	ble 2			I Indian come
	10	ible Z			Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		See Table	e 1, Fig. 5 and I	ig. 6	

· Tolerance of random-matching type

	Table 3	Unit: µm
Model No. Characteristics	High precision grade PH	Normal grade PC
Mounting height H	±20	±20
Variation of mounting height H	15①	15①
	30②	30②
Mounting width W_2 or W_3	±30	±30
Variation of mounting width W_2 or W_3	20	25
Running parallelism of surface C to surface A	See Table 1, F	ig. 5 and Fig. 6

Notes: 1 Variation on the same rail


② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

	lable 4								
			Accuracy grade						
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade	
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC	
Wi	th NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC	
Wit	n NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC	
	Fine clearance Z0	0	0	0	0	0	_	_	
	Slight preload Z1	0	0	0	0	0	_	_	
pad	Medium preload Z3	0	0	0	0	_	_	_	
Preload	Random-matching type with fine clearance ZT	_	_	_	_	_	_	0	
	Random-matching type with slight preload ZZ	_	_	_	_	_	0	0	
	Random-matching type with medium preload ZH	_	_	_	_	_	0	0	

(4) Assembled accuracy

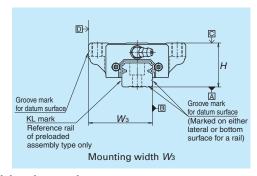
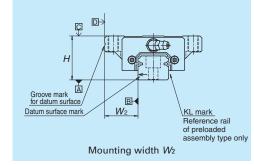



Fig. 5 Special high carbon steel

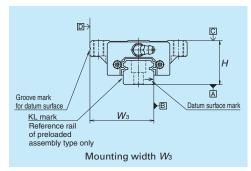


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5

	Table 5							
		D I I (NI)		Rigidity (N/μm)				
	Model No.	Preloa	Preload (N)		direction	Lateral	direction	
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload	
		Z1	Z3	Z1	Z3	Z1	Z3	
be	NS15 AL, EM	69	390	127	226	88	167	
tγ	NS20 AL, EM	88	540	147	284	108	206	
High-load type	NS25 AL, EM	147	880	206	370	147	275	
gh-l	NS30 AL, EM	245	1 370	255	460	186	345	
王	NS35 AL, EM	345	1 960	305	550	216	400	
уре	NS15 CL, JM	49	294	78	147	59	108	
ad t	NS20 CL, JM	69	390	108	186	78	137	
<u>ا</u> -ر	NS25 CL, JM	98	635	127	235	88	177	
Medium-load type	NS30 CL, JM	147	980	147	275	108	206	
Med	NS35 CL, JM	245	1 370	186	335	137	245	

Note: Clearance for Fine clearance Z0 is 0 to 3 μ m. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15 μ m.

· Clearance and preload of random-matching type

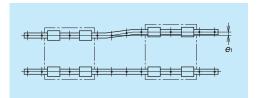
Table 6 Unit: բո							
Model No.	Fine clearance	Slight preload	Medium preload				
Model No.	ZT	ZZ	ZH				
NS15	-4 — 15	-4 — 0	-7 —-3				
NS20	-4 — 15	-4 — 0	-7 —-3				
NS25	-5 — 15	-5 — O	-9 — -4				
NS30	-5 — 15	-5 — O	-9 — -4				
NS35	-5 — 15	-6 — O	-10 — <i>-</i> 4				

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails


	Unit:								
Series	Size								
	Material	15	20	25	30	35			
NS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000			
INO	Stainless steel	1 800	3 500	3 500	3 500	3 500			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

NSK

5. Installation

(1) Permissible values of mounting error

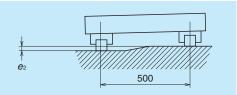
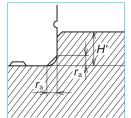
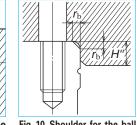


Fig. 7


Fig. 8


Table 8

Unit: um

						Office pitt
Value	Preload			Model No.		
value	rieloau	NS15	NS20	NS25	NS30	NS35
Permissible values of	Z0, ZT	20	22	30	35	40
parallelism in two rails e_1	Z1, ZZ	15	17	20	25	30
parallelistii iii two ralis e ₁	Z3, ZH	12	15	15	20	25
Permissible values of	Z0, ZT 375 μm/500 mm					
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1, ZZ, Z3, ZH	330 μm/500 mm				

(2) Shoulder height of the mounting surface and corner radius r

		Table 9		Unit: mm
Model No.	Corner radius	Corner radius (maximum)		r height
iviouei ivo.	r _a	$r_{\rm b}$	H'	H"
NS15	0.5	0.5	4	4
NS20	0.5	0.5	4.5	5
NS25	0.5	0.5	5	5
NS30	0.5	0.5	6	6
NS35	0.5	0.5	6	6

T-1-1- 0

Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

6. Maximum allowable speed

An indication of the standard maximum allowable speed aiming at 10,000km operation with NS series under normal conditions is shown in Table 10. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 10 Maximum allowable speed Unit: m/min

Size Series	15	20	25	30	35
NS			300		

7. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

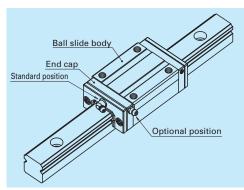


Fig. 12 Mounting position of lubrication accessories
A159

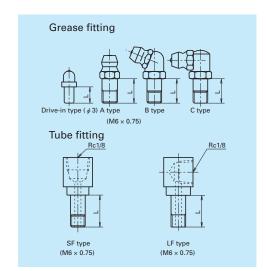


Fig. 11 Grease fitting and tube fitting

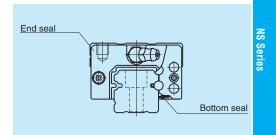
Table 11 Unit:							
Model	Dust-proof	Dime	ension L				
No.	specification	Grease fitting	Tube	fitting			
INO.	specification	/Drive-in type	SF type	LF type			
	Standard	5	-	-			
NS15	With NSK K1	10	-	_			
11212	Double seal	*	_	_			
	Protector	*	-	_			
	Standard	5	-	_			
NS20	With NSK K1	10	-	_			
14320	Double seal	8	-	_			
	Protector	8	_	_			
	Standard	5	6	6			
NS25	With NSK K1	12	11	11			
14323	Double seal	10	9	9			
	Protector	10	9	9			
	Standard	5	6	6			
NS30	With NSK K1	14	12	13			
14330	Double seal	12	10	11			
	Protector	12	10	11			
	Standard	5	6	6			
NS35	With NSK K1	14	12	13			
11335	Double seal	12	10	11			
	Protector	12	10	11			

*) A connector is required for this model. Please contact NSK.

8. Dust-proof components

(1) Standard specification

The NS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.



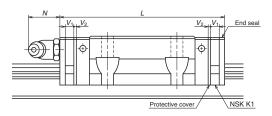

Fig. 13

Table 12 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	15	20	25	30	35
NS	8	9	9	9	10

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 13

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N		
NS15	Standard	AL, EM	56.8	66.4	4.0	0.8	(E)		
11212	Short	CL, JM	40.4	50	4.0	0.8	(5)		
NS20	Standard	AL, EM	65.2	75.8	4.5	4.5	4 6	0.8	(14)
11320	Short	CL, JM	47.2	57.8		0.0	(14)		
NS25	Standard	AL, EM	81.6	92.2	4.5	4.5	0.8	(14)	
11525	Short	CL, JM	59.6	70.2	4.5	0.8	(14)		
NS30	Standard	AL, EM	96.4	108.4	5.0	1.0	(1.4)		
11330	Short	CL, JM	67.4	79.4	5.0	1.0	(14)		
NS35	Standard AL, EM 108	108	121	- F	1.0	(1.4)			
14535	Short	CL, JM	77	90	5.5	1.0	(14)		

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, V, × 2)

(3) Double seal

Use a double seal set as showing in **Table 14**, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.14 is required.

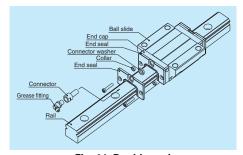


Fig. 14 Double seal

(4) Protector

Use a protector set as showing **Table 15**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.15 is required.

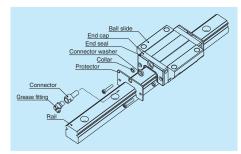


Fig. 15 Protector

Table 14 Double-seal set

Model No.	Referer Without connector	Increased thickness V ₃ (mm)	
NS15	LS15WS-01	*	2.8
NS20	LS20WS-01	LS20WSC-01	2.5
NS25	LS25WS-01	LS25WSC-01	2.8
NS30	LS30WS-01	LS30WSC-01	3.6
NS35	LS35WS-01	LS35WSC-01	3.6

Table 15 Protector set

Model No.	Referer Without connector	Increased thickness V ₄ (mm)	
NS15	LS15PT-01	*	3
NS20	LS20PT-01	LS20PTC-01	2.7
NS25	LS25PT-01	LS25PTC-01	3.2
NS30	LS30PT-01	LS30PTC-01	4.2
NS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

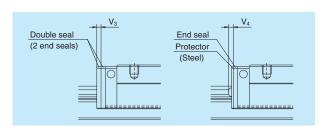


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Cap	Quantity
	secure rail	reference No.	/case
NS15	M3	LG-CAP/M3	20
NS15	M4	LG-CAP/M4	20
NS20	M5	LG-CAP/M5	20
NS25, NS30	M6	LG-CAP/M6	20
NS35	M8	LG-CAP/M8	20

(6) Inner seal

Inner seal is only available for the models shown below.

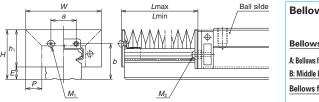
Table 17

Series	Model No.
NS	NS20, NS25, NS30, NS35

(7) Bellows

- A bellows fastener kit, which includes one of bellows faster, two of M₁ set screws, two of M₂ set screws, and two collars for M₂ set screws as showing Fig. 7.7 on page A55, is supplied with bellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as showing Table 18, when installing bellows to completed standard products.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.


 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 18 Bellows fastner kit reference No.

Model No.	Kit reference No.
NS15	LS15FS-01
NS20	LS20FS-01
NS25	LS25FS-01
NS30	LS30FS-01
NS35	LS35FS-01

Dimension tables of bellows NS Series

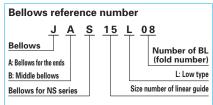


Fig. 17 Dimensions of bellows

Table 19	Dimensions	of bellows
----------	------------	------------

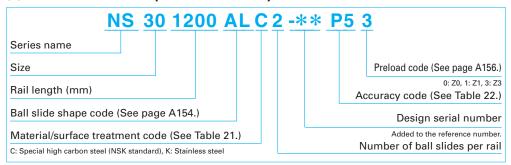
Unit: mm

Model No.	Н	h₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14
JAS20L	27	21	6	48	10	13	19.7	17 M3×5		M2.5 × 14
JAS25L	32	25	7	51	10	15	23.2	17	M3 × 5	M3 × 18
JAS30L	41	32	9	66	15	16	29	17	M4 × 6	M4 × 19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4 × 6	M4 × 22

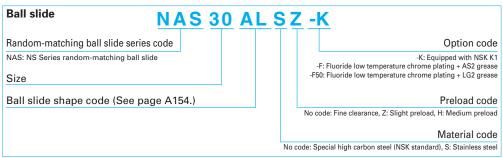
Table 20 Numbers of folds (BL) and lengths of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Wiodel No.	Lmin	34	68	102	136	170	204	238	272	306	340
14.0451	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAS15L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14.0001	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAS20L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14 0001	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAS35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both side, then by dividing the sum by 2.

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

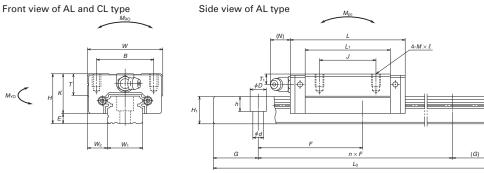
N1S30 1200 L C	N -** PC Z
Random-matching rail series code N1S: NS Series random-matching rail Size	Preload code (See page A156.) T: Fine clearance. Z: Slight preload (common rail for slight or medium preload) Accuracy code
Rail length (mm)	PH: High precision grade random-matching type PC: Normal grade random-matching type Design serial number
Rail shape code	Added to the reference number.
L: Standard T: NS15 with mounting holes for M4	*Butting rail specification
Material/surface treatment code (See Table 21.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

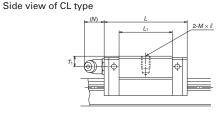
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A156).

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 21 Material/surface treatment code

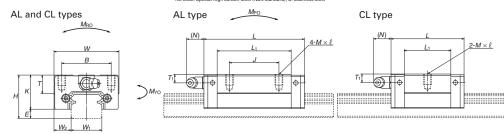
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

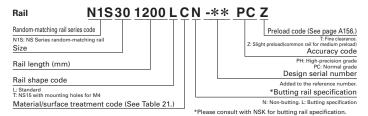

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

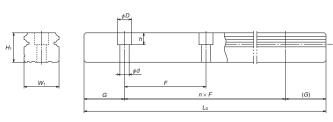

Table 22 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.




		As	ssemb	ly		Ball slide											
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height	
Wiodorivo		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	T ₁	N	W_1	H ₁
	NS15CL NS15AL	24	4.6	9.5	34	40.4 56.8	26	— 26	M4×0.7×6	23.6 40	19.4	10	\$ 3	6	3	15	12.5
	NS20CL NS20AL	28	6	11	42	47.2 65.2	32	— 32	M5×0.8×7	30 48	22	12	M6×0.75	5.5	11	20	15.5
	NS25CL NS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	38 60	26	12	M6×0.75	7	11	23	18
	NS30CL NS30AL	42	9	16	60	67.4 96.4	40	— 40	M8×1.25×12	42 71	33	13	M6×0.75	8	11	28	23
	NS35CL NS35AL	48	10.5	18	70	77 108	50	— 50	M8×1.25×12	49 80	37.5	14	M6×0.75	8.5	11	34	27.5


Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

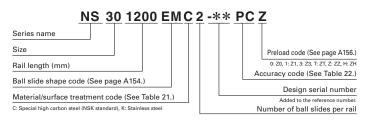
Reference number for ball slide of random-matching type

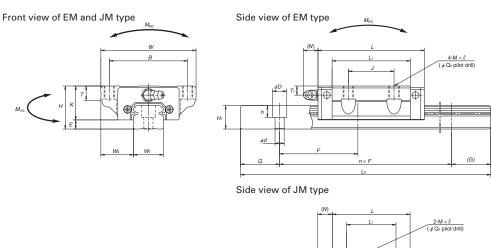
Reference number for rail of random-matching type

Unit: mm

Rail				Basic load rating							We	ight	
Pitch	Mounting	G	Max. length	2)Dyr	amic	Static		Static moment (N·m)					Rail
	bolt hole		L _{0max} .	[50km]	[100km]	C 0	MRO	М	PO	M _{YO}		slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.58 0.85	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of NS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

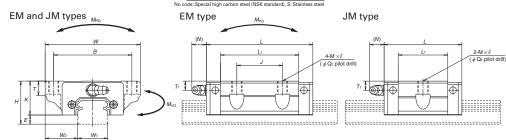
If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.

NS-JM (Medium-load type / Short) NS-EM (High-load type / Standard)

	A:	ssemb	oly		Ball slide												
Model No.	Height			Width	Length			Mounting hole					Grease	fittin	g	Width	Height
Model No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	K	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
NS15JM NS15EM		4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×7	4.4	23.6 40	19.4	8	φ3	6	3	15	12.5
NS20JM NS20EM		6	19.5	59	47.2 65.2	49	— 32	M6×1×9 (M6×1×9.5)	5.3	30 48	22	10	M6×0.75	5.5	11	20	15.5
NS25JM NS25EM		7	25	73	59.6 81.6	60	— 35	M8×1.25×10 (M8×1.25×11.5)		38 60	26	11 (12)	M6×0.75	7	11	23	18
NS30JM NS30EM	42	9	31	90	67.4 96.4	72	-	1(1V11UX1.5X14.5)	8.6	I / I I	33	11 (15)	M6×0.75	8	11	28	23
NS35JM NS35EM		10.5	33	100	77 108	82	- 50	M10×1.5×13 (M10×1.5×14.5)	8.6	49 80	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

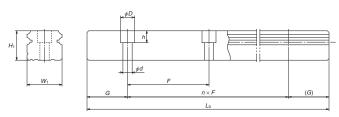
Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type


Ball slide

NAS 30 EM S

Random-matching ball slide series code
NAS: NS Series random-matching ball slide
NAS: NS Series random-matching ball slide
Size


Ball slide shape code (See page A154.)

Preload code
No code: Fine clearance, 2: Slight preload, th: Medium preload
Material code

Reference number for rail of random-matching type

N1S301200LCN-** PCZ Rail Random-matching rail series code Preload code (See page A156.) N1S: NS Series random-matching rail T: Fine clearance Z: Slight preload(common rail for medium preload Accuracy code PH: High-precision grade PC: Normal grade Rail length (mm) Design serial number Rail shape code Added to the reference number L: Standard T: NS15 with mounting holes for M4 *Butting rail specification Material/surface treatment code (See Table 21.) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification

Unit: mm

Rail				Basic load rating							We	ight	
Pitch	Mounting	G	Max.	3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length $L_{\scriptscriptstyle 0max}$.	[50km]	[100km]	C 0	M _{RO}	M_{PO} M_{YO}		140	slide		
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

Standard mounting note of NS 15 rail is for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$).

If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.

²⁾ Parenthesized dimensions are for items made of stainless steel

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

⁴⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of NS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

A-5-1.4 LW Series

1. Features

(1) Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load from rolling direction. This makes the LW Series ideal for a single rail, compact linear guideway system.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

Same as the NH and NS series, the offset Gothic arch grooves support a large load, such as an impact, by four rows.

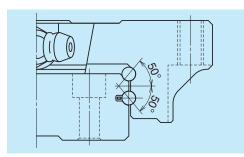


Fig. 1 Balls in contact

(4) High accuracy

Fixing master rollers to ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide Model	Shape / installation method	Туре
EL		EL

3. Accuracy and preload

(1) Running parallelism of ball slide

			Unit: µm		
	Preloaded	assembly (not random	matching)	Random-matching type	
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC	
- 50	2	4.5	6	6	
50 – 80	3	5	6	6	
80 – 125	3.5	5.5	6.5	6.5	
125 – 200	4	6	7	7	
200 – 250	5	7	8	8	
250 – 315	5	8	9	9	
315 – 400	6	9	11	11	
400 - 500	6	10	12	12	
500 – 630	7	12	14	14	
630 - 800	8	14	16	16	
800 – 1 000	9	16	18	18	
1 000 – 1 250	10	17	20	20	
1 250 – 1 600	11	19	23	23	
1 600 – 2 000	13	21	26	26	
2 000 – 2 500	15	22	29	29	
2 500 – 3 150	17	25	32	32	
3 150 – 4 000	23	30	34	34	

(2) Accuracy standard

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade only.

· Tolerance of preloaded assembly type

Та	Table 2				
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2				

• Tolerance of random-matching type: Normal grade PC

Т	able 3 Unit: μm
Model No. Characteristics	LW17, 21, 27, 35, 50
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±30
Variation of mounting width W_2 or W_3	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 2

Note: 1 Variation on the same rail

2 Variation on multiple rails

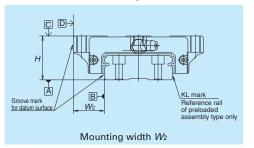

(3) Combination of accuracy and preload

Table 4

			10 4				
		Accuracy grade					
		High precision	Precision grade	Normal grade	Normal grade		
Wi	thout NSK K1 lubrication unit	P5	P6 PN PC		PC		
Wi	th NSK K1 lubrication unit	K5	K6	KN	KC		
Wit	n NSK K1 for food and medical equipment	F5	F6	FN	FC		
	Fine clearance Z0	0	0	0	_		
_	Slight preload Z1	0	0	0	_		
Preload	Medium preload Z3	0	0	_	_		
ъ.	Random-matching type with fine clearance ZT	_	_	_	0		
	Random-matching type with slight preload ZZ	_	_	_	0		

Note: Z3 medium preload is only applicable to models of LW35 and LW50.

(4) Assembled accuracy

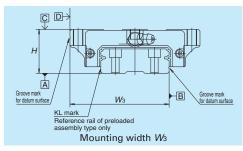


Fig. 2

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with Random-matching type of Fine clearance ZT and Slight preload ZZ. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 5

		Tubic 5				
	Duala	ad /NI\		Rigidity	(N/µm)	
Model No.	Preload (N)		Vertical	direction	Lateral direction	
	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
	Z1	Z3	Z1	Z3	Z1	Z3
LW17 EL	0 – 245	-	156	-	112	-
LW21 EL	0 – 294	-	181	-	130	-
LW27 EL	0 – 390	-	226	-	167	-
LW35 EL	0 – 490	785	295	440	213	315
LW50 EL	0 – 590	1 470	345	600	246	425

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

• Clearance and preload of random-matching type

	Table 6	Unit: µm
Model No.	Fine clearance	Slight preload
woder no.	ZT	ZZ
LW17	- 3 – 15	-3.5 - 0
LW21	- 3 - 15	-3.5 - 0
LW27	-4 - 15	-4 -0
LW35	-5 - 15	-5 -0
LW50	- 5 - 15	−7 − 0

Note: Minus sign denotes elastic deformation of balls representing.

5. Installation

(1) Permissible values of mounting error

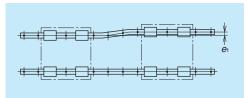


Fig. 3

4. Maximum rail length

 Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails
Unit:

	ŭ				Unit	: mm
Series	Size Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

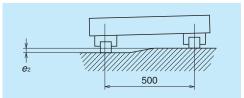


Fig. 4

Table 8

Unit	t: I	un

Value	Preload			Model No.			
value	TTeloau	LW17	LW21	LW27	LW35	LW50	
Permissible values of	Z0, ZT	20	20	25	38	50	
parallelism in two rails e_1	Z1, ZZ	9	9	13	23	34	
Permissible values of	Z0, ZT		1	00 μm/500 mn	n		
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1, ZZ	45 μm/500 mm					

(2) Shoulder height of the mounting surface and corner radius ${\bf r}$

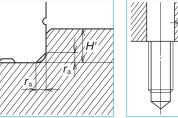


Fig. 5 Shoulder for the rail datum surface

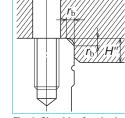


Fig. 6 Shoulder for the ball slide datum surface

				Unit: mm		
Mode	Model No.	Corner radius	s (maximum)	Shoulder height		
iviodei ivo.		r _a	$r_{\rm b}$	H'	H"	
	LW17	0.3	0.3	2.2	4	
	LW21	0.3	0.3	2.5	5	
	LW27	0.5	0.5	3.5	5	
	LW35	0.5	0.8	3.5	5	
	LW50	0.8	0.8	4	6	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 7 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

		Table 10		Unit: mm			
Model	Dust-proof	Dimension L					
No.	specification	Grease fitting		fitting			
INO.	specification	/Drive-in type	SF type	LF type			
	Standard	5	_	_			
LW17	With NSK K1	10	_				
LVV I /	Double seal	*	_	_			
	Protector	*	_	_			
	Standard	5	_	_			
LW21	With NSK K1	12	_	_			
LVVZI	Double seal	10	_				
	Protector	10	_	_			
	Standard	5	5	5			
LW27	With NSK K1	12	12	12			
LVV2/	Double seal	10	9	9			
	Protector	10	9	9			
	Standard	5	6	6			
LW35	With NSK K1	14	14	13			
LVV35	Double seal	10	10	9			
	Protector	10	10	9			
	Standard	8	13.5	17			
LW50	With NSK K1	18	18	19			
LVV5U	Double seal	14	16	17			
	Protector	14	13.5	17			

^{*)} A connector is required for the grease fitting. Please contact NSK.

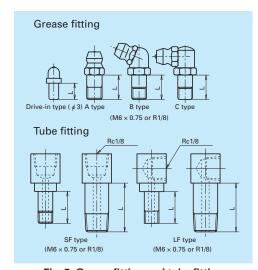


Fig. 7 Grease fitting and tube fitting

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We may mount them on a side of end cap for LW27, 35, and 50 as an option. (Fig. 8)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector for a connection to a grease fitting mounting hole with M6 × 0.75. The connector is available from NSK.

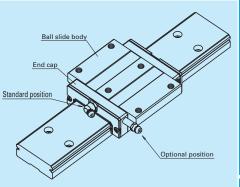


Fig. 8 Mounting position of lubrication accessories

7. Dust-proof components

(1) Standard Specification

The LW Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the series has an end seal on both ends and bottom seals at the bottom.

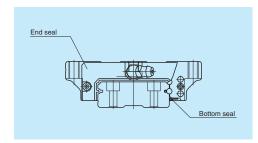


Fig. 9

Table 11 Seal friction per ball slide (maximum value) Unit: N

					O I I I I
Series Size	17	21	27	35	50
LW	6	8	12	16	20

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

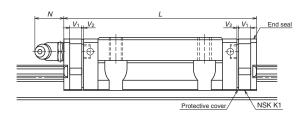


Table 12

	mm

Model No.	Ball slide length	Ball slide model	Standard ball Slide length installed with two NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting $\cal N$	
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)	
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)	
LW27	Standard	EL	74	86.6	5.5	0.8	(13)	
LW35	Standard	EL	108	123	6.5	1.0	(13)	
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)	

Note: 1) NSK K1 for food and medical equipments are available for the models of LW17 to LW35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 x Number of NSK K1) + (Thickness of the protective cover, V_2 x 2)

(3) Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 10)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.10 is required.

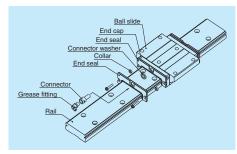


Fig. 10 Double seal

Table 13 Double-seal set

Model No.	Referer	Increased thickness V ₃	
wiodei ivo.	Without connector	(mm)	
LW17	LW17WS-01	*	2.6
LW21	LW21WS-01	LW21WSC-01	2.8
LW27	LW27WS-01	LW27WSC-01	2.5
LW35	LW35WS-01	LW35WSC-01	3
LW50	LW50WS-01	LW50WSC-01	3.6

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

(4) Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.11)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.11 is required.

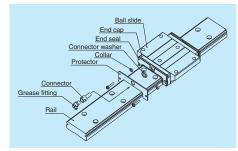
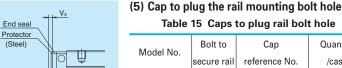



Fig. 11 Protector seal

Table 14 Protector set

Model No.	Referer Without connector	Increased thickness V ₄ (mm)	
LW17	LW17PT-01	*	3.2
LW21	LW21PT-01	LW21PTC-01	3.2
LW27	LW27PT-01	LW27PTC-01	2.9
LW35	LW35PT-01	LW35PTC-01	3.6
LW50	LW50PT-01	LW50PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

Model No.	Bolt to	Сар	Quantity
	secure rail reference No		/case
LW17, LW21, LW27	M4	LG-CAP/M4	20
LW35	M6	LG-CAP/M6	20
LW50	M8	LG-CAP/M8	20

Fig. 12

Double seal

(2 end seals)

(6) Bellows

· Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LW series

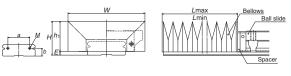


Fig. 13

Bellows reference number J A W 21 L 08 Bellows A: Bellows for the ends B: Middle bellows Bellows for LW series Bellows for LW series

Table 16 Dimensions of bellows

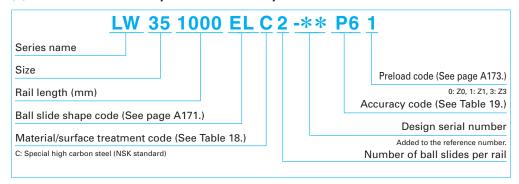
Unit: mm

Model No.	Н	h_1	Ε	W	Р	а	b	BL minimum length	Tap (<i>M</i>) x depth	
JAW17N	25.5	23	2.5	68	15	22	6	17	M3×6	
JAW21N	29	26	3	75	17	26	7	17	M3 × 6	
JAW27N	37	33	4	85	20	28	10	17	M3×6	
JAW35L	34	30	4	100	14	48	12	17	M4×8	
JAW35N	41	37	4	115	20	40	12	17	1VI4 X O	
JAW50L	46.5	42	4.5	135	20	70	14	17	M4×8	
JAW50N	56.5	52	4.5	160	30	70	14	17	IVI4 ∧ 0	

Table 17 Numbers of folds (BL) and length of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAVVI/IV	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAW21N	Stroke	204	408	612	816	1 020	1 224	1 428	1 632	1 836	2 040
JAVVZIIN	Lmax	238	476	714	952	1 190	1 428	1 666	1 904	2 142	2 380
JAW27N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVZ/IV	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW35L	Stroke	162	324	486	648	810	972	1 134	1 296	1 458	1 620
JAVVSSL	Lmax	196	392	588	784	980	1 176	1 372	1 568	1 764	1 960
JAW35N	Stroke	218	436	654	872	1 090	1 308	1 526	1 744	1 962	2 180
JAVVJJIV	Lmax	252	504	756	1 008	1 260	1 512	1 764	2 016	2 268	2 520
JAW50L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVOUL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW50N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAVVSUN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail L1W35 10	000 L C N -** PC Z
Random-matching rail series code	Preload code (See page A173.)
L1W: LW Series random-matching rail Size	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See 7	Table 18.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A173).

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 18 Material/surface treatment code

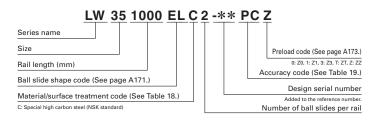
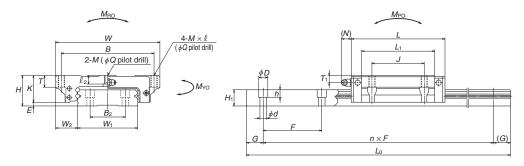

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 19 Accuracy code

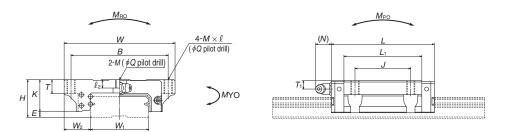
Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC


Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

LW-EL

Front view

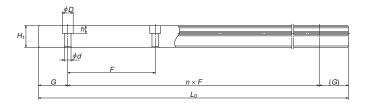
Side view


	As	Assembly Ball slide																
Model No. Height				Width Length			Mounting hole							Grease	fittin	g	Width	Height
Model No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L2	Q	L_1	K	T	Hole size	T_1	Ν	W_1	H_1
LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	35	14.5	6	φ 3	4	3	33	8.7
LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	41	18	8	M6×0.75	4.5	11	37	10.5
LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	56	23	10	M6×0.75	6	11	42	15
LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	84	31	14	M6×0.75	8	11	69	19
LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	108	45.5	18	Rc1/8	14	14	90	24

Reference number for ball slide of random-matching type **LAW 35 EL Z-K**

Random-matching ball slide series code

LAW: LW Series random-matching ball slide Option code -F: Fluoride low temperature chrome plating + AS2 grease -F50: Fluoride low temperature chrome plating + LG2 grease Ball slide shape code (See page A171.) Preload code No code: Fine clearance, Z: Slight preload



Reference number for rail of random-matching type

Rail	L1W35 1000 L	<u>CN -*</u>	* P	<u>C Z</u>
Random-matching rai	Il series code			Preload code (See page A173.)
L1W: LW Series rando	om-matching rail			T: Fine clearance. Z: Slight preload
Size				Accuracy code: PC
Rail length (mn	n)			PC: Normal grade is only available. Design serial number
Rail shape code	e: L			Added to the reference number. *Butting rail specification
L: Standard				<u> </u>
Material/surfac	e treatment code (See Table 18.)	_		N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification

Unit: mm

F	Rail					Basic load rating					Weight			
	Pitch	Mounting	G	Max. length	1) Dy	namic	Static		Static moment (N·m)				Ball	Rail
		bolt hole		L_{0max} .	[50km]	[100km]	C 0	MRO	М	PO	М	YO	slide	
B_2	F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
18	40	4.5×7.5×5.3	15	1 000	5 600	4 450	11 300	135	44	288	37	242	0.2	2.1
22	50	4.5×7.5×5.3	15	1 600	6 450	5 150	13 900	185	65.5	400	55	335	0.3	2.9
24	60	4.5×7.5×5.3	20	2 000	12 800	10 200	26 900	400	171	970	143	815	0.5	4.7
40	80	7×11×9	20	2 000	33 000	26 400	66 500	1 690	645	3 550	545	2 990	1.5	9.6
60	80	9×14×12	20	2 000	61 500	48 500	117 000	3 900	1 530	8 200	1 280	6 900	4.0	15.8

Note: The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{too} , the basic dynamic load rating for 100 km rated fatigue life

1. PU Series	A187
2. LU Series	A197
3. PE Series	A209
4. LE Series	A219
5. Miniature LH	
Series	A233
6. LL Series	A243

A-5-2 Miniature Series

A-5-2.1 PU Series (Miniature type)

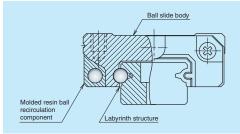


Fig. 1

1. Features

(1) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(2) Lightweight

The ball slide is fabricated to be approximately 20% lighter than LU Series by the application of resin to a part of its body.

(3) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(4) Low dust generation

The structure is designed to prevent dust generation.

(5) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(6) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(7) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(8) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

(9) Fast delivery

Lineup of random-matching rails and ball slides facilitates fast delivery. (PU09 to PU15)

NSK

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long	-
AR TR AL UR BL BR		TR, AR, AL	UR, BL, BR	PU Series

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: µm

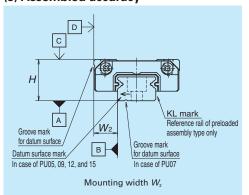
	Preload	ed assembly type	e (not random ma	atching)	Random-matching type
Rail length (mm)	Super precision P4	High precision Precision grade Normal gra		Normal grade PN	Normal grade PC
- 50	2	2	4.5	6	6
50 – 80	2	3	5	6	6
80 – 125	2	3.5	5.5	6.5	6.5
125 – 200	2	4	6	7	7
200 – 250	2.5	5	7	8	8
250 - 315	2.5	5	8	9	9
315 – 400	3	6	9	11	11
400 - 500	3	6	10	12	12
500 - 630	3.5	7	12	14	14
630 - 800	4.5	8	14	16	16
800 – 1 000	5	9	16	18	18
1 000 – 1 250	6	10	17	20	20

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2 Unit								
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B Shown in Table 1 and Fig. 2								

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PU09, 12 and 15
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

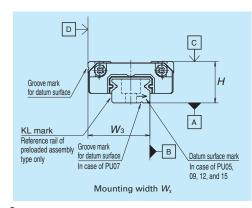


Fig. 2

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for preloaded assembly type, along with Fine clearance ZT for random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

	Table 4							
		Preload	Rigidity					
	Model No.	(N)	(N/µm)					
		Slight preload (Z1)	Slight preload (Z1)					
96	PU05TR	0 - 3	17					
ξ	PU07AR	0 - 8	22					
lard	PU09TR	0 – 10	30					
Standard type	PU12TR	0 – 17	33					
St	PU15AL	0 – 33	45					
ad	PU09UR	0 – 14	46					
High-load type	PU12UR	0 – 25	52					
ΞĒ	PU15BL	0 – 51	75					

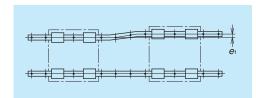
Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance
	Wodel IVo.	ZT
ard	PU09TR	
nda	PU12TR	3 or less
Sta	PU15AL	
bad	PU09UR	
High-load Standard type type	PU12UR	5 or less
Ξ̈́	PU15BL	

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.


Table 6 Length limitations of rails

	-				Unit	: mm
Series	Size					
	Material	05	07	09	12	15
PU	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

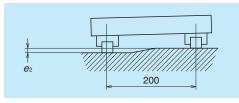
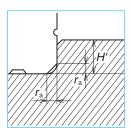



Fig. 3

Fig. 4

Table 7 Unit: ,										
Value	Dualaad	Model No.								
Value	Preload	PU05	PU07	PU09	PU12	PU15				
Permissible values of	Z0, ZT	10	12	15	20	25				
parallelism in two rails e_1	Z1	7	10	13	15	21				
Permissible values of	Z0, ZT		1	50 μm/200 m	m					
parallelism (height) in two rails e_2	Z1	Z1 90 um/200 mm								

(2) Shoulder height of the mounting surface and corner radius r

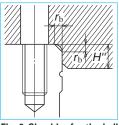


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Uı	nit: mm		
Model No.	Corner radiu	s (maximum)	Shoulde	r height
Model No.	ra	r _b	H′	H"*
PU05	0.2	0.2	0.7	2.3
PU07	0.2	0.3	1.2	2.5
PU09	0.3	0.3	1.9	2.6
PU12	0.3	0.3	2.5	3.4
PU15	0.3	0.5	3.5	4.4

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PU15 can select drive-in type grease fitting as an option.

For the models of PU05 to PU12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

7. Dust-proof components

(1) Standard specification

An end seal provided to both ends of a ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

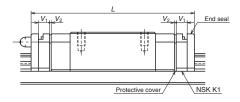
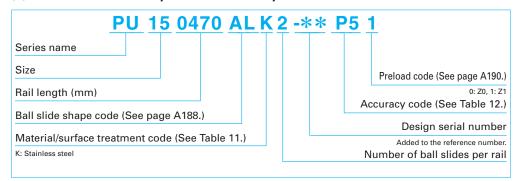


Table 10

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2	
PU05	Standard	TR	19.4	24.4	2	0.5	
PU07	Standard	AR	23.4	29.4	2.5	0.5	
DLIOO	Standard	TR	30	36.4	2.7	0.5	
PU09	Long	UR	41	47.4	2.7	0.5	
PU12	Standard	TR	35	42	3	0.5	
FU12	Long	UR	48.7	55.7	3	0.5	
PU15	Standard	AL	43	51.2	3.5	0.6	
PU15	Long	BL	61	69.2	3.5	0.6	

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

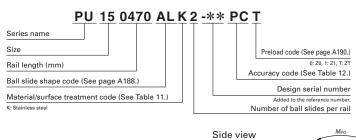
P1U 15 04	170 RKN -** PC T
Random-matching rail series code	Preload code (See page A190.)
P1U: PU Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Pail langth (mm)	PC: Normal grade is only available.
Rail length (mm)	Design serial number
Rail shape code	Added to the reference number.
S: PU09, 12, R: PU15	*Butting rail specification
	N: Non-butting. L: Butting specification
Material/surface treatment code (See T	*Please consult with NSK for butting rail specification.

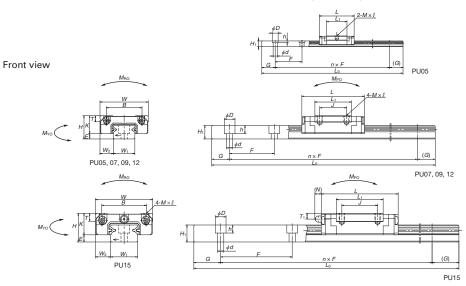
The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload code of "fine clearance T" is available (refer to page A190).

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 11 Material/surface treatment code

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

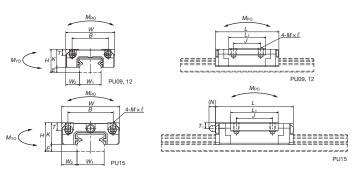

Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for the NSK K1 lubrication unit.

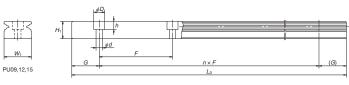
9. Dimensions

PU-TR, AR, AL (Standard type / Standard) PU-UR, BL (High-load type / Long)



	As	ssemb	oly		Ball slide											
Model No.	Height			Width	Length		Mour	nting hole				Oil	hole		Width	Height
Wiodel No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	K	T	Hole size	T_1	N	W_1	H_1
PU05TR	6	1	3.5	12	19.4	8	_	M2×0.4×1.5	11.4	5	2.3	φ 0.9	1.5	_	5	3.2
PU07AR	8	1.5	5	17	23.4	12	8	M2×0.4×2.4	13.3	6.5	2.45	\$ 1.5	1.8	_	7	4.7
PU09TR	10	2.2	5.5	20	30	15	10	M3×0.5×3	19.6	7.8	2.6				9	5.5
PU09UR	10	2.2	0.0	20	41	10	16	1010/0.0/0	30.6	7.0	2.0					0.0
PU12TR PU12UR	13	3	7.5	27	35 48.7	20	15 20	M3×0.5×3.5	20.4	10	3.4	_	_	_	12	7.5
									-							
PU15AL PU15BL	16	4	8.5	32	43 61	25	20 25	M3×0.5×5	26.2	12	4.4	\$ 3	3.2	(3.6)	15	9.5

Notes: 1) The ball slide of PU05TR has only two mounting tap holes in the center.


Reference number for ball slide of random-matching type PAU 15 AL S -K

Reference number for rail of random-matching type

Rail	P1U15 04	70 RKN -*	* <u>PC T</u>
Random-matching	g rail series code		Preload code (See page A190.)
P1U: PU Series ra	indom-matching rail		T: Fine clearance
Size			Accuracy code: PC
Rail length (mm)		PC: Normal grade is only available. Design serial number
Rail shape co	ode		Added to the reference number.
S: PU09, 12, R: PU	J15		*Butting rail specification
			N: Non-butting. L: Butting specification
Material/surf	face treatment code (See Ta	ıble 11.)	

*Please consult with NSK for butting rail specification.

Unit: mm

Rail					Basic load rating						We	ight	
Pitch	Mounting bolt	G	Maximum	²⁾ Dyr	namic	Static		Static	momen	t (N·m)		Ball	Rail
	hole		length	[50km]	[100km]	C 0	MRO	М	PO	М	Y0	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100mm)
15	2.3×3.3×0.8	5	210	520	410	775	2.06	1.28	9.90	1.28	9.90	4	11
15	2.4×4.2×2.3	5	375	1 090	860	1 370	5.20	2.70	21.8	2.70	21.8	8	23
20	3.5×6×4.5	7.5	600	1 490	1 180	2 150	9.90	6.10	41.0	6.10	41.0	16	35
20	3.0004.0	7.5	000	2 100	1 670	3 500	16.2	15.6	88.0	15.6	88.0	25	30
25	3.5×6×4.5	10	800	2 830	2 250	3 500	21.1	11.4	73.5	11.4	73.5	32	65
25	3.50004.5	10	800	4 000	3 150	5 700	34.5	28.3	174	28.3	174	53	05
40	3.5×6×4.5	15	1 000	5 550	4 400	6 600	49.5	25.6	190	25.6	190	59	105
40	3.57084.5	10	1 000	8 100	6 400	11 300	84.5	69.5	435	69.5	435	100	105

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C_{so}; the basic dynamic load rating for 50 km rated fatigue life C_{no} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ To fix rail of PU05TR, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument.

⁽JCIS 10-70 No. 0 pan head machine screw No.1.)
(JCIS: Japanese Camera Industrial Standard.)

A-5-2.2 LU Series (Miniature type)

1. Features

(1) Super-small type

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch) .

(2) Equal load carrying capacity in vertical and lateral directions

The contact angle is set at 45 degrees, thus facilitating the equal load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

(3) Stainless steel is also standardized

Items made of the martensitic stainless steel are available as standard.

(4) Some series have a ball retainer

Ball slide types AR and TR come with a ball retainer. Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail. (Ball slides of random-matching type as well as LU15 come with ball retainer.)

(5) Fast delivery

Random-matching of rails and ball slides are available. (LU09 to LU15)

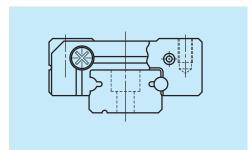


Fig. 1 LU Series

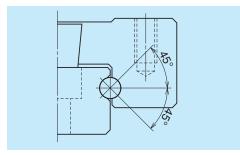


Fig. 2 Balls are in contact.

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type
AL TL AR TR BL UL		AL, TL, TR, AR	Long BL, UL

Specification	Detail	Ту	pe
Mounting hala	Normal	AL, AR	BL
Mounting hole	Large	TL, TR	UL
Ball retainer	Without	AL*, TL	BL*, UL
Dan retainer	With	AR, TR	-

^{*)} LU15 is equipped with ball retainer

3. Accuracy and preload

(1) Running parallelism of ball slide

Ta	bl	е	1

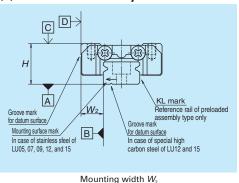
Unit:	um
OIIIL.	μιιι

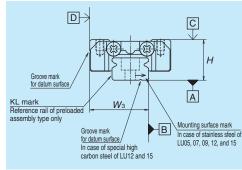
	Preloaded assembly type (not random matching)						
Rail length (mm)	Super precision High precision Precision grade PF P6		Normal grade PN	Normal grade PC			
- 50	2	2	4.5	6	6		
50 – 80	2	3	5	6	6		
80 – 125	2	3.5	5.5	6.5	6.5		
125 – 200	2	4	6	7	7		
200 - 250	2.5	5	7	8	8		
250 - 315	2.5	5	8	9	9		
315 - 400	3	6	9	11	11		
400 - 500	3	6	10	12	12		
500 - 630	3.5	7	12	14	14		
630 - 800	4.5	8	14	16	16		
800 – 1000	5	9	16	18	18		
1000 – 1250	6	10	17	20	20		

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type, while Table 3 shows the accuracy standard for the random-matching type.


· Tolerance of preloaded assembly


Table 2 Unit: μ						
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	m of surface C to surface A Refer to Table 1 and Fig. 3 m of surface D to surface B					

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LU09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

Mounting width W₃

Fig. 3

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity
	NA N	(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
	LU05 TL	0 - 3	15
96	LU07 AL	0 - 8	22
₹	LU09 AL, TL	0 – 12	26
lard	LU09 AR, TR	0 – 10	30
Standard type	LU12 AL, TL	0 – 17	33
St	LU12 AR, TR	0 – 17	33
	LU15 AL	0 – 33	45
ad	LU09 BL, UL	0 – 17	43
High-load type	LU12 BL, UL	0 – 25	52
Hig	LU15 BL	0 – 51	75

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, the clearance of the Z0 of PN grade is 3 to 10 μm .

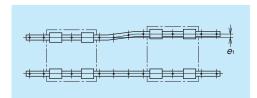
Clearance of random-matching type

Tab	le 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitation of rails

	Unit	: mm				
Series	Size Material	05	07	09	12	15
LU	Special high carbon steel	_	_	1 200	1 800	2 000
	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

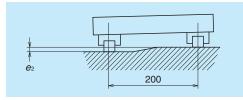
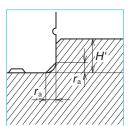



Fig. 4

Fig. 5

		Та	ıble 7			Unit: µm	
Value	Dualaad		Model No.				
value	Preload	LU05	LU07	LU09	LU12	LU15	
Permissible values of	Z0, ZT	10	12	15	20	25	
parallelism in two rails e_1	Z1	7	10	13	15	21	
Permissible values of	Z0, ZT	150 μm/200 mm					
parallelism (height) in two rails e2	Z1		90 μm/200 mm				

(2) Shoulder height of the mounting surface and corner radius r

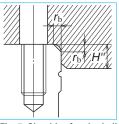


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

Table 8 Unit:					
Corner radius	s (maximum)	Shoulder height			
$r_{\rm a}$	$r_{\rm b}$	H'	H"		
0.2	0.2	0.7	2		
0.2	0.3	1.2	3		
0.3	0.3	1.9	3		
0.3	0.3	2.5	4		
0.3	0.5	3.5	5		
	r _a 0.2 0.2 0.2 0.3 0.3		r _a r _b H' 0.2 0.2 0.7 0.2 0.3 1.2 0.3 0.3 1.9 0.3 0.3 2.5		

6. Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For the LU Series, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

LU05TL, LU07AL, LU09AL, and LU09TL can install the end seal as an option.

· Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

The installed dimensions of the NSK K1 lubrication unit are shown in Table 10.

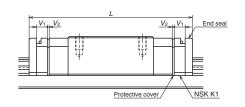


Table 10

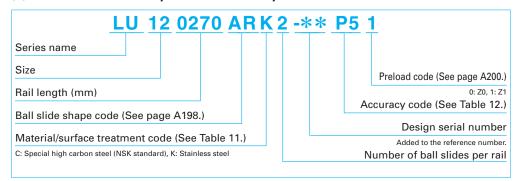
Unit: m

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2
LU05	Standard	TL	18*	24.4	2.0	0.5
LU07	Standard	AL	20.4*	29.4	2.5	0.5
	Standard	AR, TR	30	36.4		
LU09	Standard	AL, TL	26.8*	34.2	2.7	0.5
	Long	BL, UL	41	47.4		
	Standard	AR, TR	35.2	42.2		
LU12	Standard	AL, TL	34	41	3.0	0.5
	Long	BL, UL	47.5	54.5		
LU15	Standard	AL	43.6	51.8	3.5	0.6
LU15	Long	BL	61	69.2	3.5	0.6

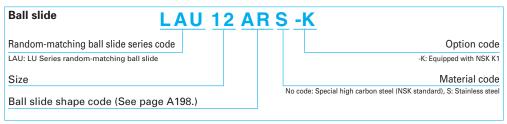
^{*)} Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include the thickness of the end seal (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length – LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V1 × Number of NSK K1) +


(Thickness of the protective cover $V_2 \times 2$)

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail L1U 12 027	0 R K N -** PC T
Random-matching rail series code	Preload code (See page A200.)
L1U: LU Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
L: Standard. R: LU09 and LU12 standard, equipped with b	*Butting rail specification
S: LU09 and LU12 with ball retainer and mounting holes for T: LU09 and LU12 without ball retainer and mounting hole	M3 N: Non-butting, L: Butting specification
Material/surface treatment code (See Tab	e 11.) *Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A200).

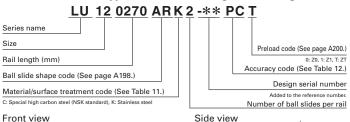
Table 11 Material/surface treatment code

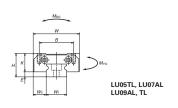
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

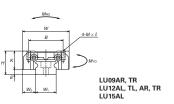
Table 12 Accuracy code

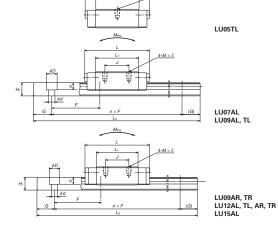
Accuracy	Standard (Without NSK K1)	With NSK K1
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

Note: Refer to page A38 for NSK K1 lubrication unit.


9. Dimensions


LU-AL (Standard type / Standard, LU15 is equipped with ball retainer)


LU-TL (Standard type / Standard, Large mounting hole)

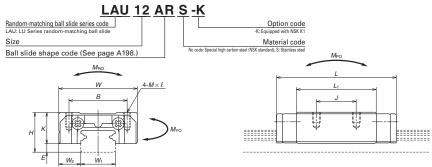

LU-AR (Standard type / Standard, With ball retainer)

LU-TR (Standard type / Standard, Large mounting hole, with ball retainer)

	Assembly				Ball slide								
Model No.	Height			Width	Length		Mour	nting hole			Width	Height	Pitch
WIOGCI IVO.	H E		W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	$W_{\scriptscriptstyle 1}$	H_1	F
LU05TL	6	1	3.5	12	18	8		M2×0.4×1.5	12	5	5	3.2	15
LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	13.6	6.5	7	4.7	15
LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	18	7.8	9	5.5	20
LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	20	7.8	9	5.5	20
LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	27	12	15	9.5	40

Notes 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only.

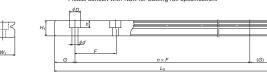
- 2) Ball slide of LU05TL has only two mounting tap holes in the center.
- 3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request.


Reference number for ball slide of random-matching type

Random matching with retainer: LU09 - 12 are AR/TR, LU15 is AL.

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer)


LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of random-matching type

<u>LIU 12 02/0 NI</u>	IN -** PU I
Random-matching rail series code	Preload code (See page A200.)
L1U: LU Series random-matching rail Size	T: Fine clearance Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available.
Rail shape code	Design serial number
L: Standard. R:LU09 and LU12 standard equipped with ball retainer. S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	Added to the reference number. *Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification

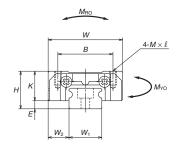
Unit: mm

Rail					I	Basic loa	ad rating				We	ight
Mounting bolt	G	I length L		⁵⁾ Dynamic Static			Static	moment	t (N·m)		Ball	Rail
hole		L_{0max} .	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO.	slide	
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
2.3×3.3×1.5	5	— (210)	545	435	740	1.93	1.22	8.85	1.22	8.85	4	11
2.4×4.2×2.3	5	— (375)	1 090	865	1 370	4.90	2.66	18.6	2.66	18.6	10	23
2.6×4.5×3 3.5×6×4.5	7.5	1 200 (600)	1 760	1 400	2 220	10.2	6.10	38.5	6.10	38.5	17	35
2.6×4.5×3 3.5×6×4.5	7.5	— (600)	1 490	1 180	2 150	9.9	6.10	41.0	6.10	41.0	19	35
3×5.5×3.5 3.5×6×4.5	10	1 800 (800)	2 830	2 250	3 500	21.1	11.4	78.5	11.4	78.5	38	65
3×5.5×3.5 3.5×6×4.5	10	— (800)	2 830	2 250	3 500	21.1	11.4	81.5	11.4	81.5	38	65
3.5×6×4.5	15	2 000 (1 000)	5 550	4 400	6 600	49.5	25.6	193	25.6	193	70	105

⁴⁾ To fix rail of LU05TL, use M2 \times 0.4 cross-recessed pan head machine screw for precision instrument.

(JCIS 10-70 No. 0 pan head machine screw No.1.)

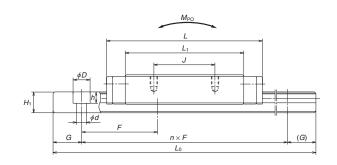
(JCIS: Japanese Camera Industrial Standard.)


5) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{100} , the basic dynamic load rating for 100 km rated fatigue life

LU-BL (High-load type / Long) LU-UL (High-load type / Long, large mounting hole)

LU 12 0270 BL K 2 -** P5 1 Series name Size Preload code (See page A200.) Rail length (mm) Accuracy code (See Table 12.) Ball slide shape code (See page A198.) Design serial number Material/surface treatment code (See Table 11.) Added to the reference number. C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail


Front view

	А	ssemb	ly	Ball slide									
Model No.	Height	ght Width			Length		Mour	nting hole			Width	Height	Pitch
Wiodei No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	W_1	H ₁	F
LU09BL								M2×0.4×2.5					
LU09UL	10	2.2	5.5	20	41	15	16	M3×0.5×3	31.2	7.8	9	5.5	20
LU12BL								M2.5×0.45×3					
LU12UL	13	3	7.5	27	47.5	20	20	M3×0.5×3.5	35.3	10	12	7.5	25
LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	44.4	12	15	9.5	40

Notes 1) LU09UL is available only in stainless steel. 2) LU15BL is equipped with ball retainer.

۰			View	
•	ın	0	V/I (A) V/	

Unit: mm

Rail	Rail				Basic load rating						Weight	
Mounting bolt	Mounting bolt G Max. length		3)Dyn	iamic	Static		Static	momen	t (N·m)		Ball	Rail
hole		L_{0max} .	[50km]	[100km]	C 0	M_{RO}	M	PO	M	YO	slide	
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
2.6×4.5×3	7.5	1 200	2 600	2 070	3 900	17.9	17.2	98.0	17.2	98.0	29	35
3.5×6×4.5	7.5	(600)	2 600	2 070	3 300	17.5	17.2	00.0	17.2	30.0	25	35
3×5.5×3.5	10	1 800	4 000	3 150	5 700	34.5	28.3	169	28.3	169	59	65
3.5×6×4.5	10	(800)	4 000	3 130	3 700	54.5	20.3	103	20.3	103	59	05
3.5×6×4.5	15	2 000 (1 000)	8 100	6 400	11 300	84.5	69.5	435	69.5	435	107	105

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{∞} , the basic dynamic load rating for 50 km rated fatigue life C_{∞} , the basic dynamic load rating for 100 km rated fatigue life

A-5-2.3 PE Series (Miniature wide type)

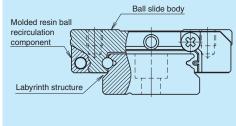


Fig. 1

1. Features

(1) Ideal for use of single rail

The PE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(3) Lightweight

The ball slide is fabricated to be approximately 20% lighter than that of the LE Series by the application of resin to a part of its body.

(4) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(5) Low dust generation

The structure is designed to prevent dust generation.

(6) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

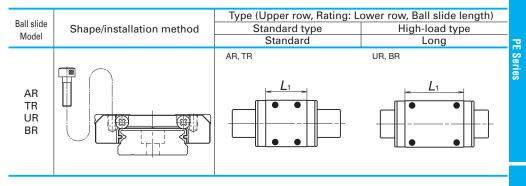
(7) High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

(8) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(9) Long-term maintenance-free


Equipped with NSK K1 Lubrication Unit realizes long-term, maintenance-free use.

(10) Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PE09 to PE15)

NSK

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: µm

		ı				
		Preload	ed assembly type	e (not random ma	atching)	Random-matching type
Rail length (mm)		Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC
-	- 50	2	2	4.5	6	6
50 -	- 80	2	3	5	6	6
80 -	- 125	2	3.5	5.5	6.5	6.5
125 -	- 200	2	4	6	7	7
200 -	- 250	2.5	5	7	8	8
250 -	- 315	2.5	5	8	9	9
315 -	- 400	3	6	9	11	11
400 -	- 500	3	6	10	12	12
500 -	- 630	3.5	7	12	14	14
630 -	- 800	4.5	8	14	16	16
800 -	- 1 000	5	9	16	18	18
1 000 -	- 1 250	6	10	17	20	20

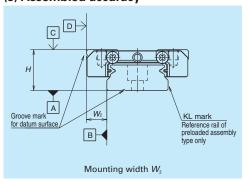
(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly

Table 2 Un									
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN					
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25					
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2								


• Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm				
Model No. Characteristics	PE09, 12 and 15				
Mounting height <i>H</i>	±20				
Variation of mounting height H	15① 30②				
Mounting width W_2 or W_3	±20				
Variation of mounting width W_2 or W_3	20				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2				

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

A211

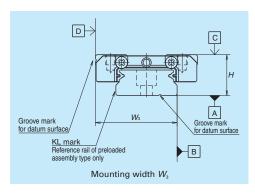


Fig. 2

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly types are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

	Table 4										
		Preload	Rigidity								
	Model No.	(N)	(N/µm)								
		Slight preload (Z1)	Slight preload (Z1)								
e e	PE05AR	0 – 28	45								
ţ	PE07TR	0 – 29	46								
ard	PE09TR	0 – 37	61								
Standard type	PE12AR	0 – 40	63								
St	PE15AR	0 – 49	66								
ad	PE09UR	0 – 54	86								
High-load type	PE12BR	0 – 59	97								
Hig	PE15BR	0 – 75	114								

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

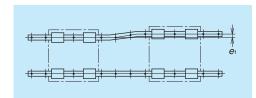
Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance ZT
_		21
ard	PE09TR	
Standard type	PE12AR	3 or less
Sta	PE15AR	
oad	PE09UR	
High-load type	PE12BR	5 or less
Ξ̈́	PE15BR	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitations of rails

					Unit	: mm
Series	Size					
Series	Material	05	07	09	12	15
PE	Stainless steel	150	600	800	1 000	1 200

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

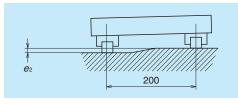


Fig. 3

Fig. 4

	Table 7 Unit: μm										
Value	Duolood	Model No.									
value	Preload	PE05	PE07	PE09	PE12	PE15					
Permissible values of	Z0, ZT	10	12	15	18	22					
parallelism in two rails e_1	ails e ₁ Z1 5 7 10 13										
Permissible values of	Z0, ZT		50 μm/200 mm								
parallelism (height) in two rails e	Z1		3	35 um/200 mr	n						

(2) Shoulder height of the mounting surface and corner radius r

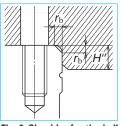


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Tab	le 8	Unit: mm			
Madal Na	Corner radius	s (maximum)	Shoulder height			
Model No.	ra	r _b	H′	H"*		
PE05	0.2	0.2	1.1	2.5		
PE07	0.2	0.3	1.7	3		
PE09	0.3	0.3	3.5	2.8		
PE12	0.3	0.3	3.5	3.2		
PE15	0.3	0.5	3.5	4.1		
	PE07 PE09 PE12	Model No. Comer radius ra PE05 0.2 PE07 0.2 PE09 0.3 PE12 0.3	Model No. ra rb PE05 0.2 0.2 PE07 0.2 0.3 PE09 0.3 0.3 PE12 0.3 0.3	Model No. Corner radius (maximum) Shoulded (maximum) Shoulded (maximum) PE05 0.2 0.2 1.1 PE07 0.2 0.3 1.7 PE09 0.3 0.3 3.5 PE12 0.3 0.3 3.5		

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PE15 can select drive-in type grease fitting as an option.

For the model of PE05 to PE12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

NSK

7. Dust-proof components

(1) Standard specification

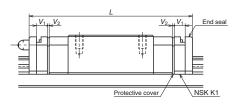

End seal: Provided to both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PE	0.4	0.4	0.8	1	1.2

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

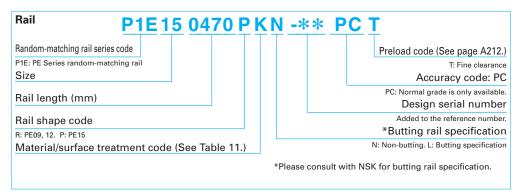
	Table 10 Unit: mr									
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2				
PE05	Standard	AR	24.1	28.9	2	0.4				
PE07	Standard	TR	31.1	37.1	2.5	0.5				
PE09	Standard	TR	39.8	46.8	3	0.5				
PEU9	Long	UR	51.2	58.2	3	0.5				
PE12	Standard	AR	45	53	2.5	٥٦				
PEIZ	Long	BR	60	68	3.5	0.5				
DE45	Standard	AR	56.6	66.2	4	0.0				
PE15	Long	BR	76	85.6	4	0.8				

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

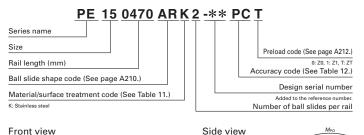
(1) Reference number for preloaded assembly

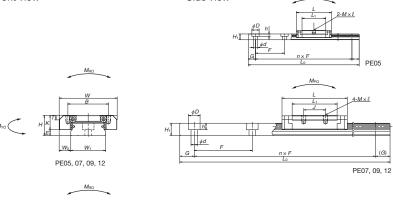
(2) Reference number for random-matching type

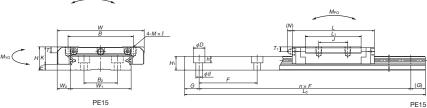
Reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "Fine clearance T" is available (refer to page A212).

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 11 Material/surface treatment code

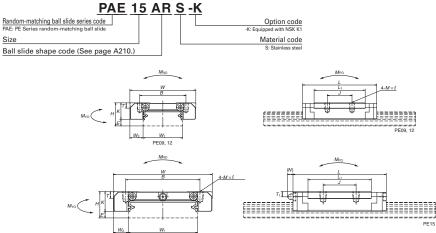

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special


Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

9. Dimensions PE-AR, TR (Standard type / Standard) PE-UR, BR (High-load type / Long)



	A:	ssemb	oly	Ball slide												
Model No.	Height			Width	Length		Mour	nting hole				Oil	hole		Width	Height
Wiodel No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	<i>T</i> 1	N	W_1	H_1
PE05AR	6.5	1.4	3.5	17	24.1	13	_	M2.5×0.45×1.5	16.4	5.1	2.5	\$ 0.9	1.3	_	10	4
PE07TR	9	2	5.5	25	31.1	19	10	M3×0.5×2.8	20.8	7	3	φ 1.9	1.9	_	14	5.2
PE09TR	12	4	6	30	39.8	21	12	M3×0.5×3	26.6	8	2.8	<i>ф</i> 2	2.3		18	7.5
PE09UR	12	†	O	30	51.2	23	24	1010/0.0/0	38	O	2.0	Ψ 2	2.5		10	7.5
PE12AR	14	4	8	40	45	28	15	M3×0.5×4	31	10	3.2	φ2.5	2.7		24	8.5
PE12BR	17	۲	Ü	40	60	20	28	1010/0.0/4	46	10	0.2	7 2.0	2.7		2-7	0.5
PE15AR	16	4	9	60	56.6	45	20	M4×0.7×4.5	38.4	12	4.1	<i>ф</i> 3	3.2	(3.3)	42	9.5
PE15BR	. 5		Ü	50	76		35	1411/0.7/4.0	57.8	12		7 0	0.2	(0.0)	1/2	0.0

Notes: 1) Ball slide of PE05AR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

P1E 15 0470 P K	<u> </u>
Random-matching rail series code	Preload code (See page A212.)
P1E: PE Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
R: PE09, 12. P: PE15	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

	7# <u></u>	4D h	
W1	B ₃ B ₂ W ₁	. ↓ ¢d F	(G)
PE09,12	PE15	G n×F	+ (a)

Unit: mm

R	ail					Basic load rating					Weight			
	Pitch	Mounting bolt	G	Maximum	2)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
		hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M	YO	slide	
B_2	F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
_	20	3×5×1.6	7.5	150	690	550	1 160	6.00	2.75	17.5	2.75	17.5	7	34
_	30	3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	19	55
	30	3.5×6×4.5	10	800	3 000	2 390	4 500	36.5	17.3	113	17.3	113	35	95
	30	3.50004.5	10	800	4 000	3 150	6 700	54.5	37.5	210	37.5	210	50	95
	40	4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	180	29.3	180	66	140
	40	4.0004.0	15	1 000	5 800	4 600	9 550	106	63.5	345	63.5	345	98	140
23	40	4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	370	59.0	370	140	275
23	40	4.0004.0	10	1 200	10 300	8 200	16 000	320	135	740	135	740	211	275

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{\rm s0}$, the basic dynamic load rating for 50 km rated fatigue life $C_{\rm 100}$, the basic dynamic load rating for 100 km rated fatigue life

³⁾ To fix rail of PE05AR, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.3.)

⁽JCIS: Japanese Camera Industrial Standard.)

A-5-2.4 LE Series (Miniature wide type)

1. Features

(1) Ideal for use of single rail

The LE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

(3) Guides are super-thin.

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

(4) High accuracy

Fixing the master rollers to the ball grooves is easy thanks to the Groove arch groove. This makes easy and accurate measuring of ball arooves.

(5) Stainless steel is standard.

Rails and ball slides are made of martensitic stainless steel.

(6) Ball retainer is available in some series.

Some series come with a ball retainer (ball slide shape: AR and TR). Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail (randommaching type ball slides come with a ball retainer).

(7) Fast delivery

Random matching of rails and ball slides are available. (LE09 to LE15)

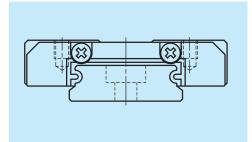


Fig. 1 LE Series

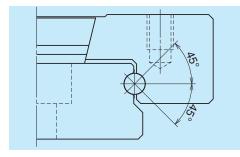


Fig. 2 Balls in contact

2. Ball slide shape

		Tuna / Ilmnar rou	, Datings Lower ross	Pall alida lanath)
Ball slide Model	Shape/installation method	Medium-load type Short	y, Rating: Lower row, Standard type Standard	High-load type Long
AL TL		CL, SL	AL, TL, AR, TR	BL, UL
AR TR BL UL CL SL		<u>L</u> 1	<u>L</u> 1	L ₁

Specification	Detail		Туре	
Mounting halo	Normal	CL*	AL, AR	BL*
Mounting hole	Large	SL*	TL, TR	UL*
Doll votoinov	Without	CL, SL	AL, TL	BL, UL
Ball retainer	With	_	AR, TR	_

^{*} Only applicable to LE09

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit:											
	Preloaded asser	Preloaded assembly type (not random matching									
Rail length (mm)	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC							
- 50	2	4.5	6	6							
50 - 80	3	5	6	6							
80 – 125	3.5	5.5	6.5	6.5							
125 – 200	4	6	7	7							
200 – 250	5	7	8	8							
250 – 315	5	8	9	9							
315 – 400	6	9	11	11							
400 - 500	6	10	12	12							
500 - 630	7	12	14	14							
630 - 800	8	14	16	16							
800 – 1 000	9	16	18	18							
1 000 – 1 250	10	17	20	20							

(2) Accuracy standard

The preloaded assembly type has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching type.

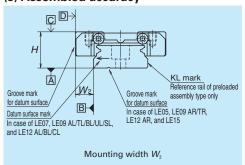

· Tolerance of preloaded assembly

	Table 2	Unit: µm			
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±50 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3				

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LE09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

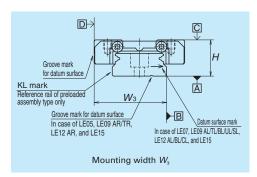


Fig. 3

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type, along with Fine clearance ZT for the random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity	
	Madal Na	(N)	(N/µm)	
	woder No.	Slight preload	Slight preload	
		(Z1)	(Z1)	
be	LE05 AL	0 – 23	36	
Standard type	LE07 TL	0 – 29	46	
larc	LE09 AL, TL, AR, TR	0 – 37	61	
anc	LE12 AL, AR	0 – 40	63	
St	LE15 AL, AR	0 – 49	66	
ad	LE05 CL	0 – 18	29	
Medium-load type	LE07 SL	0 – 16	28	
ium- type	LE09 CL, SL	0 – 21	33	
edi	LE12 CL	0 – 23	36	
Σ	Model No. $\frac{(N)}{\text{Slight prel}}$ =05 AL	0 – 29	44	
d	LE07 UL	0 – 43	71	
High-load type	LE09 BL, UL	0 – 54	86	
igh-lo type	LE12 BL	0 – 59	97	
I	LE15 BL	0 – 75	114	

Note: The clearance of Fine clearance Z0 is 0 to 3 μ m. Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μ m.

Clearance of random-matching type

 Table 5
 Unit: μm

 Model No.
 Fine clearance

 ZT
 ZT

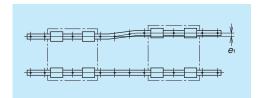
 LE09
 0 – 15

 LE12
 0 – 15

 LE15
 0 – 15

4. Maximum rail length

Table 6 shows the limitations of rail length. The limitations vary by accuracy grades.


Table 6 Length limitation of rails

Unit: m									
Series	Size								
	Material	05	07	09	12	15			
LE	Stainless steel	150	600	800	1 000	1 200			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

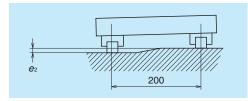
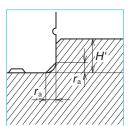



Fig. 4

Fig. 5

Table 7 Unit: μr										
Value	Duolood									
value	Preload	LE05	LE07	LE09	LE12	LE15				
Permissible values of	Z0, ZT	10	12	15	18	22				
parallelism in two rails e1	Z1	5	7	10	13	17				
Permissible values of	Z0, ZT		Ę	50 μm/200 mr	n					
parallelism (height) in two rails e2	Z1		3	35 µm/200 mr	n					

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

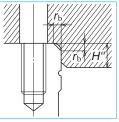


Fig. 6 Shoulder for the Fig. 7 Shoulder for the ball slide datum surface

		Table 8		Unit: mm					
Model No.	Corner radius	s (maximum)	Shoulde	Shoulder height					
viouei ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"					
LE05	0.2	0.2	1.1	2					
LE07	0.2	0.3	1.7	3					
LE09	0.3	0.3	3.5	3					
LE12	0.3	0.3	3.5	4					
I F15	0.3	0.5	3.5	5					

6. Lubrication accessories

Model of LE15AR can select drive-in type grease fitting as option.

There is no standard grease fitting for LE05 to LE12.

For the models of LE05 to LE15 except for LE15AR, apply grease directly to the ball grooves of rail, using a point nozzle.

Drive-in type

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

• Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

(2) NSK K1[™] lubrication unit

The installed dimensions of NSK K1 lubrication unit are shown in Table 10.

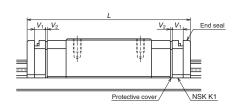
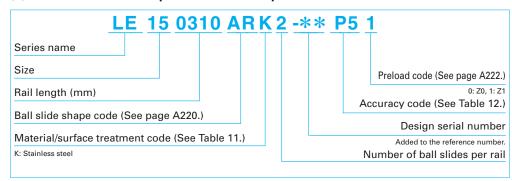


Table 10

Unit: mm

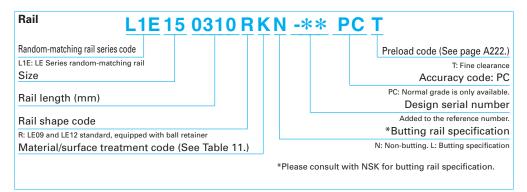
Model No.	Ball slide length	Ball slide model	Standard ball Slide length Slide length SK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V_2	
	Standard	TL	31	37			
LE07	Long	UL	42	48	2.5	0.5	
	Short	SL	22.4	28.4			
	Standard	AL, TL	39	46			
1.500	Standard	AR, TR	39.8	46.8		٥٦	
LE09	Long	BL, UL	50.4	57.4	3.0	0.5	
	Short	CL, SL 26.4 33.4					
	Standard	AL	44	52		0.5	
LE12	Standard	AR	45	53	3.5		
LETZ	Long	BL	59	67	3.5	0.5	
	Short	Short CL 30.5 38.5					
	Standard	AL	55.0	64.6			
1.515	Standard	AR	56.6	66.2	4.0	0.0	
LE15	Long	BL	74.4	84	4.0	0.8	
	Short	CL	41.4	51			

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$) A224

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A222).

Table 11 Material/surface treatment code

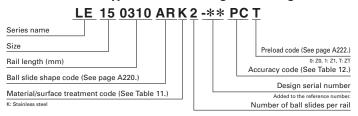
Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1			
High precision grade	P5	K5			
Precision grade	P6	K6			
Normal grade	PN	KN			
Normal grade (random-matching type)	PC	KC			

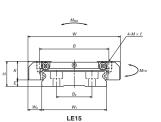
Note: Refer to page A38 for NSK K1 lubrication unit.

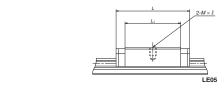
9. Dimensions

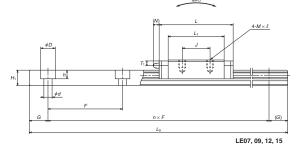

LE-AL (Standard type / Standard)

LE-TL (Standard type / Standard, large mounting hole)

LE-AR (Standard type / Standard, with ball retainer)


LE-TR (Standard type / Standard, large mounting hole, with ball retainer)

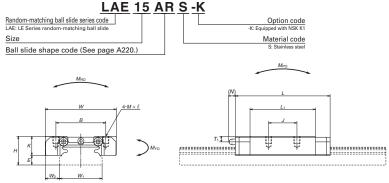

Side view



Front view

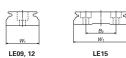
LE05, 07, 09, 12

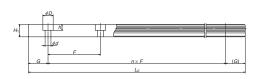
Assembly				Ball slide					Grease fitting								
Model No.	Height			Width	Length		Mou	nting hole						Width	Height		Pitch
woder no.											Hole						
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	Κ	size	T_1	Ν	W_1	H_1	B_2	F
LE05AL	6.5	1.4	3.5	17	24	13	_	M2.5×0.45×2	17	5.1		_	_	10	4	_	20
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	21.2	7	_	_	_	14	5.2		30
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_		_	18	7.5	_	30
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_	_	_	18	7.5	_	30
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	31	10			_	24	8.5		40
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	38.4	12	_ φ3	— 3.2	3	42	9.5	23	40


Notes: 1) Ball slide of LE05 has only two mounting tap holes.

Reference number for ball slide of random-matching type

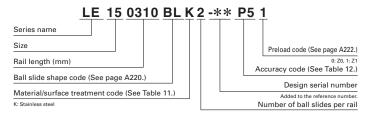
Random matching with retainer: LAE09AR/TR, LAE12AR, LAE15AR


LAE-AR (With ball retainer)

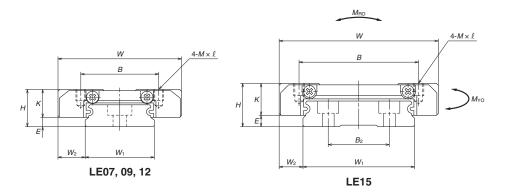

LAE-TR (Large mounting hole with ball retainer)

Reference number for rail of random-matching type

Rail	L1E 15 0310 R	KN -** PC T
Random-matching		Preload code (See page A222.
	dom-matching rail	T: Fine clearance
Size		Accuracy code: PC
Rail length (r	mm)	PC: Normal grade is only available Design serial number
Rail shape co	ode	Added to the reference number
	standard equipped with ball retainer	*Butting rail specification
	ace treatment code (See Table 11.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail enecification

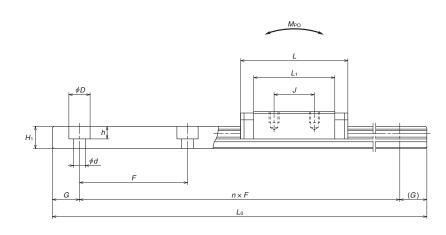

Unit: mm

Rail				Basic load rating						We	ight	
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static	Static moment (N·m)			Ball	Rail
hole		length	[50km]	[100km]	C 0	MRO	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{\scriptscriptstyle Omax}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	725	575	1 110	5.65	2.58	16.9	2.58	16.9	11	34
3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	25	55
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	110	17.3	110	40	95
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	113	17.3	113	40	95
4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	175 180	29.3	175 180	75	140
4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	360 370	59.0	360 370	150	275


(JCIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) $C_{\rm so}$; the basic dynamic load rating for 50 km rated fatigue life $C_{\rm loo}$; the basic dynamic load rating for 100 km rated fatigue life 3) For fixing a rail of LE05AL, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instruments.

LE-BL (High-load type / Long) LE-UL (High-load type / Long, large mounting hole)

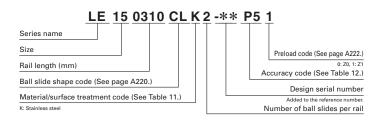


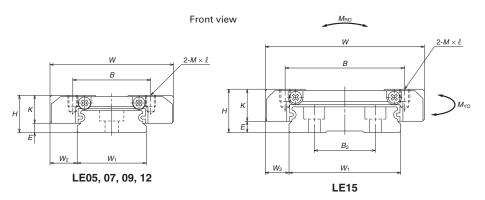
Front view

	А	ssemb	ly		Ball slide									
Model No	Height			Width	Length		Mou	inting hole			Width	Height		Pitch
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	Κ	W_1	H ₁	B_2	F
LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	32.2	7	14	5.2	_	30
LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	39	8	18	7.5	_	30
LE12BL	14	4	8	40	59	28	28	M3×0.5×4	46	10	24	8.5	_	40
LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	57.8	12	42	9.5	23	40

Side view

Unit: mm

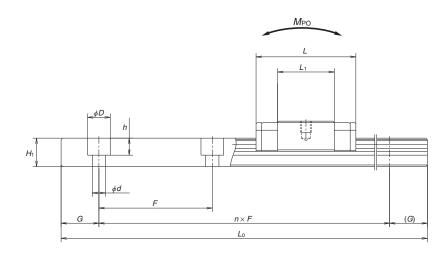

Rail				Basic load rating						We	Weight							
Mounting bolt	G	Max.	1)Dyn	amic	Static		Static moment (N·m)		Dali		Rail							
hole		length	[50km]	[100km]	C 0	M _{RO}	M _{PO}		M _{PO}		M _{PO}		M _{PO}		PO M _Y		slide	
$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)						
3.5×6×3.2	10	600	2 180	1 730	3 700	26.4	17.3	94.5	17.3	94.5	39	55						
3.5×6×4.5	10	800	4 000	3 150	6 700	54.5	37.5	206	37.5	206	58	95						
4.5×8×4.5	15	1 000	5 800	4 600	9 550	106	63.5	340	63.5	340	115	140						
4.5×8×4.5	15	1 200	10 300	8 200	16 000	320	135	725	135	725	235	275						


Note: 1) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm 50}$; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

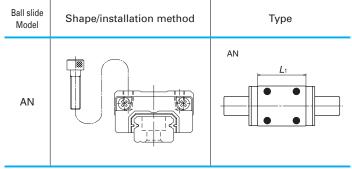
LE-CL (Medium-load type / Short) LE-SL (Medium-load type / Short, large mounting hole)



	А	ssembl	ly				В	all slide						
Model No.	Height			Width	Length		Mou	nting hole			Width	Height		Pitch
WIOGCI NO.	Н	Ε	W 2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	К	W_1	H ₁	B_2	F
LE05CL	6.5	1.4	3.5	17	20	13	_	M2.5×0.45×2	13	5.1	10	4	_	20
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	12.6	7	14	5.2	_	30
LE09CL LE09SL	12	4	6	30	26.4	21	_	M2.6×0.45×3 M3×0.5×3	15	8	18	7.5	_	30
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	17.5	10	24	8.5	_	40
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	24.8	12	42	9.5	23	40

Notes: 1) Ball slide of CL and SL types have only two mounting tap holes in the center.

Unit: mm


Rail					Ва	sic load	rating				Weight	
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static moment (N·m)		t (N·m)		Ball	Rail
hole		length	[50km]	[100km]	C_{0}	MRO	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	595	470	835	4.25	1.51	10.0	1.51	10.0	8	34
3.5×6×3.2	10	600	980	775	1 170	8.35	2.01	18.5	2.01	18.5	17	55
3.5×6×4.5	10	800	1 860	1 480	2 240	18.2	4.85	41.0	4.85	41.0	25	95
4.5×8×4.5	15	1 000	2 700	2 140	3 150	35.0	8.15	67.0	8.15	67.0	50	140
4.5×8×4.5	15	1 200	5 000	3 950	5 650	113	19.4	162	19.4	162	110	275

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5 x 0.45 (JCIS 10-70: Japan Camera Industry Association, No.0, class 3).

2. Ball slide shape

3. Accuracy and preload(1) Running parallelism of ball slide

Table 1 Unit: µm Preloaded assembly Rail length Super High Precision Normal (mm) precision P4 precision P5 grade P6 grade PN over or less - 50 2 4.5 6 2 50 - 802 3 5 6 80 - 1252 3.5 6.5 5.5 125 - 2002 4 6 7 5 200 - 2507 8 2.5 250 - 3152.5 5 8 9 6 9 315 - 4003 11 400 - 5003 6 10 12 500 - 6303.5 12 14 4.5 8 630 - 80014 16

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision P6 and Normal PN grades.

· Tolerance of preloaded assembly

	Table 2			Unit: µm
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±20 5	±40 7	±80 15
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 5	±15 7	±25 10	±50 20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in T	able 1, Fig. 5	

A-5-2.5 Miniature LH Series

1. Features

(1) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(4) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(6) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail. (LH10-12)

(7) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

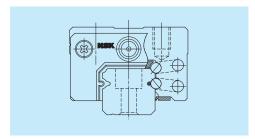


Fig. 1 LH Series

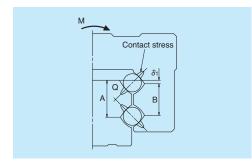


Fig. 2 Enlarged illustration of the offset Gothic arch groove

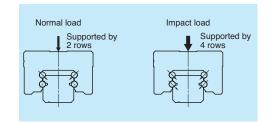
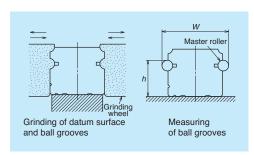
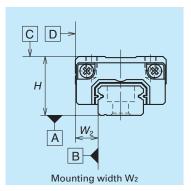


Fig. 3 When load is applied




Fig. 4 Rail grinding and measuring

(3) Combinations of accuracy and preload

Table 3

			Accurac	cy grade	
		Super precision	High precision	Precision grade	Normal grade
Wit	thout NSK K1 lubrication unit	P4	P5	P6	PN
Wit	th NSK K1 lubrication unit	K4	K5	K6	KN
With NSK K1 for food and medical equipment		F4	F5	F6	FN
Prel	Fine clearance Z0	0	0	0	0
Preload	Slight preload Z1	0	0	0	0

(4) Assembled accuracy

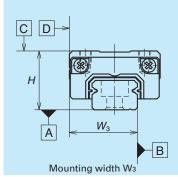


Fig. 5

(5) Preload and rigidity

We offer two levels of preload: Slight preload Z1 and Fine clearance Z0.

Preload and rigidity of preloaded assembly

Table 4

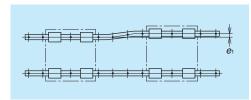
	Dualood (N)	Rigidity	(N/μm)	
Model No.	Preload (N)	Vertical direction	Lateral direction	
	Slight preload Z1	Slight preload Z1	Slight preload Z1	
LH08AN	5	33	23	
LH10AN	9	44	31	
LH12AN	22	68	47	

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 5µm.

NSK

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.


Table 5 Length limitations of rails

	_		Un	it: mm
Series	Size			
Series	Material	08	10	12
LH	Stainless steel	375	600	800

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

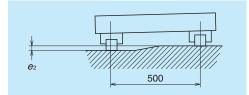
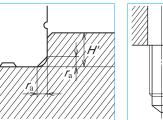



Fig. 6

Fig. 7

	Table 6			Unit: µm
Value	Preload		Model No.	
value	Freitau	LH08	LH10	LH12
Permissible values of	Z0	9	12	19
parallelism in two rails e_1	Z1	8	11	18
Permissible values of	Z0	37	5µm/500m	nm
narallelism (height) in two rails a	71	33	0um/500m	nm

(2) Shoulder height of the mounting surface and corner radius r

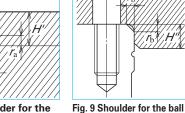


Fig. 8 Shoulder for the rail datum surface slide datum surface

		Table 7		Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height			
wouei wo.	r _a	$r_{\rm b}$	H'	H"		
LH08	0.3	0.5	1.8	3		
LH10	0.3	0.5	2.1	4		
LH12	0.5	0.5	2.7	4		

Miniature LH Series

6. Lubrication accessory

Model of LH12 can select drive-in type grease fitting as an option.

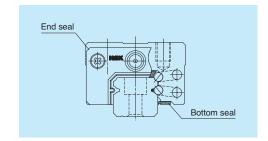
For the models of LH08 to LH10, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

The LH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

However, the bottom seals are not used to LH08 and 10.



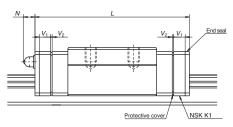

Fig. 11

Table 8 Seal friction per ball slide (maximum value)

			Unit: N
Series	08	10	12
LH	0.5	1	1.5

(2) NSK K1[™] lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit

Table 9				Unit: m	m
Ball slide length	Per NSK K1	Protective	_		_

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	UIIICKIICSS	Protective cover thickness V ₂	Protruding area of the grease fitting N
LH08	Standard	AN	24	31	3	0.5	_
LH10	Standard	AN	31	40	4	0.5	_
I H12	Standard	ΔN	45	54	4	0.5	(4)

Notes: 1) NSK K1 for food and medical equipment are available for LH12.

Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, V₂ × 2)

(3) Cap to plug the rail mounting bolt hole

Table 10 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity		
	secure rail	reference No.	/case		
LH12	M3	LG-CAP/M3	20		

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

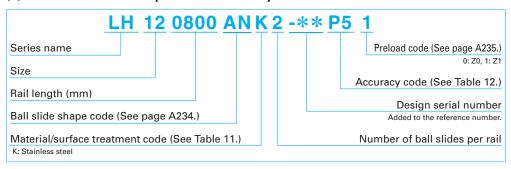
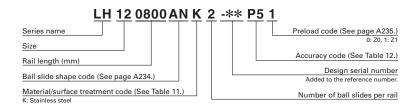
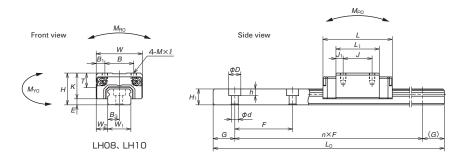


Table 11 Material/surface treatment code


Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special


Table 12 Accuracy code

Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
P4	K4	F4
P5	K5	F5
P6	K6	F6
PN	KN	FN
	P4 P5 P6	P4 K4 P5 K5 P6 K6

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

9. Dimensions

Front view	M _{RD}	Side view
Mro H K	# 4-M×£	\$\frac{L_1}{L_1}\$ \$\frac{L_1}{J}\$ \$\frac{L_1}{J} \$\frac{L_1}{J}\$ \$\frac{L_1}{J}\$ \$\frac{L_1}{J}\$ \$\frac{L_1}{J}\$ \$\frac{L_1}{J}\$ \$\frac{L_1}{J} \$\frac{L_1}{J}\$ \$\frac{L_1}{J} \$\frac{L_1}{J}\$ \$\frac{L_1}{J} \$\frac{L_1}{J}\$ \$\frac{L_1}{J} \$\frac{L_1}{J}\$ \$\fr

	А	ssemb	ly		Ball slide											
Model No	Height			Width	th Length Mounting hole		Mounting hole					Grease	fittin	g	Width	Height
wodel ivo																
	Н	Ε	VV_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Τ	Hole size	T_1	Ν	W_1	H_1
LH08AN	11	2.1	4	16	24	10	10	M2×0.4×2.5	15	8.9	_	_	_	_	8	5.5
LH10AN	13	2.4	5	20	31	13	12	M2.6×0.45×3	20.2	10.6	6	_	_	_	10	6.5
LH12AN	20	3.2	7.5	27	45	15	15	M4×0.7×5	31	16.8	6	φ 3	5	4	12	10.5

Notes: 1) LH08 does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

	Rail				Basic load rating							Wei	ight		
Pitch	Mounting	G	Max.	2)Dyn	2)Dynamic		²¹ Dynamic Static Static moment (N·m)							Ball	Rail
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	M	PO	N	1 _{Y 0}	slide			
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)		
20	2.4×4.2×2.3	7.5	375	1 240	985	2 630	7.25	4.55	32.5	3.8	27.2	13	31		
25	3.5×6×3.5	10	600	2 250	1 790	4 500	16.2	10.5	73.0	8.8	61.0	26	44		
40	3.5×6×4.5	15	800	5 650	4 500	11 300	47.5	41.5	254	35	214	82	88		

2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

Unit: mm

A-5-2.6 LL Series

1. Features

(1) Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.

(2) Compact

The ball groove is made outside the ball slide to reduce overall size and to obtain high speed.

(3) High corrosion resistance

High corrosion resistant martensitic stainless steel is used as standard material.

2. Ball slide model

Ball slide model	Shape/installation method
PL	

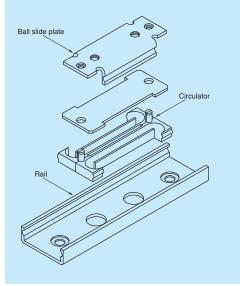


Fig. 1 LL Series structure

3. Accuracy and preload

(1) Accuracy standard

The LL Series has a Normal grade PN as the accuracy grade.

Table 1 shows the tolerance.

Table 1 Tolerance of Normal grade (PN)

	Unit: µm
Model No. Characteristic	LL15
Mounting height	±20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	20 (See Fig. 2 .)

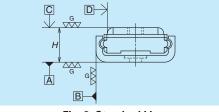


Fig. 2 Standard LL

(2) Preload

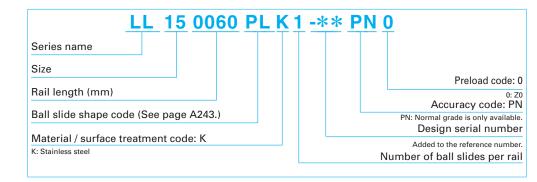
We offer clearance for the LL Series.

Table 2 shows the specification of clearance.

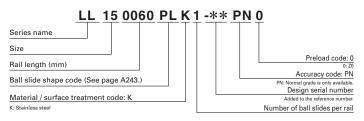
Table 2 Radial clearance

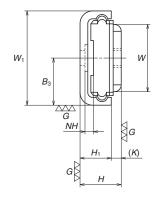
	Unit: µm
Model No.	Clearance
LL15	0 – 10

4. Maximum rail length


Table 3 Length limitation of rails

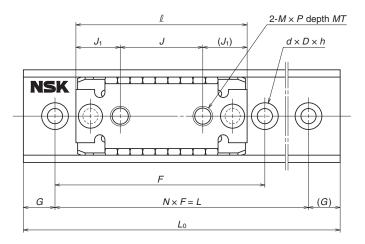
Series	Size Material			15		
LL	Stainless steel	40	60	75	90	120


5. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

6. Dimensions



	Assembly Ball slide											
Model No.	Height		Width	Length	Mounting hole					Height	Pitch	
woder no.	,,	147	147	l	,	A 4	A 4T	,	V	.,	_	
	Н	W_1	W	X.	J	$M \times pitch$	MT	J_1	K	H ₁	F	Ν
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Notes:

- 1) The LL Series does not have a ball retainer. Be aware that the balls fall out when the ball slide is withdrawn from the rail.
- 2) Seals are not available. Please provide the dust-prevention measures on the equipment.
- 3) Do not use an installation screw on the ball slide which exceeds the dimension MT (maximum screw-in depth) in the dimension
- 4) To fix the rail, use M2 \times 0.4 cross recessed machine screw for precision instrument. (JCIS10-70 No.0 pan head machine screw No.1) (JCIS: Japanese Camera Industrial Standard)

Unit: mm

Rail						Basic load rating					Ball dia.	We	ight
Mounting bolt	Le		Length	5) Dynamic		Static	Static moment		ment		Ball	Rail	
hole					[50km]	[100km]	Co	M_{RO}	M_{PO}	M _{YO}	D_{w}	slide	
$d \times D \times h$	NH	Вз	G	L_{0}	C ₅₀ (N)	C ₁₀₀ (N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g)
2.4×5×0.4	1.2	7.5	5 10 7.5 5 10	40 60 75 90 120	880	700	785	7	3	3	2	6	9 11 13 16 21

5) C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

1. RA Series A249

2. RB Series A271

3. LA Series A287

A-5-3 High Rigidity Series

A-5-3.1 RA Series

1. Features

(1) Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on our advanced analysis technology, we have realized the world's highest load capacity,* far superior to conventional roller guides. Superlong life is achieved and impact load can be sufficiently handled.

* As of September 1, 2003; NSK's reserch and comparison on the existing products of the same sizes.

(2) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(3) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA series.

(4) Smooth motion

Installation of a retaining piece between rollers restrains the roller skew peculiar to roller slides, thereby achieving smooth motion.

(5) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

(6) Random matching

Random-matching of rails and roller slides are available. (RA25 to RA65)

(7) Specification with highly dustproof V1 seal

Specification with newly developed, highly dustproof V1 seal which is the end seal with enhanced abrasion resistance is also available. (RA35 - 55)

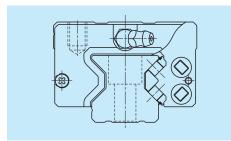


Fig. 1 RA Series

Fig. 2 Analysis example

Fig. 3 Random-matching type

2. Roller slide shape

Roller slide model	Shape/installation method	Type (Upper row, Rating: Lo High-load type Standard	wer row, Roller slide length) Super-high-load type Long
AN BN		AN	BN
AL BL		AL	BL
EM GM		EM	GM

3. Accuracy and preload

(1) Running parallelism of roller slide

Table 1

Hnitt um

		Unit: µm			
		Ultra precision P3	Super precision P4	High precision P5 PH	Precision grade P6
Rail leng over	gth (mm) or less	Preloaded assembly	Preloaded assembly	Preloaded assembly Random-matching type	Preloaded assembly
-	- 50	2	2	2	4.5
50 -	- 80	2	2	3	5
80 -	- 125	2	2	3.5	5.5
125 -	- 200	2	2	4	6
200 -	- 250	2	2.5	5	7
250 -	- 315	2	2.5	5	8
315 -	- 400	2	3	6	9
400 -	- 500	2	3	6	10
500 -	- 630	2	3.5	7	12
630 -	- 800	2	4	8	14
800 -	- 1 000	2.5	4.5	9	16
1 000 -	- 1 250	3	5	10	17
1 250 -	- 1 600	4	6	11	19
1 600 -	- 2 000	4.5	7	13	21
2 000 -	- 2 500	5	8	15	22
2 500 -	- 3 150	6	9.5	17	25
3 150 -	- 3 900	9	16	23	30

Roller Guide RA Series

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the random-matching type has High precision PH grade only.

Tolerance of preloaded assembly

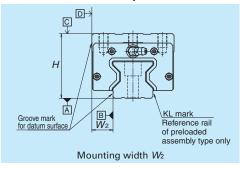
· idicialice of prefuducu assembly				
	Table		Unit: µm	
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
Mounting height H	±8	±10	±20	±40
Variation of H	3	5	7	15
(All roller slides on a set of rails)				
Mounting width W_2 or W_3	±10	±15	±25	±50
Variation of W_2 or W_3	3	7	10	20
(All roller slides on reference rail)				

Shown in Table 1 and Fig. 4

Running parallelism of surface D to surface B • Tolerance of random-matching type

Running parallelism of surface C to surface A

Та	ı ble 3 Unit: μm
Accuracy grade Characteristics	High precision PH
Mounting height H	±20
Variation of mounting height H	15①
	25②
Mounting width W_2 or W_3	±25
Variation of mounting width W ₂ or W ₃	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 4


Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combination of accuracy and preload

Table 4

			Accuracy grade					
		Ultra precision	Super precision	High precision	Precision grade	High precision		
Without NSK K1 lubrication unit		P3	P4	P5	P6	PH		
	With NSK K1 lubrication unit	K3	K4	K5	K6	KH		
	Slight preload Z1	0	0	0	0	_		
P	Medium preload Z3	0	0	0	0	_		
Preloac	Random-matching type with slight preload ZZ	_	_	_	_	0		
<u></u>	Random-matching type with medium preload ZH	_	_	_	_	0		

(4) Assembled accuracy

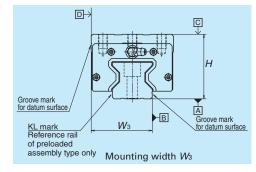


Fig. 4

(5) Preload and rigidity

Four types of preload are available: Medium preload Z3 and Slight preload Z1 for preloaded assembly, and Medium preload ZH and slight preload ZZ for Random-matching type.

• Preload of preloaded assembly Table 5

Model No.	Preload (N)			
	Slight preload (Z1)	Medium preload (Z3)		
RA15 AN, AL, EM	_	1 030		
RA20 AN, EM	_	1 920		
RA25 AN, AL, EM	880	2 920		
RA30 AN, AL, EM	1 170	3 890		
RA35 AN, AL, EM	1 600	5 330		
RA45 AN, AL, EM	2 780	9 280		
RA55 AN, AL, EM	3 800	12 900		
RA65 AN, EM	6 500	21 000		
RA15 BN, BL, GM	_	1 300		
RA20 BN, GM	_	2 400		
RA25 BN, BL, GM	1 060	3 540		
RA30 BN, BL, GM	1 430	4 760		
RA35 BN, BL, GM	2 020	6 740		
RA45 BN, BL, GM	3 500	11 600		
RA55 BN, BL, GM	5 000	16 800		
RA65 BN, GM	8 500	28 800		
	RA15 AN, AL, EM RA20 AN, EM RA25 AN, AL, EM RA30 AN, AL, EM RA35 AN, AL, EM RA45 AN, AL, EM RA55 AN, AL, EM RA65 AN, EM RA65 AN, EM RA15 BN, BL, GM RA20 BN, BL, GM RA30 BN, BL, GM RA35 BN, BL, GM RA35 BN, BL, GM RA45 BN, BL, GM RA45 BN, BL, GM RA45 BN, BL, GM	Model No. Slight preload Z1		

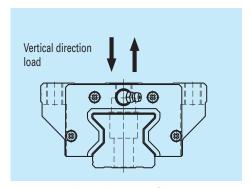
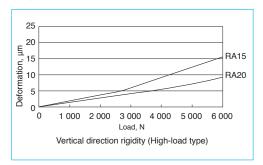
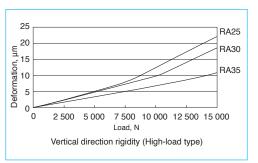




Fig. 5 Direction of load

Roller Guide RA Series

· Rigidity of medium preload

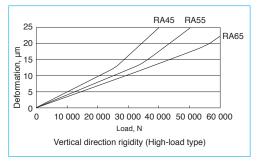
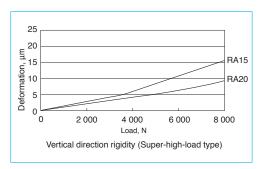
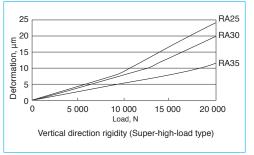




Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

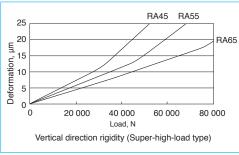


Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

NSK

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

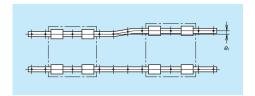

Table 6 Length limitation of rails								Unit: mm
Series Size	15	20	25	30	35	45	55	65
RA	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600

Table 6 Langth limitation of vails

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

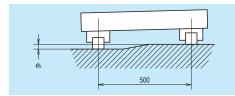


Fig. 8

Fig. 9

Table 7 Unit: μm										
Value	Preload	Model No.								
value		RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65	
Permissible values of	Z1, ZZ	_	_	14	18	21	27	31	49	
parallelism in two rails e ₁	Z3 , ZH	5	7	9	11	13	17	19	30	
Permissible values of	Z1, ZZ	— 290 μm / 500 mm								
parallelism (height) in two rails e_2 Z3 , ZH 150 μm / 500 mm										

(2) Shoulder height of the mounting surface and corner radius r

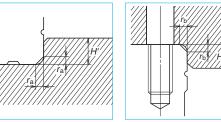


Fig. 10 Shoulder for the roller rail datum surface slide datum surface

		Table 8		Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulder height		
IVIOUEI IVO.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
RA15	0.5	0.5	3	4	
RA20	0.5	0.5	4	5	
RA25	0.5	1	4	5	
RA30	1	1	5	6	
RA35	1	1	5	6	
RA45	1.5	1	6	8	
RA55	1.5	1.5	7	10	
RA65	1.5	1.5	11	11	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 14 and Table 11 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings and tube fittings is the end face of roller slide.
 We can mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the roller slide body or the side of end cap.
- A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 9 and Table 10 show the mounting position. A spacer is required for AN and BN shape roller slides. The spacers are available from NSK.
- When using a piping unit with thread of M6 x 1, you require a connector to connect it to a grease fitting mounting hole with M6 x 0.75. The connectors are available from NSK.

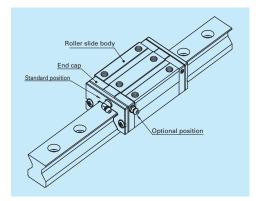


Fig. 12 Mounting position of lubrication accessories

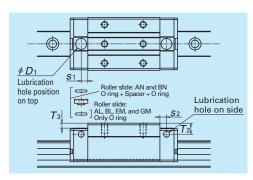


Fig.13 Top and side lubrication hole positions

Table 9 Top and side lubrication hole positions

Unit: mm									
Model No.	Roller slide model	Grease fitting size	S_2	T_2	O ring (JIS)	Spacer	D_1	S_1	Тз
RA15		φ 3	4	7	P5	Necessary	8.2	4.4	4.2
RA20		φ 3	4	4	P6	_	9.2	5.4	0.2
RA25		M6×0.75	6	10	P7	Necessary	10	6	4.5
RA30	AN, BN	M6×0.75	5	10	P7+P5	Necessary	10.4	6	3.5
RA35		M6×0.75	5.5	15	P7+P5	Necessary	10.4	7	7.4
RA45		Rc 1/8	7.2	20	P7+P5	Necessary	10.4	7.2	10.4
RA55		Rc 1/8	7.2	21	P7+P5	Necessary	10.4	7.2	10.4
RA65		Rc 1/8	7.2	19	P7	_	10.4	7.2	0.4

Table 10 Top and side lubrication hole positions

Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	D_1	S_1	<i>T</i> ₃
RA15	AL, BL, EM, GM	φ 3	4	3	P5	8.2	4.4	0.2
RA20	EM, GM	φ3	4	4	P6	9.2	5.4	0.2
RA25		M6×0.75	6	6	P7	10	6	0.5
RA30		M6×0.75	5	7	P7	10.4	6	0.5
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.4	7	0.4
RA45		Rc 1/8	7.2	10	P7	10.4	7.2	0.4
RA55		Rc 1/8	7.2	11	P7	10.4	7.2	0.4
RA65	EM, GM	Rc 1/8	7.2	19	P7	10.4	7.2	0.4

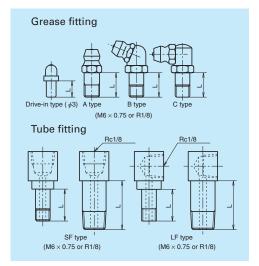


Fig. 14 Grease fitting and tube fitting

7. Dust-proof components

(1) Standard specification

The RA series is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA series can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

- *) Inner seals for the models of RA15 and RA20 are available as options.
- **) The rail cover is available to the models of RA25 to RA65.

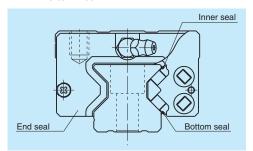


Fig. 15

		Table 11		Unit: mm	
Model	Dust-proof	nsion L			
No.	specification	Grease fitting	Tube fitting		
INO.	specification	/Drive-in type	SF type	LF type	
	Standard	5	-	-	
RA15	With NSK K1	10	-	_	
NA IS	Double seal	8	_	-	
	Protector	8	-	_	
	Standard	5	-	-	
RA20	With NSK K1	10	-	-	
nA20	Double seal	8	_	-	
	Protector	10	_	-	
	Standard	5	5	5	
RA25	With NSK K1	12	12	12	
RA25	Double seal	10	9	9	
	Protector	10	9	9	
	Standard	5	6	6	
	With NSK K1	14	14	15	
RA30	Double seal	12	12	11	
	Protector	12	10	11	
	Standard	5	6	6	
	With NSK K1	14	14	15	
RA35	Double seal	12	12	11	
	Protector	12	10	11	
	Standard	8	13.5	17	
D 4 4 F	With NSK K1	18	20	21.5	
RA45	Double seal	14	16	17	
	Protector	14	16	17	
	Standard	8	13.5	17	
RA55	With NSK K1	18	20	21.5	
	Double seal	14	16	17	
	Protector	14	16	17	
	Standard	8	13.5	17	
	With NSK K1	20	20	20	
RA65	Double seal	14	18	17	
	Protector	14	16	17	
			_		

Fig. 16 Rail cover

Table 12 Seal friction per roller slide (maximum value)

Uni								
Series Size	15	20	25	30	35	45	55	65
RA	4	5.5	5	5	6	8	8	14

Unit: mm

(2) NSK K1[™] lubrication unit

Table 13 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

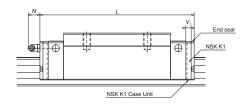


Table 13

Unit: mm

140.0							
Model No.	Roller slide length	Roller slide model	Standard roller slide length	With two NSK K1	Thickness of NSK K1 <i>V</i> ₁	Protruding area of the grease fitting N	
D 4 1 F	Standard	AN, AL, EM	70	79	4.5	(0)	
RA15	Long	BN, BL, GM	85.4	94.4	4.5	(3)	
DA00	Standard	AN, EM	86.5	95.5	4.5	(0)	
RA20	Long	BN, GM	106.3	115.3	4.5	(3)	
RA25	Standard	AN, AL, EM	97.5	107.5	E	(11)	
nA25	Long	BN, BL, GM	115.5	125.5	5		
RA30	Standard	AN, AL, EM	110.8	122.8	6	(11)	
nasu	Long	BN, BL, GM	135.4	147.4	O	(11)	
RA35	Standard	AN, AL, EM	123.8	136.8	6.5	(1.1)	
nA35	Long	BN, BL, GM	152	165	0.5	(11)	
DA4E	Standard	AN, AL, EM	154	168	7	(1.4)	
RA45	Long	BN, BL, GM	190	204	/	(14)	
DAFE	Standard	AN, AL, EM	184	198	7	(1.4)	
RA55	Long	BN, BL, GM	234	248	7	(14)	
DAGE	Standard	AN, EM	228.4	243.4	7.5	(14)	
RA65	Long	BN, GM	302.5	317.5	7.5		

Note: Roller slide length equipped with NSK K1 = (Standard roller slide length) + (Thickness of NSK K1 Case Unit × Number of NSK K1 Case Unit)

(3) Double seal and protector

For RA Series, double seal and protector can be installed only before shipping from the factory. **Table 14** shows the increased thickness when end seal and protector are installed.

	Table 14	Unit: mm
Model No.	Thickness of end seal	Thickness of protector
Model No.	<i>V</i> ₃	V_4
RA15	3	2.7
RA20	3	3.3
RA25	3.2	3.3
RA30	3.4	3.6
RA35	3.4	3.6
RA45	4	4.2
RA55	4	4.2
RA65	5	5.5

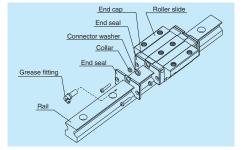


Fig. 17 Double seal

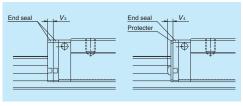


Fig. 19

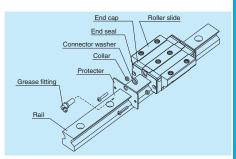


Fig. 18 Protector

(4) Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. **Fig.20** shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to RA65)

Please confirm the interference with your machine at the stroke end.

- · Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in **Table 15**.

Table 15 Height of rails equipped with rail cover

	Unit: mm
Standard height H ₁	Cover installation
24	24.2
28	28.2
31	31.25
38	38.3
43.5	43.8
55	55.3
	24 28 31 38 43.5

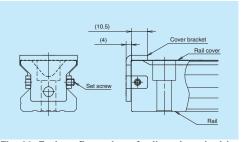


Fig. 20 End configuration of rail equipped with the rail cover

(5) Cap to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
woder no.	secure rail	reference No.	/case
RA15	M4	LG-CAP/M4	20
RA20	M5	LG-CAP/M5	20
RA25	M6	LG-CAP/M6	20
RA30, RA35	M8	LG-CAP/M8	20
RA45	M12	LG-CAP/M12	20
RA55	M14	LG-CAP/M14	20
RA65	M16	LG-CAP/M16	20

(6) Specification with highly dustproof V1 seal and V1 bottom seal

RA25, RA30, RA35, RA45, RA55, and RA65 also have the specification with newly developed, highly dustproof V1 seal which is the end seal with enhanced abrasion resistance.

Highly dustproof V1 Seal made of new materials and in a new shape for better abrasion resistance prevents foreign matter getting into the roller slide for a long period.

RA35, RA45, RA55, and RA65 also have prepared highly dustproof V1 bottom seal. In addition, outstanding lubrication effects by NSK K1 further improves the durability.

High dustproof V1 bottom seal and NSK K1 can be selected individually according to the application.

The bolt hole caps whose shape is partly changed eliminate building up of foreign matter

Bolt-hole caps

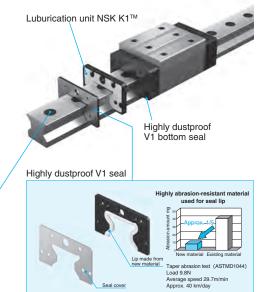
Durability test under extreme conditions - no lubrication

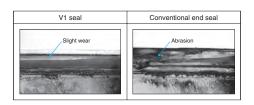
With this new material, even if lubrication is poor, damage such as roughening of surfaces will not occur.

Test sample: RA35

Feed speed: 500 mm/sec

Operation without lubrication on the seal


Table 17 shows the dimension for roller slide with V1 seal. V1 bottom seal


NSK K1 case unit

Since the sealing property (resistance to foreign matter) is affected by usage or the lubrication environment, please conduct an evaluation test for your particular application.

in and around the rail mounting holes and prevent foreign matter from entering into the roller slide. Otherwise, the rail cover with higher dustproofness can be selected.

See A256 for the details of the rail cover.

NSK

				Table 17			Unit: mm
Model No.	Roller slide length	Roller slide type	Standard roller slide length <i>L</i>	Roller slide length equipped with V1 seal and NSK K1 <i>L</i>	Slide bottom face height equipped with V1 bottom seal E_{V1}	Thickness of V1 seal V_0	Thickness of K1 case unit V_1
RA25	Standard	AN, AL, EM	97.5	111.3		5.1	5
nA25	Long	BN, BL, GM	115.5	129.3	_	5.1	5
RA30	Standard	AN, AL, EM	110.8	126.8		5.4	6
nASU	Long	ong BN, BL, GM 135.4 151.4		_	5.4		
RA35	Standard	AN, AL, EM	123.8	140.8	min 3.7	5.4	6.5
TIASS	Long	BN, BL, GM	152	169	111111 3.7	5.4	0.5
RA45	Standard	AN, AL, EM	154	173.2	min 5.2 6.6		7
nA45	Long	BN, BL, GM	190	209.2	min 5.2	0.0	/
RA55	Standard AN, A		184	203.2	min 6.2	6.6	7
NASS	Long	BN, BL, GM	234	253.2	111111 0.2	0.0	/
RA65	Standard	AN, EM	228.4	251.2	min 10.2	8.9	7.5
11A05	Long	BN, GM	302.5	325.3	111111 10.2	0.9	7.5

Design Precautions

Because the product is used under severe operating conditions that require highly dustproof VI seals, please inform NSK about your service conditions using the technical data sheet on page A152.

(7) Bellows

Installation of bellows

* Fixing to the roller slide

- · Remove two machine screws which secure the end seal. (For RA15, hold the end cap by hand. Otherwise, the end cap is detached from the slide, and the roller inside may spill over.)
- · Insert a spacer to the securing hole of the end seal, fasten the mounting plate at the end of the bellows using a slightly longer machine screw. (For RA15, insert a flat spacer between the end seal and the mounting plate at the end of the bellows.)

* Fixing to the rail

• For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

Calculating length of bellows

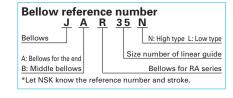
· The formulas for calculating length of bellows for the end are as follows.

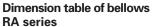
Stroke
$$St = L_{max} - L_{min}$$

Length when stretched to the maximum length

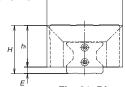
$$L_{\text{max}} = f_b \cdot P \times \text{Number of folds}$$

Length when contracted to the minimum length


$$L_{\min} = 2.5 \times \text{Number of folds} + 3$$


Values of f_b and P are shown in the bellows dimension table. Based on these above formulas, calculate the number of folds as follows.

Number of folds =
$$\frac{St - 3}{f_b \cdot P - 2.5}$$


Round up the calculated value so that the number of folds will be n + 0.5 (n: the natural number).

For the length of a middle bellows, please ask NSK.

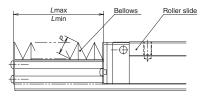


Fig. 21 Dimensions of bellows

Table 18 Dimensions of bellows

Unit: mm(excluding f_b)

									(
Model No.	Н	h₁	Е	W	Р	$f_{\scriptscriptstyle \mathrm{b}}$	а	b	$(M) \times depth$
JAR15L	23.5	19.5	4	33	7	1.2	7	6.3	M3 × 5
JAR15N	27	23	4	39	10	1.3	_ ′	0.5	1013 X 3
JAR20N	29	24	5	43	8	1.3	8.5	9	M3 × 5
JAR25L	35	30	5	55	10	1.3	8.5	12	M3 × 5
JAR25N	39	34) 5	61	14	1.4	0.0	12	IVIS X 5
JAR30L	41	34.5	C.E.	60	12	1.3	11	12.5	M4 × 6
JAR30N	44	37.5	6.5	66	15	1.4	11	12.5	1V14 X 6
JAR35L	47	40.5	6.5	72	15	1.4	11	15	M4 × 6
JAR35N	54	47.5	0.5	82	20	1.5	1 11	15	1V14 X 6
JAR45L	59	51	8	93	20	1.5	14	18	M5 × 8
JAR45N	69	61	0	113	30	1.5	14	18	IVID X 8
JAR55L	69	60	9	101	20	1.5	15	22	ME
JAR55N	79	70	9	121	30	1.5	15	22	M5 × 8
JAR65N	89	76	13	131	30	1.5	21	26	M6 × 10

Note: f_b is a dimensionless number

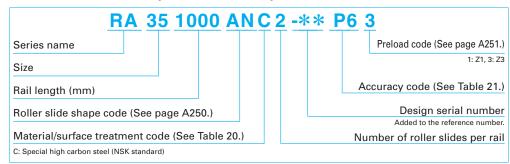
8. Dynamic friction

- Dynamic friction indications per roller slide are shown in Table 19.
- These values are assumed under actual condition with standard specification (two end seals, inner seal and bottom seal equipped) packed with standard grease (NSK Grease AS2)
- · Dynamic friction varies with grease.

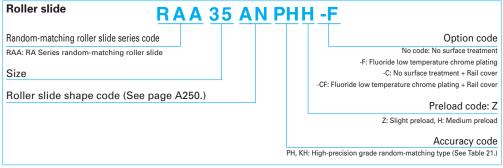
Table 19 Dynamic friction

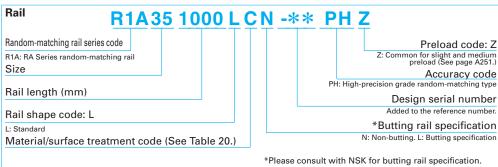
Unit: N

Model No.	High-load type	Super-high-load type
RA15	21	24
RA20	22	28
RA25	27	34
RA30	33	42
RA35	42	53
RA45	56	69
RA55	80	95
RA65	120	138


Note: Values in Table 19 are indications. Please refer to them.

9. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, the applicable preload codes are "slight preload Z" and "medium preload H". (See page A251.)

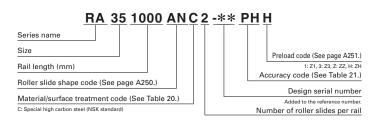
Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

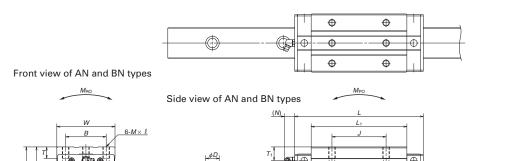
Table 20 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Р	Special high carbon steel with V1 seal
R	Special high carbon steel with surface treatment and V1 seal
Z	Other, special

Note: P and R are not available for randommatching slides and rails.

Table 21 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
High precision grade (Random-matching type)	PH	КН

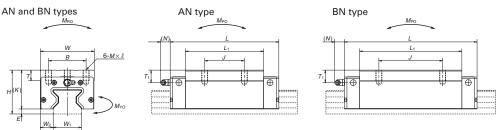

Note: Refer to pages A38 for NSK K1 lubrication unit.

10. Dimensions

RA-AN (High-load type / Standard)

RA-BN (Super-high-load type / Long)

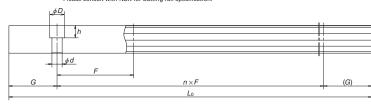
Top view of AN and BN types


φd

	A:	ssemb	oly					Rolle	r slide							
Model No.	Height			Width	Length		М	ounting hole				Grease	fittin	g	Width	Height
woder no.	,,	E	147	147	,		,		,	V	<i>T</i>		_		147	ļ ,,
	Н	E	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	1	Hole size	T_1	N	W_1	H_1
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	44.8 60.2	24	8	φ 3	8	3	15	16.3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	57.5 77.3	25	12	ø 3	4	3	20	20.8
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	65.5 83.5	35	12	M6×0.75	10	11	23	24
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	38.5	14	M6×0.75	10	11	28	28
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	48.5	15	M6×0.75	15	11	34	31
RA45AN RA45BN	70	8	20.5	86	154 190	60	60 80	M10×1.5×17	105.4 141.4	62	17	Rc1/8	20	14	45	38
RA55AN RA55BN	80	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	71	18	Rc1/8	21	14	53	43.5
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	155.4 229.5	77	22	Rc1/8	19	14	63	55

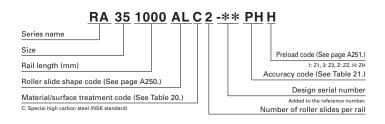
Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied

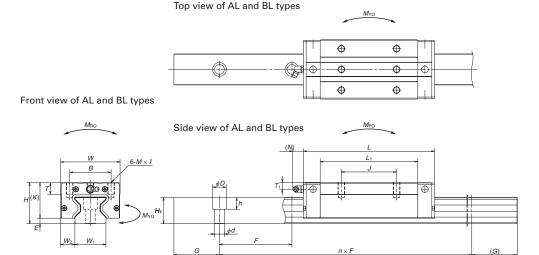
Reference number for roller slide of random-matching type


RAA 35 AN PH H-F Roller slide Random-matching roller slide series code
RAA: RA Series random-matching roller slide Option code No code: No surface treatment -F: Fluoride low temperature chrome plating -C: No surface treatment + Rail cover Roller slide shape code (See page A250.) Preload code: Z Accuracy code PH, KH: High-precision grade random-matching type (See Table 21.)

Reference number for rail of random-matching type R1A35 1000 L C N -** PH Z

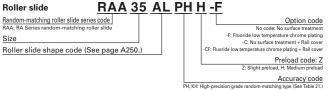
Random-matching rail series code Preload code: Z R1A: RA Series random-matching rai Z: Common for slight and medium preload (See A251.) Size Accuracy code PH: High-precision grade random-matching type Rail length (mm) Design serial number Rail shape code: L Added to the reference number. *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20.) *Please consult with NSK for butting rail specification

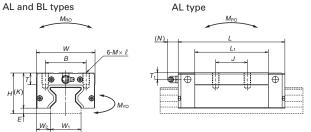

Unit:	

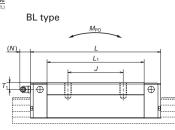

Rail				Basic load rating									ight
Pitch	Mounting	G	Maximum	3)Dyn	amic	Static		Static	moment	(N·m)		Roller	Rail
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M.	YO	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130		1.6
60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000	505 900	3 100 5 000	0.38 0.50	
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.60	3.4
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	1.0 1.3	4.9
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800		6.8
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000		10.9
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000		14.6
75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000	19 200 28 700	12 700 28 600	78 500 153 000	12 700 28 600	78 500 153 000		22.0

- 2) The random-matching type is available for the models of RA25 to RA65.
- 3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

(G)

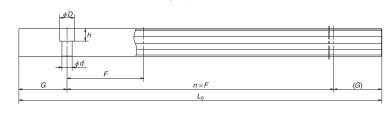

RA-AL (High-load type / Standard) RA-BL (Super-high-load type / Long)




	Assembly Roller slide															
Model No.	Height			Width	Length		М	ounting hole				Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	T_1	N	W_1	H ₁
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	44.8 60.2	20	8	φ 3	4	3	15	16.3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	65.5 83.5	31	12	M6×0.75	6	11	23	24
RA30AL RA30BL	42	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	35.5	14	M6×0.75	7	11	28	28
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	41.5	15	M6×0.75	8	11	34	31
RA45AL RA45BL	60	8	20.5	86	154 190	60	60 80	M10×1.5×16	105.4 141.4	52	17	Rc1/8	10	14	45	38
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	61	18	Rc1/8	11	14	53	43.5

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied

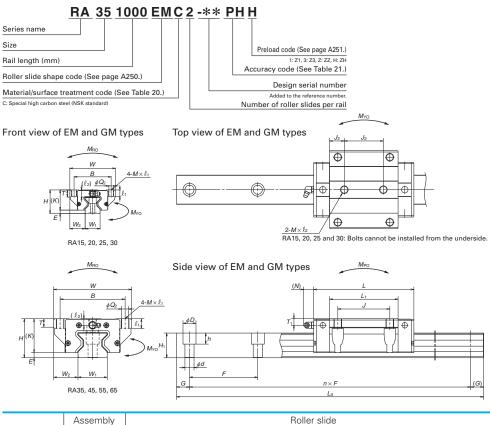
Reference number for roller slide of random-matching type



Reference number for rail of random-matching type **B1A35 1000 L C N -** PH Z**

111/100 1000 E 0	<u> </u>
Random-matching rail series code R1A: RA Series random-matching rail Size	Preload code: Z Z: Common for slight and medium preload (See AZ\$1.) Accuracy code
Rail length (mm)	PH: High-precision grade random-matching type. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 20.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

Unit: mm


Rail					Basic load rating									
Pitch	Mounting	G	Maximum	3)Dyna	amic	Static		Static	moment	(N·m)		Roller	Rail	
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M	YO	slide		
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.17 0.25	1.6	
30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.45 0.80	3.4	
40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	0.85 1.1	4.9	
40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.2 1.7	6.8	
52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	2.5 3.4	10.9	
60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.1 5.7	14.6	
O) TI				21 1 1 6 41		(D 4 0 E . D								

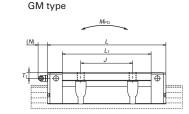
²⁾ The random-matching type is available for the models of RA25 to RA55.

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

RA-EM (High-load type / Standard) RA-GM (Super-high-load type / Long)

	Assembly Roller slide															
Model No.	Height			Width	Length			Ν	Nounting hole					Grease	fittir	ng
Model No.	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell_1(\ell_2)$		L ₁	Κ	Т	Hole size	<i>T</i> ₁	N
RA15EM RA15GM	24	4	16	47	70 85.4	38	30	26	M5×0.8×8.5 (6.5)	4.4	44.8 60.2	20	8	ø 3	4	3
RA20EM RA20GM	30	5	21.5	63	86.5 106.3	53	40	35	M6×1×9.5 (8)	5.3	57.5 77.3	25	10	φ 3	4	3
RA25EM RA25GM	36	5	23.5	70	97.5 115.5	57	45	40	M8×1.25×10 (11)	6.8	65.5 83.5	31	11	M6×0.75	6	11
RA30EM RA30GM	42	6.5	31	90	110.8 135.4	72	52	44	M10×1.5×12 (12.5)	8.6	74 98.6	35.5	11	M6×0.75	7	11
RA35EM RA35GM	48	6.5	33	100	123.8 152	82	62	52	M10×1.5×13 (7)	8.6	83.2 111.4	41.5	12	M6×0.75	8	11
RA45EM RA45GM	60	8	37.5	120	154 190	100	80	60	M12×1.75×15 (10.5)	10.5	105.4 141.4	52	13	Rc1/8	10	14
RA55EM RA55GM	70	9	43.5	140	184 234	116	95	70	M14×2×18 (13)	12.5	128 178	61	15	Rc1/8	11	14
RA65EM RA65GM	90	13	53.5	170	228.4 302.5	142	110	82	M16×2×24 (18.5)	14.6	155.4 229.5	77	22	Rc1/8	19	14


Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

Reference number for roller slide of random-matching type

Roller slide
RAA 35 EM PH H -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A250.)

Option code
1-F: Fluoride low temperature chrome plating
-C: No surface treatment -Rail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a fail cover
-CF: Fluoride low temperature chrome plating a f

Reference number for rail of random-matching type

Rail R1A35 1000 L C N -** PH Z

Random-matching rail series code
R1A: RA Series random-matching rail
Size Preload code: Z
Z: Common for slight and medium preload (See A25): Accuracy code
Rail length (mm)
Rail shape code: L
L: Standard
Material/surface treatment code (See Table 20.)

*Please consult with NSk for butting rail specification

			Rail			Basic load rating								We	ight
Width	Height	Pitch	Mounting G		Maximum	3)Dyn	amic	Static	S	Static n	nomer	nt (N·n	า)	Roller	Rail
			bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350		1 320 2 130				1.6
20	20.8	60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000				2.6
23	24	30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240		4 850 7 200				3.4
28	28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170						4.9
34	31	40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810				11 000 17 800		6.8
45	38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150			24 000 39 000		10.9
53	43.5	60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000	000 000	10 200 14 300				41 000 72 000		14.6
63	55	75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000	19 200 28 700				78 500 153 000		22.0

²⁾ The random-matching type is available for the models of RA25 to RA65.

³⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A-5-3.2 RB Series

1. Features

(1) Super-low type

With low mounting height, the RB series is effective for compact machine design.

(2) Super-high load capacity

The RB series can contribute to lower center of gravity of machines, while maintaining the load capacity of the RA series.

(3) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(4) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RB series.

(5) Smooth motion

Installation of a retaining piece between rollers restrains the roller skew peculiar to roller slides, thereby achieving smooth motion.

(6) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

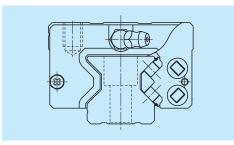


Fig. 1 RB Series

Fig. 2 Analysis example

2. Roller slide shape

Roller slide model	Shape/installation method	Type (Upper row, Rating: Lo High-load type Standard	wer row, Roller slide length) Super-high-load type Long				
AL TL BL UL		AL · TL (excluding RB55AL) RB55AL	BL (excluding RB55 and RB65) L1 UL RB55BL · RB65BL L1				
EM GM		EM L ₁	GM L ₁				

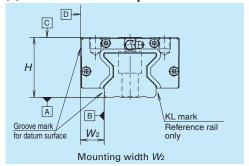
3. Accuracy and preload

(1) Running parallelism of roller slide

Table 1

			Table 1		Unit: µm
		P	reloaded assembly (ı	not random matchin	g)
Rail length (m		Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
- 50	0	2	2	2	4.5
50 - 80	0	2	2	3	5
80 - 129	5	2	2	3.5	5.5
125 – 200	0	2	2	4	6
200 – 250	0	2	2.5	5	7
250 - 315	5	2	2.5	5	8
315 - 400	0	2	3	6	9
400 - 500	0	2	3	6	10
500 - 630	0	2	3.5	7	12
630 - 800	0	2	4	8	14
800 – 1 000	0	2.5	4.5	9	16
1 000 – 1 250	0	3	5	10	17
1 250 – 1 600	0	4	6	11	19
1 600 – 2 000	0	4.5	7	13	21
2 000 – 2 500	0	5	8	15	22
2 500 – 3 150	0	6	9.5	17	25
3 150 – 3 900	0	9	16	23	30

Roller Guide RB Series


(2) Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades.

• Tolerance of preloaded assembly

Tolerance of preloaded assembly	Table	Unit: µm		
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
Mounting height <i>H</i>	±8	±10	±20	±40
Variation of <i>H</i>	3	5	7	15
(All roller slides on a set of rails)				
Mounting width W_2 or W_3	±10	±15	±25	±50
Variation of W_2 or W_3	3	7	10	20
(All roller slides on reference rail)				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Tab l	le 1 and Fig. 4	

(3) Assembled accuracy

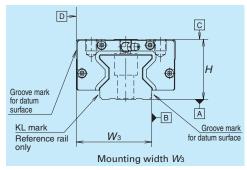


Fig. 3

NSK

(4) Preload and rigidity

One type of preload is available: Medium preload Z3 for preloaded assembly.

Table 4

Model No.		Model No.	Preload (N)	
			Medium preload (Z3)	
be	RB30	AL, EM	3 890	
₹	RB35	AL, EM	5 330	
High-load type	RB45	AL, EM	9 280	
J-H	RB55	AL, TL, EM	12 900	
Ξ̈́	RB65	AL, EM	21 000	
уре	RB30	BL, GM	4 760	
ad t	RB35	BL, GM	6 740	
gh-lc	RB45	BL, GM	11 600	
Super-high-load type	RB55	BL, UL, GM	16 800	
Sup	RB65	BL, UL, GM	28 800	

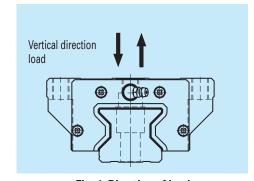
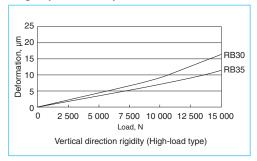



Fig. 4 Direction of load

Roller Guide RB Series

· Rigidity of medium preload

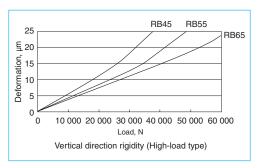
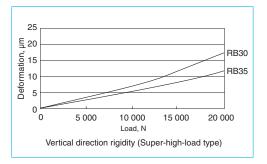



Fig. 5 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AL, TL, EM)

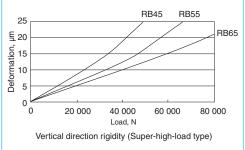


Fig. 6 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BL, UL, GM)

4. Maximum rail length

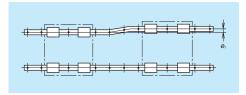
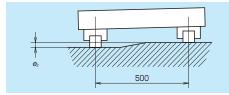
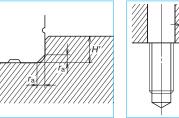

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

Table 5 Length limitation of rails Unit: mr						
Series Size	30	35	45	55	65	
RB	3 900	3 900	3 650	3 600	3 600	

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

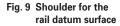

Fig. 7

Fig. 8

		Table 6			Unit: µm
Value	Model No.				
value	RB30	RB35	RB45	RB55	RB65
Permissible values of parallelism in two rails e_1	11	13	17	19	30
Permissible values of parallelism (height) in two rails e_2	150 µm / 500 mm				

(2) Shoulder height of the mounting surface and corner radius r

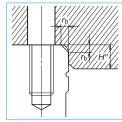


Fig. 10 Shoulder for the roller slide datum surface

		Table 7	Unit: mm		
Model No.	Corner radius (maximum)		Shoulder height		
wouer no.	r _a	$r_{\scriptscriptstyle \mathrm{b}}$	H′	H″	
RB30	1	1	5	6	
RB35	1	1	5	6	
RB45	1.5	1	6	8	
RB55	1.5	1.5	7	10	
RB65	1.5	1.5	8	11	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 13 and Table 9 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings and tube fittings is the end face of roller slide.
 We can mount them on a side of end cap for an option. (Fig. 11) Please consult NSK for installation of grease or tube fittings to the roller slide body or the side of end cap.
- A lubrication hole can also be provided on the top of the end cap. Fig.12 and Table 8 show the mounting position.
- When using a piping unit with thread of M6 x 1, you require a connector to connect it to a grease fitting mounting hole with M6 x 0.75.
 The connectors are available from NSK.

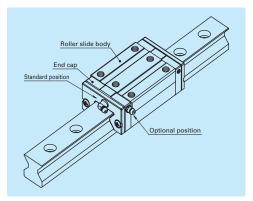


Fig. 11 Mounting position of lubrication accessories

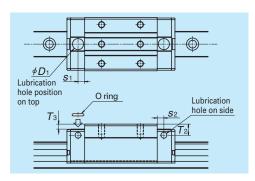


Fig.12 Top and side lubrication hole positions

Unit: mm

Table 8	Top and	side	lubrication	hole	positions

lodel No. Grease fitting size		S_2	<i>T</i> ₂	O ring (JIS)	D ₁	S_1	<i>T</i> ₃				
RB30	M6×0.75	5	6.5	P7	10.4	6	0.5				
RB35	M6×0.75	5.5	6.5	P7	10.4	7	0.4				
RB45	M6×0.75	7.2	6.5	P7	10.4	7.2	0.4				
RB55	M6×0.75	7.2	8	P7	10.4	7.2	0.4				
RB65	M6×0.75	7.2	10	P7	10.4	7.2	0.4				

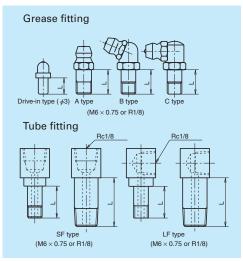


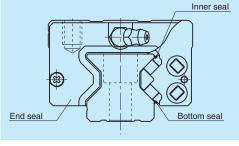
Fig. 13 Grease fitting and tube fitting

7. Dust-proof components

(1) Standard specification

The RB series is equipped with end, inner and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RB series can be used without modification.

		Table 9		Unit: mm				
Model	Dust-proof	Dimension L						
No.	specification	Grease fitting	Tube					
NO.	specification	/Drive-in type	Dimension L se fitting e-in type SF type LF type 5 - - 10 - - 8 - - 5 5 5 14 15 16 12 12 12 12 12 12 5 5 5 14 15 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 14 16 17 14 16 17 8 13.5 17 20 20 20					
	Standard	5	-	-				
RB30	With NSK K1	10	-	-				
NBSU	Double seal	8	-	-				
RB35	Protector	8	-	-				
	Standard	5	5	5				
DDOE	With NSK K1	14	15	16				
прээ	Double seal	12	12	12				
	Protector	12	12	12				
	Standard	5	5	5				
DDAE	With NSK K1	14	15	16				
ND45	Double seal	12	12	12				
RB45	Protector	12	12	12				
	Standard	8	13.5	17				
RB55	With NSK K1	18	20	21.5				
проо	Double seal	14	16	17				
	Protector	14	16	17				
	Standard	8	13.5	17				
RB65	With NSK K1	20	20	20				
11000	Double seal	14	18	17				
	Protector	14	16	17				



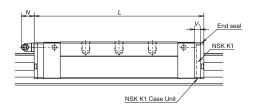

Fig. 14

Table 10 Seal friction per roller slide (maximum value) $_{\mbox{Unit: N}}$

Series Size	30	35	45	55	65
RB	5	6	8	8	14

(2) NSK K1[™] lubrication unit

Table 11 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table 11	l		Unit: mm	
Model No.	Roller slide length	Roller slide model	Standard roller slide length	With two NSK K1	Thickness of NSK K1 V ₁	Protruding area of the grease fitting N	
DDOO	Standard	AL, EM	110.8	122.8	6	(11)	
RB30	Long	BL, GM	135.4	147.4	0	(11)	
RB35	Standard	AL, EM	123.8	136.8	6.5	(11)	
	Long	BL, GM	152	165	0.5	(11)	
RB45	Standard	AL, EM	154	168	7	(14)	
ND45	Long	BL, GM	190	204	/	(14)	
RB55	Standard	AL, TL, EM	184	198	7	(14)	
	Long	BL, UL, GM	234	248	/	(14)	
RB65	Standard	AL, EM	228.4	243.4	7.5	(14)	
0000	Long	BL, UL, GM	302.5	317.5	7.5		

Note: Roller slide length equipped with NSK K1 = (Standard roller slide length) + (Thickness of NSK K1 Case Unit × Number of NSK K1 Case Unit)

(3) Double seal and protector

For RB Series, double seal and protector can be installed only before shipping from the factory. **Table 12** shows the increased thickness when end seal and protector are installed.

	Table 12	Unit: mm
Model No.	Thickness of end seal V_3	Thickness of protector V_4
RB30	3.4	3.6
RB35	3.4	3.6
RB45	4	4.2
RB55	4	4.2
RB65	5	5.5

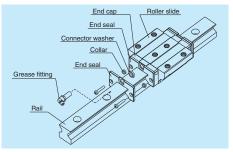


Fig. 15 Double seal

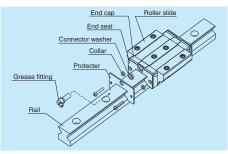


Fig. 16 Protector

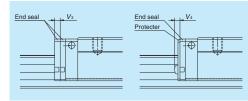


Fig. 17

(4) Cap to plug the rail mounting bolt hole

Table 13 Caps to plug rail bolt hole

Model No.	Bolt to secure rail	Cap reference No.	Quantity /case
RB30, RB35	M8	LG-CAP/M8	20
RB45	M12	LG-CAP/M12	20
RB55	M14	LG-CAP/M14	20
RB65	M16	LG-CAP/M16	20

Roller Guide RB Series

8. Dynamic friction

- Dynamic friction indications per roller slide are shown in Table 14.
- These values are assumed under actual condition with standard specification (two end seals, inner seal and bottom seal equipped) packed with standard grease (NSK Grease AS2)
- Dynamic friction varies with grease.

Table 14 Dynamic friction

Unit: N

Model No.	High-load type	Super-high-load type
RB30	33	42
RB35	42	53
RB45	56	69
RB55	80	95
RB65	120	138

Note: Values in Table 14 are indications.

Please refer to them.

9. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

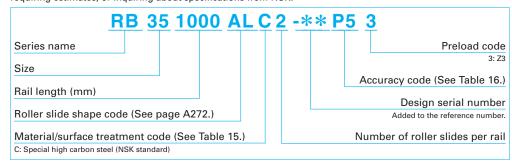


Table 15 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 16 Accuracy code

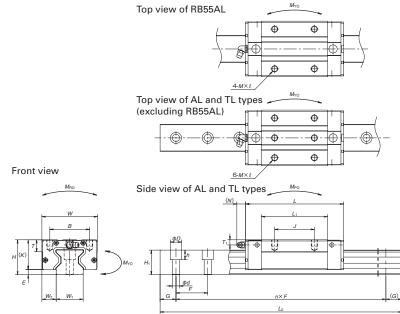
Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6

Note: Refer to pages A38 for NSK K1 lubrication unit.

10. Dimensions RB-AL·TL (High-load type / Standard) RB-BL·UL (Super-high-load type / Long)

RB 35 1000 AL C 2 -** P5 3

Series name

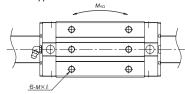

Size

Rail length (mm)

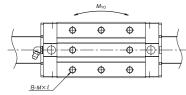
Roller slide shape code (See page A272.)

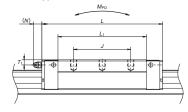
Material/surface treatment code (See Table 15.)

C: Special high carbon steel (NSK standard)


	As	sem	bly						Roller slide	Э						
Model No.	Height			Width	Length	Mounting hole							Grease	fitting	g	Width
woder No.								Number								
	Н	Ε	W_2	W	L	В	J	of holes	$M \times$ pitch $\times \ell$	L_1	Κ	Τ	Hole size	T_1	Ν	W_1
RB30AL RB30BL	38	6.5	16	60	110.8 135.4	40	40 60	6 8	- I MOV125V7 I		31.5	14	φ3	5	2.6	28
RB35AL RB35BL	44	6.5	18	70	123.8 152	50	50 72	6 8	M8×1.25×8	83.2 111.4	37.5	15	M6×0.75	6.5	11	34
RB45AL RB45BL	52	8	20.5	86	154 190	60	60 80	6 8	M10×1.5×10	105.4 141.4	44	17	M6×0.75	6.5	14	45
RB55AL					184	65 75	75	4		128						
RB55TL RB55BL RB55UL	63	9	23.5	100	234	75 65 75	95	6	M12×1.75×12	178	54	18	Rc1/8	8.5	14	53
RB65AL					228.4		70		6 M16×2×16				5 . (6			
RB65BL RB65UL	75	10	31.5	126	302.5	76	110 120	6			65	22	Rc1/8	10	14	63

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

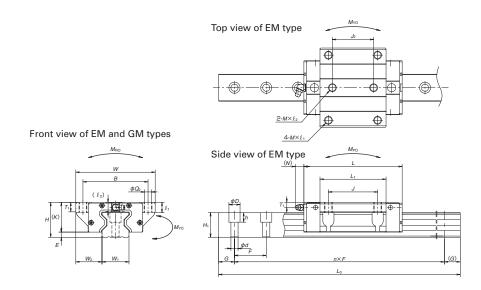



Top view of UL type

Top view of BL type (excluding RB55 and RB65)

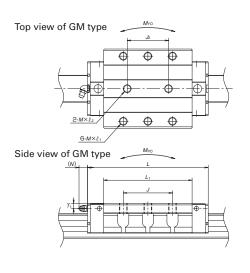
Side view of BL type

Unit: mm


	F	Rail				Basic load rating								ight
Height	Pitch	Mounting	G	Maximum	2)Dyn	amic	Static		Statio	momen	t (N·m)		Roller	Rail
		bolt hole		length	[50km]	[100km]	C_0	M _{RO}	Λ	1 _{P0}	٨	1 _{Y0}	slide	
H_1	F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950			7 100 11 500		4.9
31	40 (80)	9×14×12	20	3 900	65 500 82 900		129 000 175 000	2 810 3 810	1 800 3 250			11 000 17 800		6.8
38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240				24 000 39 000	-	10.9
43.5	60	16×23×20	20	3 600	159 000	129 000	330 000	10 200	7 060	41 000	7 060	41 000	3.4	14.6
43.0	(120)	10 ~ 23 ~ 20	30	3 000	207 000	168 000	462 000	14 300	13 600	72 000	13 600	72 000	4.7	14.0
	75				259 000	210 000	504 000	19 200	12 700	78 500	12 700	78 500	7.2	
52 (150)	18×26×22	35	3 600	355 000	288 000	756 000	28 700	28 600	153 000	28 600	153 000	9.5	20.5	

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life


RB-EM (High-load type / Standard) RB-GM (Super-high-load type / Long)

RB 35 1000EM C 2 -** P5 3 Series name Preload code 3: Z3 Size Accuracy code Rail length (mm) Design serial number Roller slide shape code (See page A272.) Added to the reference number. Material/surface treatment code (See Table 15.) Number of roller slides per rail C: Special high carbon steel (NSK standard)

	A:	ssem	nbly							Roller	slide							
Model No.	Height			Width	Length				Mou	nting hole					Grease	fittin	g	Width
iviodei No.	Н	Ε	W_2	W	L	В	J		Number of holes	$M \times \text{pitch} \times \ell_{\scriptscriptstyle 1}(\ell_{\scriptscriptstyle 2})$	Q	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	W_1
RB30EM RB30GM	38	6.5	31	90	110.8 135.4	72	52	44	6 8	M10×1.5×12 (8.5)	8.6	74 98.6	31.5	11	φ3	5	2.6	28
RB35EM RB35GM	44	6.5	33	100	123.8 152	82	62	52	6 8	M10×1.5×13 (11.5)	8.6	83.2 111.4	37.5	12	M6×0.75	6.5	11	34
RB45EM RB45GM	52	8	37.5	120	154 190	100	80	60	6 8	M12×1.75×15 (12.5)	10.5	105.4 141.4	44	13	M6×0.75	6.5	14	45
RB55EM RB55GM	63	9	43.5	140	184 234	116	95	70	6 8	M14×2×18 (18)	12.5	128 178	54	15	Rc1/8	8.5	14	53
RB65EM RB65GM	75	10	53.5	170	228.4 302.5	142	110	82	6 8	M16×2×24 (21)	14.6	155.4 229.5	65	15	Rc1/8	10	14	63

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.


Unit: mm	
----------	--

	Rail				Basic load rating								Weight	
Height	Pitch	Mounting	G Maximum		2)Dyn	amic	Static		Statio	moment	t (N·m)		Roller	Rail
		bolt hole		length	[50km]	[100km]	C_0	M _{RO}	M _{PO}		M _{YO}		slide	
H_1	F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
28	40	9×14×12	20	3900	47 800			1 670	1 140		_			4.9
20	(80)	07117112	20	0000	58 500	47 600	121 000	2 170	1 950	11 500	1 950	11 500	1.5	1.0
31	40	9×14×12	20	3900	65 500	53 300		2 810	1 800	11 000		11 000		6.8
01	(80)	07/14//12	20	0000	82 900	67 400	175 000	3 810	3 250	17 800	3 250	17 800	2.0	0.0
38	52.5	14×20×17	22 5	2650	114 000	92 800	229 000	6 180	4 080	24 000	4 080	24 000	2.5	10.9
30	(105)	14/20/1/	22.5	3030	143 000	116 000	305 000	8 240	7 150	39 000	7 150	39 000	3.4	10.9
43.5	60	16×23×20	20	3600	159 000	129 000	330 000	10 200	7 060	41 000	7 060	41 000	4.7	14.6
43.5	(120)	10 ~ 23 ~ 20	30	3000	207 000	168 000	462 000	14 300	13 600	72 000	13 600	72 000	6.6	14.0
52	75	18×26×22	35	3600	259 000							78 500		20.5
52	(150)	10/20/22	55	3000	355 000	288 000	756 000	28 700	28 600	153 000	28 600	153 000	13.2	20.5

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 $C_{\rm 50}$, the basic dynamic load rating for 50 km rated fatigue life $C_{\rm 100}$; the basic dynamic load rating for 100 km rated fatigue life

A-5-3.3 LA Series

1. Features

(1) High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides of ball slide and a rail. This contributes to the increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

(2) Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

(3) Four-way equal load distribution

The contact angle of balls is set at 45 degrees in all grooves, thereby dispersing the load equally to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(4) Strong against shock load

Load from any direction, vertical and lateral, is received by four ball rows at all times. The number of the ball rows which receive the load is larger than in other linear guides, making this series stronger against shock load.

(5) High accuracy

As showing in Fig. 4, fixing the measuring rollers is easy thanks to the Gothic arch groove of the central ball groove. This benefits an accurate and measuring of ball groove for a highly precise and stable manufacturing.

(6) The dust protection design

The rail's cross section is designed as simple as possible, thereby improving the sealing efficiency combined with the enhanced sealing function. In addition, optional inner seals are available.

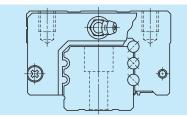


Fig. 1 LA Series

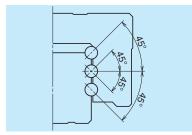


Fig. 2 Super rigidity design

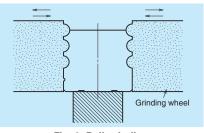


Fig. 3 Rail grinding

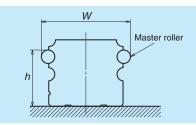


Fig. 4 Measuring groove accuracy

2. Ball slide shape

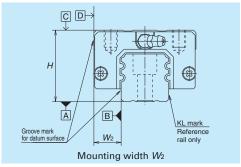
Ball slide	Shape/installation	Type (Upper row, Rating: High-load type	Lower row, Ball slide length) Super-high-load type
Model	method	Standard	Long
AN BN		AN L ₁	BN L ₁
AL BL		AL L ₁	BL L1
EL GL		EL L1	GL L1
FL HL		FL L1	HL L1

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um


me. pm	
de P6	

(2) Accuracy standard

The LA Series has four accuracy grades: Ultra precision P3, Super precision P4, High precision P5, and Precision grade P6.

Table 2					
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Tabl	e 1 and Fig. 5		

(3) Assembled accuracy

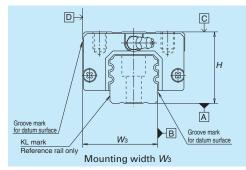


Fig. 5

4. Preload and rigidity

Table 3 shows preload and rigidity of LA Series.

The LA Series has two types of preload specification: Medium preload Z3 and Heavy preload Z4.

Table 3

	N4I - I NI -	Preloa	ad (N)	Rigidity	(N/µm)
	Model No.	Medium preload Z3	1 Z3 Heavy preload Z4 Medium preload Z		Heavy preload Z4
	LA25 AL, AN, EL, FL	1 670	2 110	475	550
/pe	LA30 AL, AN, EL, FL	2 450	3 150	705	835
ad ty	LA35 AL, AN, EL, FL	3 450	4 300	825	970
High-load type	LA45 AL, AN, EL, FL	5 050	6 350	1 100	1 240
Hig	LA55 AL, AN, EL, FL	8 100	10 200	1 400	1 540
	LA65 AN, EL, FL	13 800	18 800	1 730	2 030
be	LA25 BL, BN, GL, HL	2 260	2 840	700	820
d ty	LA30 BL, BN, GL, HL	3 250	4 050	1 000	1 180
-10 a	LA35 BL, BN, GL, HL	4 450	5 650	1 200	1 400
high	LA45 BL, BN, GL, HL	6 150	7 750	1 450	1 640
uper-high-load type	LA55 BL, BN, GL, HL	9 550	12 100	1 840	2 020
Su	LA65 BN, GL, HL	18 000	24 400	2 450	2 840

NSK

4. Maximum rail length

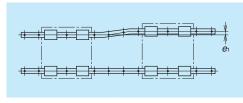
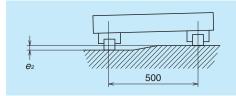

Table 4 shows the limitations of rail length. However, the limitations vary by accuracy grades.

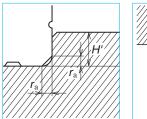
Table 4 Length limitations of rails									
Series Size	25	30	35	45	55	65			
LA	3 960	4 000	4 000	3 990	3 960	3 900			

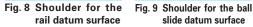
Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error




Fig. 6


Fig. 7

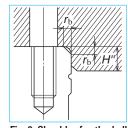

		Table 5				Unit: µm
Droload						
Freibau	LA25	LA30	LA35	LA45	LA55	LA65
Z3	15	17	20	25	30	40
Z4	13	15	17	20	25	30
70 71			185 µm,	/500 mm		
	Z4	Z3 15 Z4 13	Preload LA25 LA30 Z3 15 17 Z4 13 15	Preload	Preload	Preload

Table 5

(2) Shoulder height of the mounting surface and corner radius r

slide datum surface

		Table 6	Unit: mm			
Model No.	Corner radiu	s (maximum)	Shoulder height			
Model No.	r _a	$r_{\rm b}$	H'	H"		
LA25	0.5	0.5	5	5		
LA30	0.5	0.5	6	6		
LA35	0.5	0.5	6	6		
LA45	0.7	0.7	8	8		
LA55	0.7	0.7	10	10		
LA65	1	1	11	11		

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 7 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 11).
- Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- When using a piping unit with thread of M6 x 1, you require a connector to connect to a grease fitting mounting hole with M6 x 0.75.
 The connector is available from NSK.

		Table 7	ı	Unit: mm		
Model	Dust-proof	Dime	ension L			
No.	specification	Grease fitting		fitting		
INO.	specification	Grease many	SF type	LF type		
	Standard	5	5	5		
LA25	With NSK K1	14	12	12		
LAZS	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
LA30	With NSK K1	14	12	13		
LASU	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
LA35	With NSK K1	14	12	13		
LASS	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
I A45	With NSK K1	18	22	21.5		
LA45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA55	With NSK K1	18	22	21.5		
LASS	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA65	With NSK K1	22	24	25.5		
LAGS	Double seal	16	20	19		
	Protector	16	16	17		

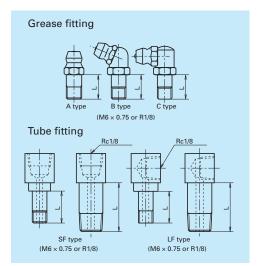


Fig. 10 Grease fitting and tube fitting

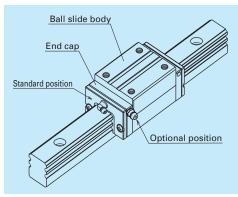


Fig. 11 Mounting position of lubrication accessories

NSK

7. Dust-proof components

(1) Standard Specification

The LA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

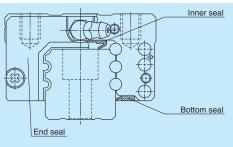
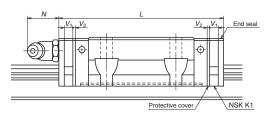



Fig. 12

Table 8 Seal friction per ball slide (maximum value)							
Series Size	25	30	35	45	55	65	
LA	11	11	12	17	17	23	

(2) NSK K1™ lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 9

Unit: mm

Model No.	Ball slide length	Ball slide model			Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LA25	Standard AL, AN, EL, FL		79.8	91.8	5.0	1.0	(14)
LAZS	Long	BL, BN, GL, HL	107.8	119.8	5.0	1.0	(14)
LA30	Standard	AL, AN, EL, FL	100.2	113.2	5.5	1.0	(14)
LASU	Long	BL, BN, GL, HL	126.2	139.2	5.5	1.0	(14)
LA35	Standard	AL, AN, EL, FL	110.6	123.6	5.5	1.0	(14)
LASS	Long	BL, BN, GL, HL	144.6	157.6	5.5	1.0	(14)
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(15)
LA45	Long	BL, BN, GL, HL	173.4	188.4	0.5	1.0	(15)
LA55	Standard	AL, AN, EL, FL	165.4	180.4	6.5	1.0	(15)
LASS	Long	BL, BN, GL, HL	203.4	218.4	0.5	1.0	(15)
LAGE	Standard	AN, EL, FL	196.2	214.2	0.0	1.0	(1.6)
LA65	Long	BN, GL, HL	256.2	274.2	8.0	1.0	(16)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the LA Series, a double seal and a protector can be installed only before shipping from the factory. Please consult with NSK when the double seal and the protectors are required.

Table 10 shows the increased thickness of V_3 and V_4 when end seals and protectors are installed (Fig. 15).

Table 10

Unit: mm

Model No.	Thickness	Thickness					
wodel No.	of end seal: V ₃	of protector: V ₄					
LA25	3.2	3.6					
LA30	4.4	4.2					
LA35	4.4	4.2					
LA45	5.5	4.9					
LA55	5.5	4.9					
LA65	6.5	5.5					

(4) Cap to plug the rail mounting bolt hole Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
woder no.	secure rail reference N		/case
LA25	M6	LG-CAP/M6	20
LA30, LA35	M8	LG-CAP/M8	20
LA45	M12	LG-CAP/M12	20
LA55	M14	LG-CAP/M14	20
LA65	M16	LG-CAP/M16	20

(5) Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face when ordered with a linear guide.

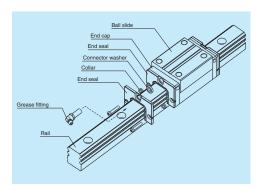


Fig. 13 Double seal

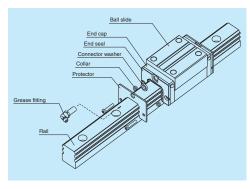


Fig. 14 Protector

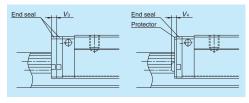


Fig. 15

Dimension tables of bellows LA Series

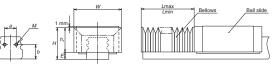


Fig. 16 Dimensions of bellows

Bellows reference number J A A 30 L 08 Bellows A: Bellows for the ends B: Middle bellows Bellows for LA series Size number of linear guide

Table 12 Dimensions of bellows

Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	Length of BL	Tap (M) × depth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3 × 5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3 × 5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	M4×6
JAA30N	44	36.5	7.5	66	15	14	17.5	17	M4 × 6
JAA35L	47	39.5	7.5	72	15	15	18.8	17	M4×6
JAA35N	54	46.5	7.5	82	20	15	18.8	17	M4×6
JAA45L	59	49	10	93	20	25	22.5	17	M5 × 8
JAA45N	69	59	10	113	30	25	22.5	17	M5 × 8
JAA55L	69	57	12	101	20	35	27.1	17	M5 × 8
JAA55N	79	67	12	121	30	35	27.1	17	M5 × 8
JAA65N	89	75	14	131	30	40	33.3	17	M6 × 12

Table 1	12 Ni.	ımharc	of f	/DI \	and	lonath	۸f	hellows

Unit: mm

Tuno	Model No.	Length of BL	2	4	6	8	10	12	14	16	18	20
Type	IVIOUEI IVO.	L_{min}	34	68	102	136	170	204	238	272	306	340
	14 4051	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA25L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
I Cala access	14 4 0 5 1	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA25N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Lavertura	14 4 201	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA30L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
High turns	JAA30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAAJUN	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Lavertura	JAA35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
Low type	e JAA35L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Lliab tuna	JAA35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
High type	JAAJON	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
Lavertura	IVVVEI	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAA45L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
∐igh tupo	JAA45N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA45IN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
Lovertypo	JAA55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAASSL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
∐igh tupo	JAA55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAASSIN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
Low/high	JAA65N*	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
type	NICOPAC	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

^{*} Bellows for LA65 is for both low and high types.

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of the even number BL on the both sides, then by dividing the sum by 2.

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

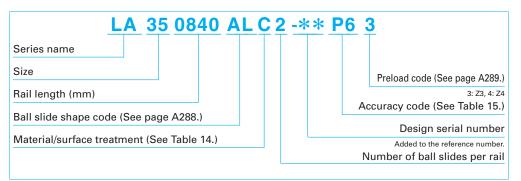
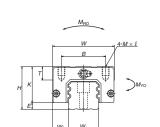


Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 15 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1				
Ultra precision grade	P3	K3				
Super precision grade	P4	K4				
High precision grade	P5	K5				
Precision grade	P6	K6				


Note: Refer to pages A38 for NSK K1 lubrication unit.

Unit: mm

9. Dimensions

LA-AL (High-load type / Standard) LA-BL (Super-high-load type / Long)

LA 35 0840 ALC 2 -** P6 3 Series name Size Rail length (mm) Ball slide shape code (See page A288.) Material/surface treatment (See Table 14.)

Front view of AL and BL types

### F	(G)

	A:	ssemb	ly					Ball slid	е							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fitting	3	Width	Height
wiodel No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	$W_{\scriptscriptstyle 1}$	H_1
LA25AL LA25BL	36	5.5	12.5	48	79.8 107.8	35	35 50	M6×1×7	58 86	30.5	8	M6×0.75	6	11	23	22
LA30AL	42	7.5	16	60	100.2 126.2	40	40 60	M8×1.25×10	72 98	34.5	11	M6×0.75	6.5	11	28	28
LA35AL LA35BL	48	7.5	18	70	110.6 144.6	50	50 72	M8×1.25×10	80 114	40.5	15	M6×0.75	8	11	34	30.8
LA45AL LA45BL	60	10	20.5	86	141.4 173.4	60	60 80	M10×1.5×16	105 137	50	17	Rc1/8	10	13	45	36
LA55AL LA55BL	70	12	23.5	100	165.4 203.4	75	75 95	M12 × 1.75×16	126 164	58	18	Rc1/8	11	13	53	43.2

Added to the reference number.

Number of ball slides per rail

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

										Unit: mm				
Rail						Basic Io	ad ratin	g				We	ght	
Pitch	Mounting	G	Max.	2)Dyna	amic	Static		Static r	momen	t (N·m)		Ball	Rail	
	bolt hole		length	[50km]	[100km]	C_0	M _{RO}	М	PO	М	ΥO	slide		
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	0 7×11×9 20	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.5	3.7	
771170 20			40 500	32 500	77 000	445	935	5 000	935	5 000	0.8			
80	9×14×12	2 20 4 0	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.8	5.8	
	0/14/12		+ 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.2	0.0	
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.3	7.7	
	OXTIXIZ	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	1.6	7.7	
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	2.5	12.0	
105	14/20/17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.2	12.0	
100	16×23×20	20	2.060	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	3.9	17.0	
120 16×3	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	5.1	17.2	

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

Unit: mm

LA-AN (High-load type / Standard) LA-BN (Super-high-load type / Long)

Assembly

LA 35 0840 ANC 2 -** P6 3 Series name Preload code (See page A289.) 3; Z3, 4; Z4 Rail length (mm) Accuracy code (See Table 15.) Ball slide shape code (See page A288.) Design serial number Material/surface treatment (See Table 14.) Added to the reference number Number of ball slides per rail

Front view of AN and BN types

Side view of AN type	Side view of BN type
	M _{PO}

Model No.	Height			Width	Length		Mour	nting hole				Grease	fitting	1	Width	Height
wiodei ivo.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	<i>T</i> ₁	N	W ₁	H ₁
LA25AN					79.8		35		58							
LA25BN	40	5.5	12.5	48	107.8	35	50	M6×1×10	86	34.5	12	M6×0.75	10	11	23	22
LA30AN	45	7.5	16	60	100.2	40	40	M8×1.25×11	72	37.5	14	M6×0.75	9.5	11	28	28
LA30BN	40	7.5	10	00	126.2	40	60	1010×1.20×11	98	37.5	14	IVIOX0.75	9.5		20	20
LA35AN	55	7.5	18	70	110.6	50	50	M8×1.25×12	80	47.5	15	M6×0.75	15	11	34	30.8
LA35BN	55	7.5	10	70	144.6		72	1010×1.20×12	114		15	1010×0.75	15	-	34	30.6
LA45AN	70	10	20.5	86	141.4	60	60	M10×1.5×16	105	60	17	Rc1/8	20	13	45	36
LA45BN	70	10	20.5	00	173.4		80	W110×1.3×10	137	00	17	1101/0	20	10	43	30
LA55AN	80	12	23.5	100	165.4	75	75	M12×1.75×18	126	68	18	Rc1/8	21	13	53	43.2
LA55BN	00	12	20.0	100	203.4		95	W112×1.75×16	164		10	1101/0	۷ ا	13	55	40.2
LA65AN					196.2		70		147							

Ball slide

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

120

M16×2×19

76 22 Rc1/8

19 | 13 | 63 | 55

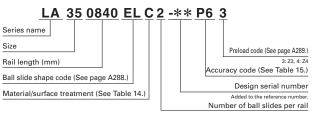
76

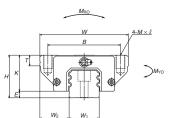
256.2

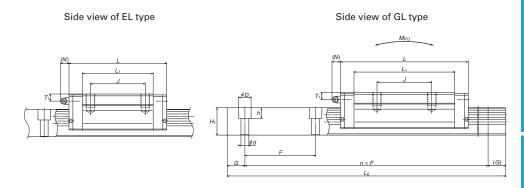
					Offic. Hilli								
Rail						Basic Io	ad ratir	ıg				We	ight
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	М	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.6	3.7
				40 500	32 500	77 000	445	935	5 000	935	5 000	0.9	
00	01410	00	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.9	5.8
80	9×14×12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.3	5.8
00	0.44.40	0.0	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.5	7.7
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.1	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.0	12.0
105	14x20x17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.9	12.0
100	10, 22, 20	20	2 000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	4.7	17.0
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	6.1	17.2
150	10,26,22	a.e.	2 000	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	7.7	25.0
150	18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	10.8	25.9

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

LA65BN


90 14 31.5 126


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life


 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-EL (High-load type / Standard) LA-GL (Super-high-load type / Long)

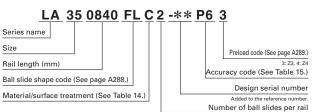
Front view of EL and GL types

l	Jnit:	m	m

Rail						Basic Id	oad ratir	ng				We	ight
Pitch	Mounting	G	Max.	2)Dyn		Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_{0}	M_{RO}	М	_		Y0	slide	
F	d×D×h	(reference)	L_{0max}	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7
	771170			40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	0.7
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8
	0/// 1///2		. 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	0.0
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	7.7
80	3/14/12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
105	14220017	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2
120	10x23x20	30	3 900	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
150	18×26×22	35	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.9
130	10/20/22	33	3 300	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	20.9

	A:	ssemb	ly					Ball slid	е							
Model No.	Height			Width	Length		Mour	ting hole				Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
LA25EL	36	5.5	23.5	70	79.8	57	45	M8×1.25×12	58	30.5	11	M6×0.75	6	11	23	22
LA25GL					107.8				86							
LA30EL					100.2				72							
LA30GL	42	7.5	31	90	126.2	72	52	M10×1.5×16	98	34.5	11	M6×0.75	6.5	11	28	28
LA35EL					110.6				80							
LA35GL	48	7.5	33	100	144.6	82	62	M10×1.5×15	114	40.5	12	M6×0.75	8	11	34	30.8
LA45EL					141.4				105							
LA45GL	60	10	37.5	120	173.4	100	80	M12×1.75×18	137	50	13	Rc1/8	10	13	45	36
LA55EL					165.4				126							
LA55GL	70	12	43.5	140	203.4	116	95	M14×2×21	164	58	15	Rc1/8	11	13	53	43.2
LA65EL					196.2				147							
LA65GL	90	14	53.5	170	256.2	142	110	M16×2×24	207	76	22	Rc1/8	19	13	63	55

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.


²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-FL (High-load type / Standard) LA-HL (Super-high-load type / Long)

Front view of FL and HL types

Side view of FL type	Side view of HL type
	Мго

Unit:	mm
Weigl	nt

Ball Rail slide

(kg) (kg/m)

3.7

5.8

7.7

12.0

17.2

25.9

	А	sseml	oly					Ball slid	е								Rai	il				Basic load rating							We	eig	
Model No.	Height			Width	Length		Moun	nting hole				Grease	fittin	ng	Width	Height	Pito		lounting	G	Max.		namic	Static			momen			Ball	T
1110001110																			olt hole		length	[50km]	[100km]	C_{0}	M_{RO}		PO	М	YU	slide	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	<i>T</i> ₁	Ν	W_1	H ₁	F	: d	$\times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(k
LA25FL	36	5.5	23.5	70	79.8	57	45	7×10	58		11	M6×0.75	6	11	23	22	6	50 7	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	
LA25HL					107.8				86													40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	
LA30FL	42	7.5	31	90	100.2	72	52	9×12	72		11	M6×0.75	6.5	11	28	28	8	30 9:	×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	Ī
LA30HL					126.2				98													58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	
LA35FL	48	7.5	33	100	110.6	82	62	9×13	80		12	M6×0.75	8	11	34	30.8	8	20 9	×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	
LA35HL		7.0			144.6	02	02		114						0.		O	0 3	X14X1Z	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	
LA45FL	60	10	37.5		141.4	100	80	11×15	105	50	13	Rc1/8	10	13	45	26	10			00.5		91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	
LA45HL	00	10	37.5		173.4	100	00	_	137		13	NC1/6	10	13	40	30	10	5 14	1×20×17	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	
LA55FL	70	12	43.5		165.4	116	95	14×18	126	58	15	Rc1/8	11	13	53	43.2	40	10		00	0.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	
LA55HL	70	12	45.5		203.4	110	95	_	164		15	1101/0		13	55	45.2	120	0 16	6×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	
LA65FL	90	14	53.5		196.2	142	110	16×23	147	76	22	Rc1/8	19	13	63	EE						260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	
LA65HL	90	14	53.5		256.2	142	110		207		22	nc1/8	19	13	03	55	15	0 18	3×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	. 2

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

1. HA Series

A307

2. HS Series

A321

A-5-4 High-Accuracy Series

A-5-4.1 HA Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by the adoption of ultra-long ball slides and the optimum design of the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Our extensive performance tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) Four-way equal load distribution

Contact angle is set at 45 degrees in all grooves, dispersing the load to four ball rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(7) Strong against shock load

Load from any direction, vertical and lateral,

is received by four ball rows at all times. The number of the ball row which receives the load is larger than in other linear guides, making this series stronger against shock load.

(8) High accuracy at manufacturing

Fixing the measuring rollers to the ball grooves is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

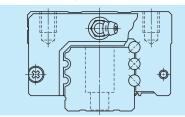


Fig. 1 HA Series

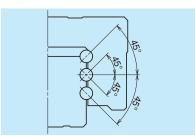


Fig. 2 Super rigidity design

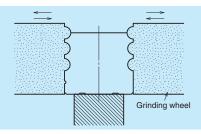


Fig. 3 Rail grinding

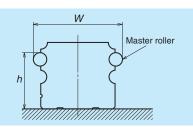


Fig. 4 Measuring groove accuracy

NSK

0.12 um

0.37 µm

Strokes: 200 mm

Strokes: 200 mm

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Series, this vibration has been substantially reduced to one-third of conventional models.

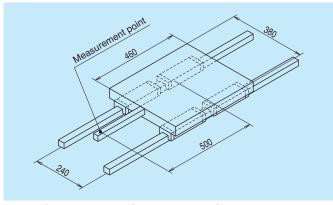


Fig. 5 Schematic view of measurement of ball passage vibration

HA Series

Model No.: HA30 Preload: Z3

Table dimensions: 460 mm imes 380 mm

Conventional Series

Model No.: LA30 Preload: Z3

Table dimensions: 460 mm × 380 mm

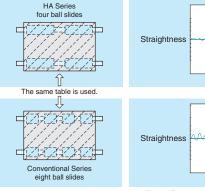
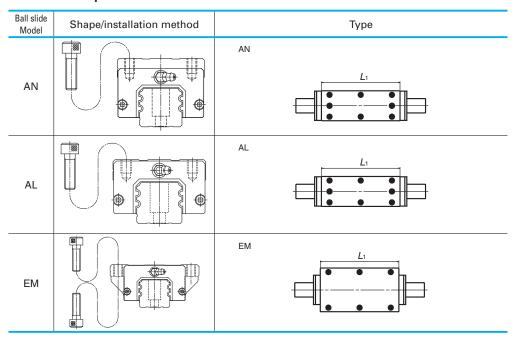



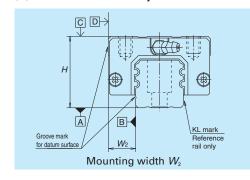
Fig. 6 Measurement results of HA Series and conventional Series

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

	Tab	Unit: µm				
	Pro	eloaded assem	bly			
Rail length (mm)	Ultra precision P3	Super precision P4	High precision P5			
- 200	2	2	4			
200 – 250	2	2.5	5			
250 – 315	2	2.5	5			
315 – 400	2	3	6			
400 – 500	2	3	6			
500 – 630	2	3.5	7			
630 – 800	2	4.5	8			
800 – 1 000	2.5	5	9			
1 000 – 1 250	3	6	10			
1 250 – 1 600	4	7	11			
1 600 – 2 000	4.5	8	13			
2 000 – 2 500	5	10	15			
2 500 – 3 150	6	11	17			
3 150 – 4 000	9	16	23			



(2) Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	lable 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	7

(3) Assembled accuracy

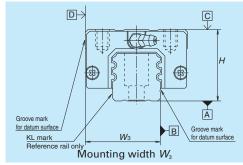


Fig. 7

(4) Preload and rigidity

Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

Table 3

NAI - I NI -	Prelo	ad (N)	Rigidity (N/μm)				
Model No.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)			
HA25	735	2 990	635	1 030			
HA30	1 030	4 400	880	1 270			
HA35	1 470	6 100	1 030	1 620			
HA45	1 960	8 150	1 230	2 060			
HA55	3 150	13 100	1 520	2 450			

4. Maximum rail length

Table 4 shows the limitations of rail length.

However, the limitations vary by accuracy grades.

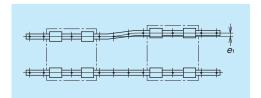
Table 4 Length limitations of rails													
Series Size	25	30	35	45	55								
HA	3 960	4 000	4 000	3 990	3 960								

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

Value

Permissible values of

parallelism in two rails e


Permissible values of

parallelism (height) in two rails e

NSK

5. Installation

(1) Permissible values of mounting error

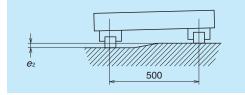
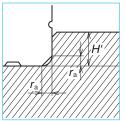


Fig. 8

Preload


Z3

Z1,Z3

Fig. 9

				Unit: µm	
		Model No.			
HA25	HA30	HA35	HA45	HA55	
20	20	23	26	34	
15 14 17 19 25					
250 um/500 mm					

(2) Shoulder height of the mounting surface and corner radius r

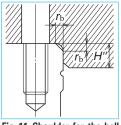


Fig. 10 Shoulder for the rail datum surface slide datum surface

		Table 6		Unit: mm
Model No.	Corner radius	s (maximum)	Shoulde	er height
wiodei ivo.	r _a	$r_{\rm b}$	H'	H"
HA25	0.5	0.5	5	5
HA30	0.5	0.5	6	6
HA35	0.5	0.5	6	6
HA45	0.7	0.7	8	8
HA55	0.7	0.7	10	10

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (**Fig. 13**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

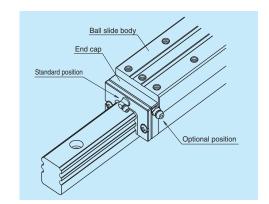


Fig. 13 Mounting position of lubrication accessories

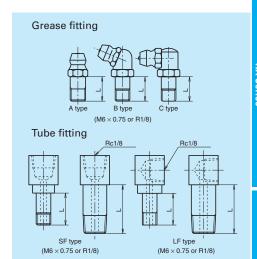


Fig. 12 Grease fitting and tube fitting

Table	7		ı

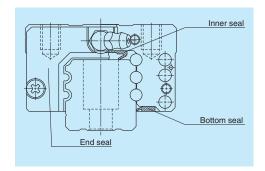
Unit: mm

Model	Dust proof	Dimension L				
No.	Dust-proof specification	Grease fitting	Tube fitting			
INO.	specification	Grease miling	SF type	LF type		
	Standard	5	5	5		
HA25	With NSK K1	14	12	12		
	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
HA30	With NSK K1	14	12	13		
пАЗО	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
HA35	With NSK K1	14	12	13		
пАЗЭ	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
HA45	With NSK K1	18	22	21.5		
пА45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
HA55	With NSK K1	18	22	21.5		
паээ	Double seal	14	18	17		
	Protector	14	16	17		

7. Dust-proof components

(1) Standard Specification

The HA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.



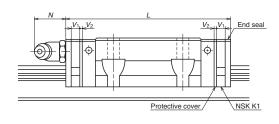

Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	25	30	35	45	55
HA	17	17	19	21	22

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with the NSK K1 lubrication unit.

U	Init:	mm
---	-------	----

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HA Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of V_3 , and V_4 when the end seal and the protector are installed.

	lable 10	Unit: mm
Model No.	Thickness	Thickness
woder No.	of end seal: V ₃	of protector: V ₄
HA25	3.2	3.6
HA30	4.4	4.2
HA35	4.4	4.2
HA45	5.5	4.9
HA55	5.5	4.9

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
HA25	M6	LG-CAP/M6	20
HA30, HA35	M8	LG-CAP/M8	20
HA45	M12	LG-CAP/M12	20
HA55	M14	LG-CAP/M14	20

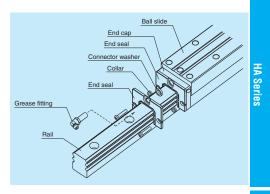


Fig. 15 Double seal

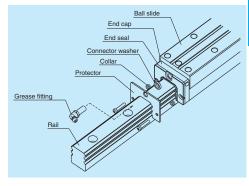


Fig. 16 Protector

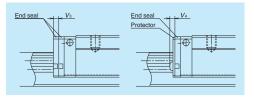


Fig. 17

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

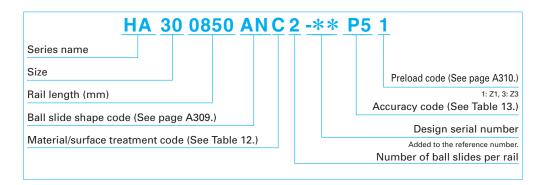
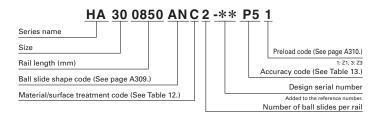
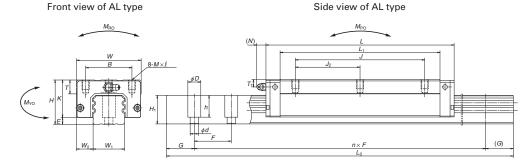


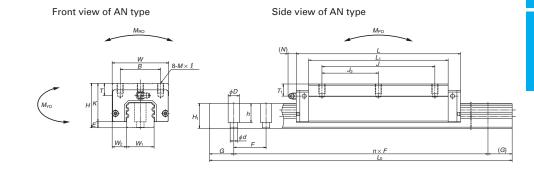
Table 12 Material/surface treatment code


Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special


Table 13 Accuracy code

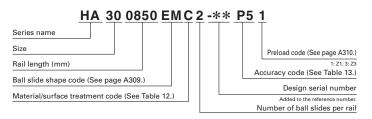
Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5

Note: Refer to page A38 for NSK K1 lubrication unit.

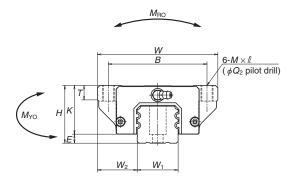

9. Dimensions HA-AN HA-AL

Assembly Ball slide									R	ail							
Model No.	Height			Width	Length		M	ounti	ing hole				Grease	fittin	g	Width	Height
Model No.																	
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L ₁	K	Τ	Hole size	T_1	Ν	W_1	H_1
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	126	34.5	12	M6×0.75	10	11	23	22
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	149	37.5	14	M6×0.75	9.5	11	28	28
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	173	47.5	15	M6×0.75	15	11	34	30.8
HA35AL	48	7.5	10	70	203.0	50	140	/0	M8×1.25×10	173	40.5	15	101000.75	8	11	34	30.0
HA45AN	70	10	20.5	00	222.4		100		N4101 F10	107	60	17	D-1/0	20	10	45	20
HA45AL	60	10	20.5	86	233.4	60	160	80	M10×1.5×16	197	50	17	Rc1/8	10	13	45	36
HA55AN	80	12	23.5	100	284.4	75	206	102	M12×1.75×18	245	68	18	Rc1/8	21	13	53	43.2
HA55AL	70	12	23.5	100	204.4	75	200	103	M12×1.75×16	245	58	18	nc1/8	11	13	53	43.2

Notes: 1) The HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

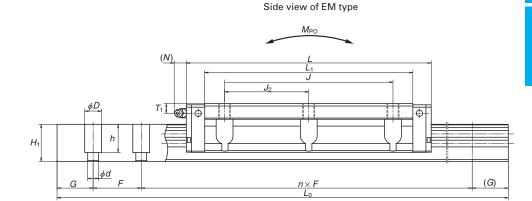


	mm


	Rail					Basic lo	oad ratir	ng				We	ight
Pitch	Mounting	G	Maximum	2)Dyn	amic	Static		Static r	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[50km] [100km] C_0 M_{RO} M_{PO} M_{YO}		YO	slide					
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	1.8	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.0 2.6	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.0 5.0	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	9.4 7.8	17.2

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{100} , the basic dynamic load rating for 50 km rated fatigue life C_{100} , the basic dynamic load rating for 100 km rated fatigue life

HA-EM



Front view of EM type

	Assembly Ball slide									Rail								
Model No.	Height			Width	Length			М	ounting hole					Grease	fittin	g	Width	Height
iviouei ivo																		
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	Q_2	L ₁	K	T	Hole size	T_1	Ν	W_1	H_1
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	126	30.5	11	M6×0.75	6	11	23	22
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	149	34.5	11	M6×0.75	6.5	11	28	28
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	173	40.5	12	M6×0.75	8	11	34	30.8
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	197	50	13	Rc1/8	10	13	45	36
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	245	58	15	Rc1/8	11	13	53	43.2

Notes: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

Unit: mm

	Rail					Basic Id	oad ratir	ng				Weight	
Pitch	Mounting	G	Maximum	2)Dyn	2)Dynamic			Static moment (N·m)					Rail
	bolt hole		length	[50km]	[50km] [100km]		M_{RO}	M _{PO}		M	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	2.6	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

²⁾ The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A-5-4.2 HS Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

(7) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top two ball rows at where balls are contacting at two points. Because of this design, the bottom ball rows will carry the load when a large impact load is applied as shown in Fig. 3. This

assures high resistance to the impact load.

(8) High accuracy at manufacturing

As showing in **Fig. 4**, fixing the measuring rollers to the ball groove is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(9) Improve rating life dramatically

New ball groove geometry is introduced, which has been developed by utilizing NSK's state-of-the-art tribological and analytical technologies. Due to the optimized distribution of contact surface pressures, the rating life has dramatically increased.

As compared with the conventional products, the load rating capacity has increased to 1.3 times, while the life span has increased to twice*1.

*1: Representative values of series.

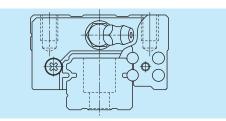


Fig. 1 HS Series

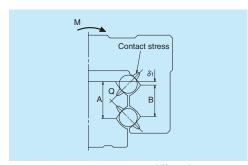


Fig. 2 Enlarged illustration: Offset Gothic arch

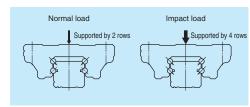


Fig. 3 When load is applied

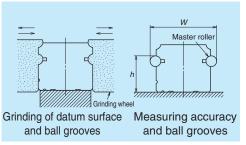


Fig. 4 Rail-grinding and measuring

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Series, this vibration has been substantially reduced to one-third of conventional models.

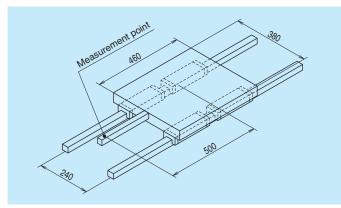


Fig. 5 Schematic view of measurement of ball passage vibration

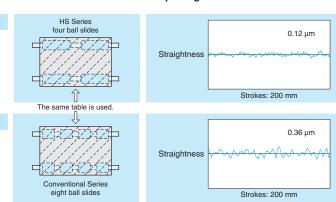


Fig. 6 Measurement results of HS Series and conventional Series

HS Series

Model No.: HS30

Model No.: LS30

Preload: 71

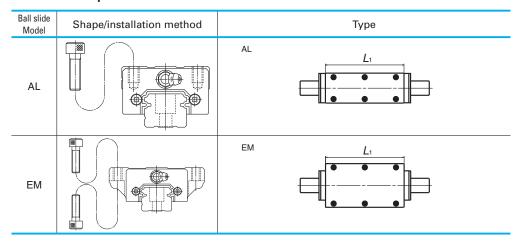

Table dimensions: 460 mm × 380 mm

Table dimensions: 460 mm × 380 mm

Conventional Series

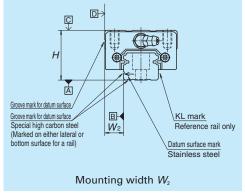
Preload: Z1

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

P5



(2) Accuracy Standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	,

(3) Assembled accuracy

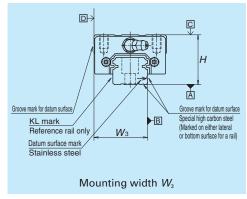


Fig. 7

(4) Preload and rigidity

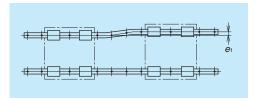
Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

			Table 5						
	Prolo	ad (N)	Rigidity (N/µm)						
Model No.	1 1610	au (IV)	Vertical	direction	Lateral direction				
	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)			
HS15	98	785	260	530	173	355			
HS20	147	1 030	305	600	212	415			
HS25	245	1 620	385	735	263	505			
HS30	390	2 550	505	965	345	665			
HS35	590	3 550	610	1 140	415	780			

4. Maximum rail length

Table 4 shows the limitation. The dimension in parenthesis is for stainless steel products. However, the limitations vary by accuracy grades.

Table 4 Length limitation of rails

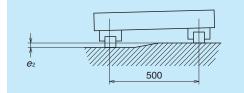

Unit: mm

Series Size	15	20	25	30	35
HS	2 000 (1 300)	3 960 (3 500)	3 960 (3 500)	4 000 (3 500)	4 000 (3 500)

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error



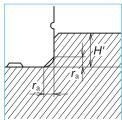

Fig. 8

Fig. 9

			Table 5			Unit: µm			
Value	Preload			Model No.					
value	rieloau	HS15	HS20	HS25	HS30	HS35			
Permissible values of	Z1	18	20	26	31	37			
parallelism in two rails e ₁	Z3	12	14	18	22	26			
Permissible values of	71 70		0	100 ······ /E00 ·····					
parallelism (height) in two rails e2	Z1, Z3	330 μm/500 mm							

- . . .

(2) Shoulder height of the mounting surface and corner radius r

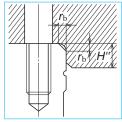


Fig. 10 Shoulder for the rail datum surface slide datum surface

Table 6

				OTHE. ITHIII			
Model No.	Corner radius	s (maximum)	Shoulder height				
wiodei ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"			
HS15	0.5	0.5	4	4			
HS20	0.5	0.5	4.5	5			
HS25	0.5	0.5	5	5			
HS30	0.5	0.5	6	6			
HS35	0.5	0.5	6	6			

Unit: mm

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (**Fig. 13**)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with $M6 \times 0.75$. The connector is available from NSK.

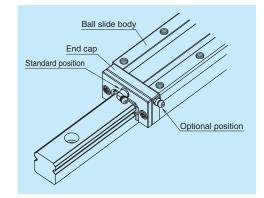


Fig. 13 Mounting position of lubrication accessories

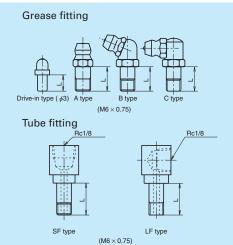


Fig. 12 Grease fitting and tube fitting

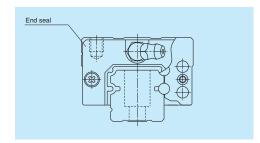
		Table 7		Unit: mn
Madal	Dust proof	Dime	ension L	
HS25 HS30	Dust-proof specification	Grease fitting	Tube	fitting
INO.	specification	/Drive-in type	SF type	LF type
	Standard	5	-	_
LIC1E	With NSK K1	10	-	-
пото	Double seal	*	_	_
	Protector	*	_	_
	Standard	5	-	-
HS20	With NSK K1	10	-	-
	Double seal	8	-	-
	Protector	8	_	_
	Standard	5	6	6
LCOE	With NSK K1	12	11	11
ПЗ23	Double seal	10	9	9
	Protector	10	9	9
	Standard	5	6	6
HC30	With NSK K1	14	12	13
позо	Double seal	12	10	11
	Protector	12	10	11
	Standard	5	6	6
LLC 2E	With NSK K1	14	12	13
позо	Double seal	12	10	11
	Protector	12	10	11

^{*)} A connector is required for this model. Please contact NSK.

7. Dust-proof components

(1) Standard Specification

The HS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends.



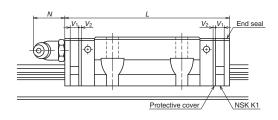

Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Series Size	15	20	25	30	35
HS	3	3	3	3	4

(2) NSK K1[™] lubrication unit

Refer to Table 9 for dimension of linear guides equipped with the NSK K1 lubrication unit.

Tak	ole	9
-----	-----	---

Unit:
Unit:

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HS15	AL, EM	106	115.6	4.0	0.8	(5)
HS20	AL, EM	119.7	130.3	4.5	0.8	(14)
HS25	AL, EM	148	158.6	4.5	0.8	(14)
HS30	AL, EM	176.1	188.1	5.0	1.0	(14)
HS35	AL, EM	203.6	216.6	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HS Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of V_3 and V_4 when the end seal and the protector are installed.

Table 10

Unit: mm

Model No.	Thickness	Thickness				
woder ivo.	of end seal: V ₃	of protector: V4				
HS15	2.8	3				
HS20	2.5	2.7				
HS25	2.8	3.2				
HS30	3.6	4.2				
HS35	3.6	4.2				

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

	D 1	0	0
Model No.	Bolt to	Сар	Quantity
Model No.	secure rail	reference No.	/case
HS15	M3	LG-CAP/M3	20
HS15	M4	LG-CAP/M4	20
HS20	M5	LG-CAP/M5	20
HS25, HS30	M6	LG-CAP/M6	20
HS35	M8	LG-CAP/M8	20
HS35	M8	LG-CAP/M8	20

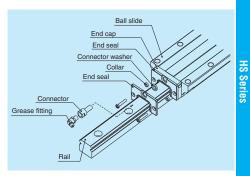


Fig. 15 Double seal

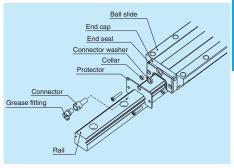


Fig. 16 Protector

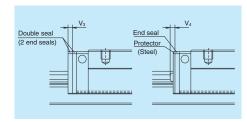


Fig. 17

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

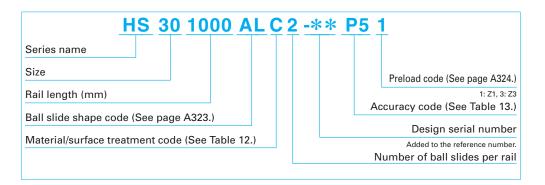


Table 12 Material/surface treatment code

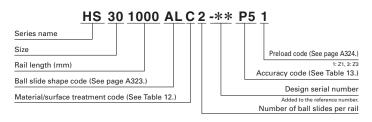
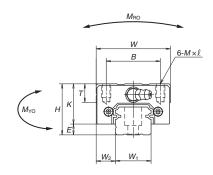
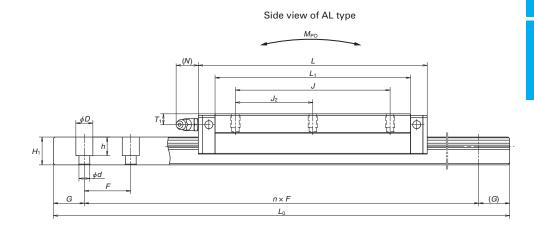

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Table 13 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5

Note: Refer to page A38 for NSK K1 lubrication unit.

9. Dimensions HS-AL


Front view of AL types

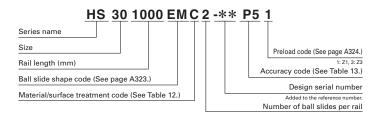
Assembly Ball slide																		
Λ	1odel No.	Height			Width	Length	Mounting ho		ng hole				Grease	fittin	g	Width	Height	
11	Todel No.	Н	Ε	W ₂	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	<i>T</i> ₁	Ν	W ₁	H ₁
	HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	89.2	19.4	10	φ3	6	3	15	12.5
	HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	102.5	22	12	M6×0.75	5.5	11	20	15.5
	HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	126.4	26	12	M6×0.75	7	11	23	18
	HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	150.7	33	13	M6×0.75	8	11	28	23
	HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	175.6	37.5	14	M6×0.75	8.5	11	34	27.5

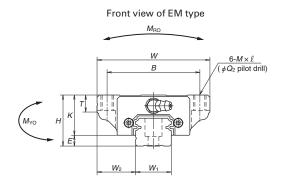
Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

- 1		٠.		_	m

Rail					Basic load rating								ight
Pitch	Mounting	G	Max. length	3)Dyn	3)Dynamic			Static	momen	t (N·m)		Ball	Rail
	bolt hole		L _{0max} .	[50km]	[100km]	C 0	M_{RO}	M _{PO}		M	1,0	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*4.5×7.5×8.5 3.5×6×8.5	20	2 000 (1 300)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.34	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.52	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0


3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)


 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 (3.5 × 6 × 8.5).

HS-EM

	Side view of EM type	
	M_{PO}	
	- ^(N) - - - - - - - - - - - - - - - - - - -	
	<u>L</u> 1	
	J	
	 	
ϕD	7:1	
* (_
H_1 h		₽·
<u> </u>		\Rightarrow
φd		
F	-	
G	n×F (G)	-
<	L_0	-

	А	ssem	ıbly		Ball slide													
Model No.	Height			Width	Length			М	ounting hole					Grease	fittin	ıg	Width	Height
wiodei ivo.																		
	Н	Ε	W_2	W	L	В	J J_2 $M \times$ pitch $\times \ell$ Q_2 L_1 K T Hole size T_1 N							$W_{\scriptscriptstyle 1}$	H_1			
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	89.2	19.4	8	φ 3	6	3	15	12.5
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	102.5		_	M6×0.75		11	20	15.5
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	126.4	26	11 (12)	M6×0.75	7	11	23	18
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	150.7	33	11 (15)	M6×0.75		11	28	23
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	175.6	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

Rail						We	ight						
Pitch	Mounting	G	Max.	³)Dyn	amic	Static		Static r	nomen	t (N·m)		Ball	Rail
	bolt hole		length L_{0max} .	[50km]	[100km]	C 0	MRO	М	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*4.5×7.5×8.5 3.5×6×8.5	20	2 000 (1 300)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.45	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.67	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) Parenthesized dimensions are applicable to stainless steel products.

*) Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 (3.5 × 6 × 8.5).

Unit: mm

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

52 500

I S35FM

LS35FL

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

9×13(14.5)

SS35FI

SS35FM

SS35FL

40 000

M10×1.5×20(15)

M10×1.5×13(14.5) <8.6>

38 000

In VH series, the slide types in flange shape are focused.

M10×1.5×13(14.5) <8.6>

NS35EM

	cs, the shae types in ha	rigo silapo	· •						
	After focused		Before focused						
Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell < \Omega_2 > \text{[mm]}$	Dynamic load rating C_{50} [N]	Model No.	Ball slide mounting hole dimension $M \times \text{pitch} \times \ell$ $Q_1 \times \ell$ [mm]	Dynamic load rating C_{50} [N]				
VH15EM	M5×0.8×7 <4.4>	14 200	VH15EL VH15FL	M5×0.8×8 4.5×7	10 800				
VH15GM	M5×0.8×7 <4.4>	18 100	VH15GL VH15HL	M5×0.8×8 4.5×7	14 600				
VH20EM	M6×1×9.5 <5.3>	23 700	VH20EL VH20FL	M6×1×10 6×9.5	17 400				
VH20GM	M6×1×9.5 <5.3>	30 000	VH20GL VH20HL	M6×1×10 6×9.5	23 500				
VH25EM	M8×1.25×10(11.5) <6.8>	33 500	VH25EL VH25FL	M8×1.25×16(12) 7×10(11.5)	25 600				
VH25GM	M8×1.25×10(11.5) <6.8>	45 500	VH25GL VH25HL	M8×1.25×16(12) 7×10(11.5)	34 500				
VH30EM	M10×1.5×12(14.5) <8.6>	47 000	VH30EL VH30FL	M10×1.5×18(15) 9×12(14.5)	35 500				
VH30GM	M10×1.5×12(14.5) <8.6>	61 000	VH30GL VH30HL	M10×1.5×18(15) 9×12(14.5)	46 000				
VH35EM	M10×1.5×13 <8.6>	62 500	VH35EL VH35FL	M10×1.5×20 9×13	47 500				
VH35GM	M10×1.5×13 <8.6>	81 000	VH35GL VH35HL	M10×1.5×20 9×13	61 500				
VH45EM	M12×1.75×15 <10.5>	107 000	VH45EL VH45FL	M12×1.75×24 11×15	81 000				
VH45GM	M12×1.75×15 <10.5>	131 000	VH45GL VH45HL	M12×1.75×24 11×15	99 000				
VH55EM	M14×2×18 <12.5>	158 000	VH55EL VH55FL	M14×2×28 14×18	119 000				
VH55GM	M14×2×18 <12.5>	193 000	VH55GL VH55HL	M14×2×28 14×18	146 000				

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. A336

5. The Comparative Table of New and Former Series

	New Series				Forme	r series		
	Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynamic		Ball slide mounting hole	Dynan
Model	dimension	load rating	Model	dimension	load rating	Model	dimension	load rat
No.	$M \times pitch \times \ell < Q_2 >$	C ₅₀	No.	$M \times pitch \times \ell < Q_2 >$	Cso	No.	$M \times pitch \times \ell < Q_2 >$	C_{50}
	[mm]	[Ñ]		Ö₁×ℓ [mm]	[Ñ]		Ö₁×ℓ [mm]	[Ñ]
IH15AN	M4×0.7×6	14 200	LH15AN	M4×0.7×6	10 800	SH15AN	M4×0.7×6	10 1
IH15BN	M4×0.7×6	18 100	LH15BN	M4×0.7×6	14 600	SH15BN	M4×0.7×6	13 4
ILLIODIA	IVI4XU.7X6	18 100	LH15EL		14 000	SH15EL	M5×0.8×8	134
11145584	ME: 0 0: 7 -4 4:	14000		M5×0.8×8	10.000			10.1
IH15EM	M5×0.8×7 <4.4>	14 200	LH15EM	M5×0.8×7 <4.4>	10 800	SH15EM	M5×0.8×7 <4.4>	10 1
			LH15FL	4.5×7		SH15FL	4.5×7	
			LH15GL	M5×0.8×8		SH15GL	M5×0.8×8	ļ
IH15GM	M5×0.8×7 <4.4>	18 100	LH15GM	M5×0.8×7 <4.4>	14 600	SH15GM	M5×0.8×7 <4.4>	13 4
			LH15HL	4.5×7		SH15HL	4.5×7	
IH20AN	M5×0.8×6	23 700	LH20AN	M5×0.8×6	17 400	SH20AN	M5×0.8×6	163
H20BN	M5×0.8×6	30 000	LH20BN	M5×0.8×6	23 500	SH20BN	M5×0.8×6	21 6
IIZODIA	1415/0.5/0	00 000	LH20EL	M6×1×10	20 000	SH20EL	M6×1×10	210
I IOOERA	M0::1::0 F :: F 0:	22 700			17 400			100
H20EM	M6×1×9.5 <5.3>	23 700	LH20EM	M6×1×9.5 <5.3>	17 400	SH20EM	M6×1×9.5 <5.3>	163
			LH20FL	6×9.5		SH20FL	6×9.5	
			LH20GL	M6×1×10		SH20GL	M6×1×10	
H20GM	M6×1×9.5 <5.3>	30 000	LH20GM	M6×1×9.5 <5.3>	23 500	SH20GM	M6×1×9.5 <5.3>	21 6
			LH20HL	6×9.5		SH20HL	6×9.5	
H25AL	M6×1×6	33 500	LH25AL	M6×1×6	25 600	SH25AL	M6×1×6	22 4
H25AN	M6×1×9	33 500	LH25AN	M6×1×9	25 600	SH25AN	M6×1×9	22 4
H25BL	M6×1×6	45 500	LH25BL	M6×1×6	34 500	SH25BL	M6×1×6	32 0
H25BN	M6×1×9	45 500	LH25BN	M6×1×9	34 500	SH25BN		32 (
IZUDIN	IVIOXIXS	45 500			34 500	CHALL	M6×1×9	32 L
LIOCER -	NAO 4 05 40/44 5) 00	00.500	LH25EL	M8×1.25×16(12)	05.000	SH25EL	M8×1.25×16(12)	00
H25EM	M8×1.25×10(11.5) <6.8>	33 500	LH25EM	M8×1.25×10(11.5) <6.8>	25 600	SH25EM	M8×1.25×10(11.5) <6.8>	22 4
			LH25FL	7×10(11.5)		SH25FL	7×10(11.5)	
			LH25GL	M8×1.25×16(12)		SH25GL	M8×1.25×16(12)	
H25GM	M8×1.25×10(11.5) <6.8>	45 500	LH25GM	M8×1.25×10(11.5) <6.8>	34 500	SH25GM	M8×1.25×10(11.5) <6.8>	32 0
			LH25HL	7×10(11.5)	1	SH25HL	7×10(11.5)	1
H30AL	M8×1.25×8	41 000	LH30AL	M8×1.25×8	31 000	SH30AL	M8×1.25×8	31 0
H30AN	M8×1.25×10	41 000	LH30AN	M8×1.25×10	31 000	SH30AN	M8×1.25×10	31 0
H30BL	M8×1.25×8	61 000	LH30BL	M8×1.25×8	46 000	SH30BL	M8×1.25×8	46 0
H30BN	M8×1.25×10	61 000	LH30BN	M8×1.25×10	46 000	SH30BN	M8×1.25×10	46 0
			LH30EL	M10×1.5×18(15)		SH30EL	M10×1.5×18(15)	
H30EM	M10×1.5×12(14.5) <8.6>	47 000	LH30EM	M10×1.5×12(14.5) <8.6>	35 500	SH30EM	M10×1.5×12(14.5) <8.6>	35 5
	, ,		LH30FL	9×12(14.5)		SH30FL	9×12(14.5)	1
			LH30GL	M10×1.5×18(15)		SH30GL	M10×1.5×18(15)	
H30GM	M10×1.5×12(14.5) <8.6>	61 000	LH30GM	M10×1.5×12(14.5) <8.6>	46 000	SH30GM	M10×1.5×12(14.5) <8.6>	46 0
Hoodivi	10110×1.5×12(14.5) <6.6>	01000	LH30HL		40 000	SH30HL		1 400
LIOTAL	140 4 05 0	00.500		9×12(14.5)	47.500		9×12(14.5)	47.5
H35AL	M8×1.25×8	62 500	LH35AL	M8×1.25×8	47 500	SH35AL	M8×1.25×8	47 5
H35AN	M8×1.25×12	62 500	LH35AN	M8×1.25×12	47 500	SH35AN	M8×1.25×12	47.5
H35BL	M8×1.25×8	81 000	LH35BL	M8×1.25×8	61 500	SH35BL	M8×1.25×8	61.5
H35BN	M8×1.25×12	81 000	LH35BN	M8×1.25×12	61 500	SH35BN	M8×1.25×12	61.5
			LH35EL	M10×1.5×20		SH35EL	M10×1.5×20	
H35EM	M10×1.5×13 <8.6>	62 500	LH35EM	M10×1.5×13 <8.6>	47 500	SH35EM	M10×1.5×13 <8.6>	47.5
			LH35FL	9×13		SH35FL	9×13	1
			LH35GL	M10×1.5×20		SH35GL	M10×1.5×20	
H35GM	M10×1.5×13 <8.6>	81 000	LH35GM		61 500	SH35GM		61.5
HOOGIVI	1011001.5015 < 0.02	01000	LH35HL	M10×1.5×13 <8.6>	61 500		M10×1.5×13 <8.6>	015
1145 61	1440 4 5 40	407.000		9×13	04.000	SH35HL	9×13	70.5
H45AL	M10×1.5×10	107 000	LH45AL	M10×1.5×10	81 000	SH45AL	M10×1.5×10	76 5
H45AN	M10×1.5×17	107 000	LH45AN	M10×1.5×17	81 000	SH45AN	M10×1.5×17	76 5
H45BL	M10×1.5×10	131 000	LH45BL	M10×1.5×10	99 000	SH45BL	M10×1.5×10	94 5
H45BN	M10×1.5×17	131 000	LH45BN	M10×1.5×17	99 000	SH45BN	M10×1.5×17	94.5
			LH45EL	M12×1.75×24		SH45EL	M12×1.75×24	
H45EM	M12×1.75×15 <10.5>	107 000	LH45EM	M12×1.75×15 <10.5>	81 000	SH45EM	M12×1.75×15 <10.5>	76.5
			LH45FL	11×15	1	SH45FL	11×15	1 ,00
H45GM	== .=	101 000	LH45GL	M12×1.75×24	00.000	SH45GL	M12×1.75×24	000
		131 000	LH45GM	M12×1.75×15 <10.5>	99 000	SH45GM	M12×1.75×15 <10.5>	94 5
п4эсііі	M12×1.75×15 <10.5>		LH45HL	11×15	110 000	SH45HL	11×15	440
		150.000	LUCEAL		119 000	SH55AL	M12×1.75×13	113 (
H55AL	M12×1.75×13	158 000	LH55AL	M12×1.75×13	440		M12×1.75×18	113 (
H55AL H55AN	M12×1.75×13 M12×1.75×18	158 000	LH55AN	M12×1.75×18	119 000	SH55AN		
H55AL H55AN H55BL	M12×1.75×13 M12×1.75×18 M12×1.75×13	158 000 193 000	LH55AN LH55BL	M12×1.75×18 M12×1.75×13	146 000	SH55BL	M12×1.75×13	140 (
H55AL H55AN H55BL	M12×1.75×13 M12×1.75×18	158 000	LH55AN	M12×1.75×18		SH55BL SH55BN		140 0
H55AL H55AN H55BL	M12×1.75×13 M12×1.75×18 M12×1.75×13	158 000 193 000	LH55AN LH55BL LH55BN	M12×1.75×18 M12×1.75×13 M12×1.75×18	146 000	SH55BL SH55BN	M12×1.75×13 M12×1.75×18	140 0
H55AL H55AN H55BL H55BN	M12x1.75x13 M12x1.75x18 M12x1.75x13 M12x1.75x13	158 000 193 000 193 000	LH55AN LH55BL LH55BN LH55EL	M12×1.75×18 M12×1.75×13 M12×1.75×18 M14×2×28	146 000 146 000	SH55BL SH55BN SH55EL	M12×1.75×13 M12×1.75×18 M14×2×28	140 (
H55AL H55AN H55BL H55BN	M12×1.75×13 M12×1.75×18 M12×1.75×13	158 000 193 000	LH55AN LH55BL LH55BN LH55EL LH55EM	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x18 <12.5>	146 000	SH55BL SH55BN SH55EL SH55EM	M12×1.75×13 M12×1.75×18 M14×2×28 M14×2×18 <12.5>	140 C
H55AL H55AN H55BL H55BN	M12x1.75x13 M12x1.75x18 M12x1.75x13 M12x1.75x13	158 000 193 000 193 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18	146 000 146 000	SH55BL SH55BN SH55EL SH55EM SH55FL	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x18 <12.5> 14x18	140 (
H55AL H55AN H55BL H55BN	M12x1.75x13 M12x1.75x18 M12x1.75x13 M12x1.75x13 M12x1.75x18	158 000 193 000 193 000 158 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2.75x18 M14x2x18 <12.5> 14x18 M14x2x28	146 000 146 000 119 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28	140 C 140 C
H55AL H55AN H55BL H55BN	M12x1.75x13 M12x1.75x18 M12x1.75x13 M12x1.75x13	158 000 193 000 193 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL LH55GM	M12×1.75×18 M12×1.75×13 M12×1.75×18 M14×2×28 M14×2×18 <12.5> 14×18 M14×2×28 M14×2×28 M14×2×18 <12.5>	146 000 146 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM	M12×1.75×13 M12×1.75×18 M12×1.75×13 M12×1.75×13 M12×1.75×18 M14×2×18 <12.5>	158 000 193 000 193 000 158 000 193 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL LH55GM LH55GM LH55HL	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x18 <12.5x M14x2x18 <12.5x M14x2x8 M14x2x8 M14x2x8 M14x2x8 M14x2x18 <12.5x M14x2x18 <12.5x	146 000 146 000 119 000 146 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28	140 (140 (113 (
H55AL H55AN H55BL H55BN H55EM H55GM	M12x1.75x13 M12x1.75x18 M12x1.75x13 M12x1.75x13 M12x1.75x18	158 000 193 000 193 000 158 000 193 000 239 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL LH55GM LH55HL LH65AN	M12×1.75×18 M12×1.75×13 M12×1.75×18 M14×2×28 M14×2×18 <12.5> 14×18 M14×2×28 M14×2×28 M14×2×18 <12.5>	146 000 146 000 119 000 146 000 181 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM H55GM	M12×1.75×13 M12×1.75×18 M12×1.75×13 M12×1.75×13 M12×1.75×18 M14×2×18 <12.5>	158 000 193 000 193 000 158 000 193 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL LH55GM LH55GM LH55HL	M12×1.75×18 M12×1.75×13 M12×1.75×18 M14×2×18 M14×2×28 M14×2×18 <12.5> 14×18 M14×2×28 M14×2×28 M14×2×28 M16×2×20 M16×2×20 M16×2×20	146 000 146 000 119 000 146 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM H55EM H55GM	M12×1.75×13 M12×1.75×18 M12×1.75×13 M12×1.75×13 M12×1.75×18 M14×2×18 <12.5> M14×2×18 <12.5>	158 000 193 000 193 000 158 000 193 000 239 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GL LH55GM LH55HL LH65AN	M12×1.75×18 M12×1.75×13 M12×1.75×18 M14×2×18 M14×2×28 M14×2×18 <12.5> 14×18 M14×2×28 M14×2×28 M14×2×28 M16×2×20 M16×2×20 M16×2×20	146 000 146 000 119 000 146 000 181 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM H55GM H65AN H65BN	M12x1.75x13 M12x1.75x18 M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x18 <12.5> M14x2x18 <12.5> M16x2x20 M16x2x20	158 000 193 000 193 000 158 000 193 000 239 000 310 000	LH55AN LH55BL LH55BN LH55EN LH55FL LH55GL LH55GL LH55GM LH55HL LH65AN LH65BN LH65EL	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x18 <12.5> M14x2x18 <12.5> M14x2x28 M14x2x28 M14x2x28 M14x2x28 M14x2x18 <12.5> M14x2x28 M16x2x20 M16x2x20 M16x2x24	146 000 146 000 119 000 146 000 181 000 235 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C
H55AL H55AN H55BL H55BN H55EM H55GM	M12×1.75×13 M12×1.75×18 M12×1.75×13 M12×1.75×13 M12×1.75×18 M14×2×18 <12.5> M14×2×18 <12.5>	158 000 193 000 193 000 158 000 193 000 239 000	LH55AN LH55BL LH55BN LH55EN LH55EM LH55FL LH55GL LH55GM LH55HL LH65AN LH65BN LH65EN LH65EN	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5x 14x18 M14x2x28 M14x2x20 M16x2x20 M16x2x20 M16x2x20 M16x2x24 M16x2x24	146 000 146 000 119 000 146 000 181 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM H55GM H65AN H65BN	M12x1.75x13 M12x1.75x18 M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x18 <12.5> M14x2x18 <12.5> M16x2x20 M16x2x20	158 000 193 000 193 000 158 000 193 000 239 000 310 000	LH55AN LH55BL LH55BN LH55EL LH55EM LH55FL LH55GM LH55GM LH65AN LH65BN LH65EL LH65EM	M12x1.75x18 M12x1.75x13 M12x1.75x18 M12x1.75x18 M14x2x8 M14x2x8 M14x2x8 M14x2x8 M14x2x8 M14x2x8 M16x2x0 M16x2x0 M16x2x20 M16x2x24 M16x2x24 M16x2x24	146 000 146 000 119 000 146 000 181 000 235 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C
H55AL H55AN H55BL H55BN H55EM H55GM H65AN H65BN	M12x1.75x13 M12x1.75x18 M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x18 <12.5> M14x2x18 <12.5> M16x2x20 M16x2x20	158 000 193 000 193 000 158 000 193 000 239 000 310 000	LH55AN LH55BL LH55BN LH55EN LH55EM LH55FL LH55GL LH55GM LH55HL LH65AN LH65BN LH65EN LH65EN	M12x1.75x18 M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5x 14x18 M14x2x28 M14x2x20 M16x2x20 M16x2x20 M16x2x20 M16x2x24 M16x2x24	146 000 146 000 119 000 146 000 181 000 235 000	SH55BL SH55BN SH55EL SH55EM SH55FL SH55GL SH55GM	M12x1.75x13 M12x1.75x18 M14x2x28 M14x2x28 M14x2x18 <12.5> 14x18 M14x2x28 M14x2x18 <12.5>	140 C 140 C

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

A-6 Other Linear Rolling Guide Products

A-6-1 Linear Rolling Bushing

1. Features

(1) Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

(2) Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

(3) High precision

Due to NSK's superb quality control, precision is quaranteed.

(4) Dust prevention

Series with seal is available. The seal has small friction, and is highly durable. Highly dust-preventive double-lip system has been adopted.

(5) Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

2. Models

There are two models

(1) Standard type LB (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 Standard type LB

(2) Adjustable clearance type LB-T (Fig. 2)

A part of the outer sleeve is cut open toward the axial direction. Used with a housing which can adjust inside diameter, it makes minute adjustment of the clearance between the linear shaft and the inscribed circle (an imaginary circle that connects the summit of the ball) of linear rolling bushing.

Fig. 2 Adjustable Clearance type LB-T

3. Accuracy

(1) Accuracy grades

• Standard type LB······High precision grade S, and super precision grade SP are available.

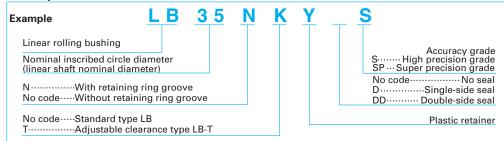
• Space adjustment type LB-T······High precision grade S is available.

(2) Tolerance of rolling linear bushing, linear shaft and housing

Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter

e**r** Unit: ur

Nominal d			ce/inscribe	ed circle dia	ameter*1	Tolerance/width B Tolerance/si of retainin						ed tolerance/ iameter		
inscribed cir /shaft diar	neter (mm)				High precision grade S High Super high precision grade SP Super hi			High precision grade S Super high precision grade SP		High precision grade S		h precision le SP		
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
2.5	6									-6	-14	-4	-9	
6	10	0	-8	0	-5					-6	-15	-4	-10	
10	18					0	-120	+240	-240	-6	-17	-4	-12	
18	30	0	-10	0	-6					-6	-19	-4	-13	
30	50	0	-12	0	-8					-7	-23	-5	-16	


Table 2 Tolerance of linear rolling bush outside diameter, and housing inside diameter

Unit: µm

Nominal o	limension/	Tole	rance/outsid	de diamete	r D*1	Eccentricity*2	To	Tolerance/housing inside diamete				
	eter/housing meter (mm)	High pr grad	ecision de S	Super high precision grade SP		Super high precision grade SP		ecision de S	Super high precision grade SP			
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower		
2.5	6						+12	0	+8	0		
6	10	0	-10	0	-7	8	+15	0	+9	0		
10	18						+18	0	+11	0		
18	30	0	-12	0	-8	9	+21	0	+13	0		
30	50	0	-14	0	-9	10	+25	0	+16	0		

^{*1)} For adjustable clearance type, figures indicate tolerances before the cut is made.

4. Composition of Reference Number

^{*2)} Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

5. Lubrication and Friction

(1) Grease lubrication

① Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based greases with consistency level of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- Sealed linear rolling bushing is designed to be a disposal item. Therefore, a replenishing grease is considered to be not required. However, if replenishment becomes necessary due to dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seal, wipe off old grease from the linear shaft, and apply new grease.
- Intervals of replenishments are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1 000 km or no replenishing for a normal environment.

(2) Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 – 46 50°C to 80°C Viscosity VG46 – 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

(3) Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

According to **Fig. 3**, dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising. Friction force can be obtained by the following formula.

$$F = \mu \cdot P$$
.....(1)

In this formula:

F: Friction force (N)

P: Load (vertical load to the shaft center line) (N)

 μ : Friction coefficient (dynamic or static)

For a seal type, a seal resistance of 0.3 to 2.40 N is added to the above.

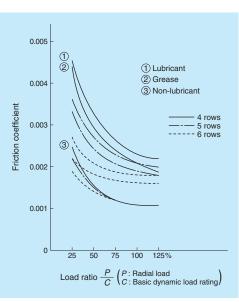


Fig. 3 Dynamic friction coefficient of linear rolling bushing

6. Range of Conditions to Use

Generally, use under the following conditions.

Please consult NSK when values exceed the ranges given below.

Temperature: - 30°C to 80°C

Speed: Up to 120 m/min

(excluding oscillation and short strokes)

7. Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 μ m. Slight preload is a general rule (1% of basic dynamic load rating C -- see the dimension table).

The dimension table shows theoretical rigidity K when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_N , when load is not 0.1C, is obtained by the following formula.

$$K_N = K (P/0.1C)^{1/3} \cdots (2)$$

In this formula:

K: Rigidity value in the dimension table (N/µm)

P: Radial load (N)

When the load is applied between the ball raws, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

8. Basic Load Rating and Rated Life

(1) Basic dynamic load rating

Basic dynamic load rating C is: A radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually.

There is a relationship as below between C and the

$$L = 50 \ f_{L^3}$$
 (3)
 $f_{L} = C/P$ (4)

In this formula:

L: Rated life (km)

P: Radial load (N)

f_L: Life factor (Refer to Fig. 4)

This formula is used provided that the shaft hardness is HRC58 or higher. Rated life is shorter if the shaft is softer. In this case, find the hardness factor $f_{\rm H}$ from Fig. 5, and multiply the value.

$$f_L = C \cdot f_H / P \cdot \dots$$
 (5)
Or $C = P \cdot f_L / f_H \cdot \dots$ (6)

Life in time can be obtained by the following formula, substituting for given stroke length, cycle numbers, and running distance:

$$L_h = (L/1.2 \cdot S \cdot n) \times 10^4 \cdot \dots (7)$$

In this formula:

Lh: Life hours (h)

L: Rated life (km)

S: Stroke (mm)

n: Cycles per minute (cpm)

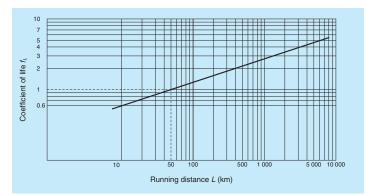


Fig. 4 Relationship between life factor and running distance

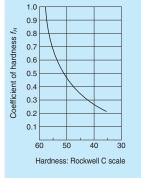


Fig. 5 Hardness factor

(2) Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball and shaft at the contact point, becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this much permanent deformation without hampering operation.

(3) Calculation example

What is the appropriate rolling bushing size if required life is 5 000 hours?

Conditions are:

- Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- Load 450 N is equally distributed to the three bushings.
- The table is required to reciprocate on the shafts at 200 times per minute at a stroke of 70 mm.
- · Hardness of the shaft: HRC 55

$$450/3 = 150 (N)$$

· Load per linear rolling bushing is:

From Formula (7), the required life when indicated in distance is:

$$L = 5 \times 10^{3} \times 1.2 \times 70 \times 200/10^{4} = 8.4 \times 10^{3}$$
 (km)

From **Fig. 4** and **Fig. 5**, Life factor $f_L = 5.6$ Hardness factor $f_H = 0.65$

Hardness factor $t_H = 0.65$ Therefore, from Formula (6),

 $C = P \times f_1 / f_H$

 $=150 \times 5.6/0.65 = 1292$ (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1 400 N.

(4) Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (**Fig. 6**).

(Radial clearance set at zero in this case.)

Load ratings in the dimension table are in case "A" when it is applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (refer to Fig. 6).

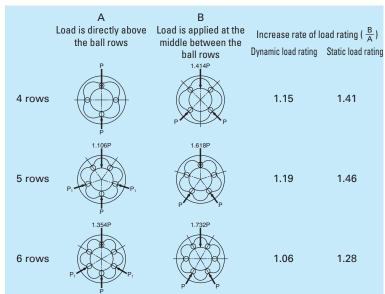


Fig. 6 Increasing rate of load rating by position of ball row (B/A)

9. Shaft Specification

Harden the shaft surface where the balls run with heat treatment to provide the following values.

- Surface hardness: HRC58 or over
- Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

 For SP grade, and "the clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

• For SP grade with "the clearance" of more than 5 µm, and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 μm/100 mm
- LB50 -- 100 um/1 000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to **Table 1** on page A338). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

Select a linear rolling bushing with seals to prevent moisture or foreign matters which are floating in the air from entering.

11. Installation

(1) Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts installed with two linear rolling bushings on each are used.

Fig. 7 is an installation example.

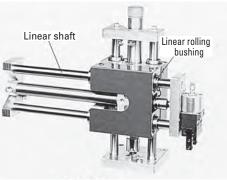


Fig. 7 Installation example

(2) Installation of linear rolling bushing

1) Standard type installation

Fig. 8 shows a method using a retainer ring. Linear rolling bushing can also be secured to the housing using a stop plate and/or screw.

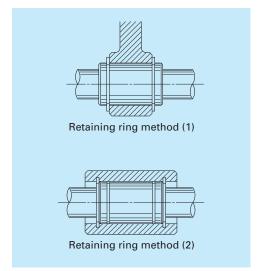


Fig. 8 Installation using retaining rings

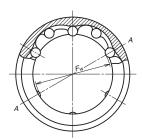
- a) Housing inside diameter should be of a recommended value (Table 2, page A338). The entire rolling bushing contracts and gives excessive preload if: the inside diameter is small; the roundness or cylindricity is excessive. This may result in an unexpected failure.
- b) To install linear rolling bushing, use a tool (Fig. 9) and squeeze it in, or use a holder and lightly pound it.

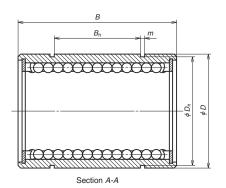
Fig. 9 Tool to install a linear rolling bushing

2) Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cut-open section. This is the most effective way to evenly distribute deformation toward circumferential direction.

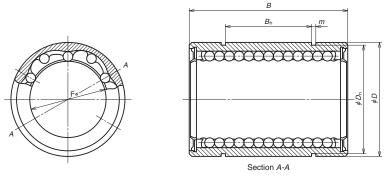
The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (refer to **Table 1** on page A338). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust.


First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload.


(3) Precaution for installing a shaft in the linear rolling bushing

- To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- Do not use the shaft for rotating movement after inserting the shaft to the linear rolling bushing.
 The balls slip and damage the shaft.
- Do not twist the shaft after it is inserted to the linear rolling bushing. The pressure scars the shaft.

12. Dimension tables Model LB (standard type), no seal

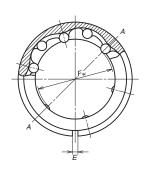

Unit: mm

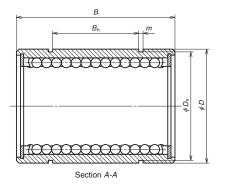
	Inscribed	Outside	Length				Stiffness*1	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		Distance	Width	Bottom		of ball	(kg)	load rating	load rating
	diameter					diameter	(N/µm)	circuit	(Reference only)	I I	C_0
	F _w	D	В	B₁	m	D _n				(N)	(N)
LB3Y	3	7	10	_	_	_	3	4	0.0016	20	39
LB4Y	4	8	12	_	_	_	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
LB8ANY*2	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1 010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1 000	1 960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1 400	2 500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1 510	2 800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2 230	4 000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4 100	7 100

^{*1):} Refer to Section (7).

^{*2):} Semi-standard item of which length B is shorter than standard.

Model LB (standard type), with seal




Jr		

	Inscribed	Outside	Length	Retaining ring groove			Number	Weight	Basic dynamic	Basic static
*Model No.	circle	diameter		Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter					diameter	circuit	(Reference only)		C_{\circ}
	F _w	D	В	B₁	m	D₁			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1 010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1 000	1 960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1 400	2 500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1 510	2 800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2 230	4 000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4 100	7 100

^{*)} Single-seal type is indicated as LB-D.

Model LB-T (Adjustable clearance type)

Unit: mm

	Inscribed	Outside	Length	Opening	5 55 55			Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter						diameter	circuit	(Reference only)		C_0
	F _w	D	В	Ε	B₁	m	D_n			(N)	(N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1 010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1 000	1 960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1 400	2 500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1 510	2 800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2 230	4 000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4 100	7 100

A-6-2 Roller Pack

1. Structure

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers; an end cap which changes the direction of the recirculation of rollers at the end of the main body; a side plate which guides the rollers (Fig. 1). Roller pack is one of the linear rolling guides, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent roller pack from falling out when it is turned upside down after assembly.

Other component of the roller pack is spring pin. Spring pin is on the top surface of the roller pack, and makes installation of wedge block and fitting plate

Wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. Wedge of wedge block moves up and down to apply preload by turning the adjust screw.

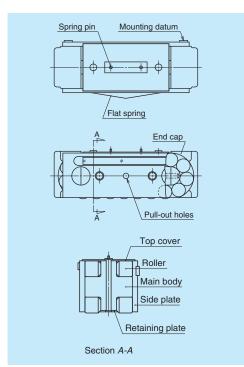


Fig. 1 Roller pack

Photo 1 Roller pack

Photo 2 Wedge block

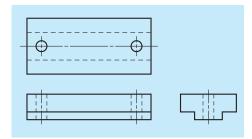


Fig. 2 Fitting plate

Fig. 3 Wedge block

2. Features

Roller pack has two remarkable characteristics other linear roller guide bearings do not have.

(1) No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

(2) Load is applied equally.

This is due to a "fitting plate," a result of "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, the self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Other characteristics include: Easy to provide preload by the wedge block; can be installed to vertical shaft; and reduction in noise level.

3. Accuracy

The height tolerance of roller pack is 10 µm. Roller packs are grouped into a size difference of every 2 μm (corded by A to E) before delivery (Table 1).

Table 1 Height Classification

Unit: um

	Οπι. μπ
Category	Code
over or less +3 - +5	А
+1 - +3	В
-1 - +1	С
-31	D
-53	Е

4. Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

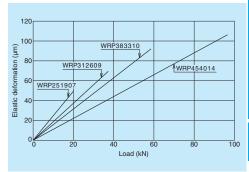


Fig. 4 Elastic deformation of the roller pack

5. Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjust screw into preload volume. Use a dial gauge for accurate measurement.

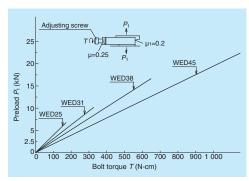


Fig. 5 Tightening torque of the adjust screw, and preload volume

6. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are commonly used. Since roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4 \cdots (1)$$

In this formula, S (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matters (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life of it. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some of the suitable materials.

Fig. 6 shows a general method to install the seals.

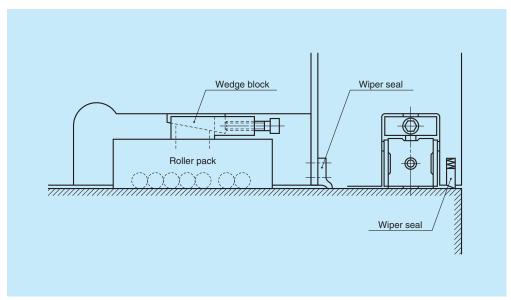


Fig. 6 Installation of seal

NSK

7. Installation

(1) Installation and applying preload

As shown in Fig. 7, it is basic that a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (Fig. 7). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the rated life in 8. in determining preload volume.)

(2) Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide surface.

Hardness by heat treatment

: More than HRC58 hardened depth
2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter

Please consult NSK when using cast iron or cast steel quide face.

(3) Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions.

Pocket width

: Roller pack width + 0.10 to 0.20 mm

Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm.

Parallelism of the fitting plate (pocket bottom) mounting surface to the guide way face and parallelism of the wedge block mounting surface to the guide way surface:

: Less than 0.040 mm per 100 mm.

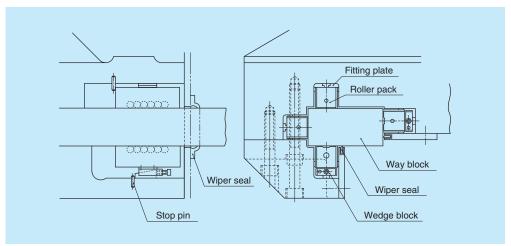


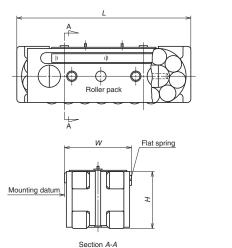
Fig. 7 Design of the roller pack pocket (example)

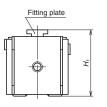
Rated life L (km) is shown in the following formula. In this formula:

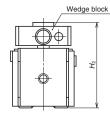
$$L = 50 \left(\frac{C}{f_w \cdot F_c} \right)^{\frac{10}{3}} \dots$$
 (2)

- C: Basic dynamic load rating (N)
- $f_{\rm w}$: Load factors. 1.0 to 1.2 at time of smooth operation
- F_c: Calculated load (N) applied to the roller pack

9. Disassembly


Remove the roller pack preloaded by the wedge block in the following manner.

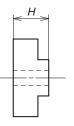

- Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- In case of heavy load, the roller pack could not be pulled out by the above method. Hook a tool to the pull-out hole (**Fig. 1**) on the side plate of the roller pack, and pull out the roller pack.



10. Dimension Table

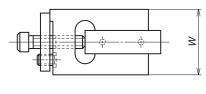
Roller pack: Model WRP

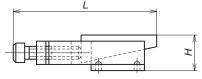

Unit: mm


Model No.	Width W	Height ±0.005	Length	Applicable fitting plate reference No.	Assembled height <i>H</i> ₁	Applicable wedge reference No.	Assembled height <i>H</i> ₂	Basic dynamic load rating <i>C</i> (N)	Basic static load rating Co (N)
WRP 251907	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31 000	40 500
WRP 312609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57 000	73 000
WRP 383310	38.1	33.31	104.4	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91 000	113 000
WRP 454014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151 000	191 000

 $\textbf{Note}: \text{Numbers in the parentheses in column } \textit{H}_{2} \text{ show the adjustable height range of the wedge block.}$

Fitting plate: Model WFT





Unit: mm

Model No.	Width <i>W</i>	Height (±0.01) <i>H</i>	Length <i>L</i>	Applicable roller pack			
WFT 25	10	5	20	WRP 251907			
WFT 31	12	5	26	WRP 312609			
WFT 38	12.8	5.6	29	WRP 383310			
WFT 45	16	5	40	WRP 454014			

Wedge block: Model WED

Unit: mm

Model No.	Width <i>W</i>	Height <i>H</i>	Length <i>L</i>	Applicable roller pack
WED 25	23	12 (11.5 – 12.5)	47	WRP 251907
WED 31	28	14 (13.5 – 14.5)	63	WRP 312609
WED 38	35	17.47 (16.9 – 18.1)	76	WRP 383310
WED 45	40	20 (19.2 – 20.8)	95	WRP 454014

 ${f Note}$: Numbers in the parentheses in column H_2 show adjustable height range of the wedge block.

B-1 Selection Guide to NSK Ball Screw

 Features of NSK Ball Screws B1 Structure of a Ball Screw B3
2.1 Ball Recirculation System B4
2.2 Preload System ····· B5
3. Ball Screw Series B7
3.1 Ball Screw Classification B7
3.2 Product Externals B9
4. Procedures to Select Ball
Screw B17
4.1 Flow Chart for Selection ··· B17
4.2 Accuracy Grades B19
4.3 Axial Play B20
4.4 Screw Shaft Diameter, Lead,
and Stroke····· B21
4.5 Manufacturing Capability fo
Screw Shaft B25
4.6 Outside Shapes of Ball Nut
B26
4.7 Shaft End Configuration B27

	iii Giiait Eila Goilligaration	
	5. When Placing Orders	· B31
	5.1 When Ordering Standar	ď
	Ball Screws	· B31
	5.2 When Ordering Made-to) -
DI GOV	Order Ball Screws	· B33
BLOCK		

Ball Screw

B-2 Technical Description of Ball Screws

of Ball Screws	
1. Accuracy ······	· B37
1.1 Lead Accuracy	· B 37
1.2 Thermal Expansion and	
Target Value of Specifie	d
Travel	· B40
1.3 Mounting Accuracy and	
Tolerance of Ball Screws	· B4 1
1.4 Automatic Lead Accurac	cy
Measuring System of N	SK
	B43
2. Static Load Limitation	· B4 4
2.1 Buckling Load	
2.2 Yield by Tensional/	
Compressive Stress	· B46
2.3 Permanent Deformation	
the Ball Contact Point	· B46
3. Permissible Rotational Spe	
3.1 Critical Speed of the Sci	rew
Shaft	
3.2 d•n Value	· B50
4. Supporting Conditions for	
Calculation of Buckling Loa	ad
and Critical Speed	
5. Life (Dynamic Load Limitat	ion)
	· B53
5.1 Life of Ball Screw	B53
5.2 Fatigue Life	· B53
5.3 Ball Screw and Hardness -	
5.4 Wear Life	· B55
6. Preload and Rigidity	B56
6.1 Elastic Deformation of	
Preloaded Ball Screw	
6.2 Rigidity of the Feed Scr	ew
System	· B57
7. Friction Torque and Drive	
Torque	
7.1 Friction Torque	· B62
7.2 Drive Torque	
8. Even Load Distribution in Ba	
Nut (In Case of Ball Screws	
High-Load Drive)	· B65

B-3 Ball Screw Dimension Table rication of Ball Screw ··· B67 1. Dimension Table and Reference

9. Lubrication of Ball Screw B67 10. Dust Prevention for Ball Screw B68 11. Rust Prevention and Surface Treatment of Ball Screws B69 12. Ball Screw Specifications for Special Environments B70 12.1 Clean Environments B70 12.2 Measures for Use Under Vacuum B70 13. Noise and Vibration B71
13.1 Consideration to Lowering Noise
14. Installation of Ball Screw
14.1 Installation Procedure for Machine Tools, Where High Installation Accuracy Is Required
15.3 Effective Stroke of Ball Screw

1. Dimension Table and Reference	
Number of Standard Ball Screws	
1.1 Compact FA Series B107	
1.2 High-Speed SS Series B147	
1.3 Finished Shaft End	
MA Type, Miniature, Fine Lead B159	
FA Type for Small Equipment B181	
SA Type for Machine Tools B217	
1.4 Finished Shaft End	
KA Type Stainless Steel Product - B273	
1.5 Blank Shaft End	
MS Type, Miniature, Fine Lead ···· B301	
FS Type for Small Equipment B309	
SS Type for Machine Tools ····· B321	
1.6 Ball Screws for Transfer Equipment	
B349	
1.7 Accessories B389	
2. Dimension Table and Reference	
Number of Standard Nut Ball Screws	
2.1 End Deflector Type ······B431	
2.2 Tubo Tupo D/27	

2.3 Deflector (bridge) Type.....B469

2.4 End Cap Type**B483**3. Dimension Table and Reference Number

Tools-----B493

3.5.1 HTF-SRC Type**B511** 3.5.2 HTF-SRD Type**B515**

of Application-Oriented Ball Screws
3.1 HMD Type for High-Speed Machine

3.5 For High-Load Drives

-B36 B37 -B104

B1

-B104 B105 -B586

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

B-1 Selection Guide to NSK Ball Screw

B-1-1 Features of NSK Ball Screws

(1) Quick delivery

Standard ball screws are for short lead time.

- Precision ball screws with finished shaft end Compact FA Series, MA Type, FA Type, SA Type, KA Type
- Precision ball screws with blank shaft end MS Type, FS Type, SS Type, HSS Type
- Ball screws for transfer equipment with finished shaft end

VFA Type, RMA Type

 Ball screws for transfer equipment with blank shaft end

RMS Type, R Series

(2) Competitive prices

NSK reduces cost by well-planned mass production of standardized items. We rank the best in the world production of ordered items. We are able to offer our products at competitive prices by producing similar items in the same production group.

(3) Unparalleled accuracy

NSK utilizes its unique grinding technique and measuring equipment for topnotch precision.

(4) Superb durability

NSK uses thoroughly purified alloy steel for superb durability.

(5) No backlash, and unparalleled rigidity

NSK ball screws use Gothic arch grooves as shown in **Fig. 1.1** to minimize the clearance between the balls and grooves. Further, an application of preload makes no backlash possible. As providing controlled preload is easy, appropriate rigidity is obtained.

As the Gothic arch also minimizes the clearance between the balls and the grooves, the backlash is minimized without applying preload.

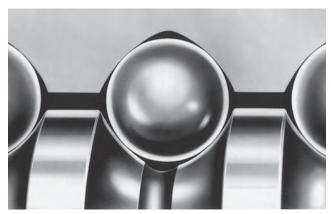


Fig. 1.1 Ball groove profile of NSK ball screw

(6) Smooth movement assures high efficiency

When the circular-arc groove is used for the ball screws, balls are wedging into the grooves of ball nut and ball screw shaft. But this phenomenon does not happen in the Gothic arch groove. The Gothic arch groove, along with the low friction that is inherent nature of ball screw, is accountable for a smooth and highly efficient conversion of motion as shown in Fig. 1.2.

(7) Optimal units available

Utilizing bearing technology, NSK produces high quality support units (for light load type to be used for small equipment and heavy load type to be used for machine tools) which are exclusive for ball screws. These units are standardized.

NSK also offers quality-assured accessories such as lock nuts to tighten bearings, travel stoppers to prevent overrun, and sealing units to cool hollow shaft ball screws.

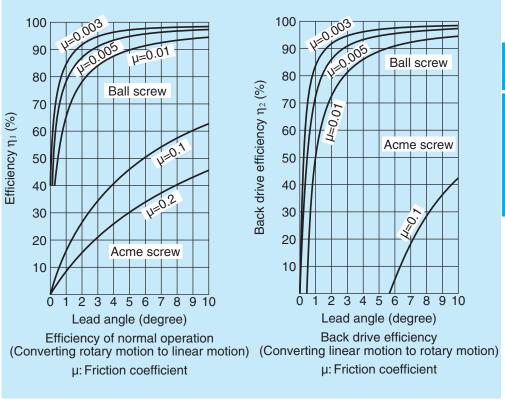
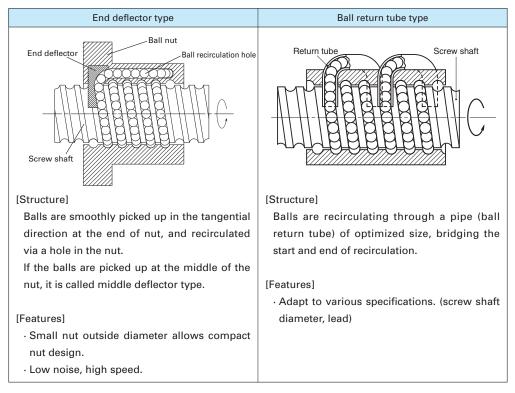


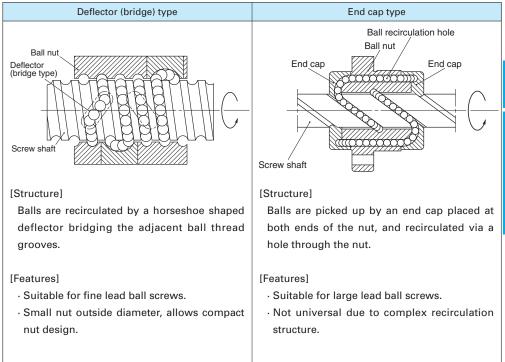
Fig. 1.2 Mechanical efficiency of ball screws


NSK

B-1-2 Structure of a Ball Screw

Balls are placed between the screw shaft and nut, and roll. This system is called a "ball screw." To keep the balls recirculating continually, this system requires a screw shaft, a nut, balls, and recirculation components as basic items. A ball screw has the following functions.

- (1) Converting motion: Changing rotary motion to linear motion (normal operation); Changing linear motion to rotary motion efficiently (back-drive operation).
- (2) Increasing power: A small torque is converted to a large thrust force.
- (3) Positioning: Sets accurate position in linear motion.


Table 2.1 Ball screw recirculation system

B-1-2.1 Ball Recirculation System

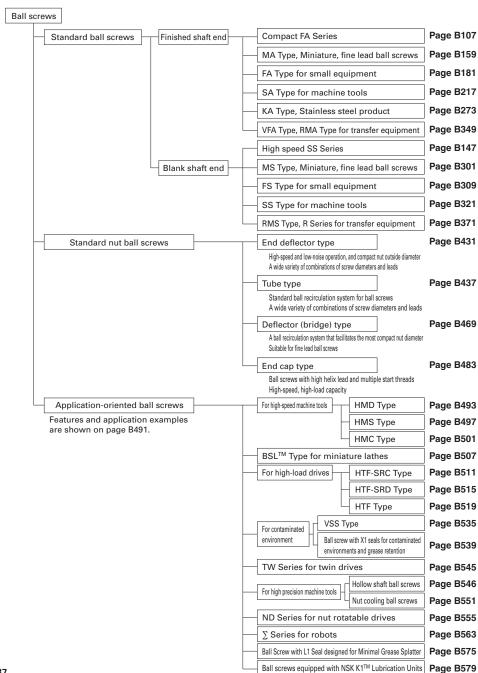
A ball recirculation system is categorically most important, as well as the preload system, to classify the structure of ball screw.

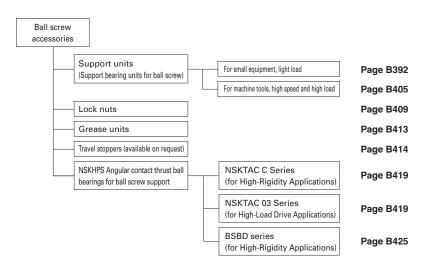
As shown in **Table 2.1**, four types of ball recirculation system are used for the NSK ball screws.

B-1-2.2 Preload system

There are four systems to apply preload to NSK ball screws depending on the application.

Table 2.2 Preload system for ball screws


Preload system	Double nut preload (D-Preload)	Offset preload (Z-Preload)
Structure	Tension Spacer Ball nut B Ball nut A Spacer Ball nut B Ball nut A Ball nut B Screw shaft	Ball nut Lead Lead + α Lead Ball nut Screw shaft
Description	Uses two nuts, and inserts a spacer between them to apply the preload. In general, a spacer is thicker (by the deformation equivalent to the preload) than the actual space between two nuts. However, a thin spacer is inserted in some cases.	To apply preload, the lead near the center of the nut is offset by the volume equivalent to preload (a). This method is like to creating a preload system similar to the double nut preload (D-preload) by a single ball nut, thus enabling a compact nut design.
Nut length	Long	Medium
Torque characteristics	0	0
Rigidity	©	0


Oversize ball preload (P-Preload)	Spring preloaded double nut (J-Preload)
Ball nut	Ball nut A Spring Ball nut B Main external load
	Tension Tension
Ball nut Screw shaft	Ball nut A Spring Ball nut B Screw shaft
Ball nut Spacer ball Screw shaft Load ball	
Balls slightly larger than the ball groove space (over-size balls) are inserted to allow them to contact at four points. Provides better torque characteristics in the low torque range.	A spring is used as a spacer of D-Preload. Must be used with discretion in its varied rigidity by load direction.
Short	Long
0	©
0	Δ

B-1-3 Ball Screw Series

B-1-3.1 Ball Screw Classification

Lead classification

Classification	Lead ratio $K = lead l / shaft diameterd$
Fine	K < 0.5
Medium	0.5 ≤ <i>K</i> < 1
High helix	1 ≤ <i>K</i> < 2
Ultra high helix	2 ≤ <i>K</i>

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

B-1-3.2 Product Externals

(1) Ball screws

Standard ball screws

Fig. 3.1 Finished shaft end compact FA Series

Page B107

Fig. 3.2 Blank shaft end high-speed SS Series

Page B147

Fig. 3.3 Finished shaft end MA type, FA type and SA type

Page B157

Fig. 3.4 Finished shaft end KA type

Page B273

Fig. 3.5 Blank shaft end MS type, FS type and SS type

Page B299

Fig. 3.6 Finished shaft end VFA type for transfer equipment

Page B349

Fig. 3.7 Finished shaft end RMA type and blank shaft end RMS type for transfer equipment

Page B349



Fig. 3.8 Blank shaft end R series for transfer equipment

Page B349

Fig. 3.9 R series nut assembly for transfer equipment Page B349

Standard nut ball screws

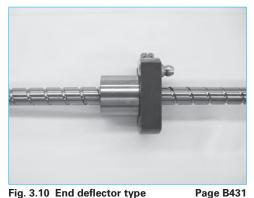


Fig. 3.10 End deflector type

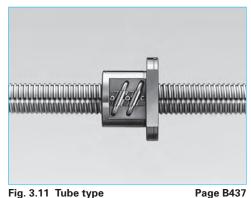


Fig. 3.11 Tube type

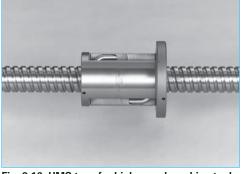


Fig. 3.16 HMC type for high-speed machine tools Page B501

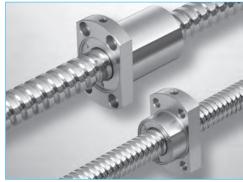


Fig. 3.17 BSL™ type for miniature lathes Page B507



Fig. 3.12 Deflector (bridge) type Page B469

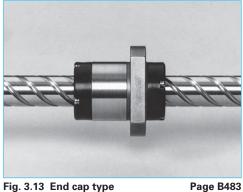


Fig. 3.13 End cap type

Fig. 3.18 HTF-SRC type for high-load drives Page B511

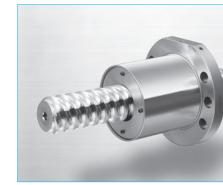


Fig. 3.19 HTF-SRD type for high-load drives Page B515

● Application-oriented ball screws

Fig. 3.14 HMD type for high-speed machine tools Page B493 B11

Fig. 3.15 HMS type for high-speed machine tools Page B497

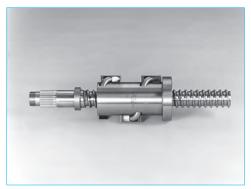


Fig. 3.20 HTF type for high-load drives Page B519

Fig. 3.21 VSS type for contaminated environments Page B535

Fig. 3.22 Ball screw with X1 seals for contaminated environments and grease retention Page B539

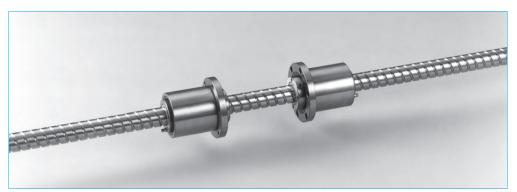


Fig. 3.26 ND series for nut-rotatable drives

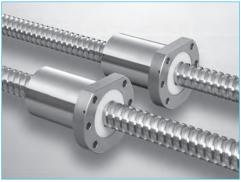


Fig. 3.23 TW series for twin-drive systems
Page B545

Fig. 3.24 Nut cooling ball screws for high precision machine tools Page B551

Fig. 3.27 \sum series for robots

Page B563

Fig. 3.25 Hollow shaft ball screws for high-precision machine tools

Page B546

Fig. 3.28 Ball Screw with L1 Seal designed for Minimal Grease Splatter Page B575

Fig. 3.29 Ball screws equipped with NSK K1™ lubrication units Page B579

Page B414

(2) Standard accessories

Fig. 3.29 Support units Page B392 (for small equipment, light load)

Fig. 3.30 Support units Page B392 (for small equipment, light load, low-profile)

Fig. 3.35 Lock nuts for high load Page B410

Fig. 3.36 NSK hand grease pump unit Page D19

Fig. 3.31 Support kits for RMA and RMS types
Page B401

Fig. 3.32 Support unit for VFA type Page B402 (simple support side)

Fig. 3.37 NSK grease Page B413, D19

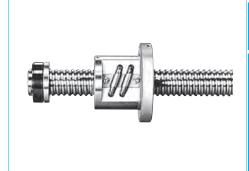


Fig. 3.38 Travel stoppers (by order)

Fig. 3.33 Support units Page B407 (for machine tools, high speed, heavy load)

Fig. 3.34 Lock nuts for light load Page B409

Fig. 3.39 Ball screw support bearings Page B419 NSKTAC C Series, NSKTAC 03 Series



Fig. 3.40 Ball screw support bearings Page B425 BSBD series

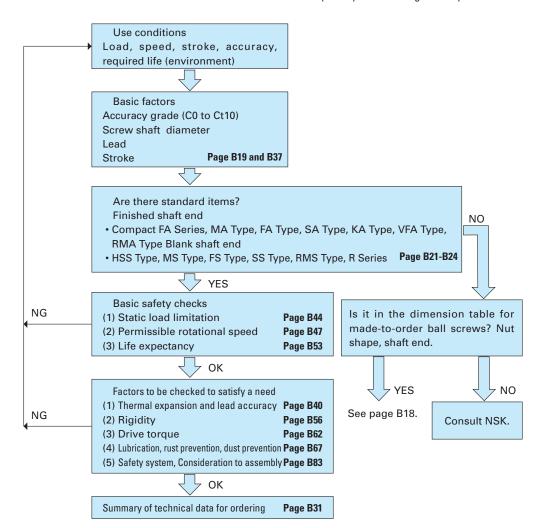
B-1-4 Procedures to Select Ball Screw

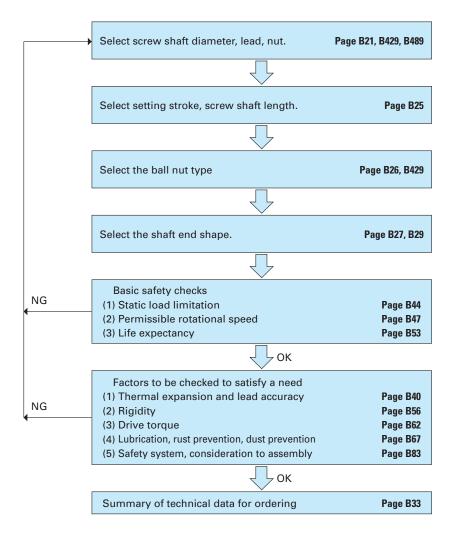
B-1-4.1 Flow Chart for Selection

When selecting a ball screw, you have to review a variety of use conditions and requirements such as applied loads, speeds, motion strokes, positioning accuracy, required life and operating environment. You require a multiple inspection because some of these conditions force a ball screw to have conflicting characteristics.

(1) Standard ball screw

The chart below is one of the selection procedures. To take advantage of prompt delivery and reasonable prices, this procedure focuses on the standardized ball screws.


NSK offers a ball screw selection program, and also has a service to select appropriate items using data file compiled by our knowledge and experience.


(2) Made-to-order ball screws

Dimensions and specifications can be decided individually for the application-oriented ball screws and standard nut ball screws. Procedures are as follows. Refer to the selection exercises on page B87.

Table 4.4 is "Combinations of screw shaft diameter and leads for basic type ball screw." Please consult

NSK if you require the types that are not listed in the table.

B-1-4.2 Accuracy Grades

Table 4.1 shows examples of how to select accuracy grade for a specific use. These practical cases are based on NSK's experience. The circles indicate the range of the accuracy grade in actual use. The double circles indicate accuracy grades most frequently used among the cases marked with the single circle. These

symbols help to select the accuracy grade of ball screws temporarily. To confirm whether a specific ball screw accuracy grade satisfies requirements in positioning accuracy in actual use, refer to "Technical Description" and "Mean travel deviation and travel variation." (page B38)

Table 4.1 Accuracy grades of ball screw and their application

		NC machine tools																			
Application		-	Lathes	Milling machines	Boring machines	() () () () () () () () () ()	Macilling centers	: H	Drilling machines		Jig boring machines		GIIIIdels	Electric discharge	machines	Wire cuttings	Electric discrial ge machines	Punch presss		Lasel cutilig macinies	Woodworking machines
A:	xis	Χ	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	XY	Z	
	C0	0								0	0	0									
Φ	C1	0		0		0				0	0	0	0	0		0	0				
grade	C2	0		0	0	0	0					0	0	0	0	0	0				
acy o	СЗ	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
Accuracy	C5	0	0	0	0	0	0	0	0						0		0	0	0	0	0
Ă	Ct7								0												0
	Ct10																				0

		ů,	Sem	nicondu	ctor/as	ssociat	ed indu	ıstry		Indus	trial r	obots				te l		nt	Nuclea	r power	
::	Application	General industrial machines, Machines for specific use	Lithographic machines	nical processing equipment	Wire bonders	Probers	lectric component mounted devices	Printed circuit board drilling machines		Cartesian type	V	Ariculate type	SCARA type	el mills equipment	ic injection molding machines	Three-dimensional coordinate measuring machines	Office machines	processing equipment	el rod controls	Mechanical snubbers	Aircrafts
		Genera Mach	Lithog	Chemical equi	>		Electric mount	Printed (Assembly	other purposes	Assembly	other purposes	0)	Steel	Plastic	Three-d me	O	Image p	Fuel	Mech	
	C0		0			0										0		0			
Φ	C1		0		0	0		0								0		0			
grade	C2				0	0	0	0	0							0					
	СЗ	0		0			0	0	0		0		0						0		0
Accuracy	C5	0		0			0	0	0	0	0	0	0		0		0		0		0
∢	Ct7	0		0					0	0	0	0	0	0	0		0		0	0	
	Ct10	0		0						0				0	0		0			0	

B-1-4.3 Axial Play

Table 4.2 indicates the combinations of NSK ball screw accuracy grades and axial play. Select an axial play which satisfies the required accuracy in backlash, positioning and repeatability. Ranges of available ball thread effective length in relation to accuracy grade and axial play are shown in Table 4.3. Please note that if the effective length exceeds the

range, the axial play may become partially negative (preloaded condition).

For the axial play of Ct10 grade (ball screws for transfer equipment), refer to the R series dimension tables.

Table 4.2 Combinations of accuracy grades and axial play

	Axial	Z	T	S	N	L
	play	0 mm	0.005 mm	0.020 mm	0.050 mm	0.3 mm
Accurac	cy grade	(Preload)	or less	or less	or less	or less
	C0	C0Z	C0T	_	_	_
	C1	C1Z	C1T	_	_	_
	C2	C2Z	C2T		_	_
	C3	C3Z	C3T	C3S	_	_
	C 5	C5Z	C5T	C5S	C5N	_
	Ct7	_	_	C7S	C7N	_

The combination codes shown in the table are NSK reference number.

Table 4.3 Maximum effective thread length in combination of accuracy grade and axial play

Effective length of the screw thread (maximum) Screw shaft Axial play T (0.005 mm or under) Axial play S (0.020 mm or under) diameter **C**5 C0 - C3C3 **C5** Ct7 4 - 6 100 80 100 80 8 - 10 250 200 300 250 12 - 16 500 400 700 600 500 20 - 25800 700 1 000 1 000 1 000 28 - 40 1 000 2 000 1 500 800 1 500 45 - 631 200 1 000 2 500 2 000 2 000

Note: Refer to Table 4.8 (page B25) for the available length of screw shaft (maximum length). Also, axial play of code N does not become partial negative play if it is within the available range of effective ball thread length.

4 000

3 000

3 000

80 - 125

B-1-4.4 Screw Shaft Diameter, Lead, and Stroke

Choose a screw shaft diameter and stroke based on the allowable space for ball screw installation. A lead should be set based on the required running speed, and should give some allowance to the maximum rotational speed of the motor.

(1) Standard ball screw

Tables 4.4 and 4.5 show the combinations of ball screw shaft diameter and leads, and range of stroke. From these tables, select the closest values to the shaft diameter, lead, and stroke which had been selected previously. Also, confirm detailed specifications and sizes in "Dimensional table of standard ball screw" (page B105).

Table 4.4 Screw shaft diameter, lead and stroke of standard ball screw

10	Shaft dia.	Lead							Stroke						
6			- 50	- 100	- 150	- 200	- 250	- 300	Stroke - 350	- 400	- 450	- 500	- 550	- 600	- 650
6	4			$\bigcirc \triangle$											
12		1			()	()A									
12	6	8													
1		12													
8		- 4		$\cap \triangle$		$\cap \triangle$									
8		1.5		\sim	\sim	\sim									
10	Ω .	2		\sim											
10	0	10													
10		10													
10		15													
12		2			1 84	9	$ \times$ Δ								
12	4.0	2.5			$ Q^{\triangle}$	2	24								
10	10	4		<u> </u>		0	$Q\Delta$	0							
12 2.5		5													
10		10													
10		2		\circ		$\bigcirc \triangle$									
10		2.5				$\bigcirc \triangle$									
10	10	5			○○△		● ()△								
14	12	10				$\bigcirc \triangle$		() /		()A		0/			
14		20													
14		30													
15		5													
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	8													$-\times$
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5							-						-
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10													
16	15	10			-		\sim			\sim				- 2	
16		20				2			-07	<u> </u>	-0	-2			
16		30								•					
16		2		Q			QA								
32		2.5		0		0									
32	16	5													
32		16													
20		32													
20		4					0	Δ					0		
20		5													
20		10													
30	20	20					~		8		~				
40 60 60 60 60 60 60 60	20	20							-				<u> </u>		$\overline{}$
60		40					_		_		_		_		
25		60													
25		60						_						<u> </u>	
25		4					2	Δ	1 2				2		
20		5					<u> </u>		<u> </u>		<u> </u>				
20									$\bigcirc \triangle$				Ų		
25	25	10						0					\triangle		
28	20	20													
28		25													
28	Ī	30													
28	Ţ	50													
28 6	00	5							$\bigcirc \triangle$				$\bigcirc \triangle$		
32 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28	6						$\overline{}$	ŎΔ.			Ŏ	ŎΔ		
32		5							O A				OAA		
32 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ŀ	ĕ				-	-		<u> </u>) A	\vdash	-
10	32	Q				l	<u> </u>		-		l	$ \times$ $-$			
25 32 36 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32	10					-				l	$\vdash \times \vdash$			
36 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	10						-				-		L 04	
36 10		25													
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		32											<u> </u>		
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36	10											\triangle	\bigcirc	
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L	5													
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ſ	8													
40 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40	10									<u> </u>			$\bigcirc \triangle$	
16 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40									~		Õ			
45 10 O O O	ľ								1			-	1		
45 10 O A	+	20													
	45	10													
50 12		10												×	
14	50	10					-				-	-			
		12		I		I	1				I				

Note: See Table 4.5 for KA Type in stainless steel product.

Table 4.5	Screw s	shaft diar	neter, lea	d and str	oke of K	A type in	stainless	steel pro	duct	Unit: mm
OL (L. I)						Stroke				
Shaft dia.	Lead	- 150	- 200	- 250	- 300	- 350	- 450	- 500	- 650	- 1 050
6	1									
-	1									
8	2									
10	2									
10	4									
·	2									
12	5									
	10									
4.5	10									
15	20									
16	2									

nark; N	vis type, l	-5 type, S	oS type: ✓	mark; VFA	a type:	mark; RN	IA type:	⊥mark; R	IVIS type				nit: m
700	- 750	- 800	- 850	- 900	- 950	- 1 100	- 1 200	- 1 300	- 1 400	- 1 500	- 1 700	- 2 100	-300
				Δ									
				Δ									
	0		Q			$\bigcirc \triangle$							
		Δ	0	Δ				04					
	• Q				Δ								
	-0				<u>О</u>	1 28	8			()A			
	ŏ												
0_				•0									
	0												
	<u></u>				0		<u>О</u> Д						
	<u>О</u> Д Д				Δ	● ○△				Δ			
Q.				Q						8	•0		
										0			
		•0				0		ě		Δ		○ ○△	
8	\triangle			8	0	8	$\bigcirc \triangle$						
8	$\bigcirc \triangle$		\triangle	8	0	OA.	Δ ΟΔ		0_	\bigcirc \triangle	Δ		
9	0			8	О Д Д	0	0		8	<u>ΟΔ</u> <u>Δ</u>			
8			Δ					\bigcirc \triangle \triangle	18		O_A_A		
				_		Ŏ		_	- V		<u>O</u> Δ		02
											$\cap \triangle$		
0				8	Δ	Ŏ				0	<u> </u>		
			2	() 🗘 🛆		OA		<u>О</u> Д		Ŏ	Δ Δ ΟΔ		()_
<u> </u>		<u>O</u>		04			8	02			6		8
				_						_	- V		
			_	\bigcirc A \triangle					_	<u>^</u>			
\bigcirc			<u>Ο</u> Δ			0			0Δ			04	8

(2) Made-to-order ball screws

Table 4.7 shows the combinations of screw shaft diameter and leads for made-to-order ball screws. For details, refer to the dimension tables from pages B429 and B489.

Table 4.6 Screw shaft diameter, lead and standard screw shaft length of R Series Unit: mm

Screw shaft	11				Stan	dard screv	v shaft len	gth			
diameter	Lead	400	500	800	1 000	1 500	2 000	2 500	3 000	4 000	5 000
10	3										
10	6										
12	8										
12	12										
14	4										
	5										
15	20				•						
	10										
16	16										
	32										
18	8										
	5										
20	10										
20	20										
	40										
	5										
25	10										
20	25										
	50										
28	6										
	10										
32	32										
	64										
36	10										
	10										
40	40										
	80										
45	12										
	10										
50	16										
	50										

Table 4.7 Combinations of screw shaft diameter and leads for typical ball screw Unit: mm 15 | 16 | 20 | 25 | 30 | 32 | 36 | 40 | 50 | 60 | 64 | 80 | 100 1.5 2 2.5 12 14 0.5 4 D D D D S 8 D D D D S S D S 10 D D S 12 D D D D T S,T S,T S,C S 14 D D Τ Т 15 S S С S,T S,C 16 D D Т T,C С С S,T T,D D,B B T S,T D T S,T S s,c 20 S,C S,T T,D D,B B T,B S,T D,B T S,T S,T D S s,c 25 28 Т Т T,D T,D D,B S,T S,V S,T T,N S,T D 32 D S,C V,F S,T F S,F 36 S,T S,HS,H T,D T,D T,D S,T S,T F S,T H S,H S,T H,N S,H T,H N 40 D C,V S Ň S,T S,T 45 |S,H|S,H|S,H| H | Н FF T,N S,T C,V N T,D T,D T,D S,T S,T D,F D,F S,T S,T S,T S,H T,H N 50 S T,F F F H H H H 55 T,D F F D D T,D D,F T,F T 63 T,F T,D T,D T,D F F 80 T,D F D T,D 100 120 FF 125 Т 140 FF FF 160 F F 200 FF

D: Deflector(bridge) type

T: Tube type S: End deflector type H: HMC type, HMD type C: End cap type

N: ND Series B: BSL type V: VSS type

NSK

B-1-4.5 Manufacturing Capability for Screw Shaft

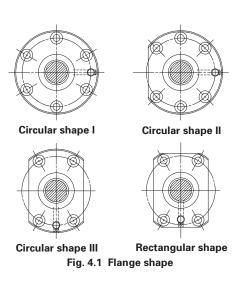
Table 4.8 shows the manufacturing capability for the screw shaft overall length for each accuracy grade. The capability of large ball screw whose shaft diameter exceeds 100 mm is limited due to the weight (indicated by * asterisk in the table). Please consult NSK in such a case.

Also consult NSK if the screw shaft size you desire exceeds the size listed in **Table 4.8**.

Table 4.8 Manufacturing capability of screw shaft

	ı	able 4.8 IVI	anutacturing	capability of	r screw sna	π	Unit: mm
Accuracy Screw grade shaft diameter	C0	C1	C2	C3	C5	Ct7	Ct10
4	90	110	120	140	140	140	_
6	150	180	200	250	250	250	_
8	240	280	340	340	340	340	_
10	350	400	500	500	500	550	800
12	450	500	650	700	750	800	800
14	600	650	750	800	1 000	1 000	1 000
15	600	700	800	900	1 250	1 250	1 500
16	600	750	900	1 000	1 500	1 500	1 500
18	_	_	_	_	_	_	1 500
20	850	1 000	1 200	1 400	1 900	1 900	2 000
25	1 100	1 400	1 600	1 900	2 500	2 500	2 500
28	1 100	1 400	1 600	1 900	2 500	2 500	2 500
32	1 500	1 750	2 250	2 500	3 200	3 200	3 000 (4 000)
36	1 500	1 750	2 250	2 500	3 200	3 500	3 000
40	2 000	2 400	3 000	3 400	3 800	4 300	4 000 (5 000)
45	2 000	2 400	3 000	3 400	4 000	4 500	4 000
50	2 000	3 200	4 000	4 500	5 000	5 750	4 000
55	2 000	4 000	5 000	5 800	6 000	6 000	_
63	2 000	4 000	5 000	6 000	6 800	7 700	_
80	_	4 000	6 300	8 200	9 200	10 000	_
100	_	4 000	6 300	10 000	12 500	13 500	_
*120	_	_	_	_	_	13 500	_
* 125	_	_	_	10 000	13 500	13 500	_
*140	_	_	_	_	_	10 000	
* 160	_	_	_	_	_	8 000	_
*200	_	_	_	_	_	5 000	_

Notes: 1. Values in parentheses of Ct10 are applicable to the ultra high helix lead (I/d≥2). Refer to dimension tables on B385 and following pages for details.


2. Please note that the range for small leads (3 mm or under) are also limited by the screw length.

B25

B-1-4.6 Outside Shapes of Ball Nut

(1) Flange shape

Fig. 4.1 shows the available flange shape. Select the appropriate shape according to the nut installation condition. (Fig. 4.2)

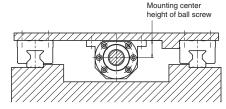


Fig. 4.2 Installation example

(2) Shapes of nut cross section

Cross-section of nuts are shown in Fig. 4.3. For detailed dimensions, refer to dimension table of nut.

① Circular (round)

The ball recirculation components are contained inside the circumference of the nut. It can be inserted in a round hole.

2 Tube-projecting type

This shape is unique to the tube recirculation type. The nut outside diameter is small. However some recess must be given for housing because the ball recirculation tube protrudes from the circumference of the nut.

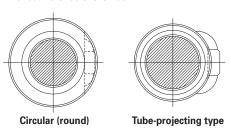


Fig. 4.3 Shape of the cross section of nut

B-1-4.7 Shaft End Configuration

(1) Standard shaft end dimensions

Tables 4.9 and 4.10 show shaft end types for NSK standard support units.

Refer to the dimension tables below when designing shaft ends of standard ball screw.

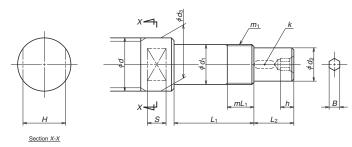


Fig. 4.4 Configuration of standard shaft end (drive side)

Table 4.9 Dimensions of shaft ends (drive side)

													Unit: mm
Screw	Bearing	journal	Threa	ad	Driv	e secti	on	Seal section	Hexag	on hole	Wrenc	h flats	Support
shaft diameter	Outside diameter	Length	Nominal spec.	Length	Outside diameter	Length	Key width	Outside diameter	Width across flats	Depth	Width across flats	Length	unit
d	d_1	L ₁	m₁	mL ₁	d ₂	L ₂	k	d ₃	В	h	Н	S	Reference No.
4	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11
6	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11
8	8	27	M8×1	9	6	10	_	11.5	_	_	10	5.5	WBK08-01A WBK08-11
10	8	27	M8×1	9	6	10	_	11.5	_	_	10	5.5	WBK08-01A WBK08-11
12	10	30	M10×1	10	8	15	_	14	_	_	12	6.5	WBK10-01A WBK10-11
14	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
15	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
16	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
20	15	40	M15×1	15	12	20	4	19.5	5	7	17	8.5	WBK15-01A WBK15-11
20	17	81	M17×1	23	12	29	4	20	5	7	22	10	WBK17DF-31H
25	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11
	20	81	M20×1	23	15	39	5	25	6	8	22	10	WBK20DF-31H
28	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11
20	20	81	M20×1	23	15	39	5	28	6	8	24	12	WBK20DF-31H
	25	62	M25×1.5	20	20	33	6	32	8	10	27	12	WBK25-01W WBK25-11
32	25	89	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DF-31H
	25	104	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DFD-31H
36	30	89	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DF-31H
30	30	104	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DFD-31H
40	30	89	M30×1.5	26	25	61	8	40	10	12	_	_	WBK30DF-31H
40	30	104	M30×1.5	26	25	61	8	40	10	12	_	_	WBK30DFD-31H
45	35	92	M35×1.5	30	30	63	8	45	12	14			WBK35DF-31H
73	35	107	M35×1.5	30	30	63	8	45	12	14	_		WBK35DFD-31H
50	40	92	M40×1.5	30	35	78	10	50	14	18	_	_	WBK40DF-31H
30	40	107	M40×1.5	30	35	78	10	50	14	18	_	_	WBK40DFD-31H

Note: Low-profile support unit is available for compact FA Series.

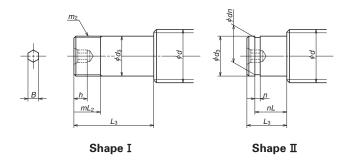


Fig. 4.5 Standard shaft end configuration (opposite to the drive side)

Table 4.10 Dimensions of shaft ends (opposite to the drive side)

Unit: mm

												Unit. mm
Screw shaft			g journal	Thread for	lock nut	Retai	ner ring	groove	Hexago		Suppo	
diameter	Shape	Outside diameter	Length	Nominal spec.	Length	Width	Groove diameter	Groove position	Width across flats		Referer Numbers in pa	
d		d ₃	L ₃	m ₂	mL ₂	n	dn	nL	В	h	bearing refere	ence number.
8	П	6	9	_		0.8	5.7	6.8		_	WBK0	8S-01
10	П	6	9	_	_	0.8	5.7	6.8	_	_	WBK0	8S-01
12	П	8	10	_	_	0.9	7.6	7.9		_	WBK1	0S-01
14	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
15	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
16	I	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK1	2S-01
20	Π	15	25(13)	_	_	1.15	14.3	10.15	5	7	WBK1	5S-01
	I	20	19	_	_	1.35	19	15.35	6	8	WBK2	0S-01
25	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20	DF-31H
	Π	20	19	_	_	1.35	19	15.35	6	8	WBK2	0S-01
28	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01	WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20	DF-31H
	Π	25	20	_	_	1.35	23.9	16.35	8	10	WBK25	S-01W
32	I	25	62	M25×1.5	20	_	_	_	8	10	WBK25-01W	WBK25-11
	I	25	89	M25×1.5	26	_	_	_	8	10	WBK25	DF-31H
36	Π	25	20	_		1.35	23.9	16.35	10	12	(62	05)
36	I	25	89	M25×1.5	26	_	_	_	10	12	WBK25	DF-31H
40	Π	30	22	_	_	1.75	28.6	17.75	10	12	(62	06)
40	I	30	89	M30×1.5	26	_	_	_	10	12	WBK30	DF-31H
45	Π	35	25	_	_	1.75	33	18.75	12	14	(62	07)
45	I	35	92	M35×1.5	30	_	_	_	12	14	WBK35	DF-31H
F0	Π	40	25	_	_	1.95	38	19.95	14	18	(62	08)
50	I	40	92	M40×1.5	30	_	_	_	14	18	WBK40	DF-31H

(2) Shaft end configuration of R series ball screws for transfer equipment

Tables 4.11 and 4.12 show shaft end types for R Series.

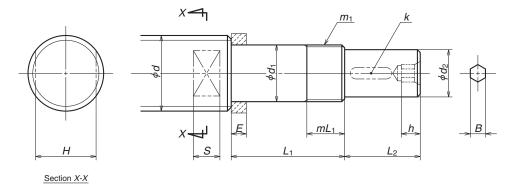


Fig. 4.6 R Series shaft end (drive side)

Table 4.11 Dimensions of R Series shaft ends (drive side)

Unit: mm

Screw	Bearing	journal	Thread for lo	ock nut	Spacer	Dri	ve sect	ion	Hexagor	nal hole	Wrenc	h flat	Supp	ort
shaft	Outside	Length	Nominal spec	Length	Width	Outside	Length	Key	Width	Depth	Width	Length	uni	t
diameter	diameter					diameter		wiath	across flats		across flats			
d	d_1	L ₁	$m_{\scriptscriptstyle 1}$	mL_1	Ε	d_2	L_2	k	В	h	Н	S	Reference	ce No.
10	6	27	M6×0.75	7	5.0	4.5	7.5	_	_	_	8	4.5	WBK06-01A	WBK06-11
12	8	32	M8×1	9	5.5	6	10	_	_	_	10	5.5	WBK08-01A	WBK08-11
14	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
15	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
16	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
18	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
20	15	50	M15×1	15	10	12	20	4	5	7	17	8.5	WBK15-01A	WBK15-11
25	17	53	M17×1	17	7	15	27	5	6	8	22	10	WBK17-01A	
25	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
28	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
32	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W \	WBK25-11
36	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W \	WBK25-11
40	30	89	M30×1.5	26	_	25	61	8	10	12	_	_	WBK30D	F-31H
45	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35D	F-31H
50	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35D	F-31H

Note: The dimension d, shall be smaller enough than the minor diameter of the ball screw thread to provide sufficient shoulder surface for the spacer.

Refer to "Precautions for Designing Ball Screw (page B83)".

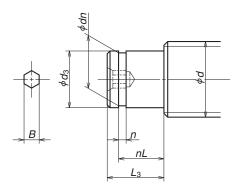


Fig. 4.7 Shaft end configuration of R Series (opposite to the drive side)

Table 4.12 Dimensions of R Series shaft ends (opposite to the drive side)

Unit: mm

al hole Depth	Support unit
Denth	
Верит	Numbers in parentheses are bearing reference numbers.
h	bearing reference numbers.
_	WBK08S-01(606)
_	WBK10S-01(608)
6	WBK12S-01(6000)
7	WBK15S-01(6002)
8	WBK17S-01(6203)
8	WBK20S-01(6204)
8	WBK20S-01(6204)
10	WBK25S-01W(6205)
10	WBK25S-01W(6205)
12	(6206)
14	(6207)
14	(6207)

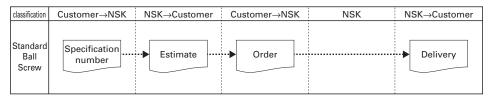
B-1-5 When Placing Orders

To avoid confusion, please use "reference number" or "specification number" when inquiring about desired ball screw specifications.

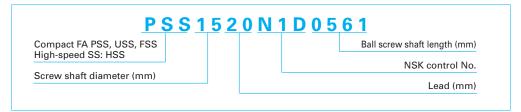
♦ Reference number:

Alpha-numeric codes are assigned to each ball screw. When placing order, please use this reference number.

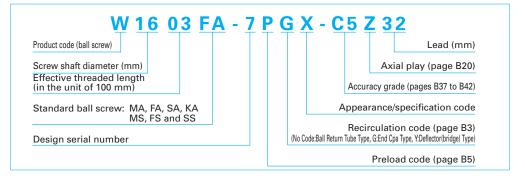
♦ Specification number:


Specification factors are identified by alpha-numeric codes. Codes are for easy explanation of your requirements. (If you do not use these numbers, please itemize your requirements.)

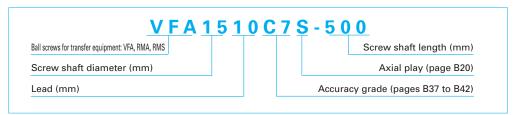
B-1-5.1 When Ordering Standard Ball Screws


Find the reference number from the dimension table. Enter the reference number in the "Order Form by Fax" (page B34). Send the fax to your local NSK agency (branch office, sales office, or

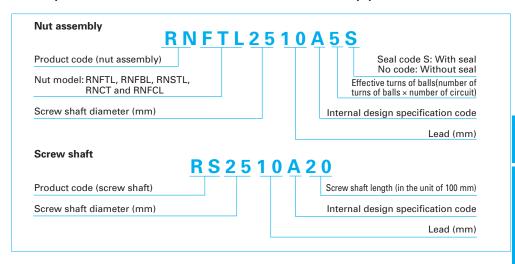
your local representative.).


The following is the flow chart for ordering standard ball screws.

(1) Example of reference number for Standard ball screws Compact FA Series and high-speed SS Series

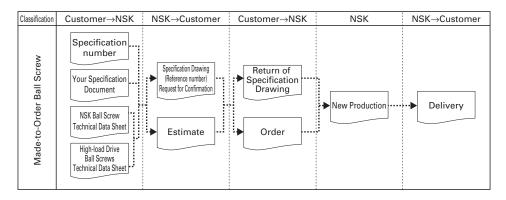


(2) Example of reference number of Standard ball screws

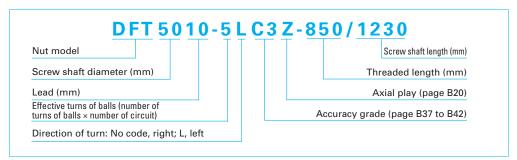


(3) Example of reference number of ball screws for transfer equipment with finished shaft end and blank shaft end

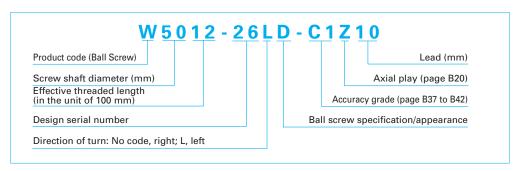
(4) Example of reference number of R series ball screws for transfer equipment



B-1-5.2 When Ordering Made-to-Order Ball Screws


If you would like to discuss technical points regarding specifications, use the NSK ball screw technical data sheet as an aid (page B36). For high-load drive ball screws, use the technical

sheet on page B533 for NSK high-load drive


The following is the flow chart for ordering made-to-order ball screws.

(1) Example of specification number of made-to-order ball screw

(2) Example of reference number of made-to-order ball screw

Fax Order Form

(Make copies for future orders)

(1) Standard ball screw

Drive side

Company name :		Date: Day Month Year
Address:		Telephone :
Name of person in charge :	Section :	

Product name	Specification number	Quantity	Desired delivery date
Precision ball screw			
R Series ball screw Nut			
Series ball screw Screw shaft			
Support unit			
ock nut			
Grease unit			

Describe the shaft end configuration if processing is required (blank shaft end ball screw). In this case, specify which ball screw in the above list the shaft end shall be processed.

Refer to pages B27 to B30 for shaft end configuration. These pages also show the reference number for support units.

Opposite of drive side		

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw Machining center Model MC-	Application Table left/right movement (X axis)
Drawing/rough sketch attached? Yes No	

Use conditions

			D							
	Axial load	1	Rotation	nal speed	Operating	g hours				
Maximum load	9 000	N	20	min ⁻¹	15	%		Shaft rotation - Moving nut Normal operation		
								Shaft rotation - Moving shaft Back drive operation		
Load in normal use	4 000	N	360	min ⁻¹	60	%	Operating conditions	Nut rotation - Moving nut		
								Nut rotation - Moving shaft Oscillation		
Minimum load	2 000	N	1 000	min ⁻¹	2 5	%				
							Degree of vibration shock	Normal		
Maximum rotational speed		1 00	0	min ⁻¹			Required life	20 000h		
Lubricant		(Brand Make		ISK GR	S AS2)	Motor in use	Company A, Model 1		
Seal		Yes	s		No		Control system	Company B, Model 2 (resolution:1µm)		
Support bearing	Drive side	3 5 T A	C 6 2 D F				Opposite to drive	side 35TAC62DF		
Guide way	Rolling	Slidin	g (R A 4	51500G	M 2 - P 4 Z .	3 - I)				
Environment	Temperature (Nor	mal temp	oerature in de	grees Celsius)	Dust	Humi	dity Gas L	iquid (where?) Clean room In vacuum		
Schedule for prototype	Da	ay	ı	Month	Year (a	pprox.)	Quantity used	Piece		
Date, going in production/Quantity	/Mo	nth		/Year	/L	.ot	per machine			

Specification factors of the ball screw

Screw shaft diameter	50 mm	Direction of turn	right	Accuracy grade	C2	Screw shaft length	880 mm	Preload	3000 N
Lead	10 mm	Effective turns of balls		Axial play	0 mm	Overall shaft length	1 335 mm	Required torque	
Nut model	lel ZFT5010-10		Flange type	Circular I	Nut orientation	Same as show	n in the dimens	sion table	Opposite

Supplemental explanation/requests			

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw	Application
Drawing/rough akatah attaahad? Vaa Na	

Use conditions

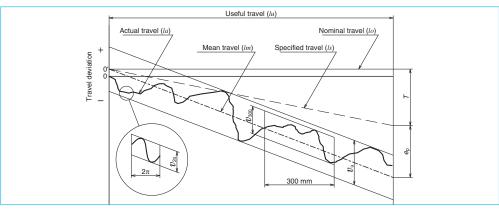
	Axial load	Rotational speed	Operating hours			
Maximum load	N	min ⁻¹	%		Shaft rotation - Moving nut	Normal operation
					Shaft rotation - Moving shaft	Back drive operation
Load in normal use	N	min ⁻¹	%	Operating conditions	Nut rotation - Moving nut	
					Nut rotation - Moving shaft	Oscillation
Minimum load	N	min ⁻¹	%			
				Degree of vibration shock		
Maximum rotational speed		min ⁻¹		Required life		
Lubricant	Grease/oil (Bran	d name: er:)	Motor in use		
Seal	Ye	s	No	(resolution:)	
Support bearing	Drive side			Opposite to drive	side	
Guide way	Rolling Slidin	ıg ()			
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hum	idity Gas L	iquid (where?) Clean ro	om In vacuum
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece	9
Date, going in production/Quantity	/Month	/Year	/Lot	per machine		

Specification factors of the ball screw

Screw shaft diameter		Direction of turn		Accuracy grade		Screw shaft length		Preload	
Lead		Effective turns of balls		Axial play		Overall shaft length		Required torque	
Nut model	t model		Flange type		Nut orientation	Same as shown in	the dimension ta	ble	Opposite

Supplemental explanation/requests		

B-2-1 Accuracy

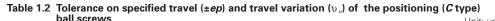

B-2-1.1 Lead Accuracy

The lead accuracy of NSK precision ball screws (C0 to C5 grades) conforms to the four characteristics specified in JIS Standards. These characteristics are expressed by codes ep, v_{uv} v_{200} , and v_{2z} .

Fig. 1.1 explains the definition of each characteristic, and shows allowable value of each. Leads are classified into two categories: C system for

positioning; Ct system for transportation. **Tables 1.2**, **1.3** and **1.4** show tolerance of each characteristic.

JIS B1192 sets C type and Cp type standards for positioning ball screws. NSK uses the specification of C type only. JIS B1192 specifies Ct1, 3, and 5 grade. NSK standards are integrated by C type only. Refer to **Table 1.2** for C type standard tolerance.



B-2 Technical Description of Ball Screws

Fig. 1.1 Definition of lead accuracy

Table 1.1 Terminology in lead accuracy

Term	Code	Description	Tolerance
Consisted travel	ls	The travel compensates the nominal travel for an elongation caused	
Specified travel		by an increase of temperature or load.	
Travel compensation	T	Value obtained by subtracting the specified travel from the nominal travel based on the useful travel. The value is to compensate for the errors caused by thermal deformation or deformation by load. This value is determined by tests and experience (see page B39).	
Actual travel	la	Actually measured travel	
Actual mean travel	lm	A straight line that demonstrates the direction of actual travel. This straight line is obtained from the curve that shows actual travel volume by least-squares method or by resembling approximation.	
Tolerance on specified travel	ер	Obtained by subtracting the specified travel from the actual mean travel.	Table 1.2
Travel variation	υμ	Maximum range of the actual travel which is between the two straight lines drawn parallel to the actual mean travel. There are three categories as shown below. • Maximum range relative to the effective length of thread.	
naver variation	υ 300	 Maximum range relative to the length of 300 mm anywhere within the effective length of thread. 	Table 1.3, 1.4
	υ 2π	- Maximum range which corresponds to any single rotation (2 π $\it rad.$) within the effective length of thread.	Table 1.3

	Accuracy	arade	С	n	С	1	С	2	С	3	C5		•
		_											
	over	or less	±ep	v_u	±ep	\mathbf{v}_{u}	±ep	v_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	±ep	$\upsilon_{\scriptscriptstyle u}$	
	-	100	3	3	3.5	5	5	7	8	8	18	18	
	100	200	3.5	3	4.5	5	7	7	10	8	20	18	
	200	315	4	3.5	6	5	8	7	12	8	23	18	
	315	400	5	3.5	7	5	9	7	13	10	25	20	
	400	500	6	4	8	5	10	7	15	10	27	20	
_	500	630	6	4	9	6	11	8	16	12	30	23	
ШШ	630	800	7	5	10	7	13	9	18	13	35	25	
gth,	800	1 000	8	6	11	8	15	10	21	15	40	27	
lenç	1 000	1 250	9	6	13	9	18	11	24	16	46	30	
thread length,	1 250	1 600	11	7	15	10	21	13	29	18	54	35	
	1 600	2 000			18	11	25	15	35	21	65	40	
Effective	2 000	2 500			22	13	30	18	41	24	77	46	
fect	2 500	3 150			26	15	36	21	50	29	93	54	
Ē	3 150	4 000			30	18	44	25	60	35	115	65	
	4 000	5 000					52	30	72	41	140	77	믔
	5 000	6 300					65	36	90	50	170	93	Ball Screw
	6 300	8 000							110	60	210	115	cre
	8 000	10 000									260	140	٤
	10 000	12 500									320	170	

Table 1.3 Tolerance of travel variation relative to 300 mm (v_{2m}) and one revolution (v_{2m}) of the positioning (C type) ball screws

Unit: um

					- · · · · · · · · · · · · · · · · · · ·
Accuracy grade	C0	C1	C2	C3	C5
$v_{\scriptscriptstyle 300}$	3.5	5	7	8	18
$\upsilon_{\scriptscriptstyle 2\pi}$	2.5	4	5	6	8

Note: _____ to JIS B1192 standards. Values in other areas are NSK standards.

Table 1.4 Travel variation (v_{300}) relative to 300 mm of the transportation (\it{C} t type) ball screws

		Unit: µm
Accuracy grade	Ct7	Ct10
$\upsilon_{\scriptscriptstyle 300}$	52	210

Note: Tolerance on specified travel (ep) of the transportation (Ct type) ball screws is calculated as follows.

$$ep = \pm \frac{lu}{300} \times v_{300}$$

lu: Effective length of the screw thread

Example of specifying lead accuracy

<Use Conditions>

Nut model: DFT4010-5 Stroke: 1 000 mm

Positioning accuracy: ±0.035 mm/1 000 mm

<Calculation>

Obtain required lead accuracy of a ball screw under these conditions.

(1) Calculate the length of the thread

Stroke + nut length + margin =1 000 + 193 + 100
=1 293 (mm)
$$\cdots$$
 \rightarrow 1 300 mm

(2) Calculate lead accuracy

From **Table 1.2**, obtain the tolerance on specified travel relative to the length of thread (1 300 mm).

C5 ··· ±0.054/1 250 – 1 600 C3 ··· ±0.029/1 250 – 1 600

(3) Determine lead accuracy

Positioning accuracy is: ±ep <±0.035/1 000 mm

Accuracy grade: C3 grade $\pm ep$ = 0.029/length of thread (1 300 mm) $\upsilon_{\rm u} = 0.018$

B-2-1.2 Thermal Expansion and Target Value of Specified Travel

(1) Thermal expansion

Thermal expansion of screw shaft induces the degradation of positioning accuracy of the ball screws. Thermal expansion of a screw shaft is calculated as follows.

 $\Delta L_{\theta} = \rho \cdot \theta \cdot L \text{ (mm) } \cdots 1$

In this formula:

 $\Delta L_{\rm B}$: Thermal expansion (mm)

 ρ : Thermal expansion coefficient (12.0×10⁻⁶ °C⁻¹)

 θ : Average temperature rise of screw shaft (Celsius)

L: Length of screw shaft (mm)

The above formula indicates that when the temperature rises one degree Celsius, the screw shaft stretches 12 µm per meter. Ball screw generates more heat when it is used at high speed. This causes elongation of the screw shaft. Although the ball screw lead is ground into high precision, an elongated screw shaft due to high temperature rise may not satisfy required highly accurate positioning.

(2) Countermeasures against temperature rise

Countermeasures against temperature rise of the ball screw are:

Hollow shaft cooling or nut cooling ball screws are recommended for operation under high-speed and high-precision conditions.

- (a) Suppress heat generation.
 - Do not apply excessive preload to the ball screw and support bearing.
- Select appropriate lubricant and use it properly.
- Use higher helix ball screw lead to lower rotational speed.
- (b) Use forced cooling.
- Feed liquid coolant into the hollow shaft cooling or nut cooling ball screws. - Refer to the information on hollow shaft ball screw for high accuracy machine tools in the section for application-oriented ball screws (pages B546 to B554).
- Cool screw shaft surface with lubricant oil or air.
- (c) Avoid effects of temperature rise on positioning.

- Warm up the machine by high speed until the temperature rise of ball screw shaft saturates, then maintain it properly.
- Set pre-tension. (Fig. 1.2)
- Set the negative (minus) target value of specified travel.
- Employ the closed loop control system.

(3) How to determine specified travel

In general, the specified travel of ball screw is the same as the nominal travel. However, the specified lead of ball screw is sometimes set to negative (minus) or positive (plus) to adjust expansion by temperature rise during operation, or the elongation/contraction of the screw shaft by external load. For such occasion, specify travel compensation (T) when ordering the ball screw.

As an example, **Table 1.5** shows the travel compensation (*T*) for typical NC machine tools.

Table 1.5 Travel compensation (*T*) of specified travel for typical NC machine tools

(4) How to determine pre-tension force

In order to absorb thermal expansion, pretension can be provided to the screw shaft at the time of installation. In this case, the pretension is usually equivalent to the expansion brought about by the temperature rise of 2 to 3°C.

Fig. 1.2 shows the bearing support structure in such occasion.

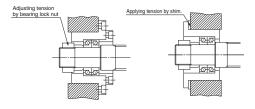


Fig. 1.2 Bearing structure to provide pre-tension

NSK

B-2-1.3 Mounting Accuracy and Tolerance of Ball Screws

The accuracy related to mount the ball screws is specified in the following seven characteristics (Fig. 1.3).

The tolerance is indicated in the specification drawing.

Detailed tolerances are specified by JIS B1192. For reference, **Table 1.6** shows standard values of "(7) Total run-out of the screw shaft axis (straightness of the screw shaft)". NSK sets stricter tolerance standards than JIS standards. For accuracy of the ball screw installation, refer to "Installation of Ball Screw (1) Centering of the units" (page B73).

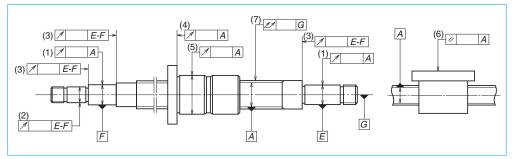


Fig. 1.3 Mounting accuracy of ball screw

- (1) Radial run-out of the support bearing seat relative to the axis of the ball thread of screw shaft.
- (2) Radial run-out of the other shaft ends section relative to the axis of the support bearing seat.
- (3) Radial run-out of the shoulder of support bearing seat relative to the axis of support bearing seat.
- (4) Radial run-out of the nut flange surface, or of the nut end datum surface, relative to the axis of screw shaft.
- (5) Radial run-out of the nut outside surface (cylindrical shape) to the axis of screw shaft.
- (6) Parallelism of the nut mounting surface to the screw shaft axis. (in case of flat mounting surface)
- (7) Total run-out of the screw shaft axis.

Table 1.6 Total run-out of the screw shaft axis

Unit: µm

	Accuracy g	rade		C0 C1											
Nomina	l diameter (mm)	over	-	8	12	20	32	50	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	8	12	20	32	50	80	125
	-	125	15	15	15				20	20	15				
	125	200	25	20	20	15			30	25	20				
(mm)	200	315	35	25	20	20			40	30	25	20			
	315	400		35	25	20	15		45	40	30	25	20		
shaft	400	500		45	35	25	20			50	40	30	25		
s ≥	500	630		50	40	30	20	15		60	45	35	25	20	
screw	630	800			50	35	25	20			60	40	30	25	
of s	800	1 000			65	45	30	25			75	55	40	30	25
gth	1 000	1 250			85	55	40	30			95	65	45	35	30
len	1 250	1 600			110	70	50	40			130	85	60	45	35
Overall length	1 600	2 000				95	65	45				120	80	55	40
Ŏ	2 000	2 500											100	70	50
	2 500	3 150												130	90
	3 150	4 000													120

Unit: µm

	Accuracy grade			C3						C5						
Nomina	l diameter (mm)	over	-	8	12	20	32	50	80	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	125	8	12	20	32	50	80	125
	_	125	25	25	20					35	35	35				
	125	200	35	35	25	20				50	40	40	35			
	200	315	50	40	30	30				65	55	45	40			
	315	400	60	50	40	35	25			75	65	55	45	35		
(H	400	500		65	50	40	30				80	60	50	45		
Overall length of screw shaft (mm)	500	630		70	55	45	35	30			90	75	60	50	40	
hafi	630	800			70	55	40	35				90	70	55	45	
s ≽	800	1 000			95	65	50	40	30			120	85	65	50	45
scre	1 000	1 250			120	85	60	45	35			150	100	75	60	50
of s	1 250	1 600			160	110	75	55	40			190	130	95	70	55
gth	1 600	2 000				140	95	70	50				170	120	85	65
<u>le</u>	2 000	2 500					120	85	60					150	110	80
erall	2 500	3 150					160	110	75					200	140	95
Õ	3 150	4 000					220	150	100					260	180	120
	4 000	5 000						200	130						240	160
	5 000	6 300													310	210
	6 300	8 000														280
	8 000	10 000														370

B-2-1.4 Automatic Lead Accuracy Measuring System of NSK

In response to the demand for high precision in production technology, NSK is the first in the world that developed and uses "Lead Accuracy Measuring System (LAMS)." Lead accuracy is measured by the system that employs a laser interferometer measuring instrument and a personal computer.

Fig. 1.4 shows the lead accuracy measuring system. The inspection date of the ball screw is shown in Fig. 1.5. The laser interferometer measures either ball nut travel accuracy or lead accuracy of the ball thread. The data which are input into a computer are processed into four characteristics readings regarding lead accuracy. (See page B37.)

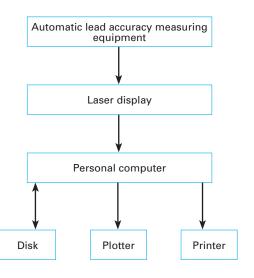


Fig. 1.4 Lead accuracy measuring system

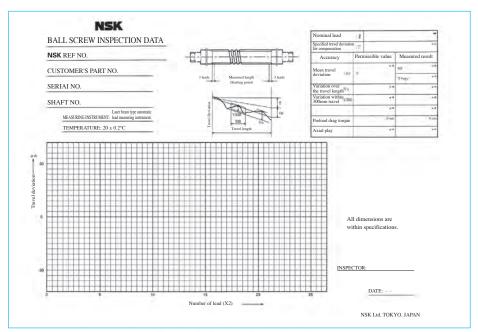


Fig. 1.5 Ball screw Inspection data

B-2-2 Static Load Limitation

Ball screws, based on their function, will generally receive axial load only. Ball screw shafts in general are long, so it is necessary to consider 3 items below:

- · Buckling load of the screw shaft
- Yielding of the screw shaft by tensional or compressive stress
- Permanent deformation at the ball contact points

B-2-2.1 Buckling Load

It is necessary to calculate whether the ball screw shaft is safe against buckling.

Buckling load, i.e. permissible compressive load "P" to axial direction, is calculated as follows.

$$P = \alpha \times \frac{N \cdot \pi^{2} \cdot E \cdot I}{L^{2}} = m \frac{d_{r}^{4}}{L^{2}} \times 10^{4} \text{ (N) } \cdots 2)$$

In this formula:

 α : Safety factor ($\alpha = 0.5$)

E: Elastic modulus ($E = 2.06 \times 10^5 \text{ MPa}$)

I: Moment of inertia

$I = \frac{\pi}{64} d_r^4$	(mm ⁴) ·····3)
----------------------------	----------------------------

- d, : Screw shaft root diameter (mm) (See the dimension table.)
- L: Unsupported length (mm) (See Figs. 4.1 and 4.2 'Supporting conditions of screw shaft and nut' on page B51.)
- m, N: Factors determined by the supporting condition of the ball screw shaft

Table 2.1 Factors of bucking load

Supporting condition	m	N
Fixed - Fixed support	19.9	4
Fixed - Simple support	10.0	2
Fixed support - Free	1.2	0.25
Simple - Simple support	5.0	1

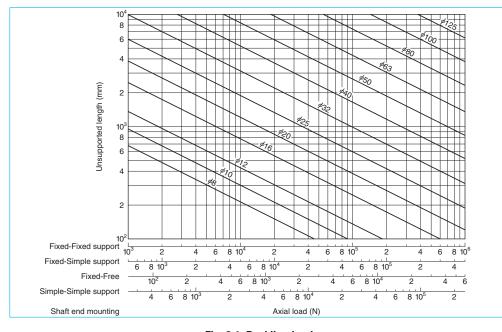


Fig. 2.1 Buckling load

Calculate buckling load under the conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Fixed support (From the supporting condition (ii)

in Fig. 4.1 'Supporting conditions of screw shaft and nut' on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_c = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Support condition is Fixed - Fixed support, from Table 2.1 on page B44

N = 4

m = 19.9

By formula 2) on page B44

$$P = m \frac{d_1^4}{L^2} \cdot 10^4 = 19.9 \times \frac{34.4^4}{2000^2} \times 10^4 = 69 667 \text{ (N)}$$

Therefore,

Permissible buckling load P = 69600 N

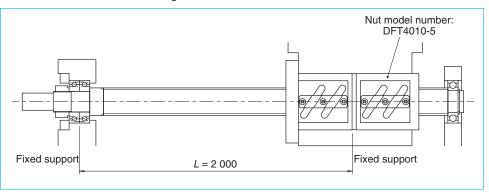


Fig. 2.2 Calculation example of buckling load

It is necessary to consider permissible load in regards to the yield stress.

Permissible load "P" by tensional or compressive stress to screw shaft is

$$P = \sigma \cdot A = 1.15 d_r^2 \times 10^2 \text{ (N)}$$
 ... 4

In this formula:

σ: Allowable stress (= 147 MPa)

A: Cross section area of a screw shaft using root diameter (mm²)

$$A = \frac{\pi}{4} \cdot d_r^2 \text{ (mm}^2\text{)} \qquad \cdots$$

d: Screw shaft root diameter (mm)

<<Calculation example of yield load>>

Obtain load in respect to the allowable stress under the conditions in **Fig. 2.2**.

<Use conditions>

Nut model: DFT4010-5

Screw shaft root diameter $d_r = 34.4$ (mm)

(From the dimension table)

<Calculation>

By formula 4)

$$P = 1.15 d_r^2 \times 10^2 = 1.15 \times 34.4^2 \times 10^2$$

= 136 086 (N)

Therefore,

Permissible load $P = 136\,000\,\text{N}$

B-2-2.3 Permanent Deformation at the Ball Contact Point

NSK

Exposed to an excessively heavy load in axial direction, the balls are squashed, and the ball rolling surface is dented. The deformations on these points do not perfectly restore to original shape after the load is removed. They are permanently disfigured. It is necessary to determine the limitation of this disfigurement to containing it within a certain range.

(1) Basic static load rating C_{0a}

Basic static load rating C_{oa} is a load to axial direction that results in the combined permanent deformation equal to 0.01% of the ball diameter at the contact points of ball and ball grooves of the screw shaft and nut.

(2) Calculation of permissible load by C_{0a}

 P_{\circ} (allowable axial direction load to limit the permanent deformation) is calculated using $C_{\circ \circ}$.

$$P_0 = \frac{C_{0a}}{f} (N) \qquad \cdots 6$$

In this formula, f_s: Static permissible load factor

Table 2.2 Static permissible load factor

At time of normal operation	1 – 2
With vibration impact	1.5 – 3

<<Calculation example of the maximum allowable load>>

Obtain the maximum allowable load to the ball groove section under conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Basic static load rating $C_{0a} = 137\ 000\ (N)$

(From the dimension table)

Static permissible load factor $f_s = 2$

(normal operation, no vibration impact)

<Calculation>

By formula 6), the maximum allowable load of the ball groove section

$$P_0 = \frac{C_{0a}}{f_s} = \frac{137\ 000}{2} = 68\ 500\ (N)$$

B-2-3 Permissible Rotational Speed

Permissible rotational speed is determined by the feeding speed and ball screw lead. When selecting a ball screw, it is important to know the permissible rotational speed.

It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

The lower of the following two factors, d-n and critical speed, will determine the overall permissible rotational speed of the ball screw.

- Critical speed which is the resonance vibration of the shaft.
- d-n value which is involved in damaging the ball recirculation components.
- * Please consult NSK if the maximum rotational speed exceeds the criteria of maximum rotational speed on page B50, even both the critical speed of screw shaft rotation and the d-n value are in range of the allowable limit.

B-2-3.1 Critical Speed of the Screw Shaft

Calculate the critical speed which is the matching value of the ball screw rotational speed and the natural frequency of the screw shaft. The 80% of the critical speed is defined as the permissible rotational speed.

Calculate the critical speed of the screw shaft whether you use shaft rotation or nut rotation. Critical speed varies by the nut traveling position. Please consult NSK for detailed calculation.

If using a ball screw exceeding the critical speed, it is necessary to increase the natural frequency by using an intermediate support, etc. If using with nut rotation, it is possible to operate exceeding critical speed by installing a vibration energy absorbing system (optional, vibration control damper: patented by NSK) to the screw shaft. (Refer to "Nut rotatable drive ND Series" on page B555.)

Calculate the permissible rotational speed based on critical speed $n_{\rm c}$ as follows, taking in account "B-2-4 Supporting Conditions for Calculation of Buckling Load and Critical Speed" on page B51.

Fig. 3.1 shows the permissible rotational speeds against critical speed for each shaft diameter.

$$n_{c} = \alpha \times \frac{60\lambda^{2}}{2\pi L^{2}} \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A}}$$

$$= f \frac{d_{r}}{I^{2}} \times 10^{7} \text{ (min}^{-1)} \qquad \dots 7)$$

In this formula:

 α : Safety factor (α = 0.8)

E: Elastic modulus (E = 2.06×10^5 MPa)

I: Moment of inertia of area of screw shaft

$$I = \frac{\pi}{64} d_r^4 (\text{mm}^4) \qquad \cdots 3$$

d_r: Screw shaft root diameter (mm) (See the dimension table.)

g: Acceleration of gravity (= $9.8 \times 10^3 \text{ mm/s}^2$)

 γ : Specific weight ($\gamma = 7.65 \times 10^{-5} \text{ N/mm}^3$)

A: Cross section area of the screw shaft root diameter (mm²)

$$A = \frac{\pi}{4} \times d_r^2 \text{ (mm}^2\text{)} \qquad \cdots 55$$

L: Unsupported length (mm) (See Figs. 4.1, and 4.2 "Supporting conditions of screw shaft and ball nut" on page B51)

 f_{i} λ : Factors determined by the supporting condition

Table 3.1 Coefficients of critical speed

f	λ
15.1	3.927
21.9	4.730
3.4	1.875
9.7	π
	21.9

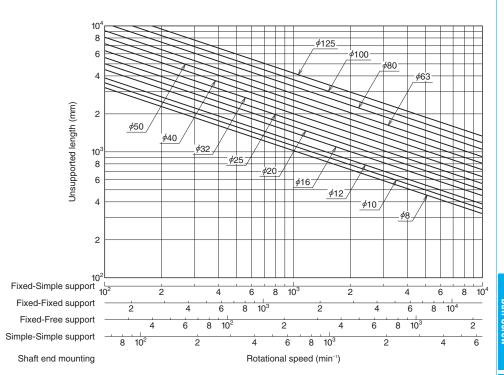


Fig. 3.1 Permissible rotational speeds vs. critical speeds

NSK

<<Calculation example of permissible rotational speed to the critical speed>> Calculate the permissible rotational speed to the critical speed under conditions in Fig. 3.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Simple support (From the supporting condition (ii) in Fig. 4.1 "Supporting conditions of screw shaft and ball

nut" on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (from the dimension table)

<Calculation>

Supporting condition is Fixed-Simple support, from Table 3.1 on page B47

$$\lambda = 3.927$$

f = 15.1

By formula 7) on page B47, permissible rotational speed to critical speed is

$$n_c = f \frac{d_c}{L^2} \times 10^7 = 15.1 \times \frac{34.4}{2000^2} \times 10^7 = 1298.6 \text{ (min}^{-1})$$

 $n_c = 1290 \text{ min}^{-1} \text{ or under}$

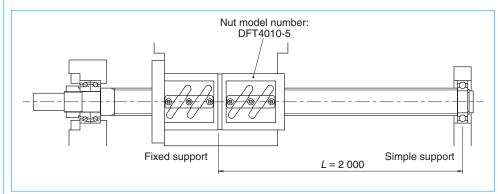


Fig. 3.2 Calculation example of permissible rotational speed to the critical speed

B-2-3.2 d·n Value

An increase of ball orbital speed increases the collision impact of balls to ball recirculation parts, and thus resulting in damage to them. For this reason, the permissible rotational speed is also limited by the d-n value (d, shaft diameter in millimeters; n, rotational speed per minutes).

Table 3.2 shows the allowable d·n value and the maximum rotational speed of ball screws.

Notes: 1. Special measure must be taken for high-speed specification products.

Please consult NSK.

 Please consult NSK if the maximum rotational speed or the d·n value exceed the values on the table below, even both the critical speed of screw shaft and the d·n value are in ranges of the allowable limit.

Table 3.2 Criteria of allowable d·n value and maximum rotational speed

Ball screw recirculation system, Series/Type		Allowable d∙n		Criterion of permissible
		Standard	High-speed	rotational speed [min ⁻¹]
Standard ball screw	Ball screw for transfer equipment R series	50 000 or less	_	3 000
	End-deflector type	180 000 or less	_	5 000
Standard nut ball	Return tube type	70 000 or less	100 000 or less	3 000
screws	Deflector(bridge) type	84 000 or less	100 000 or less	3 000
	End cap type	80 000 or less	100 000 or less	3 000
	HMD type for high-speed machine tools	160 000 or less	-	4 000
	HMS type for high-speed machine tools	160 000 or less	-	5 000
	HMC type for high-speed machine tools	100 000 or less, 135 000 or less*1	-	3 750
	BSL type for miniature lathes	(180 000 or less)	-	4 000
Application-	HTF-SRC type for high-load drives	140 000 or less, 160 000 or less*1	-	3 225
oriented ball screws	HTF-SRD type for high-load drives	120 000 or less	-	2 400
	HTF type for high-load drives	50 000 or less, 70 000 or less ^{*1}	100 000 or less	3 125
	VSS type for contaminated environment	150 000 or less	-	3 000
	ND series nut-rotatable ball screws	70 000 or less	100 000 or less	3 000
	∑ series for robots	70 000 or less	-	3 000
	R series for transfer equipment	50 000 or less	_	3 000

^{*1)} Please refer to the explanation of each ball screw for which two allowable d·n values are listed

[·] HMC type for high-speed machine tools: page B501

[·] HTF-SRC type for high-load drives: page B511

[·] HTF type for high-load drives: page B519

Figs. 4.1 and 4.2 are typical conditions in supporting ball screws. Use them as reference to calculate the buckling load and the critical speed.

Please consult NSK if it is necessary to scrutinize calculation due to use conditions, or if boundary conditions are not clear due to special installation.

[How to read the tables]

Example ii: A buckling load generates between the nut and the left bearings, indicating that the critical speed appears between the nut and the right bearing. Therefore, set L at the maximum stroke for each side. Calculate by applying support bearing conditions.

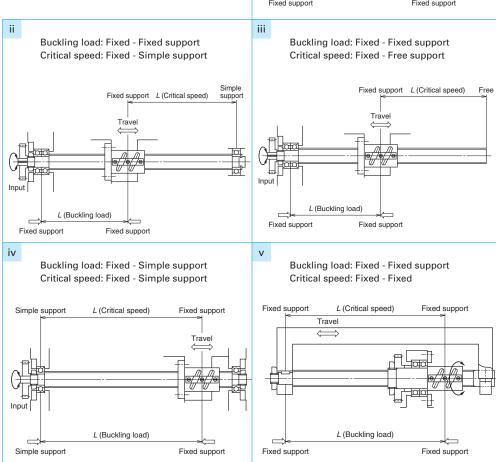


Fig. 4.1 Supporting conditions for screw shaft and ball nut

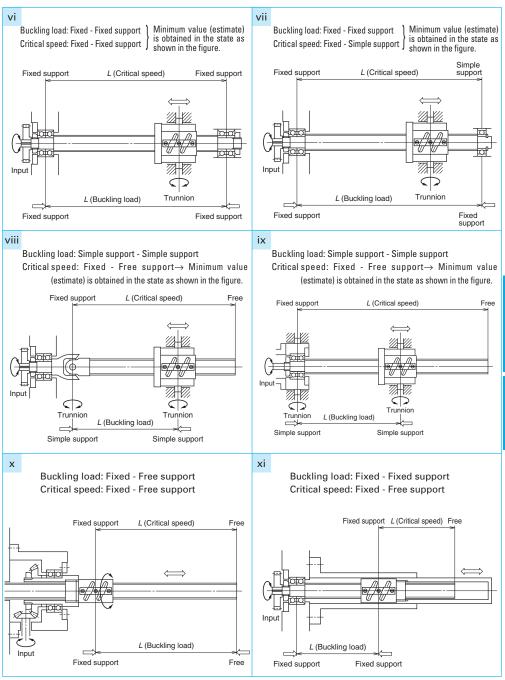


Fig. 4.2 Supporting conditions of screw shaft and ball nut

B-2-5 Life (Dynamic Load Limitation)

B-2-5.1 Life of Ball Screw

Although used in appropriate conditions and is ideally designed, the ball screw deteriorates after a certain operation period, and eventually becomes unusable. The period in this situation is the life of the ball screw. There are two life categories, "fatigue life" caused by flaking, and "life of accuracy" caused by deterioration in precision because of wear.

B-2-5.2 Fatique Life

Fatigue life of a ball screw can be estimated by basic dynamic load rating (C_a) as is for the rolling bearings.

(1) Basic dynamic load rating C_a

Basic dynamic load rating is the axial load that allows a 90% of the group of the same ball screws to rotate 1 million times (106 rev) under the same condition without causing flaking by rolling contact fatigue.

(2) Fatigue life calculation

Fatigue life is defined as a total rotation number in general. It is sometimes indicated by total rolling hours or total running distance. Fatique life is obtained by the following formula.

$$L = \left(\frac{C_{\rm a}}{F \cdot f}\right)^3 \cdot 10^6 \qquad \cdots 8)$$

$$L_{t} = \frac{L}{60p} \qquad \cdots 9)$$

$$L_{\rm s} = \frac{L \cdot l}{10^6} \qquad \cdots 10)$$

In this formula:

L: Rating fatigue life (rev)

L.: Life in hours (h)

 $L_{\rm s}$: Life by running distance (km)

C₂: Basic dynamic load rating (N)

F_a: Axial load (N)

n: Rotational speed (min⁻¹)

l: Lead (mm)

f. : Load factor (Coefficient by operating condition)

Load factor f_w for operating conditions is shown in **Table 5.1**.

Table 5.1 Load coefficient f_w

Smooth operation without impact	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation associated with impact or vibration	1.5 – 3.0

Setting too long fatigue life requires larger ball screw, and is not economical. Below are the general target values of operating life for machines. (reference)

Table 5.2 General target values of fatigue life

Machine tools	20 000 hours
Industrial machines	10 000 hours
Automatic control system	15 000 hours
Measuring equipment	15 000 hours

(3) Mean load

If the axial load often varies, calculate life by obtaining the mean load, which gives the equivalent fatigue life under this varying load conditions.

(a) When the load and the rotational speed shift stepwise Obtain the mean load F_m by the formula below. Obtain mean rotational speed N_m by the formula below as Table 5.3 and Fig. 5.1.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \cdots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{1} + \cdots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} \cdots 11$$

$$N_{\rm m} = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_2 + \dots + t_n} \cdots 12$$

Table 5.3 Stepwise operation condition

Axial load	Rotational speed	Hours of use, or
(N)	(min ⁻¹)	ratio of hours of use
F ₁	n_1	<i>t</i> ₁
F_{2}	n ₂	t ₂
:	:	:
F_{n}	n _n	t _n

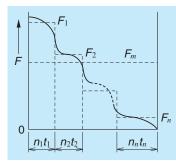


Fig. 5.1 Stepwise load variation

(b) When the rotational speed is constant, and the load changes linearly, obtain approximate value of the mean load F_m by the formula below.

$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2 F_{\rm max} \right) \qquad \cdots 13$$

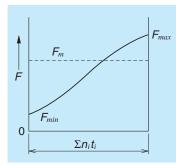


Fig. 5.2 Linear load change

(c) When the rotational speed is constant, and the load changes in a sinusoidal pattern, obtain approximate value of the mean load F_m by the formula below.

> When the sine curve is Fig. (a) $F_{\rm m} = 0.65 F_{\rm max}$... 14) When the sine curve is Fig. (b)

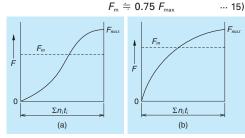


Fig. 5.3 Load changes in sinusoidal pattern

(4) Affect of mounting misalignment

If moment load or radial load is applied to the ball screw, it adversely affects ball screw function, and shortens life. Watch for eccentric load that induces moment or radial load.

Fig. 5.4 shows a calculation example of fatigue life when moment load is applied to the ball screw. In this figure, the value of the rigidity of mounting ball screw sections (screw shaft, support bearing, guide, etc.) is set at infinity. In actual use, deformation is absorbing the moment load in various areas, and the moment load that generates between the screw shaft and nut is abated.

In general, the following values are recommended as control values for precision grade.

Misalignment in inclination .. 1/2 000 or less Eccentricity-----20 µm or less

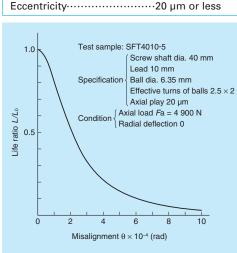


Fig. 5.4 Affects of misalignment

(5) Effects of heavy load and short stroke

If the ball screw is used under heavy load and short strokes, such as for the drive of plastic injection molding machine and of press machines, the fatigue life may become significantly shorter than the rated fatigue life which is calculated in B-2-5.2.

This decreased life occurs because the heavy load generates large stress (surface pressure) in the contact points of balls and ball grooves of the screw shaft and the nut, adversely affecting the life.

The axial load F_{amax}^{-1} during operation and the size of strokes, which affect fatigue life, can be obtained by the following formula.

In such case, the life calculation should take into account the size of the surface pressure as well as the size of the stroke. Please consult with NSK.

$$F_{\text{amax}} \ge 0.10 C_{0a}$$
 ... 16)
 $S \le 4$

In this formula:

F_{amax}: Maximum load to axial direction during drive (N)

 C_{0a} : Basic static load rating (N)

S: Stroke (rev)

$$S = \frac{L_s}{I}$$

L_s: Stroke distance (mm)

l: Lead (mm)

*1) Axial load: The load is applied to the axial direction when screw shaft and the nut of ball screw are rotating relatively each other. The rotational speed is irrelevant.

B-2-5.3 Ball Screw and Hardness

Table 5.4 indicates the hardness of NSK standard ball screw.

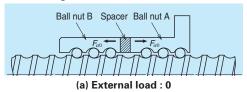
Table 5.4 Ball screw materials and their hardness

Component	Heat treatment method	Hardness (HRC)			
Screw shaft	Carburizing	58 or over			
Screw Shart	Induction hardening	58 or over			
Nut	Carburizing	58 or over			

Note: NSK manufactures special material ball screws for special environments (stainless steel: SUS440C, SUS630). NSK also furnishes protective surface treatment (refer to page D5). Please consult NSK for such request.

B-2-5.4 Wear Life

Wear of materials, as is the case for other mechanical components, is significantly affected by use conditions, lubrication conditions and other factors. It is difficult to estimate its volume, and measuring requires various tests and field data.


NSK has the data of wear accumulated through abundant experience. Please contact NSK for inquiry pertaining to the wear.

B-2-6 Preload and Rigidity

B-2-6.1 Elastic Deformation of Preloaded Ball Screw

(1) Position preload (D, Z, and P preload)

The concept of double nut preload ball screw is shown in Fig. 6.1.

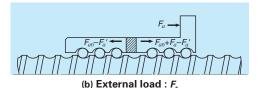


Fig. 6.1 Position preload (double-nut)

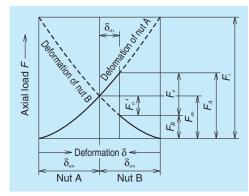


Fig. 6.2 Deformation of A and B nut (position preload)

Elastic deformation of Nut A and B is already given at time of assembly by the amount of δao by preload F_{ao} . When the external load F_a is added to Nut A, the elastic deformation δ_a and δ_b of each Nut A and B change as shown in **Fig. 6.2**,

$$\delta_a = \delta_{a0} + \delta_{a1}$$
 $\delta_b = \delta_{a0} - \delta_{a1}$

At this time, the load to each Nut A and B are:

$$F_A = F_{ao} + F_a - F_a'$$

$$F_{\rm R} = F_{\rm so} - F_{\rm s}$$

It shows that the load applied to Nut A is

affected by Nut B and reduced by the amount of F_a '. Thereby, the elastic deformation of Nut A becomes smaller. This effect continues until the elastic deformation by the external load becomes δ_{ao} , and the preload by Nut B disappears.

Assuming that the load when the preload is absorbed is F_{l_t} the relationship between the axial load and the elastic deformation is as follows (refer to **Fig. 6.2**).

$$\delta_{ao} = K \cdot F_{ao}^{2/3} \qquad 2\delta_{ao} = K \cdot F_{l}^{2/3}$$

(K: Invariable number)

$$\left[\frac{F_l}{F_{ao}}\right]^{2/3} = \frac{2\delta_{ao}}{\delta_{ao}} = 2$$

For this reason, the preload should be about 1/3 of the maximum axial load. However, please note that if the preload of about 1/3 of the maximum axial load exceeds 8% of C_{a} , which is the criterion of the maximum preload, the ball screw may adversely increases heat generation and / or may shortens its lifetime.

Fig. 6.3 shows two types of elastic deformation curves: one is by the ball screw with preload, the other without preload. When an axial load which is about three times as large as the preload is applied, the deformation of the preloaded ball screw is 1/2 of the deformation of the ball screw without preload.

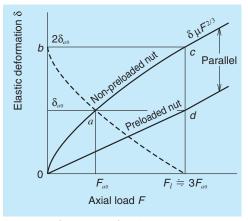


Fig. 6.3 Deformation of preloaded ball nut (position preload)

(2) Constant pressure preload (J preload: preloaded by spring)

Fig. 6.5 shows an elastic deformation of a ball screw which is preloaded with "constant pressure." The rigidity of the preload spring is sufficiently smaller than the nut rigidity. Therefore, the deformation of the spring becomes nearly parallel to the abscissa axis. For this reason, the elastic deformation by the preload with constant pressure changes along the deformation curve by Nut A.

In order to take advantage of the characteristics of the preload with constant pressure, the major external load should be applied in the directions shown by an arrow in **Fig. 6.4**.

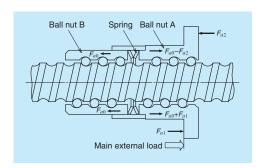


Fig. 6.4 Constant pressure preload (double nut)

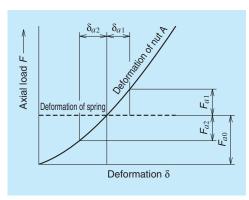


Fig. 6.5 Deformation curve of constant pressure preloaded nut

B-2-6.2 Rigidity of the Feed Screw System

A low rigidity around the feed screw mounting area causes lost motion. To improve the positioning accuracy of precision machines such as NC machine tools, it requires a good balance in axial rigidities of composing parts of the feed screw system.

Also should examine torsional rigidities of the feed screw system.

(1) Axial rigidity of the feed screw system K_T

Elastic deformation and rigidity of the feed screw system can be obtained by the following formula.

$$\delta = \frac{F_{a}}{K_{T}}$$
 17)
$$\frac{1}{K_{T}} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{R}} + \frac{1}{K_{H}}$$
 18)

In this formula:

 δ : Volume of axial elastic deformation of the feed screw system (μ m)

F_a: Axial load to the feed screw system (N)

 K_T : Axial rigidity of the feed system (N/ μ m)

 K_s : Axial rigidity of the screw shaft (N/ μ m)

 K_N : Axial rigidity of the nut (N/ μ m)

 $K_{\rm B}$: Axial rigidity of the support bearing (N/µm)

 K_H : Axial rigidity of the nut and bearing mounting section (N/ μ m)

(2) Axial rigidity of the screw shaft: K_s

(a) In case of: Fixed support - Free (axial direction)

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} \dots 19$$

In this formula:

 \textit{K}_{s} : Axial rigidity of the screw shaft (N/ μ m)

A: Cross section area of the screw shaft (mm²)

$$A = \frac{\pi}{4} dr^2$$

dr: Screw shaft root diameter (mm)

E: Elastic modulus ($E = 2.06 \times 10^5$ MPa)

x: Distance between points of load application (mm)

(b) In case of: Fixed - Fixed support (axial direction)

$$K_{\rm S} = \frac{A \cdot E \cdot L}{x (L - x)} \times 10^{-3} \dots 20$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

L: Unsupported length (mm)

x: Axial deformation is maximum at position x = L/2.

Axial rigidity of the screw shaft can be obtained by the following formula.

$$K_{\rm S} = \frac{4A \cdot E}{L} \times 10^{-3} \dots 21$$

<<Calculation example of axial rigidity (1)>>

Obtain axial rigidity of the screw shaft under the condition in Fig. 6.6.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.6: Supporting condition;

Fixed support -- Free (axial direction)

Distance between points of load application

$$x = 1 200 \text{ mm}$$

Screw shaft root diameter (from the dimension table)

$$d_{.} = 34.4 \text{ mm}$$

<Calculation>

By formula 19), axial rigidity K_s is:

$$A = \frac{\pi}{4} d_r^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} = \frac{929.4 \times 2.06 \times 10^{5}}{1\ 200} \times 10^{-3} = 159\ (N/\mu m)$$

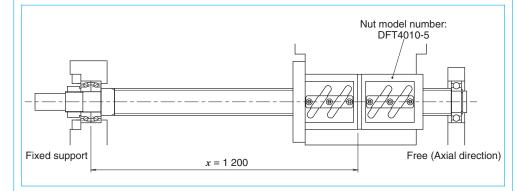


Fig. 6.6 Calculation example of axial rigidity of the screw shaft (1)

NSK

<<Calculation example of axial rigidity (2)>>

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.7.

<Use conditions>

Nut model: DFT 4010-5

From **Fig. 6.7**: Supporting condition:

Fixed - Fixed support (axial direction)

L = 1 200 mm

Distance between points of load application:

Screw shaft root diameter (from the dimension table)

$$dr = 34.4 \text{ mm}$$

<Calculation>

By formula 21), axial rigidity K_s is:

$$A = \frac{\pi}{4} dr^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{4A \cdot E}{I} \times 10^{-3} = \frac{4 \times 929.4 \times 2.06 \times 10^5}{1.200} \times 10^{-3} = 638 \text{ (N/}\mu\text{m)}$$

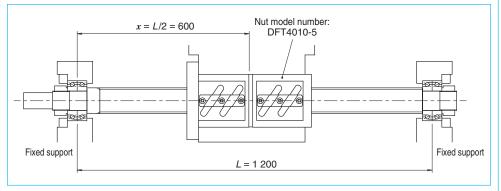


Fig. 6.7 Calculation example of axial rigidity of the screw shaft (2)

(3) Axial rigidity of the ball nut : K_{N}

(a) Rigidity of the nut with axial play

Theoretical rigidity value K is shown in the dimension table. The value K is obtained from the elastic deformation between screw grooves and balls when an axial load equivalent to 30% of the basic dynamic load rating C_a is applied. The criterion for the ball nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. The rigidity value K_N is obtained by the following formula when the axial load "Fa" is not 30% of "C₂."

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 22$$

In this formula:

K: Rigidity value in dimension tables (N/ μ m)

F_a: Axial load (N)

 C_a : Basic dynamic load rating (N)

<<Calculation example of axial rigidity (3)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: SFT 4010-5 Axial load: $F_a = 6000 \text{ N}$

 $F_a = \text{Rigidity at } 0.3 \ C_a \ K = 741 \ \text{N/} \mu\text{m}$

(from the dimension table)

<Calculation>

By formula 22), axial rigidity K_N is:

$$K_{N} = 0.8 \times K \left[\frac{F_{a}}{0.3 \cdot C_{a}} \right]^{1/3}$$
$$= 0.8 \times 741 \times \left[\frac{6000}{0.3 \times 61200} \right]^{1/3}$$

 $= 408 (N/\mu m)$

(b) Rigidity of preloaded ball nut

Theoretical rigidity K of preloaded ball nut under an axial load is shown in each dimension table. The K is obtained from the elastic deformation of the ball rolling surface and the balls when: a preload which is equivalent to 10% of the basic dynamic load rating C_a (5% in case of the P-preload [single-nut oversize ball preload system]) is applied. The criterion for calculation of nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. Rigidity K_N is obtained by the following formula when preload " F_{a0} " is not 10% (or 5%) of " C_a ".

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\varepsilon \cdot C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 23$$

In this formula:

K: Rigidity in the dimension tables (N/um)

 F_{a0} : Preload (N)

 ε : Basic factor to calculate rigidity ($\varepsilon = 0.1$. For P-preload use percentage of the preload to basic dynamic load rating. e.g. 0.03 for BSS and 0.015 for VSS.)

<<Calculation example of axial rigidity of the screw shaft (4)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: DFT 4010-5 Preload : $F_{a0} = 4\,000\,\text{N}$

Rigidity K when $F_{a0} = \varepsilon C_a$: $K = 1.454 \text{ N/}\mu\text{m}$

(from the dimension table on page B457) Basic factor to calculate rigidity when

D Preload: $\varepsilon = 0.1$

<Calculation>

By formula 23)

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3}$$

$$= 0.8 \times 1454 \times \left(\frac{4000}{0.1 \times 61200} \right)^{1/3}$$

$$= 1009 (N/\mu m)$$

The criterion of the preload to ball screw

Nut rigidity increases by a larger preload volume. But an excessive preload shortens life, and generates heat. Set the maximum preload about at 0.08 C_a (0.03 for P-Preload). Table 6.1 shows the criteria for preload for different applications.

Table 6.1 Criteria of preload

Ball screw application	Preload (relative to dynamic load rating C_a)			
Robots, material handling systems, etc.	Axial play or under 0.01 $C_{\scriptscriptstyle a}$			
Semiconductor manufacturing systems, etc. That require highly accurate positioning	0.01 C _a - 0.03 C _a			
Medium- high-speed machine tools for cutting	0.03 C _a - 0.05 C _a			
Low to medium-speed systems that require especially high rigidity	0.05 C _a - 0.07 C _a			

(4) Axial rigidity of support bearing: $K_{\rm B}$

The rigidity (K_B) of the bearing used for ball screw support is shown in the dimension table of bearing. See page B415 for ball screw support bearings, NSKTAC C series and B425 for BSBD series.

(5) Axial rigidity of the ball nut and bearing mounting section: K.

As the rigidity of mounting section has a profound effect on positioning accuracy, we recommend incorporating high rigidity of the mounting sections of ball nut and support bearings into the design at the early stage of designing the machine.

- (a) Torsional rigidity of the feed screw system Major torsion factors in the rotating system that bring about error in positioning accuracy are given three points below.
 - · Torsional deformation of the screw shaft
 - · Torsional deformation of the joint section
 - · Torsional deformation of the motor

The value of the effect of torsional strain to positioning accuracy is smaller than axial deformation. However, check the effect when

designing equipment that requires high positioning accuracy.

(b) Suppress thermal error

It is necessary to minimize the thermal error for ever increasing demand for positioning accuracy give three points below.

- Suppress heat
- Forced cooling
- Avoid effect of temperature rise

Refer to "Measures against thermal expansion" on page B40.

B-2-7 Friction Torque and Drive Torque

Operations that use ball screw drives require a motor torque which is equivalent to the total of following two:

- Friction torque, i.e. the friction of the ball screw itself
- Drive torque which is required for operation

B-2-7.1 Friction Torque

(1) Starting friction torque (breakaway torque)

A high torque is necessary to start a ball screw. This is called "starting friction torque" or

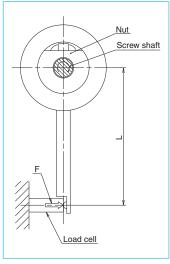


Fig. 7.1 Preload dynamic torque measuring method

"breakaway torque." This torque is 2 to 2.5 times larger than the dynamic (friction) torque due to preload which is described below. The starting friction torque quickly diminishes once the ball screw begins to move.

(2) Dynamic friction torque (dynamic friction torque due to preload)

When a ball screw is moving, two types of torque generate: the dynamic friction torque due to preload and the friction torque associated with ball recirculation. JIS B1192 sets the standard of dynamic friction torque due to preload, which is the total of these two torque types. They are defined in Fig. 7.2.

The dynamic friction torque due to preload is calculated by the following formula. When the screw shaft is rotated as Fig. 7.1 in the following measuring conditions, measure the nut holding power F and then multiple the distance of action line L which is perpendicular to the direction of the power F.

$$T_0 = F \cdot L$$
 ... 24)

- Measuring rotational speed 100 min⁻¹
- · Viscosity of Iubrication is ISO VG 68 as prescribed in JIS K 2009.
- · Remove Seals.

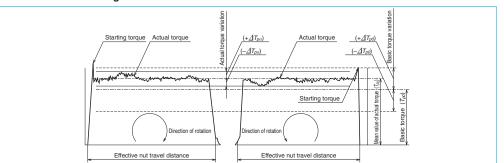


Fig. 7.2 Definitions of dynamic preloaded drag torque

NSK

(3) Calculation of basic torque

The basic torque of preloaded ball screw T_{p0} can be obtained by the following formula.

$$T_{\text{p0}} = K \; \frac{F_{\text{a0}} \cdot l}{2\pi} \; \stackrel{.}{=} \; 0.014 F_{\text{a0}} \sqrt{d_{\text{m}} \cdot l} \; \; (\text{N} \cdot \text{cm}) \ \cdots 25$$

In this formula:

 F_{a0} : Preload (N) l: Lead (cm)

K: Torque coefficient of ball screw

$$K = \frac{0.05}{\sqrt{tan\beta}}$$

β: Lead angle (deg.)

d_m: Ball pitch circle diameter (cm)

Allowable values of torque variation rate relative to basic torque are regulated as shown in **Table 7.1**.

B-2-7.2 Drive Torque

(1) Operating torque of a ball screw

(a) Normal drive

The torque when converting rotational motion to linear motion (normal operation) is obtained by the following formula.

$$T_{a} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} \quad (N \cdot cm) \qquad \cdots 26)$$

In this formula:

 T_a : Normal operation torque (N · cm)

F_a: Axial load (N)

l: Lead (cm)

 η_1 : Normal efficiency ($\eta_1 = 0.9$ to 0.95)

(b) Back-drive operation

The torque when converting linear motion to rotational motion (back-drive operation) is obtained by the following formula.

$$T_{\rm b} = \frac{F_{\rm a} \cdot l \cdot \eta_2}{2\pi} \quad (N \cdot cm) \qquad \cdots 27)$$

In this formula:

 T_b : Reverse operation torque (N · cm)

 η_2 : Reverse efficiency ($\eta_2 = 0.9$ to 0.95)

(c) Dynamic drag torque of the preloaded ball screw the operation torque of preloaded ball screw can be obtained by Formula 25).

Table 7.1 Range of allowable values of torque variation rates (Source: JIS B 1192)

		Effective length of the screw thread (mm)										
Basic torque (N · cm)		4 000 or under						Over 4 000 and 10 000 or under				
		Slenderness ratio ⁽¹⁾ : 40 or less			Slenderness ratio(11): More than 40 and 60 or less			_				
		Accuracy grade			Accuracy grade			Accuracy grade				
Over	Incl.	C0	C1	C2, 3	C5	C0	C1	C2, 3	C5	C1	C2, 3	C5
20	40	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	_	_	_
40	60	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	_	_	_
60	100	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	_	±40%	±45%
100	250	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	_	±35%	±40%
250	630	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	_	±30%	±35%
630	1 000	_	±15%	±15%	±20%	_	_	±20%	±25%	_	±25%	±30%

Notes: 1. Slenderness ratio: The value obtained by dividing the length of the screw thread section of screw shaft (mm) by diameter of the screw shaft (mm)

2. NSK independently sets torque standards which are under 20 N · cm.

(2) Drive torque of the motor

(a) Drive torque at constant speed

The torque which is necessary to drive a ball screw at constant speed resisting to external loads can be obtained by the following formula.

$$T_1 = (T_a + T_{pmax} + T_u) \times \frac{N_1}{N_2}$$
 ... 28

In this formula:

 $T_{\rm a}$: Drive torque at constant speed

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \cdot \eta_{\rm 1}} \qquad \cdots 26)$$

F_a: Axial load (N)

The value of F_a in Fig. 7.3 is:

$$F_a = F + \mu \cdot m \cdot g$$

F: Such as cutting force to axial direction (N)

 μ : Friction coefficient of the guide way

m : Volume of the traveling section (table mass plus work mass kg)

g: Gravitational acceleration (9.80665 m/s²)

 T_{pmax} : Upper limit of the dynamic friction torque of ball screw (N · cm)

 $T_{\rm u}$: Friction torque of the support bearing (N \cdot cm)

 N_1 : Number of teeth in Gear 1

N₂: Number of teeth in Gear 2

Generally, though it depends on the type of motor, T_1 shall be kept under 30% of the motor rating torque.

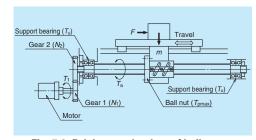


Fig. 7.3 Driving mechanism of ball screw

(b) Drive torque at acceleration

Accelerating the ball screw resisting axial load requires the maximum torque in an operation. Drive torque necessary for this occasion can be obtained by the following formula.

$$T_2 = T_1 + J \cdot \dot{\omega}$$
 ... 29

$$J = J_M + J_{G1} \left(\frac{N_1}{N_2} \right)^2 \left[J_{GZ} + J_S + m \left(\frac{l}{2\pi} \right)^2 \right] \text{ (kg} \cdot \text{m}^2\text{)}$$

In this formula:

 T_2 : Maximum drive torque at time of acceleration (N \cdot m)

 $\dot{\omega}$: Motor's angular acceleration (rad/s²)

J: Moment of inertia applied to the motor (kg · m²)

 $J_{\rm M}$: Moment of inertia of the motor (kg · m²)

 J_{G1} : Moment of inertia of Gear 1 (kg · m²)

 J_{G2} : Moment of inertia of Gear 2 (kg · m²)

 J_s : Moment of inertia of the screw shaft $(kg \cdot m^2)$

When selecting a motor, it is necessary to examine the maximum torque of the motor relative to the drive torque T_2 at the time of acceleration of ball screw.

For the calculation of the moment of inertia of a cylindrical object (ball screw, gear, etc.), please refer to the formula below.

Formula for the moment of inertia of a cylindrical object

$$J = \frac{\pi \cdot \gamma}{32} D^4 \cdot L \text{ (kg} \cdot \text{cm}^2\text{)} \qquad \cdots 31\text{)}$$

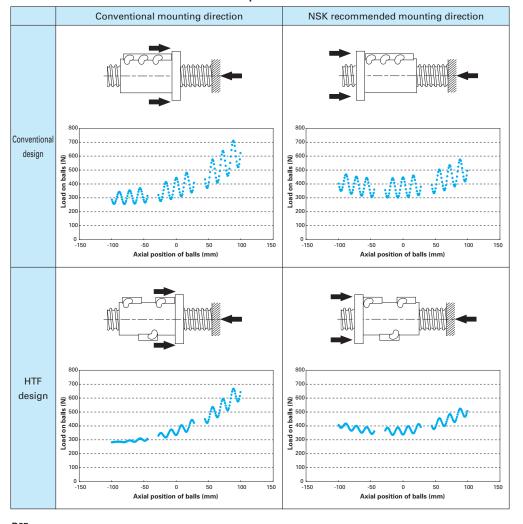
In this formula:

γ: Material density (kg/cm³)

D: Diameter of the cylindrical object (cm)

L: Length of the cylindrical object (cm)

B63


B-2-8 Even Load Distribution in Ball Nut (In Case of Ball Screws for High-Load Drive)

Generally, the distribution of loaded balls in a ball nut is three-dimensionally asymmetric, thus resulting in uneven load distribution to the balls and ball nut. NSK has taken the measures for even load distribution to the balls by an optimal arrangement of the position of ball recirculation circuits.

Additionally, a heavier load results in a measurable axial deformation of the screw

shaft and the ball nut, thus further increasing the unevenness of load distribution. We have lessened the unevenness of load distribution to the balls by arranging the load acting point of the ball nut and the screw shaft opposite to each other. The relation between loading points and load distribution is shown in Fig. 8.1, while Table. 8.1 shows the result of load distribution analysis.

Table. 8.1 The result of equalization of load distribution

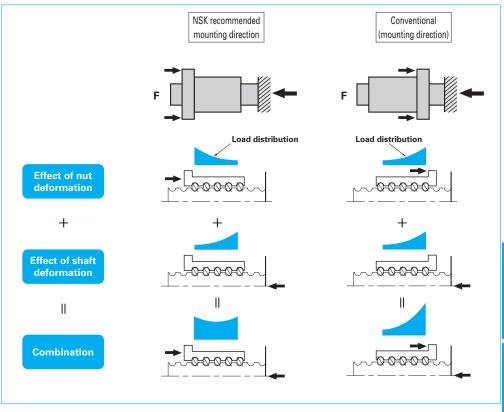


Fig. 8.1 The relationship between acting point of load and load distribution

B68

B-2-9 Lubrication of Ball Screw

Lithium soap-based grease with base oil viscosity of 30 to 140 mm²/s (40°C) is recommended for grease lubrication and oil of ISO VG 32 to 100 for oil lubrication.

In general, a lubricant with low base oil viscosity is recommended where a ball screw is used for high-speed operation, and thus requires reducing thermal elongation of the screw shaft. On the other hand, a lubricant with high base oil viscosity is recommended for a low-speed, high-temperature operation, or a high-load and oscillating operation.

Please consult NSK about greases for high-load drives and high-temperature applications.

NSK markets "NSK Grease Unit" as the standard series products for a variety of applications, NSK Grease Unit for ball screw lubrication includes:

- 1) Various types of grease in the bellows-tube which can be instantly attached to the grease pump
- 2) Hand grease pump which is compact and easy to use
- 3) Nozzles

Table 9.1 shows NSK greases, and names of other ball screw greases.

Table 9.2 explains checking points in lubrication and standard intervals between replenishments. It is important to wipe off old grease from the screw shaft prior to applying new grease. Page D16 also explains in detail concerning the replenishing methods.

Table 9.1 Grease for ball screw

Product name	Thickener	Base oil	Base oil viscosity mm²/s (40°C)	Range of temperature for use (°C)	Application
NSK Grease AS2	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
NSK Grease PS2	Lithium type	Synthetic oil combined with Synthetic hydrocarbon oil	15.9	-50 - 110	For light load
NSK Grease LR3	Lithium type	Synthetic oil	30	-30 - 130	For high-speed medium load
NSK Grease LG2	Lithium type	Mineral oil combined with Synthetic hydrocarbon oil	32	-20 - 70	For clean environment
NSK Grease NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistant

^{*}Refer to page D13 for the nature of NSK greases.

Table 9.2 Checking lubricant and intervals of replenishment

Lubricating method	Checking intervals	Check points	Replenish/replacing interval
Intermittent automatic oil supply	Once a week	Remaining volume, contamination	Supply oil when checking (depending on the tank volume)
Grease	2 – 3 months after start of use	Clean, foreign matters	Generally once a year (replenish when necessary)
Oil bath	Every day, when start to work	Oil level	Specify according to oil consumption

B-2-10 Dust Prevention for Ball Screw

If foreign matters enter inside the ball nut, all screw grooves and balls wear rapidly, or the ball screw may malfunction due to the damage of groove and/or ball recirculation system. Use bellows or telescopic pipes (Fig. 10.1) to keep foreign matters from entering into the feed

screw system. Install these items so as to shut foreign matters completely from the ball screw. Also it is even more effective to add seals on the ball nut as shown in Figs. 10.2 to 10.7. We provide seals in Table 10.1.

Table 10.1 Seal

	Sealing capability	Torque	Heat	grease retention	Application
Thin plastic seal	0	0	0	0	End deflector type, HMD type, BSL type
Plastic seal	×	0	0	×	Tube type, Deflector(bridge) type
Wiper seal	0	×	×	0	(Seal is not put on the lead of 1mm or smaller.)
X1 seal	0	0	0	0	HMS type, HMD type
High performance seal	0	0	0	0	VSS type
Brush-seal	Δ	0	0	Δ	For R Series (Seal for those with the shaft diameter of 14 mm or less is plastic seal.)

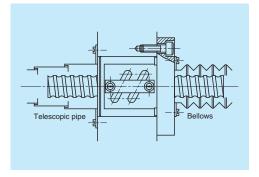
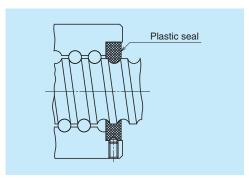



Fig. 10.1 Dust prevention by telescopic pipe and bellows

Garter spring

Thin plastic seal

Fig. 10.2 Thin plastic seal

Wiper seal

Fig. 10.4 Wiper seal

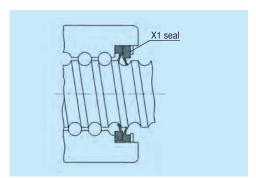


Fig. 10.5 X1 seal

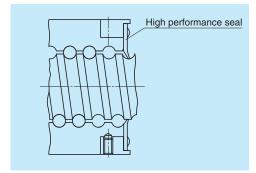


Fig. 10.6 High performance seal

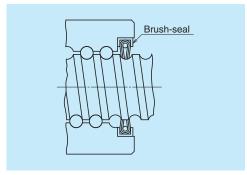


Fig. 10.7 Brush-seal for R Series

B-2-11 Rust Prevention and Surface Treatment of Ball Screws

(1) Stainless steel ball screw

KA type ball screws made of stainless steel are available. Please consult NSK for a custom made stainless steel ball screw.

(2) Types of surface treatment

The following are common types of treatment.

- OLow temperature chrome plating
- Used to prevent corrosion and light reflection. and for cosmetic purpose.
- OFluoride low temperature chrome plating
- · Fluoroplastic coating is provided following the low temperature chrome plating.
- · Resistance to corrosion is higher than low temperature chrome plating.
- OHard chrome plating
- Very hard coating provides high resistance to both wear and corrosion.
- OElectroless nickel plating
- · Creates a film of consistent thickness on complex shaped items.
- For corrosion prevention.

(3) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "Low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of humidity chamber test for antirust characteristics.

However, never apply any organic solvent for degreasing because it has adverse effect on antirust characteristics.

Table 11.1 Surface treatment length

	Applicable length
Low temperature chrome plating	5 m or less
Fluoride low temperature chrome plating	4 m or less

Refer to "1.3 Rust Prevention and Surface Treatment" (page D5) for the results of humidity chamber test.

B-2-12 Ball Screw Specifications for Special Environments

B-2-12.1 Clean Environments

NSK manufactures NSK Clean Grease "LG2" and "LGU" for NSK linear guides, ball screws, and Monocarriers which are used under normal temperature and pressure in a clean room.

The LG2 and LGU grease are far more superior in stable torque characteristics than the vacuum grease which has been used as a countermeasure against dust generation. The LG2 and LGU also have a sufficient durability and dust prevention capability.

Features of "LG2" and "LGU"

- (a) Generates less dust than prevailing vacuum greases and general greases. Cleanliness is enhanced by simply switching the grease to the LG2 or the LGU.
- (b) Has extremely low and stable torque characteristics. It is ideal for high-speeds operation.
- (c) Unlike prevailing vacuum greases, the LG2 and LGU have a nature similar to general grease. Its effect is long-lasting, and sufficiently durable. They greatly contribute to minimize the frequency of maintenance.
- (d) They have an equal capability in rust prevention as general grease, and also are reliable.

When using NSK linear guides, ball screws, or Monocarriers in a clean environment, request the LG2 or LGU as a packed lubricant prior to delivery. NSK also makes bellows-tubes which contain 80 grams of the LG2 or LGU. The tube is easy to use, and is ideal for maintenance (refer to pages B413 and D19). Wash to remove adipose substances prior to use.

Refer to page D8 for their detailed nature, functions and characteristics of LG2 and LGU.

B-2-12.2 Measures for Use Under Vacuum

NSK developed MoS₂ / WS₂ spattering and dryfilmed ball screws for equipment to be used in space. NSK also makes soft-metal film (gold and silver) ball screws to be used in a vacuum environment for semiconductor and liquid crystal display processing equipment.

Lubricants widely used for ball screws in a high vacuum are:

- · Vacuum grease which uses base oil of low vapor pressure.
- Solid lubricants such as MoS₂, WS₂ used mainly for equipment in space.
- · Solid lubricants by soft-metal such as gold, silver, or lead film.

When used for semiconductor and liquid crystal display manufacturing equipment, the oil of the vacuum grease evaporates and causes environmental contamination. Also, it hinders creation of a super high vacuum. MoS, in the state of solid lubricant generates a large volume of dust, and Mo is unsuitable for semiconductors and reformed surface. Therefore, it is not suitable for the processing machines for semiconductor and liquid crystal display.

NSK recommends solid lubricant ball screws with a long life. These ball screws are treated with special silver film by NSK's unique processing technology, and can be used in a super-high vacuum. However, because of a solid lubricant, the film may peel off and stick to surface of ball grooves repeatedly, causing the torque to rise momentarily on some occasions. The drive motor should be of large capacity to handle this drastic variation of torque.

Refer to page D7 for the test data of ball screws for vacuum.

For ball screw specifications for special environments, refer to page D2.

B-2-13 Noise and Vibration

B-2-13.1 Consideration to Lowering Noise

As the machine operates at higher speeds, noise levels tend to increase. Covering the nut section is insufficient to lower noise. NSK has abundant data (NSK Motion & Control Technical Journal No.4, etc.), and offers advice to users regarding selecting ball screw.

To lower noise level in general, the following points should be taken into consideration.

- (a) Use as a large lead as possible to reduce rotational speed.
- (b) Use a ball screw with smaller outer diameter as possible.
 - (It often requires designing for critical dimensions, mandating special specification. Please consult NSK.)

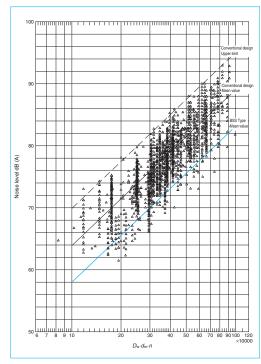


Fig. 13.1 Noise levels of ball screws

For reference, noise levels by ball screws alone are plotted below. The formula for calculation is also shown below.

- (a) Average value at measuring distance of 400 mm dB (A) = 25.2 { $log_{10} (D_w \cdot d_m \cdot n \times 10^{-5})$ } + 63.9 ... 32)
- (b) Upper limit at measuring distance of 400 mm Average value + 6 dB (A)
 - D_w: Ball diameter (mm)
 - d_m : Ball pitch circle dia. (mm)
 - n: Rotational speed (min⁻¹)

If measuring distance is 1 m, the average noise level is: Various noise levels minus 8 dB (A).

<< Example of calculation of noise levels>> <Use conditions>

Nut model: DFT4010-5

From the dimension table: $D_{w} = 6.350$

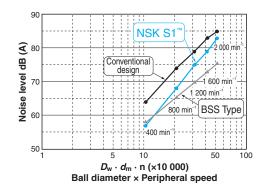
 $d_{m} = 41$

Maximum rotational speed: 2 000 min⁻¹

<Calculation>

By formula 34):

dB (A) = 25.2 {log₁₀ (
$$D_w \cdot d_m \cdot n \times 10^{-5}$$
) } + 63.9

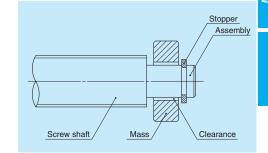

= 25.2 { $\log_{10} (6.350 \times 41 \times 2000 \times 10^{-5})$ } + 63.9

= 82 dB (A)

The average value of noise level by ball screws alone at maximum rotational speed (measuring distance 400 mm) is 82 dB (A). Upper limit is: 82 dB (A) + 6 dB (A) = 88 dB (A)If the measuring distance is 1 m, the average value of noise level is 74 dB (A), and upper limit is 80 dB (A).

When installed, the noise of ball screw becomes higher by the noise of the machine and characteristics of machine vibration.

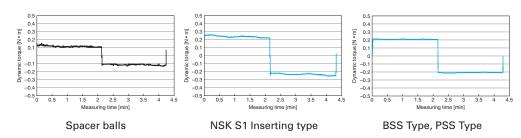
By using NSK S1, the noise is reduced and softened compared to conventional ball screws. The BSS type will furthermore reduce and soften the noise.



B-2-13.3 Consideration to Ball Screw **Support System**

A ball screw has low radial rigidity because its support span is longer compare to its shaft diameter. It has only small damping capacity, requiring as much support rigidity as possible through design.

A simplified support bearing system to cut costs invites noise and vibration problems. Therefore, the necessity of consideration to the ball screw support system of both shaft ends is increasingly becoming important as the speed of machines is ever-increasing.


If one shaft end must be left unfixed without support bearing due to structural reasons, noise and vibration problems may occur. These problems are related to the natural vibration frequency of the screw shaft on the unsecured end. This problem can be averted by installing an impact damper to the shaft end (Fig. 13.2). Please consult NSK for details.

B-2-13.2 Consideration to Operational Characteristics

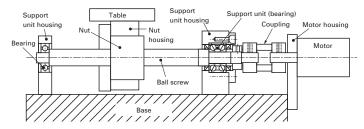

Smooth motion is achieved by using spacer balls on conventional ball return tube type ball screws. By using NSK S1 the smoothness is further improved. The BSS type will achieve the smoothness equivalent to ball screws with NSK S1.

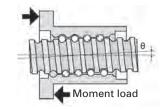
Fig. 13.2 Impact damper (Applied for patent)

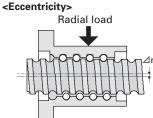
B-2-14 Installation of Ball Screw

The following simplified component drawing shows a representative example of a single-axis table.

The screw shaft of the ball screw is supported by a nut and bearings, and it is driven by a motor.

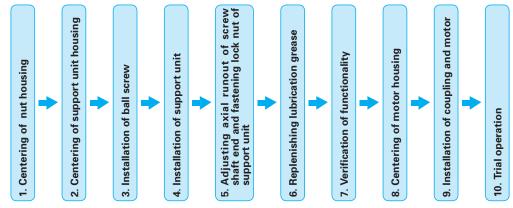
It is critically important to complete the centering work to ensure the predetermined operation life, functionality and accuracy of the ball screw. In general, the following accuracy is recommended for precision-class applications.


Inclination of center line: 1/2000 or less (Target: 1/5000 or less)


Eccentricity: 0.020 mm or less

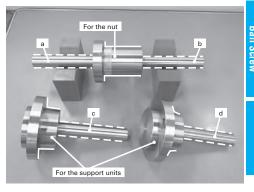
The following problems could occur if an installation error negatively affected the ball screw:

- (1) Effects on durability:
 - → Lowered flaking life or wearing life.
- (2) Effects on torque characteristics:
 - → Increased friction torque or torque variations.
- (3) Effects on feed rate:
 - → Decreased accuracy in motion.


<Inclination of center line>

B-2-14.1 Installation Procedure for Machine Tools, Where High Installation Accuracy Is Required

The single-axis table shall be installed according to the following procedure:

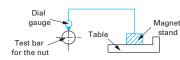


I. Jigs required for installation

Test bars:

(For the nut: one piece; for the support units: two pieces)

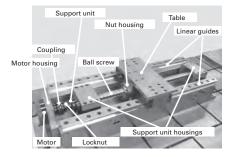
⇒ For centering and measurement of axial runout. The portions onto which the housing is installed (marked with the solid line) and the portions subject to measurement (a, b, c and d, marked with the broken line) shall be finished to high precision.


II. Installation of assembled body

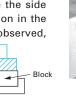
1. Centering of nut housing

Turn the table over and mount the nut housing and test bar for the nut onto it.

Set up a magnet stand with a dial gauge attached, taking the rear side of the table as reference. Measure two spots at the top of the test bar for the nut by moving the magnetic stand around to check the inclination in the vertical direction.


If inclination of center line is observed, adjust the surfaces on which the nut housing is installed.

Overall View of Assembled Body

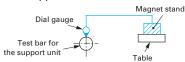

Explanations of the assembling procedure are given below, using the single-axis table as an example: In this explanation, two different installation procedures are provided: one for machine tools, where high installation accuracy is required, and another for general industrial machinery.

1-2

Fix the magnetic stand, with the dial gauge attached, onto a block. While pressing the block toward the reference surface of the table, move the magnet stand around. Measure the side surface of the test bar for the nut, check the inclination in the horizontal direction. If inclination of center line is observed, adjust the portion where the nut

2. Centering of support unit housing

Install the linear guides onto a machine base, and then install the table, which has already been centered. (For installation of linear guides, please refer to A67 of CAT. No. 9008.)

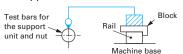

2-1

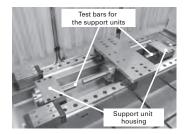
Install the test bar for the support unit onto the support unit housing.

2-2

Install the magnet stand, with the dial gauge attached, using the table as reference. While moving the table, measure the two spots at the top of the test bar for the motor-side support unit to check the inclination in the vertical direction. If inclination of center line is observed, adjust the mounting surfaces of the support unit housing.

Follow the same procedure for the opposite side of the motor.

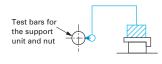



2-3

Fix the magnet stand, with the dial gauge attached, onto a block, and install the block onto the top surface of the linear guide rail. Measure the top points of the test bar for the nut and the support unit to check for eccentricity in the vertical direction.

If eccentricity is observed, adjust the mounting surface of the support unit housing.

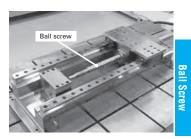
Follow the same procedure for the opposite side of the motor.



2-4

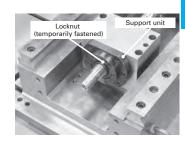
Fix the magnet stand, with the dial gauge attached, onto a block. While pressing the block toward the top surface of the linear guide rail as reference and moving it, take measurements of the side surfaces of the test bars for the nut and support unit to check for eccentricity in the horizontal direction. If eccentricity is observed, adjust the mounting surface of the support unit housing.

Follow the same procedure for the opposite side of the motor.



3. Installation of ball screw

Remove all test bars from the housing.


Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.

Apply grease to spots with metal-to-metal contact to avoid any scratches or dents. While doing this, be careful not to drop the ball screw or hit it with anything, which might cause malfunction. If the housing must be removed in order to mount the ball screw, use a positioning pin so that the housing can be mounted back in its original position.

4. Installation of support unit

Insert the screw shaft into the support unit housing and mount the support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily. Follow the same procedure for the opposite side of the motor.

5. Adjusting axial runout of screw shaft end and fastening lock nut of support unit

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.

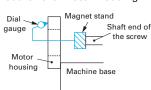
Follow the same procedure for the opposite side of the motor.

6. Replenishing lubrication grease

Wipe away the antirust oil from the empty ball screw, to which grease has not been applied, and supply grease through the grease hole to fill the inside. (Supply the grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.) If you use a ball screw already filled with grease, it is not necessary to add more.

7. Verification of functionality

To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

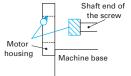


8. Centering of motor housing

8-1

Install the motor housing, and mount the dial gauge onto the shaft end of the ball screw. Rotate the screw shaft to check the inclination of the motor housing, with the stylus of the dial gauge in contact with the end face of the motor housing. If

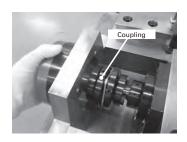
inclination of the end surface of the motor housing is observed, gauge adjust the mounting surface of the motor housing.



8-2

Set up the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check eccentricity, with the stylus touching the inside diameter surface of the motor housing. If

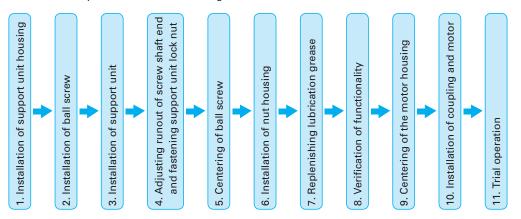
eccentricity is observed, adjust it by installing the motor housing appropriately.



9. Installation of coupling and motor

Mount the coupling onto the shaft end of screw, and install motor.

Fasten the bolts of the coupling to connect the shaft end with motor shaft.


10. Trial operation

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours, carry out a running-in operation and at the same time check for any abnormalities. During this running-in operation, the excessive grease inside of the nut is pushed out of the nut. Wipe it away.

B-2-14.2 Installation Procedure for General Industrial Machinery

In this procedure, the ball screw is installed with the accuracy required for the linear quide. The centering of nut and table are adjusted by installing the nut housing appropriately. Since no test bars are required and the inside diameter of the nut housing does not need to be fit with the nut, the ball screw can be installed relatively easily and cheaply.

The installation procedure used for the single-axis table is shown below:

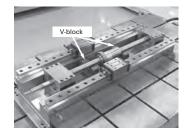
I. Installation of assembled body

1. Installation of support unit housing

Install the linear guide onto the machine base.

(For installation procedure for linear guide, please refer to A67, CAT. No. 9908.)

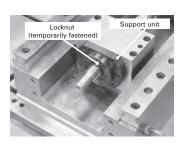
Place the support unit housing at the predetermined position and fasten it temporarily.



2. Installation of ball screw

Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.

Apply grease to spots with metal-to-metal contact to avoid scratches and dents. While doing this, be careful not to drop the ball screw or hit it with anything, which might cause malfunction.


Conduct this task using a V-block to prevent scratches and dents.

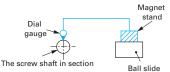
3. Installation of support unit

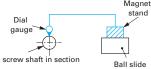
Insert the screw shaft into support unit housing and mount support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily.

Follow the same procedure for the opposite side of the motor.

4. Adjusting runout of screw shaft end and fastening support unit locknut

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.


Follow the same procedure for the opposite side of the motor.

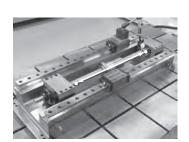


5. Centering of ball screw

Set up a magnet stand with a dial gauge attached, using the ball slide of the linear guide as reference. Measure the top of the screw shaft in the vicinity of the support unit housing both on the motor and opposite sides to check the inclination in the vertical direction. If inclination of center line is observed, adjust

the mounting surface of the support unit housing.

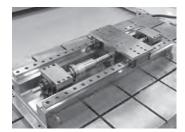




5-2

Fix the magnet stand, with the dial gauge attached, onto a block. While pressing the block toward the ball slide of the linear guide, move the block. Measure the side surface of the screw shaft in the vicinity of the support unit housing both on the motor and opposite sides to check the inclination in the horizontal direction. If inclination of center line is observed,

adjust by installing support unit housing appropriately. The screw shaft After the adjustment, fix the support unit housings of the motor side and the opposite side.



6. Installation of nut housing

Temporarily fasten the nut housing onto the table, and fasten the table, using the ball slide of the linear guide as reference surface.

To minimize the bending of the screw shaft caused by the selfweight of the nut, move the nut toward the support unit housing at the shaft end.

6-2

Move the table toward the nut, and fasten the nut to the nut housing.

Loosen the bolts that fasten the table to the nut housing, and re-fasten them.

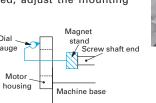
Loosen the bolts that fasten the nut housing and the nut, and re-fasten them.

7. Replenishing lubrication grease

Wipe away the antirust oil from the empty ball screw, to which grease has not been applied, and supply grease through the grease hole to fill the inside. (Supply grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.)

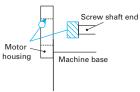
If you use a ball screw already filled with grease, it is not necessary to add more.

8. Verification of functionality

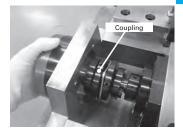

To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

9. Centering of motor housing

9-1


Install the motor housing, and mount the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check the inclination of the motor housing, with the stylus of the dial gauge in contact with the end face of the motor housing. If inclination of center line is observed, adjust the mounting surface of the motor housing.

9-2


Set up the dial gauge onto the end face of the screw shaft. Rotate the screw shaft to check eccentricity, with the stylus touching the inside-diameter surface of the motor housing. If eccentricity is observed, adjust it by installing the motor housing appropriately.

10. Installation of coupling and motor

Mount the coupling onto the shaft end, and install the motor. Fasten the bolts of the coupling to connect the shaft end with the motor shaft.

11. Trial operation

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours, carry out a running-in operation and at the same time check for any abnormalities. During this running-in operation, the excessive grease inside of the nut is pushed out of the nut. Wipe it away.

B-2-15 Precautions for Designing Ball Screw

B-2-15.1 Safety System

As shown in the illustration on page B352, a stopper is installed in some cases to prevent the nut from overrunning due to malfunction of the safety system of the machine itself, or human error during operation.

The travel stopper should be installed at a place where it will not come into contact with the nut when the nut reaches the designed stroke end. An impact absorbing travel stopper (NSK patent, refer to page B414) is available at NSK.

B-2-15.2 Design Cautions to Assembling Ball Screw

(1) Cutting through the thread screw to the end For some recirculation system, such as the deflector(bridge) type, end cap type, S1 speficication (High-Load drive ball screws etc.) and a part of end deflector type, one end of the thread screw should be cut through to the end of the major diameter. This is necessary to assemble the ball nut to the screw shaft (Fig. 15.1).

In this case, the shaft end diameter, to where this "cut-through thread" is made, should be 0.2 mm or smaller than the ball groove root diameter "dr". (See the dimension table.) A similar precaution is required when it is absolutely necessary to remove the nut from the screw shaft in order to install the ball screw to the machine. Also, in case using the cut-through end as the shoulder of the support bearing, make certain that a sufficient amount of the effective flat surface is left from the root diameter. If it is insufficient, the bearing cannot be installed perpendicularly to the bearing seat. (Fig. 15.2)

(2) Designing the screw shaft end and the nut mounting area

When installing a ball screw to the machine, avoid a design which makes it necessary to separate the nut from the screw shaft as shown in Fig. 15.3. If separated, the balls may fall out. The separation may also deteriorate the ball screw accuracy, or may damage the ball screw. If separating them is unavoidable, please furnish NSK with the component which is to be installed between the nut and screw shaft. NSK will install the component prior to delivery.

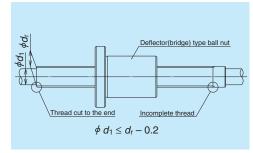


Fig. 15.1 Shaft end of a deflector (bridge) recirculation system ball screw

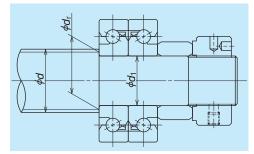


Fig. 15.2 Support bearing and end face (shoulder) for installation

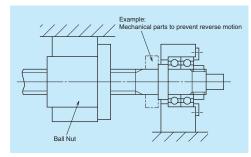


Fig. 15.3 Nut and ball screw are required to be separated when installing in this structure.

(3) Removing the nut from the screw shaft at the time of assembly

If it is unavoidable, use an arbor (Fig. 15.4), keeping the balls in the nut. In this case, the outside diameter of the arbor should be approximately 0.2 mm to 0.4 mm smaller than the ball groove root diameter "d."

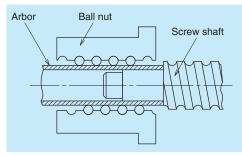
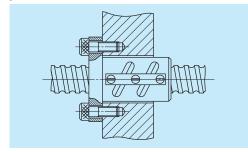



Fig. 15.4 Arbor to install and remove nut

(4) Centering of the ball nut when installing

When installing the nut as shown in **Fig. 15.5**, provide a space between the housing and the nut body diameter, allowing the centering to be performed.

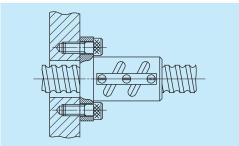


Fig. 15.5 Fixing a ball nut by flange

(5) Preventing the thread screw of nut from loosening

When installing and securing the nut to the housing at the thread screw section, as in the case for RNCT type of R Series ball screws, apply an agent which prevents the nut from loosening.

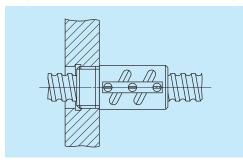


Fig. 15.6 Fixing a ball nut with thread screw

(6) Installation of brush-seal to the nut

If a brush-seal is installed at the thread screw side of the nut similar to the RNCT type which comes with a thread screw, the brush-seal should be secured as shown in Fig. 15.7.

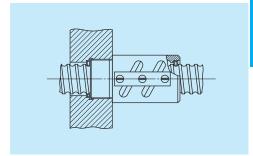


Fig. 15.7 Installation of brush-seal to a ball nut with thread screw

B-2-15.3 Effective Stroke of Ball Screw

When hardened by the induction hardening, the hardness of a ball screw may be slightly low at both ends of the screw section. Consider this low hardness prior to determining the length of effective stroke. Please consult NSK for details.

B-2-15.4 Matching after Delivery

When, after the delivery of a ball screw, you require drill knock pin hole on the screw shaft end, or at the nut mounting area, please inform NSK on the position and size of the hole.

NSK will take a measure and protect designated spots from heat treatment prior to delivery to make subsequent machining easy.

B-2-15.5 "NSK K1™" Lubrication Unit

When using the NSK K1 lubrication unit, be aware of the operating temperature and chemicals that come to contact the unit for keeping the K1's best performance.

Temperature range for use:

Maximum temperature; 50°C

Momentary maximum temperature; 80°C

Chemicals that should not come to contact:

Do not leave the K1 unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage the K1 unit.

B-2-16 Shaft End Machining

You require to machine shaft ends in the following three occasions.

- * Precision ball screws with blank shaft end.
- * Ball screws in R Series with blank shaft end (see page B349).
- * Additional machining of a completed ball screw

The following are the summaries of machining of these shaft ends. For details, please contact NSK.

(1) Machining of blank shaft ends of precision ball screws

(a) Cutting screw shaft

Use a cutting whetstone or the like to cut the shaft, leaving stock for turning. Keep the nut in the assembled state to the screw shaft, and open only one side of the plastic wrapping bag, expose only the shaft end section to be machined, and then cut the screw shaft. This prevents foreign matters from entering to the ball screw section. Do the same for other machining.

(b) Precautions in cutting shaft end

Outside of the screw shaft is ground with precision (excluding R Series). There is a center hole in the ends. Use them for centering. Do not rotate the shaft quickly or stop it suddenly, or the nut might move along the shaft. We recommend securing the nut with tape. To machine a very long shaft, apply work rests to the screw shaft surface to suppress vibration (especially caused by critical speed).

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for the shaft end accuracy.

(d) Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent.

Note: Contact NSK if nut is accidentally removed.

B-2-17 Ball Screw Selection Exercise

Drill 1: High-speed transporting system

1. Design conditions

Table mass: $m_1 = 40 \text{ kg}$

Mass of the

 $m_2 = 20 \text{ kg}$

transporting item: Maximum stroke: $S_{\text{max}} = 700 \text{ mm}$

Rapid traverse speed : $V_{max} = 1000 \text{ mm/sec}$ (60 m/min) Positioning accuracy: ±0.05/700 mm (0.005 mm/pulse)

±0.005 mm Repeatability:

Required life: $L_{t} = 25\,000\,h\,(5\,\text{years})$ Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor

 $(N_{\rm max} = 3\,000\,{\rm min}^{-1})$

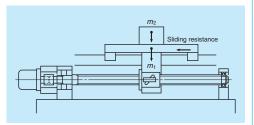


Fig. 16.1 System appearance

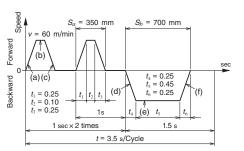


Fig. 16.2 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

According to Table 4.1 "Accuracy grades of ball screw and their application" on page B19, the accuracy grade of ball screws for Cartesian type industrial robots is C5 to Ct10.

From the following conditions in design, the axial play should be 0.005 mm or less.

Repeatability: ±0.005 (mm) Resolution: 0.005 mm/pulse

According to Table 4.2 "Combinations of accuracy grades and axial play" on page B20, you will require the accuracy grade C5 to satisfy the axial play of 0.005 mm or less. Therefore select the accuracy grade C5, and the axial play of 0 mm (Z-preload).

(2) Selection of lead

Calculate the lead l based on maximum speed of AC servo motor and the rapid traverse speed V_{max}.

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{1\ 000 \times 60}{3\ 000} = 20 \text{ (mm)}$$

Select a lead l of 20 mm or larger.

(3) Selection of screw shaft diameter

According to the Table 4.4 "Shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter d which has a lead l larger than 20 mm should be in the range of 15 mm to 32 mm. Select the smallest 15 mm.

(4) Selection of stroke

From the Table 4.4 "Screw shaft diameter, lead, and stroke of standard ball screw" on page B21, a ball screw with shaft diameter (d) of 15 mm and lead (1) of 20 mm meets maximum stroke of 700 mm, therefore it is possible to select from the standard ball screws. The primary selection is as follows:

Primary selection:

Shaft diameter: 15 (mm)

Lead: 20 (mm)

Stroke: 700 (mm)

Accuracy grade: C5 Axial play: Ζ

3. Confirmation of standard ball screw

In consideration of delivery time and price. select from the standard ball screws with finished shaft ends.

Primary candidate: W1507FA-3PG-C5Z20

4. Basic safety check

Let's examine the primary candidate.

(1) Allowable axial load

[1] Calculation of allowable axial load

From Fig. 16.2: Acceleration α_1 at accelerating / decelerating is:

$$\alpha_1 = \frac{V_{\text{max}}}{t} = \frac{1\ 000}{0.25} = 4\ 000\ (\text{mm/s}^2) = 4\ (\text{m/s}^2)$$

Axial load F is:

(At the time of acceleration (a)(d))

$$F_1 = \mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= 0.01 × (40 + 20) × 9.80665 + (40 + 20) × 4
= 246 (N)

(At the time of constant speed (b)(e))

$$F_2 = \mu (m_1 + m_2) \times g = 0.01 \times (40 + 20) \times 9.80665$$

= 6 (N)

(At the time of deceleration (c)(f))

$$F_3 = -\mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= -0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 234 (N)

Thus, the maximum axial load P is 246 N.

[2] Buckling load

W1507FA-3PG-C5Z20 has the support length of 804 mm ("La" as per the dimension table on page B193), and must support maximum axial load (P) of 246 (N). The supporting condition of screw shaft is "Fixed - Simple", and the supporting condition of ball nut is "Fixed". Due to the direction of the load, the whole ball screw supporting condition is "Fixed - Fixed" support (Factor m = 19.9).

From fomula 2) on page B44:

$$d_r \ge \left(\frac{P \cdot L_a^2}{m} \times 10^4\right)^{1/4} = \left(\frac{246 \times 804^2}{19.9} \times 10^4\right)^{1/4}$$

= 5.3 (mm)

W1507FA-3PG-C5Z20 has the dimension (dr) of 12.2 mm as per the dimension chart (page B193) and therefore meets the condition.

Result: Acceptable

(2) Allowable rotational speed

The permissible rotational speed listed in the dimension table is 3 000 min⁻¹. Since the motor maximum rotational speed is 3 000 min⁻¹, the operation is in the range of permissible rotational speed.

Result: Acceptable

(3) Checking life expectation

[1] Mean load F_m and mean rotational speed N_m From the calculation of axial load, rotational speed N_i and the operating time t_i is:

(At the time of acceleration (a)(d))

$$F_1 = 246 (N)$$

$$N_1 = \frac{n}{2} = \frac{3\ 000}{2} = 1\ 500\ (\text{min}^{-1})$$

$$t_a = 2 \times t_1 + t_4 = 0.75$$
 (s)

(At the time of constant speed (b)(e))

$$F_2 = 6 (N)$$

$$N_2 = 3\,000\,(\text{min}^{-1})$$

$$t_{\rm b} = 2 \times t_2 + t_5 = 0.65$$
 (s)

(At the time of deceleration (c)(f))

$$F_3 = 234 (N)$$

$$N_3 = 1500 \text{ (min}^{-1})$$

$$t_c = 2 \times t_3 + t_6 = 0.75$$
 (s)

Calculation result is shown in Table 16.1

Table 16.1 Axial load and rotational speed

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Operating time (s)
(a) (d)	$F_1 = 246$	$N_1 = 1500$	$t_{a} = 0.75$
(b) (e)	$F_2 = 6$	$N_2 = 3000$	$t_{\rm b} = 0.65$
(c) (f)	$F_3 = 234$	$N_3 = 1500$	$t_{c} = 0.75$

From the formulas 11) and 12) on page B53:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/2}$$

$$= 195 \text{ (N)}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

 $= 1 200 (min^{-1})$

[2] Calculation of life expectancy

At the basic dynamic load rating C_a of W1507FA-3PG-C5Z20 (Clearance Z) is 5 660 N (as per the dimension table on page B193), from the formulas 8) and 9) on page B53:

$$L_{t} = \left(\frac{C_{s}}{F_{m} \cdot f_{w}}\right)^{3} \times \frac{1}{60N_{m}} \times 10^{6}$$

$$= \left(\frac{5 \cdot 660}{195 \times 1.2}\right)^{3} \times \frac{1}{60 \times 1 \cdot 200} \times 10^{6}$$

$$= 196 \cdot 500$$

The ball screw satisfies the required life.

Result: Acceptable

5. Check for other requirements

(1) Accuracy and axial play

As per the dimension table on page B180 and **Table 1.2** for the permissible value of lead accuracy on page B38:

According to Table 1.2:

Accuracy grade: C5

 $e_{\rm p} = \pm 0.035/800 \, ({\rm mm})$

 $v_{...} = 0.025 \text{ (mm)}$

This grade satisfies the required positioning accuracy of $\pm 0.05/700$ mm.

The checking of axial play is omitted here since it is explained in "2. Selection of basic factors."

(2) Drive torque

Required specifications are as follows.

Motor rotational speed: 3 000 min⁻¹

Time to reach maximum speed: Less than 0.25 sec

[1] Load (converted to the motor axis)

Using the formula 30) and 31) on page B64, calculate the moment of inertia whereas γ is the material density of the ball screw.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L = \frac{\pi \times 7.8 \times 10^3}{32} \times 1.5^4 \times 80$$
$$= 0.31 \, (\text{kg} \cdot \text{cm}^2)$$

(Moving part)

$$J_{w} = m \times \left(\frac{l}{2\pi}\right)^{2} = 60 \times \left(\frac{2}{2\pi}\right)^{2}$$
$$= 6.1 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

 $J_{c} = 0.25 \text{ (kg} \cdot \text{cm}^2) \cdots \text{Temporary}$

(As a whole)

Moment of inertia of the ball screw J_1 is:

$$J_{L} = J_{B} + J_{W} + J_{C}$$
$$= 0.31 + 6.1 + 0.25$$
$$= 6.7 \times 10^{-4} \text{ (kg} \cdot \text{m}^{2}\text{)}$$

[2] Driving torque

We assume that WBK12-01 compact light load type is used as recommended for W1507FA-3PG-C5Z20, and the moment of inertia of motor (J_M) is 3.1 $(kg \cdot cm^2)$ $(3.1 \times 10^{-4} \text{ kg} \cdot m^2)$.

(At the time of constant speed)

The torque which is necessary to drive the ball screw at a constant speed resisting to external loads is: per formula 28) on page B64

$$T_1 = T_a + T_{pmax} + T_u$$

In this formula, T_a is the drive torque at constant speed, T_{pmax} is the upper limit of the dynamic friction torque of ball screw, and T_u is the friction torque of the support bearings.

From the chart on pages B193 and B400, (T_{pmax}) is 7.8 $(N \cdot cm)$ and $(T_{..})$ is 2.1 $(N \cdot cm)$ respectively.

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi n}$$

Using formula 26) on page B63, the drive torque at a constant speed T. is:

$$T_{1} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} + T_{pmax} + T_{u}$$

$$= \frac{6 \times 2}{2\pi \times 0.9} + 7.8 + 2.1$$

$$= 12 (N \cdot cm) = 0.12 (N \cdot m)$$

(At the time of acceleration)

The drive torque necessary for accelerating the ball screw resisting axial load can be calculated by the formula 29) on page 64.

$$T_2 = T_1 + J \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= T_1 + (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= 0.12 + (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= 1.35 \text{ (N} \cdot \text{m)}$$

(At the time of deceleration)

Similarly at the time of acceleration.

$$T_3 = T_1 - J \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= T_1 - (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= 0.12 - (6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \cdot \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= -1.11 \text{ (N \cdot m)}$$

[3] Selection of motor

Selection conditions are as follows.

Maximum rotational speed: $N_{\text{M}} \ge 3\,000\,(\text{min}^{-1})$ Motor rating torque: $T_{\text{M}} \ge T_{\text{rms}}\,(\text{N}\cdot\text{m})$

 $(T_{rms}: Effective torque)$

Moment of inertia of the motor: $J_{\rm M} > J_{\rm L}/3$ or more Form above: select an AC servo motor with the following specifications.

Motor specifications:

Rating power output: $W_{\rm M} = 300$ (W)

Maximum rotational speed:

$$N_{\rm M} = 3~000~({\rm min}^{-1})$$

Rating torque: $T_{\rm M} = 1 \, ({\rm N \cdot m}) = 1 \times 10^2 \, ({\rm N \cdot cm})$ Moment of inertia: $J_{\rm M} = 3.1 \times 10^4 \, ({\rm kg \cdot m^2})$

 $= 3.1 (ka \cdot cm^{2})$

[4] Check on effective torque

Effective torque T_{rms} can be calculated as follows:

$$T_{\text{rms}} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}}$$

$$= \sqrt{\frac{1.35^2 \times 0.75 + 0.12^2 \times 0.55 + 1.11^2 \times 0.75}{3.5}}$$

$$= 0.81$$

Thus the condition of " $T_M \ge T_{rms}$ " is cleared.

[5] Check on time to reach maximum speed

The time required to reach the rapid traverse speed can be calculated as follows. Whereas $T_{\text{M}}' = 2 \times T_{\text{M}}$:

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times n}{(T_{M}' - T_{1})} \times 1.4$$

$$= \frac{(6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \times 2\pi \times 3000}{(2 \times 1 - 0.12) \times 60} \times 1.4$$

$$= 0.23$$

Thus the ball screw meets the requirement of "0.25 sec or less".

From the above, use W1507FA-3PG-C5Z20

B90

Drill 2: Processing table for special machines

1. Design conditions

Table mass: $m_1 = 1000 \text{ kg}$ Mass of the work: $m_2 = 600 \text{ kg}$ Maximum stroke: $S_{max} = 1000 \text{ mm}$ Maximum speed: $V_{\rm max} = 15\,000\,{\rm mm/min}$ Positioning accuracy: ±0.035/1 000 mm (no load)

* Attitude accuracy of the table and thermal displacement are not included in the accuracy requirement of the ball screw.

Repeatability: ±0.005 mm (no load)

Lost motion: 0.020 mm (no load) Required life expectancy: L = 20000 h

 $(16^{h} \times 250^{days} \times 10^{years} \times 0.5^{rate of operation})$

Guide way (sliding): $\mu = 0.15$

(friction coefficient)

Processing: Milling and drilling Drive motor: AC servo motor

 $(N_{\text{max}} = 2\ 000\ \text{min}^{-1})$

Table 16.2 Operating conditions

Operation	Axia	l load (N)	Feed speed	Use time	
Operation	Cutting resistance	Sliding resistance	(mm/min)	ratio (%)	
Rapid traverse	0	2 354	15 000	30	
Light/medium cutting	4 000	2 354	500	50	
Heavy cutting	8 000	2 354	100	20	

* Sliding resistance: $F_r = \mu (m_1 + m_2) g = 0.15 \times (1000 + 600) \times 9.80665 = 2354 (N)$

* Ignore the inertia force at the time of acceleration/deceleration because their time rate is negligibly short.

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

The proper accuracy grade for machining centers should be in the range from C1 to C5 according to "Table 4.1 Accuracy grades of ball screws and their applications" on page B19. Assuming the nut length is 200 mm and margin stroke is 100 mm, the shaft length L_0 is obtained as follows:

 $L_0 = Maximum stroke + nut length + margin$

= 1000 = (200) + (100) = 1300

From "Table 1.2 Tolerance on specified travel and travel variation of the positioning ball screws" on page B38, the accuracy factors which satisfy the required function are:

Cutting resistance

Fig. 16.3 System appearance

Sliding resistance

Accuracy C3 grade

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

Considering the importance of lost motion, select the Z code (axial play 0 mm and less) for the axial play.

(2) Selection of lead

From the maximum rotational speed of AC servo motor N_{max} and rapid traverse speed of table V_{max} , lead l is:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{15\ 000}{2\ 000} = 7.5\ (\text{mm})$$

A larger lead l would be beneficial for a higher feed speed. But from the view of the control system (resolution), the lead l is limited to 8 mm or 10 mm.

(3) Selection of screw shaft diameter

According to Table 4.4 "Screw shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter with the lead of 8 mm or 10 mm are in the range of 10 mm to 50 mm. Placing more importance on rigidity than to the volume of lost motion, select a relatively large size in the range of 32 mm to 50 mm.

(4) Selection of stroke

Select 1 000 mm, the maximum stroke as specified in the design condition.

Primary selection:

Standard ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8, 10 mm 1 000 mm Stroke:

grade: C3 Axial play code: Z

3. Confirmation of standard ball screw

Giving consideration to delivery time and price, select a standard ball screw.

At the primary selection of C3 grade is not found in the standard ball screws. Let us check for application-oriented ball screws whether there is a C3 grade among ball screw.

4. Confirmation of made-to-order ball screw

Because standard ball screws do not meet the accuracy grade requirement, we will consider made-to-order ball screws which are based on standard ball screws but with accuracy grade of C3.

Second selection:

Made-to-order ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8. 10 mm 1 000 mm Stroke:

Accuracy grade: C3 Axial play: 7

5. Selection of screw shaft diameter. lead, and nut

(1) Dynamic load rating

Obtain required load carrying capacity for each lead through load conditions. From **Table 16.2** "Operating conditions" on page B91, calculate the rotation speed N₂ as shown in Table 16.3.

$$N_i \geq \frac{V_i}{l}$$

Table 16.3 Load conditions

Operating	Axial load	Rotations per		
condition	(N)	<i>l</i> = 8	<i>l</i> = 10	ratio (%)
Rapid traverse	$F_1 = 2354$	$N_1 = 1875$	$N_1 = 1500$	$t_1 = 30$
Light/medium cutting	$F_2 = 6354$	$N_2 = 62.5$	$N_2 = 50$	$t_2 = 50$
Heavy cutting	$F_3 = 10354$	$N_3 = 12.5$	$N_3 = 10$	$t_3 = 20$

By using the formulas 11) and 12) on page B53, calculate the mean load F_m and the mean rotational speed N_m as shown below.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{1} + F_{2}^{3} \cdot N_{2} \cdot t_{2} + F_{3}^{3} \cdot N_{3} \cdot t_{3}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3}}\right)^{1/3}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

Table 16.4 Mean load and mean rotational speed

rabio for i moan road and moan rotational opoca					
Lead (mm)	8	10			
Mean load F _m (N)	3 122	3 122			
Mean rotational speed N _m (min ⁻¹)	596	477			

Required dynamic load rating C_a is:

Using the formulas 8) and 9) on page B53, calculate the required dynamic load rating.

$$C_a \ge (60 N_m \cdot L_t)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} (N)$$

Whereas required life expectancy $L_t = 20\ 000\ (h)$, load coefficient $f_w = 1.2$ (refer to page B53),

$$l = 8 \text{ (mm)} \cdots C_a \ge 33 500 \text{ (N)}$$

$$l = 10 \text{ (mm)} \cdots C_a \ge 31 \text{ 100 (N)}$$

(2) Selection of the nut

Due to the requirement on the lost motion, the nut will be selected as follows emphasizing the importance of system rigidity.

Table 16.5 shows the dynamic load rating of each specification.

- · Standard nut ball screw, tube type
- Model: ZFT or DFT (pages B439 to B468)
- Number of turns of balls: Select from 2.5 turns 2 circuits or 2.5 turns 3 circuits

From **Table 16.5** select item that meets required dynamic load rating C_a as follows:

Third selection: In the range surrounded by the dotted lines in **Table 16.5**

Table 16.5 Dynamic load rating of each specification

Screw shaft	Dynamic load rating <i>C</i> a: (N)					
diameter	Lead	8 mm	Lead 10 mm			
(mm)	2.5 turns 2 circuits	2.5 turns 3 circuits	2.5 turns 2 circuits 2.5 turns 3 circuits			
32	37 300	-	54 500 -			
36	_	-	58 000 -			
40	41 100	_	61 200			
45	_	-	65 800 93 300			
50	45 700	64 800	68 100 96 500			

(3) Permissible rotational speed

[1] Critical speed

Check if the rapid traverse speed of 15 000 mm/min $(V_{\rm max})$ clears the critical speed. Ball screw rotational speed at each lead N is:

$$l = 8 \text{ (mm)} \cdot \cdot \cdot \cdot \cdot N = 1.875 \text{ (min}^{-1})$$

$$l = 10 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1500 \text{ (min}^{-1})$$

From the formula 7) on page B47, screw shaft root diameter to meet critical speed requirement is:

$$d_{\rm r} \ge \frac{N \cdot L_{\rm a}^2}{f} \times 10^{-7} \, (\rm mm)$$

In this formula, unsupported length L_a is:

$$= 1000 + 100 + 200 = 1300 (mm)$$

Supporting condition of the screw shaft is Fixed - Fixed support, and that of the ball nut is Fixed. Therefore, supporting condition is Fixed - Fixed support (Factor f = 21.9)

$$l = 8 \text{ (mm)} \cdots d_{c} \ge 14.5 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d_r \ge 11.6 \text{ (mm)}$$

[2] *d* • *n* value

From **Table 3.2** on page B50, as the d·n is 70 000 or less, screw shaft diameters to meet the d·n are:

$$d \le \frac{70\ 000}{N}$$
 (mm)

$$l = 8 \text{ (mm)} \cdots d \leq 37.3 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d \le 46.7 \text{ (mm)}$$

Based on nut specifications (pages B439 to B468) select an item that meets screw shaft root diameter (d_r) and screw shaft diameter (d).

* Please consult NSK if the d • n value is necessary to exceed 70 000.

Fourth selection: In the range surrounded by the solid-lines in **Table 16.5**

(4) Rigidity of the ball screw system

Set the lost motion of the ball screw system (screw shaft, nut and support bearings) at 80% of the specified value. Then calculate the system rigidity. The criterion lost motion is:

$$20 (\mu m) \times 0.8 = 16 (\mu m)$$

At this time, the one-way elastic deformation ΔL of the major factors of ball screw system shall be less than the half of above criterion.

$$\Delta L \leq 8 \text{ (um)}$$

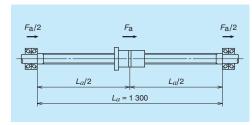


Fig. 16.3 Unsupported length

[1] Rigidity of the screw shaft K_s

Calculate the rigidity at the center of screw shaft where the axial deformation becomes the largest. Because the supporting condition of screw shaft is Fixed - Fixed support, the rigidity as per the formula 21) on page B58:

$$K_{\rm s} = \frac{\pi \cdot d_{\rm r}^2 \cdot E}{L_{\rm a}} \times 10^{-3} \text{ (N/mm)}$$

At here E is the elastic modulus. From the formula 17) on page B57, the elastic deformation of the screw shaft $\Delta L_{\rm S}$ is:

$$\Delta L_{s} = \frac{F_{a}}{K_{s}} = \frac{F_{a} \cdot L_{a}}{\pi \cdot d_{r}^{2} \cdot E} \times 10^{3} \text{ (}\mu\text{m)}$$

The sliding resistance F_a is:

$$F_a = \mu \ (m_1 + m_2) = 0.15 \times (1\ 000 + 600)$$

= 2 354 (N)

Table 16.7 shows the rigidity of screw shaft K_s and the elastic deformation ΔL_s .

[2] Rigidity of the ball nut K_N

Set about 1/3 of the maximum axial load as the preload value F_{n0} .

$$F_{a0} = \frac{F_{max}}{3} = \frac{10\ 354}{3} = 3\ 452 \rightarrow 3\ 500\ (N)$$

From the formula 23) on page B60, the rigidity of the ball nut K_N is:

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3} = 0.8 \times K \left(\frac{3500}{0.1 \cdot C_{a}} \right)^{1/3}$$
 (N/µm)

K: Theoretical rigidity

From the formula 17) on page B58, elastic deformation of the ball nut $\Delta L_{\rm N}$ is:

$$\Delta L_{\rm N} = \frac{F_{\rm a}}{K_{\rm N}} = \frac{2354}{K_{\rm N}}$$

Table 16.7 shows the rigidity of ball nut K_N and the elastic deformation ΔL_N .

[3] Rigidity of the support bearing $K_{\rm R}$

The bearings are Ball screw support bearings NSKTAC C series. We specify the model number of support bearing unit for each shaft diameter as shown in **Table 16.6** (refer to page B415).

Table 16.6 Bearing code

Screw shaft diameter (mm)	Bearing code
32	25TAC62CDF
36	25TAC62CDF
40	30TAC62CDF
45	35TAC72CDF

Refer to page B422 for the rigidity $K_{\rm B}$ of each bearing unit (axial spring modulus). Elastic deformation of bearing $\Delta L_{\rm B}$ is:

$$\Delta L_{\rm B} = \frac{F_{\rm a}}{2K_{\rm o}}$$

Table 16.7 shows the rigidity of support bearing K_0 and the elastic deformation ΔL_0 .

Table 16.7 Rigidity and elestic deformation

Nut model	Screw	shaft	N	ut	Support	bearing	Total
number	K _s	ΔL_s	K _N	ΔL_{N}	K _B	$\Delta L_{\scriptscriptstyle \rm B}$	ΔL
DFT3210-5	347	6.8	843	2.8	850	1.4	11.0
DFT3610-5	460	5.1	898	2.6	050	1.4	9.1
DFT4010-5	589	4.0	966	2.4	890	1.3	7.7
DFT4510-5	772	3.0	1 054	2.2	1 030	1 1	6.3
DFT4510-7.5	112	3.0	1 381	1.7	1 030	1.1	5.8

Choose the most economical ball screw system which meets the requirement of one-way deformation (ΔL) of 8 μ m or less.

The selected ball screw:

Nut model number: DFT4010-5
Shaft diameter: 40 (mm)
Lead: 10 (mm)
Dynamic load rating: 61 200 (N)

6. Decision of screw shaft length

DFT4010-5 ball nut has the length of 193 mm, and thus the unsupported length of screw shaft L_s should be:

 L_a = Maximum stroke + nut length + margin = 1 000 + 193 + 100 = 1 293 \rightarrow 1 300 mm

7. Checking basic safety

(1) Permissible axial load

Calculate the buckling load for conditions shown in Fig. 16.4 with P of 10 354 (N) and L₁ of 1 210 (mm).

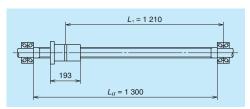


Fig. 16.4 Examination of bucking load

Supporting condition is Fixed - Fixed support, and from the calculation formula 2) on page B44, the screw shaft diameter d, to prevent buckling is

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{4}\right)^{1/4}$$
$$= \left(\frac{10.354 \times 1210^{2}}{19.9} \times 10^{4}\right)^{1/4} = 16.6 \text{ (mm)}$$

From the specification of DFT4010-5 ball nut (page B457), the root diameter of screw shaft d. is 34.4 mm and thus meets the above condition.

Result: Acceptable

(2) Permissible rotational speed

[1] Critical speed n

From the critical speed calculation formula 7) on page B47:

$$n = f \cdot \frac{d_r}{L_1^2} \times 10^7 = 21.9 \times \frac{34.4}{1210^2} \times 10^7$$

⇒ 5 140

The maximum rotational speed (N_{max}) of 1 500 min⁻¹ is less than the critical speed, and thus meets the requirement.

Result: Acceptable

[2] d • n value

The d • n value is:

$$d \cdot n = 40 \times 1500 = 60000$$

From Table 3.2 on page B50, the d·n of tube type ball nut is 70 000 or less, and meets the requirement.

Result: Acceptable

(3) Life L.

The dynamic load rating C_a is 61 200 N (see dimension table on page B457), and from the formulas 8) and 9) on page B53 the life expectancy is:

$$L_t = \left(\frac{C_{\rm a}}{f_{\rm w} \cdot F_{\rm m}}\right)^3 \times 10^6 \times \frac{1}{60 \cdot N_{\rm m}}$$

The above result satisfies the required life of 20 000 (h). Result: Acceptable

8. Check whether the following factors satisfy requirements (1) Checking accuracy

[1] Positioning accuracy

The positioning accuracy of ±0.035/1 000 mm, and therefore, from Table 1.2 "Tolerance of specified travel and travel variation" on page B38 the positioning accuracy is:

Accuracy grade: C3

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

and thus meets the required positioning accuracy.

[2] Measures against thermal expansion

Provide pre-tension force equivalent to the elongation of 3°C temperature rise, taking in consideration of the load carrying capacity of bearings. Also, adjust the travel compensation for the specified travel equivalent to 3°C temperature rise (refer to page B40).

(a) Thermal elongation : ΔL

From the formula 1) on page B40:

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L_{a} = 12.0 \times 10^{-6} \times 3 \times 1300$$

= 0.047 (mm)

(b) Pre-tension force : F_0

$$F_{\theta} = \Delta L_{\theta} \cdot Ks = \frac{\Delta L_{\theta} \cdot E \cdot \pi \cdot d_{r}^{2}}{4L}$$

$$=\frac{0.047\times2.06\times10^{5}\times\pi\times34.4^{2}}{4\times1300}$$

= 6 922 \rightarrow 6 900 (N)

Travel compensation: -0.047/1 300 (mm)

Pre-tension force: 6 900 (N)

Tension (elongation) volume: 0.047 (mm)

[3] Selection of support bearing

Assuming that the ratio of basic dynamic load rating of support bearing (C₃) and pre-tension force $(F_{\rm B})$ is $\varepsilon_{\rm r}$ select a bearing which generally satisfies the following:

$$\varepsilon = F_{\rm e}/C_{\rm a} < 0.20$$

Design the bearing supporting configuration to which pre-tension force is applied in such way that the axial load is supported by the duplex combination or a more multiple condition. Please consult NSK when one bearing must sustain the pre-tension load.

Table 16.8 Comparison of dynamic load rating and pre-tension force

Bearing reference number	C _a (N)	3
30TAC62CDF	29 200	0.23
30TAC62CDFD	47 500	0.14

Selected support bearing: 30TAC62CDFD

(2) Checking drive torque of motor

(Required specifications)

- Motor rotational speed: 1 500 min⁻¹
- Time to reach maximum speed: 0.16 sec or less (At the time of rapid traverse)

[1] Load (converted to the motor load)

Calculate the moment of inertia of ball screw.

From the formulas 30) and 31) on page B64, moment of inertia of ball screw parts J are calculated the load as follows, whereas y is material density and ball screw shaft length L_o is 1 550 mm.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L_{\rm o} = \frac{\pi \times 7.8 \times 10^{-3}}{32} \times 4^4 \times 155$$

 $= 30 (ka \cdot cm^2)$

(Moving part)

$$J_{\rm w} = m \times \left(\frac{l}{2\pi}\right)^2 = 1 \ 600 \times \left(\frac{1}{2\pi}\right)^2$$

$$= 40 (ka \cdot cm^2)$$

(Coupling)

$$J_c = 10 (kg \cdot cm^2) \cdots assumed$$

(Total)

$$J_L = J_B + J_w + J_c = 30 + 40 + 10$$

= 80 (kg · cm²) \rightarrow 80 × 10⁻⁴ (kg · m²)

[2] Driving torque

The required torque to drive a ball screw resisting to external loads T₁ can be obtained by the formula 28) on page B64:

$$T_1 = T_\Delta + T_P + T_H$$

In this formula, T_a is drive torque at constant speed, T_P is dynamic friction torque, and, T_{II} is friction torque of the support bearings. From the formula 26) and 25) on page B63, T_A and T_P are:

$$T_A = \frac{Fa \cdot l}{2\pi \eta_1}$$

$$T_P = 0.014 F_{a0} \sqrt{d_m \cdot l}$$

$$\eta_{\scriptscriptstyle 1}=0.9$$

Refer to the starting torque value in Table on page B422:

 $T_{\rm II}$ is:

 $T_{11} = (16 \times 1.35) + (16 \times 1.35) = 43.2 (\text{N} \cdot \text{cm})$

So, the required drive torque during rapid ... traverse T₁₁ and heavy cutting T₁₃ are:

(At the time of rapid traverse)

$$T_{11} = T_{A1} + T_{P1} + T_{U1}$$

$$= \frac{2354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 43.2$$

= 559 (N · cm) \rightarrow 559 \times 10⁻² (N · m)

(At the time of heavy cutting)

$$T_{12} = T_{A2} + T_{P2} + T_{U2}$$

$$= \frac{10.354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 43.2$$

$$= 1.973 \text{ (N} \cdot \text{cm)} \rightarrow 1.973 \times 10^{-2} \text{ (N} \cdot \text{m)}$$

[3] Selection of the motor

(Selection conditions)

Maximum rotational speed: $N_{\rm M} \ge 1500 \, ({\rm min}^{-1})$

Motor rating torque: $T_M > T_1 (N \cdot m)$

Moment of inertia of the motor: $J_{\rm M} > J_{\rm I}/3$ (kg · m²) Based on the above, select AC servo motor as

follows.

Motor specifications

Rating power output: $W_{\rm M} = 1.8 \text{ (kW)}$

Maximum rotational speed:

 $N_{\rm M} = 1500 \, (\rm min^{-1})$

Rating torque: $T_{\rm M} = 22.5 \, (\rm N \cdot m)$

 $= 22.5 \times 10^{2} (N \cdot cm)$

Moment of inertia: $J_{\rm M} = 190 \times 10^{-4} \, ({\rm kg \cdot m^2})$

 $= 190 (kg \cdot cm^2)$

[4] Checking the time to reach maximum speed: Required time to reach rapid traverse speed can be calculated as follows (whereas $T_{M}' = 2 \times T_{M}$):

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times N}{(T_{M}' - T_{1}) \times 60} \times 1.4$$

$$= \frac{(80 \times 10^{-4} + 190 \times 10^{-4}) \times 2\pi \times 1500}{(2 \times 22.5 - 559 \times 10^{-2}) \times 60} \times 1.4$$

$$= 0.15 \text{ (sec)}$$

Thus the time meets the requirement 0.16 sec or less.

Drill 3: Cartesian type robot Z axis (vertical axis)

1. Design conditions

Mass of the traveling item : m = 300 kgMaximum travel : $S_{\text{max}} = 1500 \text{ mm}$ Rapid traverse speed : $V_{\text{max}} = 10000 \text{ mm/min}$

Repeatability: 0.3 mm Required life: $L_t = 24\,000 \text{ h}$

 $(16^{\text{hours}} \times 300^{\text{days}} \times 5^{\text{years}})$

Screw shaft supporting condition:

Fixed -- Simple support

Nut: Flanged single nut

Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor $(N_{\text{max}} = 1 000 \text{ min}^{-1})$

Environment: Slightly dusty

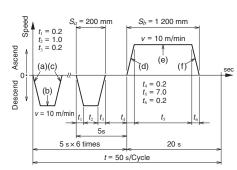


Fig. 16.5 System appearance

Fig. 16.6 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade

Although this application is not listed in **Table 4.1** "Accuracy grades of ball screw and their application" on page B19, the possibility is to use a ball screw for transfer equipment R series, because the required repeatability is 0.3 mm that is not very high.

(2) Selection of lead

From the maximum rotational speed of AC motor:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{10\ 000}{1\ 000} = 10\ \text{(mm)}$$

Select a lead 10 mm or over.

(3) Selection of screw shaft diameter

According to the **Table 4.6** "Shaft diameter, lead and standard screw length of R Series" on page B23, the shaft diameters whose lead is 10 mm or over are in the range of 12 mm to 50 mm.

(4) Selection of stroke

From the **Table 4.6** "Screw shaft diameter, lead and standard screw shaft length of R series" on page B23, it is possible to select from R series because the diameter d of 15 mm to 50 mm and lead *l* of 10 mm will meet the required maximum stroke of 1500 mm.

Select from a flanged single nuts of R Series ball screws for transfer equipment.

 $Second\ selection: R\ Series\ ball\ screw\ for\ transfer\ equipment$

Screw shaft diameter : 16, 20, 25, 32, 36

40, 50 (mm)

Lead: 10 (mm) Stroke: 1 500 (mm)

4. Decision of screw length

Screw length L_{\circ} is:

$$= 1500 + 100 + 100 + 200 = 1900 (mm)$$

Normally, the overall screw shaft length L_{\circ} less than or equal to 70 times of screw shaft diameter d is recommended.

Therefore, screw shaft diameter d is:

$$d \ge \frac{L_s}{70} = \frac{1900}{70} = 27.1 \text{ (mm)}$$

Third selection: R Series ball screw for transfer equipment Shaft diameter: 32, 36, 40, 45, 50 (mm)

Lead: 10 (mm)

Stroke: 1 500 (mm)

5. Checking basic safety

(1) Allowable axial load

[1] Calculation of allowable axial load Accelerating/decelerating time is:

$$\alpha = \frac{V}{60 t} = \frac{10 \times 10^3}{60 \times 0.2} = 833 \text{ (mm/s}^2\text{)}$$
$$= 0.833 \text{ (m/s}^2\text{)}$$

$$t = t_1 = t_3 = t_4 = t_6$$

(a), (f)
$$\cdots F_1 = mg - m\alpha$$

= 300 × 9.80665 = 300

$$= 300 \times 9.80665 - 300 \times 0.833$$
$$= 2690 (N)$$

(b), (e)
$$\cdots F_2 = mq = 2940 (N)$$

(c), (d)
$$\cdots F_3 = mq + m\alpha = 3 \ 190 \ (N)$$

[2] Buckling load

For condition in **Fig. 16.7**, use values below. $P = 3\,190\,\text{N}$, $L_1 = 1\,600\,\text{mm}$

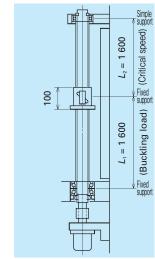


Fig. 16.7 Inspecting for buckling load and critical speed

From the formula 2) on page B44:

$$d_{t} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$
$$= \left(\frac{3.190 \times 1.600^{2}}{19.9} \times 10^{-4}\right)^{1/4} = 14.2 \text{ (mm)}$$

(2) Checking permissible rotational speed

[1] Critical speed

Use values below.

 $n = 1\,000 \,(\text{min}^{-1}), L_2 = 1\,600 \,(\text{mm})$

From the formula 7) on page B47:

$$d_r \ge \frac{n \cdot L_2^2}{f} \times 10^{-7} = \frac{1000 \times 1600^2}{15.1} \times 10^{-7}$$

= 17 (mm)

[2] *d* • *n* value

From Table 3.2 on page B50:

$$d \le \frac{50\ 000}{n} = \frac{50\ 000}{1\ 000}$$

= 50 (mm)

* Please consult NSK when the d • n value exceeds 50 000.

(3) Checking life (dynamic load rating)

Determine the required load carrying capacity from load conditions of **Table 16.9**.

Table 16.9 Load conditions

perating andition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Use time (s)
(a) _{×6} (f)	$F_1 = 2690$	$N_1 = 500$	$t_{a} = 1.4$
(b) _{×6} (e)	$F_2 = 2940$	$N_2 = 1 000$	$t_{\rm b} = 13.0$
(c) _{x6} (d)	$F_3 = 3 190$	$N_3 = 500$	$t_{c} = 1.4$

Calculate mean load F_m and mean rotational speed N_m from the formulas 11) and 12) on page B53:

Required load carrying capacity is:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

$$= 2.940 \text{ (N)}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

= 288 (min⁻¹)

From the formulas 8) and 9) on page B53:

$$C_a \ge (60 N_m \cdot L_1)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} \text{ (N)}$$

= $(60 \times 288 \times 24000)^{1/3} \times 2940 \times 1.2 \times 10^{-2}$
= 26 300 (N)

(4) Checking static load rating

$$C_{0a} = F_{max} \times f_{s} = 3 \ 190 \times 2$$

= 6 380 (N)

In consideration of expense, select a ball screw shaft as follows.

Fourth selection: R Series ball screw for transfer equipment

Shaft diameter: 32 (mm)

Lead: 10 (mm)

Stroke:

Turns of balls and circuit number : 2.5×2 Screw length : 2.000 (mm)

Basic dynamic load rating: 35 700 (N)

6. Selection of nut

Select a "standard nut with a flange and a builtin brush seals" based on the environmental conditions.

Selected ball screw:

Nut assembly RNFTL3210A5S

Screw shaft RS3210A20

B-2-18 Reference

"NSK Motion & Control (technical journal)" was compiled to introduce NSK products and its technologies. You will find data summaries which are imperative in selecting ball screws in this catalog. If you need detailed technical data, other than described in this catalog, please refer

to "NSK Motion & Control" technical journal. For inquiries and orders, please contact NSK branch offices, sales offices, and representatives assigned at various locations.

Table 17.1 NSK Motion & Control (technical journal): Issues relating to ball screws (1980-)

Issue No.	Date of Publication	Articles related to Ball Screws
No.4	Jun. 1998	Recent Technical Trends in Ball Screws
No.8	May. 2000	Ball Screw with Rotating Nut and Vibration Damper
No.9	Oct. 2000	WFA Standard-Stock Ball Screws
No.10	Apr. 2001	High Performance Seals for Ball Screws
No.11	Oct. 2001	Development of NSK S1 Series Ball Screws and Linear Guides
No.11	Oct. 2001	Low Inertia Series of Nut Rotatable Ball Screws
No.13	Oct. 2002	Development of HTF Series Ball Screws for High Load Drive Application
No.13	Oct. 2002	High Lead Precision Rolled Ball Screws
No.14	May. 2003	High Speed and Low Noise Ball Screws HMC-B02 Series
No.15	Dec. 2003	Clean Support Units for Ball Screws
No.16	Aug. 2004	Development of High Speed and Low Noise Ball Screws
No.18	Aug. 2005	S3 Ball Screws: Super Low Noise Ball Screws for Automation Equipment
No.19	Sep. 2006	High-Speed and Low-Noise Ball Screw for Standard Stock - Compact FA Series
No.21	Dec. 2007	V1 Series of Ball Screws for Contaminated Environments
No.21 Dec. 2007		HTF-SRC Series of Ball Screws for High-Speed and High-Load Applications
		Technological Trends of Ball Screws for Industrial Machinery
No.22	Mar. 2011	BSL Series of Ball Screws for Small Lathes
		HTF-SRD Series of Long-Lead Ball Screws for High-Speed and Heavy-Load Applications
No.23	Jun. 2013	TW Series of Ball Screws for Twin-Drive Systems
100.23	Juli. 2013	HMD Series of Ball Screws for High-Speed Machine Tools
No.24	Dec. 2014	Ball Screw for Motorcycle Brake Systems
No.25	Sep. 2015	HMS Series of Ball Screws for High-Speed Machine Tools
140.25	3ep. 2015	Miniature Large-Lead Series of High-Speed, Low-Noise Ball Screws
		Development of a Nut Cooling Ball Screw
No.26	Apr. 2016	Ball Screws with X1 Seals for Machine-Tool Applications
		HTF-SRE Large, High-Speed, High-Load Capacity Ball Screws
No.27	Nov. 2016	Strategy for Frictional Behavior Control in Ball Screws
INU.Z/	1100. 2010	Ball Screws with Minimal Grease-Splatter L1 Seals
No.28	Jun. 2017	Ultra-Large Ball Screws

B-2-19 Guide to Technical Services

(1) CAD data

■Web page

http://www.jp.nsk.com/app01/en/ctrg/

■CD-ROM

CAT. No. 7110

(3D data: Intermediate format or native,

2D date: DXF)

Catalog No.7110 (CD-ROM) contains precision machine components and rolling bearings.

Standard Ball Screws

•Finished shaft end (Compact FA series, MA type, FA type, SA type, KA type, and RMA type)

•Blank shaft end (MS type, FS type, and SS type)

Standard nut ball screws

End deflector type

Standard support units

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or representative in your area.

(3) Additional machining (processing) some part of standard ball screws in stock

NSK processes standard ball screw blank shaft end. NSK also cuts linear guide rails to required length for you. Service is available at NSK processing factories throughout the world. Requests are taken by branch offices and agencies.

B-2-20 Precautions When Handling Ball Screws

Ball screws are precision products. They require careful handling as described below.

Lubrication

- (1) Confirm the state of lubrication before use. Insufficient lubrication causes loss of ball screw functions in a short period.
- (2) Do not apply any lubrication if grease is already applied to the ball screws. Remove dust or swarf if they stuck to the greased surface during handling. Wipe the surface with clean white kerosene, and then apply the same type of new lubricant before use. Avoid using different types of grease at the same time.

Consult NSK for special oil lubricant if it is required to your application.

(3) Check the grease after two to three months of operation. Wipe off the old grease if it is excessively contaminated, and apply sufficient volume of a fresh coat of grease. After the initial check, check and replenish the grease approximately every year. Check more often if environment requires.

Note: Refer to pages B67 and D13 for lubrication.

Do not disassemble

Do not apply shock

Do not reassemble Watch out for falling objects Handle with care

Handling

- (1) Never disassemble the ball screw. It invites dust to enter, and lowers precision, or may cause an
- (2) Once the ball screw is disassembled for some reason, the user should never reassemble the ball screw by himself. Loss of ball screw function is apt to occur if a mistake is made. Please send the ball screw to NSK for repair or re-assembly. It will be reworked at the minimum service charge.
- (3) The ball screw shaft or nut may fall off due to its own weight. Watch out for such falling object. If it falls, the ball groove or ball recirculation component may be damaged and their function might be lost. Make certain to return such item to NSK for check. There will be the minimum charge for this service.
- (4) If the recirculation component, the shaft outside, or the ball groove is scratched or damaged by impact, recirculation operation becomes deficient, and may cause a loss of function.

Note: Refer to page B73 for assembling components.

Rotational speed limitation

Do not overrun

Temperature limitation

Precautions in use

- (1) Ball screws should be used in a clean environment. Use a dust cover to keep dust and swarf from entering into the system. Insufficient dust protection causes not only the ball screw function to deteriorate but also brings about damage to the recirculation components if dust plugs the system. This may result in more serious accident such as a fall of the table.
- (2) For rotational speed in operation, refer to the applicable section in this catalog which describes permissible rotational speeds, or to specification drawing furnished by NSK. Exceeding permissible rotational speed damages recirculation components, and may cause the table to fall. A precaution system such as a safety nut is recommended in vertical use of ball screw. Please consult NSK for safety system.
- (3) Overrunning ball nut (removed from the ball thread) causes the balls to fall out, damages recirculation components, and dent ball groove, resulting in insufficient operation. Continued use under such conditions may cause premature wear, and damages recirculation components. For these reasons, avoid overrun by all means. If overrun occurs, please request NSK to check. There will be a minimum charge for this service.
- (4) Ball screws are designed to be used at a temperature of less than 80°C. Do not operate at temperatures higher than this limit. Use at a higher temperature may damage recirculation and seal components. Please consult NSK if it is necessary to use at a temperature higher than the limit.

When using NSK K1 lubrication unit, the operating temperature should be 50°C or less. (Momentary maximum temperature in use: 80°C)

Note: Please read page B83 before designing.

Store in the correct position

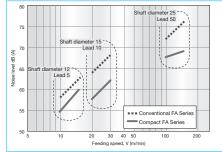
Storage

- (1) Store in the original NSK package. Do not unwrap or tear the inner wrapping if it is not necessary. This allows dust to enter and rust to set in, and may deteriorate functions.
- (2) The following position is recommended when storing ball screws.
- ① Keep in the NSK original package, and place it flat.
- 2 Place flatly on supports; store in a clean area.
- 3 Hang vertically in a clean place.

B-3 Ball Screw Dimension Table

1.	Compact FA Series	B107
2.	High-Speed SS Series	B147
3.	Finished Shaft End	B157
	MA Type, Miniature, Fine Lead	B159
	FA Type for Small Equipment	B181
	SA Type for Machine Tools	B217
4.	Finished Shaft End	
	KA Type Stainless Steel Product	B273
5.	Blank Shaft End	B299
	MS Type, Miniature, Fine Lead	B301
	FS Type for Small Equipment	B 309
	SS Type for Machine Tools	B 321
6.	Ball Screws for Transfer Equipment	B 349
7.	Accessories	B389

B-3-1 Dimension Table and Reference Number of Standard Ball Screws


B-3-1.1 Compact FA Series PSS Type, USS Type, and FSS Type

1. Features

In order to respond quickly to a wide range of needs, NSK keeps end-deflector recirculation system ball screws, which offer high-speed and low-noise operation and compact design, in standard inventories as the Compact FA Series. The exceptionally high performance ball screws are ready for use in a variety of fields such as semiconductor manufacturing equipment, LCD manufacturing equipment, chip mounting equipment, measuring apparatus, food and medical equipment, and automotive manufacturing equipment.

Quieter sound

The operating noise level of ball screws has been reduced by 6 dB(A), about half of what is sensed by the ear.

(Microphone was positioned at a distance of 400 mm for all noise levels)

Fig. 1 Comparison of noise level

Compact

The outside diameter of the ball nut is as much as 30% smaller than those of existing NSK products. This contributes to more compact design of all sorts of equipment and devices such as low-profile positioning stages.

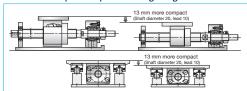


Fig. 2 Comparison of FA Type and Compact FA Series PSS Type

High speed

The permissible rotational speed up to 5 000 min⁻¹. This capability dramatically expands the range of service conditions.

Please refer to the dimension tables for details of the permissible rotational speed.

A grease fitting is provided as a standard equipment

The new ball screw type is equipped with a grease fitting (M5 \times 0.8) as a standard equipment. Two lubrication ports are provided to facilitate easy maintenance.

Storage seal

Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

■Low-profile design

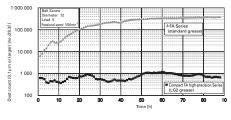

The low-profile support units especially compatible with the compact FA Series are available for a superb space-saving design.

Fig. 3 Comparison of support units

●Low dust generation LG2 grease (USS Type)

The dust count is approximately 1/100 that of the existing FA series. It is suitable for applications in clean environments.

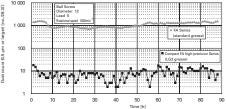


Fig.4 Comparison of dust count

●Easy stroke setting (FSS Type)

Flexible stroke setting with fixed-simple support by means of mounting support unit (simple support side) directly onto ball screw thread outside diameter. Proprietary support unit (simple support side) is available from NSK.

2. Order of the dimension table

For each type, it is arranged in order from small diameter to large.

3. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective

threaded length (L₁).

Lead accuracy

PSS Type, C5 grade; USS Type, C3 grade; FSS Type, Ct7 grade

T: Travel compensation

e_n: Tolerance on specified travel

 v_{ij} : Travel variation

See "Technical Description: Lead Accuracy" (page B37) for the details of the codes.

Fig.5 Flexible stroke setting

Permissible rotational speed

d • n: Limite

Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft.

Critical speed depends on the supporting condition of screw

shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

4. Other

The seal of the ball screw and end deflector are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil.

The NSK K1 cannot be mounted to the compact FA Series.

For special environments, see pages B70 and D2. For lubrications, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Lead Screw shaft diameter	5	8	10	12	15	20	25	30	40	50	60
6		B109		B109							
8			B111		B111						
10	B113 B133		B113								
12	B115 B135		B115 B139			B115		B115			
15	B117 B137		B117 B141			B119 B141		B119			
20	B121		B121 B143			B123 B143		B123	B125		B125
25	B127		B127 B145			B129 B145	B129 B145	B131		B131	

Screw shaft ø6

Lead 8, 12

Unit: mm

Unit: mm

Ball screw s	pecification
Ball diameter/screw shaft root diameter	1.2 / 4.9
Ball circle dia.	6.2
Accuracy grade/axial play	C5 / 0.005 or less
Factory-packed grease	NSK grease PS2

Recommended

For drive side (Fixed)
WBK04-01M (square)
WBK04-11M (round)

2- \(\phi 3.4 \) drill thru (equally spaced)
PODZ
7.5 7.5
Cross-section X-X

	Screw shaft	Lead	Effective -	Basic load ratings (N)		Maximum	Nut	Screw shaft dimensions	
Ball screw No.	diameter			Dynamic	Static	stroke	length		
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	L_{t}	L ₁
PSS0608NAD0150		8	2	690	805	102.5	16	118.5	8.5
PSS0608NBD0150	6	0	4	1 480	1 940	94.5	24	118.5	8.5
PSS0612NAD0150		12	2	665	800	97.0	20	117	10
PSS0612NBD0150		12	4	1 430	1 970	85.0	32	117	10

φ 14 φ 27

150

<- ✓ 0.005 E

23

- ✓ 0.010 E

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

✓0.010 A

L_t (quenching range)

127

Lead accuracy			Dynamic	Mass	Permissible	Internal spatial	Standard volume of	7
Target value	Error	Variation	preload torque	IVIASS	rotational speed	volume of nut	grease replenishing	0
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)	
		.020 0.018	~0.5	0.06		0.2	0.1	
0 000	0.06			5 000	0.3	0.2		
0 0.020 0.				0.06	5 000	0.2	0.1	Н
				0.07		0.3	0.2	

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. Refer to page B389 for details.

Screw shaft ø8

Lead 10, 15

Unit: mm

Unit: mm

Ball screw specification								
Ball diameter/screw shaft root diameter	1.588 / 6.6							
Ball circle dia.	8.3							
Accuracy grade/axial play	C5 / 0.005 or less							
Factory-packed grease	NSK grease PS2							

Recommended

For drive side (Fixed)
WBK06-01M (square)
WBK06-11M (round)

2- \(\phi 3.4 \) drill thru (equally spaced)
PCO 25
19
Cross-section X-X

Ball screw No.	Screw shaft diameter	Lead	Effective tums of balls		ratings (N) Static	Maximum stroke	Nut length	Screw shaft	dimensions
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	Lt	L ₁
PSS0810NAD0150		10	2	1 150	1 420	91.5	18	109.5	10.5
PSS0810NBD0150	0	10	4	2 470	3 430	81.5	28	109.5	10.5
PSS0815NAD0150	0	8 15		1 130	1 430	85.0	22	107	13
PSS0815NBD0150		15	4	2 410	3 520	70.0	37	107	13

150

- ✓ 0.020 A

E

30

- 0.005 E

M6×0.75

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

∕ 0.010 **A**→

L_t (quenching range)

	Lead accuracy		Dynamic	N 4	Permissible	Internal spatial	Standard volume of
Target value	Error	Variation	preload torque	Mass	rotational speed	volume of nut	grease replenishing
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)
				0.09		0.4	0.2
0	0.020	0.018	~0.5	0.11	5 000	0.5	0.3
O	0.020	0.018	-0.5	0.1	3 000	0.4	0.2
				0.12		0.6	0.3

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. Refer to page B389 for details.

4- φ4.5 drill thru φ8 c'bore, 4.5 depth

Plug (oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5, 10

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	2.000 / 8.2								
Ball circle dia.	10.3								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease PS2								

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11 (round)	
WBK08-11B (round, high load)	

Unit: mm

Le	ad accura	асу	Shaft	Dynamic preload	namic preload Mass Permissible rotational sp		Internal spatial	Standard volume of	
Target value	Error	Variation	run-out	torque	iviass	Fired Circula	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1 (kg) Fix		Fixed-Simple	(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.3	5 000	0.8	0.4	
	0.025	0.020	0.070	0.6 - 4.3	0.4				
0	0.027	0.020	0.085	0.4 - 4.9	0.5				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.4	F 000	0.7	0.4	
	0.025	0.020	0.070	0.6 - 4.3	0.4	5 000	0.7		
	0.027	0.020	0.085	0.4 - 4.9	0.5				

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

0.018/A	2-thin plastic seal (synthetic plastic) X	W C G 10 10 10 10 10 10 10 10 10 10 10 10 10	/0.018/A	.0 89
/10.005/F) +	(10.010 A)	5, (8)	27 10	-
h -				-

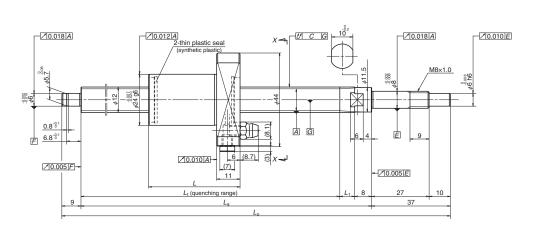
	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length			
	d	l	C _a	C_{0a}	INOMINAL	IVIdX.	L	$L_{\rm t}$	La	L。
PSS1005N1D0171					50	78		112	125	171
PSS1005N1D0221					100	128		162	175	221
PSS1005N1D0321		5	3 420	4 840	200	228	29	262	275	321
PSS1005N1D0421					300	328		362	375	421
PSS1005N1D0521	10				400	428		462	475	521
PSS1010N1D0221					100	125		162	175	221
PSS1010N1D0321		10	2 290	2 980	200	225	32	262	275	321
PSS1010N1D0421		10	2 290	2 980	300	325	32	362	375	421
PSS1010N1D0521					400	425		462	475	521

- Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.
 - 2. Contact NSK if permissible rotational speed is to be exceeded.
 - 3. Service temperature range is 0 to 80°C.

Screw shaft ø12 Lead 5, 10, 20, 30

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	2.000 / 10.2								
Ball circle dia.	12.3								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease PS2								


Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11 (round)	
WBK08-11B (round, high load)	

Unit: mm

								Onit. mm	
	ad accura		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2		Standard volume of	
Target value	Error	Variation	run-out	torque	IVIGSS	Fixed-Simple	volume of nut	grease replenishing	
Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Tixed entiple	(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	1.0	0.5	
	0.025	0.020	0.070	0.6 - 4.3	0.5	3 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.020	0.018	0.045	0.7 - 3.3	0.4				
	0.023	0.018	0.060	0.6 - 4.3	0.5				
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
0	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.023	0.018	0.045	1.4 - 4.5	0.4	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.5	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.6	5 000	1.2	0.6	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 480			
	0.023	0.018	0.045	1.4 - 4.5	0.5	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.6	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.7	5 000	1.5	0.8	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 720			

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

(Fine, Medium, High helix lead)

	Screw shaft	Lead	Basic load		Stro	oke	Nut	Screv	v shaft	dimen	sions
Ball screw No.	diameter		Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}			L	L_{t}	La	L。	L ₁
PSS1205N1D0171					50	75		110	125	171	
PSS1205N1D0221					100	125		160	175	221	
PSS1205N1D0321		5	3 750	5 810	200	225	30	260	275	321	7
PSS1205N1D0421		5	3 / 50	5 610	300	325	30	360	375	421	/
PSS1205N1D0521					400	425		460	475	521	
PSS1205N1D0621					500	525		560	575	621	
PSS1210N1D0221					100	112		160	175	221	
PSS1210N1D0321		10	3 760	5 780	200	212	43	260	275	321	7
PSS1210N1D0421					300	312		360	375	421	
PSS1210N1D0521					400	412		460	475	521	
PSS1210N1D0621	12				500	512		560	575	621	
PSS1220N1D0271					100	153		208	225	271	
PSS1220N1D0371				3 600	200	253		308	325	371	9
PSS1220N1D0471		20	2 330		300	353	50	408	425	471	
PSS1220N1D0571					400	453		508	525	571	
PSS1220N1D0671					500	553		608	625	671	
PSS1230N1D0271					100	128		203	225	271	
PSS1230N1D0371					200	228		303	325	371	
PSS1230N1D0471		30	2 190	3 650	300	328	70	403	425	471	14
PSS1230N1D0571					400	428		503	525	571	
PSS1230N1D0671					500	528		603	625	671	

- Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.
 - 2. Contact NSK if permissible rotational speed is to be exceeded.
 - 3. Service temperature range is 0 to 80°C.

Cross-section X-X

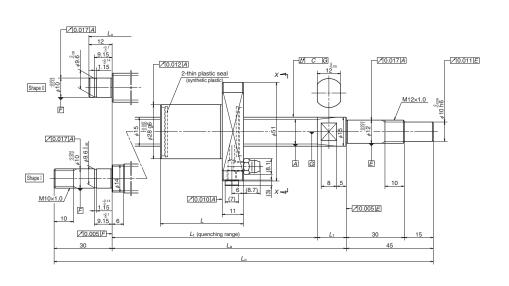
(Fine, Medium lead)

Screw shaft ø15

Lead 5, 10

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	2.778 / 12.6								
Ball circle dia.	15.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LB3								


Recommended support unit

For drive side	For opposite to drive side							
(Fixed)	(Fixed)	(Simple)						
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)						
WBK12-11 (round)	WBK10-11 (round)							

Unit: mm

Left shaft end	Le	Lead accuracy			Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGOS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000			
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000			1.0
		0.023	0.018	0.045	0.2 - 6.9	0.6	5 000			
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_	2.0	
		0.027	0.020	0.060	0.4 - 9.8	0.9	5 000			
		0.030	0.023	0.075	0.4 - 9.8	1.0	5 000			
		0.035	0.025	0.075	0.4 - 11.8	1.1	4 130			
П	0	0.020	0.018	0.035	0.6 - 7.4	0.6	5 000	_		
П	0	0.023	0.018	0.045	0.6 - 7.4	0.7	5 000	_		
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_		
П		0.027	0.020	0.060	0.4 - 9.8	1.0	5 000	_		
П		0.030	0.023	0.075	0.4 - 9.8	1.1	5 000	_	2.0	1.0
П		0.035	0.025	0.075	0.4 - 11.8	1.2	4 210	_		
I		0.035	0.025	0.095	0.4 - 11.8	1.4	3 190	4 410		
I		0.040	0.027	0.095	0.4 - 11.8	1.5	2 500	3 470		
I		0.046	0.030	0.120	0.4 - 11.8	1.7	1 650	2 320		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	$C_{\scriptscriptstyle{\mathrm{Oa}}}$	ivorninai	IVIAX.	L	$L_{\rm t}$	La	L _o	L ₁	
PSS1505N1D0211					50	103		139	154	211		
PSS1505N1D0261					100	153		189	204	261		
PSS1505N1D0361				200	253		289	304	361			
PSS1505N1D0461		5	6 410	10 100	300	353	30	389	404	461	15	
PSS1505N1D0561					400	453		489	504	561		
PSS1505N1D0661					500	553		589	604	661		
PSS1505N1D0761					600	653		689	704	761		
PSS1510N1D0261	15		100	140		189	204	261				
PSS1510N1D0361					200	240		289	304	361		
PSS1510N1D0461					300	340		389	404	461		
PSS1510N1D0561					400	440		489	504	561		
PSS1510N1D0661		10	6 530	10 200	500	540	43	589	604	661	15	
PSS1510N1D0761					600	640		689	704	761		
PSS1510N1D0879					700	740		789	804	879		
PSS1510N1D0979					800	840		889	904	979		
PSS1510N1D1179					1 000	1 040		1 089	1 104	1 179		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Shape II

/0.017/A

[0.012]A

2-thin plastic seal (synthetic plastic)

L_t (quenching range)

Basic load ratings (N)

(Medium, High helix lead)

_/0.017|A

- ∕ 0.005 E

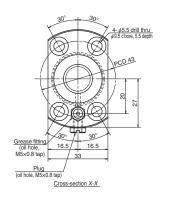
Nut

M12×1.0

Screw shaft dimensions

Screw shaft ø15

Lead 20, 30


Unit: mm

Unit: mm

Ball screw specification								
Preload type	Oversize ball preload (P-preload)							
Ball diameter/screw shaft root diameter	3.175 / 12.2							
Ball circle dia.	15.5							
Accuracy grade/axial play	C5 / 0							
Factory-packed grease	NSK grease LR3							

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)					
WBK12-11 (round)	WBK10-11 (round)						

Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	ivominai	iviax.	L	$L_{\rm t}$	La	L _o	L_1
PSS1520N1D0261					100	129		186	204	261	
PSS1520N1D0361					200	229		286	304	361	
PSS1520N1D0461					300	329		386	404	461	
PSS1520N1D0561		20 5			400	429		486	504	561	18
PSS1520N1D0661			5 660	8 700	500	529	51	586	604	661	
PSS1520N1D0761					600	629		686	704	761	
PSS1520N1D0879					700	729		786	804	879	
PSS1520N1D0979					800	829		886	904	979	
PSS1520N1D1179	15				1 000	1 029		1 086	1 104	1 179	
PSS1530N1D0311	15				100	153		230	254	311	
PSS1530N1D0411					200	253		330	354	411	
PSS1530N1D0511					300	353		430	454	511	
PSS1530N1D0611					400	453		530	554	611	
PSS1530N1D0711		30	5 500	8 580	500	553	71	630	654	711	24
PSS1530N1D0811					600	653		730	754	811	
PSS1530N1D0929					700	753		830	854	929	

Stroke

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

800

1 000

853

1 053

930

1 130

854 954 | 1 029

1 154

1 229

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

Screw shaft

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing	
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.020	0.018	0.035	0.8 - 8.8	0.7	5 000	_			
П		0.023	0.018	0.045	0.8 - 8.8	0.8	5 000	_			
П		0.025	0.020	0.050	0.8 - 10.8	0.9	5 000	_			
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_			
П		0.030	0.023	0.075	0.8 - 10.8	1.2	5 000	_	2.8	1.4	
П		0.035	0.025	0.075	0.8 - 13.8	1.3	4 170	_			
I		0.035	0.025	0.095	0.8 - 13.8	1.5	3 150	4 310			
I	0.040	0.027	0.095	0.8 - 13.8	1.6	2 460	3 390				
I	0	0.046	0.030	0.120	0.8 - 13.8	1.9	1 620	2 260			
П		0.023	0.018	0.035	1.2 - 9.3	0.8	5 000	_			
П		0.025	0.020	0.050	0.8 - 10.8	1.0	5 000	_			
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_			
П		0.030	0.023	0.060	0.8 - 10.8	1.2	5 000	_			
П		0.030	0.023	0.075	0.8 - 13.8	1.4	5 000	_	3.4	1.7	
П		0.035	0.025	0.095	0.8 - 13.8	1.5	3 770	_			
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 880	3 910			
I		0.040	0.027	0.120	0.8 - 13.8	1.8	2 310	3 110			
I		0.046	0.030	0.120	0.8 - 13.8	2.0	1 540	2 100			

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

PSS1530N1D1029

PSS1530N1D1229

∕0.017 A

Shape II

Shape I

∕ 0.017 A

1.15% 10.15%1 ✓0.005F √0.012*E*

✓0.017 A

Ė

-[∕]0.005[*E*]

M15×1.0

Screw shaft ø20

Lead 5, 10


Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 17.2
Ball circle dia.	20.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite to drive side							
(Fixed)	(Fixed)	(Simple)						
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square						
WBK15-11 (round)	WBK15-11 (round)							

01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)
(15-11 (round)	WBK15-11 (round)	

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	Screw shaft dimensions			
Ball screw No.	diameter	2000	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	Lo	L_1	
PSS2005N1D0323					150	191		228	250	323		
PSS2005N1D0373					200	241		278	300	373		
PSS2005N1D0473					300	341		378	400	473		
PSS2005N1D0573		5	10 400	18 500	400	441	31	478	500	573	22	
PSS2005N1D0673		5	10 400	10 500	500	541	31	578	600	673		
PSS2005N1D0773					600	641		678	700	773		
PSS2005N1D0873					700	741		778	800	873		
PSS2005N1D1000					800	839		878	900	1 000		
PSS2010N1D0387	20				200	241		292	314	387	22	
PSS2010N1D0487					300	341		392	414	487		
PSS2010N1D0587					400	441		492	514	587		
PSS2010N1D0687					500	541		592	614	687		
PSS2010N1D0787		10	10 200	18 600	600	641	45	692	714	787		
PSS2010N1D0887					700	741		792	814	887		
PSS2010N1D1014					800	839		892	914	1 014		
PSS2010N1D1214					1 000	1 039		1 092	1 114	1 214		
PSS2010N1D1414					1 200	1 239		1 292	1 314	1 414		

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2	Internal spatial	Standard volume of		
(opposite	Target value	Error	Variation	run-out	preload torque	IVIASS	Fixed-	Fixed-	volume of nut	grease replenishing		
driven side)	driven side) T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)		
П		0.023	0.018	0.045	0.6 - 7.4	1.0	5 000	_			00	
П		0.023	0.018	0.045	0.6 - 7.4	1.1	5 000	_				
П		0.025	0.020	0.050	0.6 - 7.4	1.3	5 000	_				
П		0.027	0.020	0.060	0.4 - 9.8	1.5	5 000	_	2.4	1 7		
П		0.030	0.023	0.075	0.4 - 9.8	1.7	5 000	_	3.4	1.7		
П		0.035	0.025	0.075	0.4 - 9.8	1.9	5 000	_			H	
П		0.035	0.025	0.095	0.4 - 9.8	2.2	4 410	_				
I		0.040	0.027	0.095	0.4 - 11.8	2.4	3 450	4 710				
П	0	0.023	0.018	0.045	1.2 - 9.3	1.2	5 000	_				
П		0.025	0.020	0.050	1.2 - 9.3	1.4	5 000	_				
П		0.027	0.020	0.060	0.8 - 10.8	1.7	5 000	_				
П		0.030	0.023	0.075	0.8 - 10.8	1.9	5 000	_				
П		0.035	0.025	0.075	0.8 - 10.8	2.1	5 000	_	3.2	1.6		
П		0.035	0.025	0.095	0.8 - 10.8	2.4	4 330	_				
I		0.040	0.027	0.120	0.8 - 13.8	2.6	3 400	4 640				
I		0.046	0.030	0.120	0.8 - 13.8	3.1	2 250	3 110				
I		0.054	0.035	0.160	0.8 - 13.8	3.6	1 600	2 220				

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

∕0.017 A

Shape II

Shape I

∕ 0.017|**A**|-

1.15⁻⁸¹⁴ 10.15⁻⁸¹ - ∕ 0.012 E

✓0.017 A

Ė

-[∕]0.005[*E*]

M15×1.0

Screw shaft ø20

Lead 20, 30

Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 17.2
Ball circle dia.	20.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)
WBK15-11 (round)	WBK15-11 (round)	

4- \$6.6 drill thru 4-11 c'bore, 6.5 depth	
P202.09	
30.5	
Grease fitting 30° 30° (oil hole, MSv.0.8 tap) 19	
(oil hole, M5x0.8 tap) Cross-section X-X	

	Screw shaft		Basic load	ratings (N)	Str	oke	Nut	Scre	w shaft	dimens	ions		
Ball screw No	diameter	Lead	Dynamic	Static			length	00.0	- Criare				
24 00.011 110.	d	l	C _a	C_{0a}	Nominal	Max.	L	$L_{\rm t}$	La	L _o	L_1		
PSS2020N1D0508					300	353		413	435	508			
PSS2020N1D0608					400	453		513	535	608			
PSS2020N1D0708					500	553		613	635	708			
PSS2020N1D0808					600	653		713	735	808			
PSS2020N1D0908		20	6 790	11 800	700	753	54	813	835	908	22		
PSS2020N1D1035					800	851		913	935	1 035			
PSS2020N1D1235				1 000	1 051		1 113	1 135	1 235				
PSS2020N1D1435					1 200	1 251		1 313	1 335	1 435	ı		
PSS2020N1D1835	20				1 600	1 651		1 713	1 735	1 835			
PSS2030N1D0408	20		20				200	228		308	335	408	İ
PSS2030N1D0508					300	328		408	435	508	27		
PSS2030N1D0608					400	428		508	535	608			
PSS2030N1D0708					500	528		608	635	708			
PSS2030N1D0808		30	6 550	11 800	600	628	74	708	735	808			
PSS2030N1D0908					700	728		808	835	908			
PSS2030N1D1035						800	826		908	935	1 035		
PSS2030N1D1235					1 000	1 026		1 108	1 135	1 235			
PSS2030N1D1435					1 200	1 226		1 308	1 335	1 435			

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.027	0.020	0.060	1.4 - 11.8	1.6	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.8	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.0	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.3	5 000	_		
П		0.040	0.027	0.095	0.8 - 13.8	2.5	4 150	_	3.2	1.6
I		0.040	0.027	0.120	0.8 - 13.8	2.8	3 270	4 470		
I		0.046	0.030	0.120	0.8 - 13.8	3.3	2 180	3 010		
I		0.054	0.035	0.160	0.8 - 13.8	3.8	1 550	2 170		
I	0	0.065	0.040	0.200	0.8 - 13.8	4.7	900	1 270		
П		0.023	0.018	0.050	1.6 - 9.8	1.4	5 000	_		
П		0.027	0.020	0.060	1.4 - 11.8	1.7	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.9	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.1	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.4	5 000	_	4.6	2.3
П		0.040	0.027	0.095	0.8 - 13.8	2.6	4 310	_		
I		0.040	0.027	0.120	0.8 - 13.8	2.9	3 380	4 570		
I		0.046	0.030	0.120	0.8 - 13.8	3.4	2 240	3 070		
I		0.054	0.035	0.160	0.8 - 13.8	3.9	1 590	2 200		

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

∕0.017 A

Shape II

Shape I

∕ 0.017 A

1.15⁻⁸¹⁴ 10.15⁻⁸¹ - ∕ 0.012 E

✓0.017 A

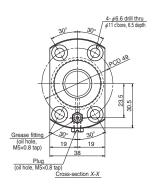
Ė

-[∕]0.005[*E*]

M15×1.0

Screw shaft ø20

Lead 40, 60


Unit: mm

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	3.175 / 17.2									
Ball circle dia.	20.5									
Accuracy grade/axial play	C5/0									
Factory-packed grease	NSK grease LR3									

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)
WBK15-11 (round)	WBK15-11 (round)	

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Scre	w shaft	dimens	ions	
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	INOITIIIIai	IVIAX.	L	$L_{\rm t}$	La	L _o	L_1	
PSS2040N1D0658					400	455		553	585	658		
PSS2040N1D0758					500	555		653	685	758		
PSS2040N1D0858					600	655		753	785	858		
PSS2040N1D0958					700	755		853	885	958		
PSS2040N1D1085		40	6 380	11 600	800	853	92	953	985	1 085	32	
PSS2040N1D1285					1 000	1 053		1 153	1 185	1 285		
PSS2040N1D1485					1 200	1 253		1 353	1 385	1 485		
PSS2040N1D1885	20					1 600	1 653		1 753	1 785	1 885	
PSS2040N1D2285				2 000	2 053		2 153	2 185	2 285			
PSS2060N1D0708	20				400	458		593	635	708	42	
PSS2060N1D0808					500	558		693	735	808		
PSS2060N1D0908					600	658		793	835	908		
PSS2060N1D1008					700	758		893	935	1 008		
PSS2060N1D1135		60	5 680	11 800	800	856	129	993	1 035	1 135		
PSS2060N1D1335					1 000	1 056		1 193	1 235	1 335		
PSS2060N1D1535					1 200	1 256		1 393	1 435	1 535		
PSS2060N1D1935					1 600	1 656		1 793	1 835	1 935		
PSS2060N1D2335					2 000	2 056		2 193	2 235	2 335		

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing	
driven side)	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.030	0.023	0.075	2.2 - 12.8	2.1	5 000	_			
П		0.035	0.025	0.075	2.2 - 12.8	2.4	5 000	_			
Π		0.035	0.025	0.095	2.2 - 12.8	2.6	5 000	_			
П		0.040	0.027	0.095	1.8 - 14.8	2.8	3 940	_			
I		0.040	0.027	0.120	1.8 - 14.8	3.1	3 120	4 190	5.3	2.7	
I		0.046	0.030	0.160	1.8 - 14.8	3.6	2 100	2 850			
I		0.054	0.035	0.160	1.8 - 14.8	4.1	1 500	2 070			
I		0.065	0.040	0.200	1.8 - 14.8	5.1	880	1 230			
I	0	0.077	0.046	0.240	1.8 - 14.8	6.0	580	810			
П		0.030	0.023	0.075	2.7 - 13.8	2.4	5 000	_			
П		0.035	0.025	0.095	2.7 - 13.8	2.6	5 000	_			
П		0.035	0.025	0.095	2.7 - 13.8	2.9	4 830	_			
Π		0.040	0.027	0.120	1.8 - 14.8	3.1	3 740	_			
I		0.040	0.027	0.120	1.8 - 14.8	3.4	2 980	3 920	7.0	3.5	
I		0.046	0.030	0.160	1.8 - 14.8	3.9	2 020	2 700			
I		0.054	0.035	0.160	1.8 - 14.8	4.4	1 460	1 970			
I		0.065	0.040	0.200	1.8 - 14.8	5.4	860	1 180			
I		0.077	0.046	0.240	1.8 - 14.8	6.3	570	790			

4. Use of NSK support unit is recommended. Refer to page B389 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

∕0.005*F*

[∕]0.011 [A]→

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

∕ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

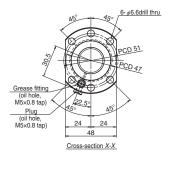
∕ 0.016 **A**

-10.022 A

∕[0.005]**E**]

M20×1.0

Screw shaft ø25


Lead 5, 10

Unit: mm

Ball screw s	specification						
Preload type	Oversize ball preload (P-preload)						
Ball diameter/screw shaft root diameter	3.175 / 22.2						
Ball circle dia.	25.5						
Accuracy grade/axial play	C5 / 0						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

	0 16		Pagia land	ratinga (NI)	Stro	aka	N	Coro	w shaft	dimono	iono
Ball screw No.	Screw shaft diameter	Lead	Dynamic	ratings (N) Static	Suc	JKE	Nut length	3016	W SHAIL	uimens	10115
Dali Sciew No.	d	l	C _a	C_{0a}	Nominal	Max.	L	$L_{\rm t}$	La	L.	L ₁
PSS2505N1D0349					150	185		223	250	349	
PSS2505N1D0399					200	235		273	300	399	
PSS2505N1D0499					300	335		373	400	499	
PSS2505N1D0599		5	11 500	23 500	400	435	32	473	500	599	27
PSS2505N1D0699		5	11 500	23 300	500	535	32	573	600	699	21
PSS2505N1D0899		25			700	735		773	800	899	
PSS2505N1D0999					800	835		873	900	999	
PSS2505N1D1233	25				1 000	1 027		1 073	1 100	1 233	
PSS2510N1D0549	25				300	361		423	450	549	
PSS2510N1D0649					400	461		523	550	649	
PSS2510N1D0749					500	561		623	650	749	27
PSS2510N1D0849		10	15 000	32 400	600	661	56	723	750	849	
PSS2510N1D0949		10	13 000	52 400	700	761	30	823	850	949	
PSS2510N1D1049					800	861		923	950	1 049	
PSS2510N1D1283					1 000 1 05	1 053		1 123	1 150	1 283	
PSS2510N1D1883					1 600	1 653		1 723	1 750	1 883	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

										Unit: mm
Left shaft end		ad accura		Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque		Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.023	0.018	0.035	1.2 - 9.3	1.5	5 000	_		
П		0.023	0.018	0.035	1.2 - 9.3	1.6	5 000	_		
П		0.025	0.020	0.040	1.2 - 9.3	2.0	5 000	_		
П		0.027	0.020	0.045	1.2 - 9.3	2.3	5 000	_	4.4	2.2
П		0.030	0.023	0.055	0.8 - 10.8	2.7	5 000	_	4.4	2.2
П		0.035	0.025	0.065	0.8 - 10.8	3.4	5 000	_		
П		0.040	0.027	0.065	0.8 - 10.8	3.7	4 490	_		
I	0	0.046	0.030	0.080	0.8 - 13.8	4.5	2 960	4 060		
П		0.027	0.020	0.045	3.1 - 11.8	2.4	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	2.7	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.5	5 000	_	4.7	2.4
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_	4.7	2.4
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 120	_		
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 760	3 790		
I		0.065	0.040	0.130	1.8 - 14.8	7.2	1 150	1 620		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

∕0.005*F*

[∕]0.011 [A]→

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

∕0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

(Medium, High helix lead)

M20×1.0

-10.022 A

∕[0.005]**E**]

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

6- ø6.6drill thru Grease fitting (oil hole, M5×0.8 tap) Plug (oil hole, M5×0.8 tap) Cross-section X-X

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Loud	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L。	L ₁
PSS2520N1D0729					500	544		604	630	729	
PSS2520N1D0829					600	644		704	730	829	
PSS2520N1D0929					700	744		804	830	929	
PSS2520N1D1029		20	7 650	14 800	800	844	54	904	930	1 029	26
PSS2520N1D1263		20	7 050	14 600	1 000	1 036	54	1 104	1 130	1 263	20
PSS2520N1D1463					1 200	1 236		1 304	1 330	1 463	
PSS2520N1D1863					1 600	1 636		1 704	1 730	1 863	
PSS2520N1D2263	25				2 000	2 036		2 104	2 130	2 263	
PSS2525N1D0779	25				500	581		650	680	779	
PSS2525N1D0879					600	681		750	780	879	
PSS2525N1D0979					700	781		850	880	979	
PSS2525N1D1079		25	7 490	14 600	800	881	63	950	980	1 079	30
PSS2525N1D1313		20	7 490	14 000	1 000	1 073	03	1 150	1 180	1 313	30
PSS2525N1D1513					1 200	1 273		1 350	1 380	1 513	
PSS2525N1D1913					1 600	1 673		1 750	1 780	1 913	
PSS2525N1D2313					2 000	2 073		2 150	2 180	2 313	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

										Onit. mm
Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial Standard volume	
(opposite	Target value	Error	Variation	run-out	preload torque	IVIdSS	Fixed-	Fixed- Fixed-		grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.4	5 000	_		
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_		
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 280	_	3.9	2.0
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 850	3 920	3.9	2.0
I		0.054	0.035	0.100	1.8 - 14.8	5.8	2 030	2 820		
I		0.065	0.040	0.130	1.8 - 14.8	7.3	1 180	1 650		
I	0	0.077	0.046	0.170	1.8 - 14.8	8.8	770	1 080		
П		0.035	0.025	0.055	2.7 - 13.8	3.3	5 000	_		
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_		
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 910	_		
П		0.040	0.027	0.080	2.7 - 13.8	4.4	3 910	_	4.3	2.2
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 640	3 620	4.3	2.2
I		0.054	0.035	0.100	1.8 - 14.8	6.0	1 900	2 630		
I		0.065	0.040	0.130	1.8 - 14.8	7.5	1 120	1 570		
I		0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0

NSK grease LR3 Factory-packed grease Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

	Grease fitting (oil hole, M5x0.8 tap) Cross-section X-X	
--	--	--

										Unit: mm
Left shaft end					Mass	Permissible rotation	nal speed (min ⁻¹) *2	Internal spatial Standard volume of		
(opposite	Target value	Error	Variation	run-out	preload torque		Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.035	0.025	0.055	2.7 - 13.8	3.4	5 000	_		
П	0.0	0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_		
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 980	_		
П		0.040	0.027	0.080	2.7 - 13.8	4.5	3 960	_	5.5	2.8
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 670	3 650	5.5	2.0
I		0.054	0.035	0.100	1.8 - 14.8	6.1	1 920	2 650		
I		0.065	0.040	0.130	1.8 - 14.8	7.6	1 130	1 580		
I	0	0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040		
П		0.035	0.025	0.065	5.4 - 17.6	3.8	5 000	_		
П		0.035	0.025	0.065	5.4 - 17.6	4.1	5 000	_		
П		0.040	0.027	0.080	5.4 - 17.6	4.5	4 750	_		
П		0.040	0.027	0.080	5.4 - 17.6	4.9	3 790	_	7.7	3.9
I		0.046	0.030	0.100	4.1 - 19.6	5.8	2 570	3 470	/./	3.9
I		0.054	0.035	0.100	4.1 - 19.6	6.5	1 860	2 540		
I		0.065	0.040	0.130	4.1 - 19.6	8.0	1 100	1 520		
I		0.077	0.046	0.170	4.1 - 19.6	9.6	730	1 020		

- 4. Use of NSK support unit is recommended. Refer to page B389 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

2-thin plastic seal X (synthetic plastic) X	

(High helix, Ultra high helix lead)

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L ₁
PSS2530N1D0779					500	570		650	680	779	
PSS2530N1D0879					600	670		750	780	879	
PSS2530N1D0979					700	770		850	880	979	
PSS2530N1D1079		30	7 490	14 600	800	870	74	950	980	1 079	30
PSS2530N1D1313		30	7 490	14 000	1 000	1 062	/4	1 150	1 180	1 313	30
PSS2530N1D1513					1 200	1 262		1 350	1 380	1 513	
PSS2530N1D1913					1 600	1 662		1 750	1 780	1 913	
PSS2530N1D2313	25				2 000	2 062		2 150	2 180	2 313	
PSS2550N1D0829	25				500	0 570		690	730	829	
PSS2550N1D0929					600	670		790	830	929	ı
PSS2550N1D1029					700	770		890	930	1 029	
PSS2550N1D1129		50	6 910	14 700	800	870	114	990	1 030	1 129	40
PSS2550N1D1363		50	6910	14 /00	1 000	1 062	114	1 190	1 230	1 363	40
PSS2550N1D1563					1 200	1 262		1 390	1 430	1 563	
PSS2550N1D1963					1 600	1 662		1 790	1 830	1 963	
PSS2550N1D2363					2 000	2 062		2 190	2 230	2 363	

- Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.
 - 2. Contact NSK if permissible rotational speed is to be exceeded.
 - 3. Service temperature range is 0 to 80°C.

Grease fitting
(oil hole, M5 0.8 tap)

Plug
(oil hole, M5 0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.000 / 8.2
Ball circle dia.	10.3
Accuracy grade/axial play	C3 / 0
Factory-packed grease	NSK grease LG2

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	WBK08S-01B (low-profile, square
WBK08-01B (low-profile, square)	
WBK08-11 (round)	

Unit: mm

	Lead accuracy		Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of		
Ta	arget value	Error	Variation	Shart run-out	preload torque	iviass	speed (min ⁻¹) *2	volume of nut	grease replenishing	
	Τ	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)	
		0.010	0.008	0.035	0.2-1.8	0.3				
	0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	0.8	0.4	
		0.015	0.010	0.070	0.2-3.0	0.5				

^{4.} Use of NSK support unit is recommended. See page B389 for details.

70.014 A	2-thin plastic seal (synthetic plastic) X (s	V/ C G 10 10 11 11 11 11 11 11 11 11 11 11 11	9 -/0.003 E	M8 1.0
9	L _a		37	
	L ₀		T	
P P				-1

	Screw shaft	Lead	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Leau	Dynamic	Static					
	d	l	C _a	C_{0a}	Nominal	Max.	$L_{\rm t}$	L _a	L _o
USS1005N1D0221					100	133	162	175	221
USS1005N1D0321	10	5	3 420	4 840	200	233	262	275	321
USS1005N1D0521					400	433	462	475	521

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Plug (oil hole, M5 0.8 tap)

Screw shaft ø12

Lead 5

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.000 / 10.2
Ball circle dia.	12.3
Accuracy grade/axial play	C3 / 0
Factory-packed grease	NSK grease LG2

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	WBK08S-01B (low-profile, square)
WBK08-01B (low-profile, square)	
WBK08-11 (round)	

Unit: mm

L	_ead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
Target value	Error	Variation	Shart run-out	preload torque	IVId55	speed (min ⁻¹) *2	volume of nut	grease replenishing
T	$e_{\scriptscriptstyle \! p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	1.0	0.5
	0.016	0.012	0.070	0.2-3.0	0.7			

4. Use of NSk	support unit is	recommended.	See page	B389 fo	r details
---------------	-----------------	--------------	----------	---------	-----------

9 L _a 37 L _a	0.014A	2-thin plastic seal (synthetic plastic) X I C G (synthetic plastic) L (quenching range)	100 100 100 100 100 100 100 100 100 100	M8 1.0 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 %	
* ***	• +		+ ' + ° -		
	- 9 - -			- 3/	
	-	L ₀			

	Screw shaft	Lood	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter Lead		Dynamic	Static	Nissaisai				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	Nominal	Max.	L_{t}	L _a	L _o
USS1205N1D0221	12		5 3 750	5 810	100	130	160	175	221
USS1205N1D0321		12 5			200	230	260	275	321
USS1205N1D0621					500	530	560	575	621

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Plug (oil hole, M5 0.8 tap)

Screw shaft ø15

Lead 5

Unit: mm

Ball screw specification							
Preload type	Oversize ball preload (P-preload)						
Ball diameter/screw shaft root diameter	2.778 / 12.6						
Ball circle dia.	15.5						
Accuracy grade/axial play	C3 / 0						
Factory-packed grease	NSK grease LG2						

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01C (square, clean)	WBK12S-01C (square, clean)
WBK12-11C (round, clean)	WBK12-01B (low-profile, square)
WBK12S-01B (low-profile, square)	
WBK12-11 (round)	

Unit: mm

	_ead accuracy	Chatt rup outl 57 Ma				Permissible rotational		Standard volume of
Target value	Error	Variation		preload torque	IVIGSS	speed (min ⁻¹) *2	volume of nut	grease replenishing
Т	$e_{\scriptscriptstyle \! p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.025	0.2-5.0	0.5	5 000		
	0.012	0.008	0.035	0.2-5.0	0.6	5 000	2.0	1.0
0	0.015	0.010	0.045	0.2-6.0	0.9	5 000	2.0	1.0
	0.018	0.013	0.060	0.2-8.0	1.1	4 130		

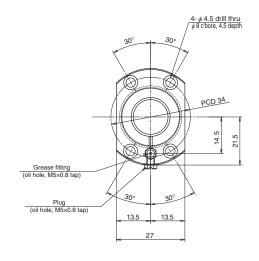
4. Use of NSK support unit is recommended. See page B389 for details.

70.013/A © 0 9.15 © 0 9.15 F	70.008A	12 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	# 10 # 10	W12 1.0	100.008E
12	Lt (quenching range)	15	30 45	. 15	
= 12	L _B		45	-	
-	L ₀			-	

	Screw shaft	Lood	Basic load ratings (N)		Stroke		Screw shaft dimensions			
Ball screw No.	diameter	Lead	Dynamic	Static	Manainal					
	d	l	$C_{\scriptscriptstyle a}$	C_{0a}	Nominal	Max.	$L_{\rm t}$	La	L _o	
USS1505N1D0261					100	159	189	204	261	
USS1505N1D0361	15	5	6 410	6 410	10 100	200	259	289	304	361
USS1505N1D0561	15	5	0 410	10 100	400	459	489	504	561	
USS1505N1D0761					600	653	689	704	761	

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.


Lead 10

Unit: mm

Ball screw specification							
Ball diameter/screw shaft root diameter	2.000 / 10.2						
Accuracy grade/axial play	Ct7 / 0.010 or less						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side	For opposite to drive side			
(Fixed)	(Simple)			
WBK08-01B (low-profile, square)	WBK12SF-01B (low-profile, square)			

Unit: mm

Le	ad accura	асу	Shaft Dynamic prelo		Shaft Dynamic prel-		Mass	Permissible rotational speed (min ⁻¹) *5	Internal spatial	Standard volume of
Target value	Error	Variation	run-out	torque	IVIASS		volume of nut	grease replenishing		
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)		
	0.120		0.080		0.5	5 000				
0	0.195	0.052	0.120	_	0.7	5 000	1.0	0.5		
	0.310		0.180		1.0	2 300				

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 4 4 6	10 4 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 E 9	A M8×1.0	- 20.014 E
	-L-1		10	
- L _a	-	37	-	
L ₀			-	

		Screw shaft	Lood	Basic load ratings (N)		Stroke		Nut	Screv	v shaft	dimen	sions
Ball	screw No.	diameter	Lead	Dynamic	Static	N		length				
		d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	Nominai	Nominal Max.	L	$L_{\rm t}$	La	L _o	L ₁
FSS12	210N1D0400					250	287	43	348	363	400	15
FSS12	210N1D0600	12	2 10	3 760	5 780	450	487		548	563	600	
FSS12	210N1D0900					750	787		848	863	900	

Notes:1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

/0.020|A

(Medium, High helix lead)

- ✓ 0.025A

Ė

✓ 0.006*E*

30

45

10

/ 0.014 E

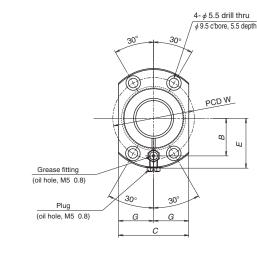
 $M12\times1.0$

U A G

À

Screw shaft ø15

Lead 10, 20


Unit: mm

Unit: mm

Ball screw specification							
Lead	10	20					
Ball diameter/screw shaft root diameter	er 2.778 / 12.6 3.175 / 12						
Accuracy grade/axial play	Ct7 / 0.01	10 or less					
Factory-packed grease	NSK gre	NSK grease LR3					

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)					
WBK12-01B (low-profile, square)	WBK15SF-01B (low-profile, square)					

	Screw shaft diameter	Lead	Basic load ratings (N)		Stroke		Screw shaft dimensions				Lead accuracy		
Ball screw No.			Dynamic	Static	Nominal						Target value	Error	Variation
	d		C _a	$C_{\scriptscriptstyle 0a}$		IVIax.	$L_{\rm t}$	La	L。	L ₁	T	$e_{\scriptscriptstyle p}$	V ₃₀₀

2-thin plastic seal (synthetic plastic)

∕0.014 A

L_t (quenching range)

 $X \rightarrow$

FSS1510N1D0500			6 530	10 200	350	379	440	455	500		0.155	
FSS1510N1D1000	15	10			850	879	940	955	1 000	15	0.310	0.052
FSS1510N1D1450					1 300	1 329	1 390	1 405	1 450		0.490	
FSS1520N1D0500				8 700	350	368	437	455	500		0.155	
FSS1520N1D1000		20	5 660		850	868	937	955	1 000	18	0.310	
FSS1520N1D1450					1 300	1 318	1 387	1 405	1 450		0.490	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

	Nut dimensions							Shaft	Dynamic	Mass	Permissible rotational speed (min ⁻¹) *5	Internal spatial	Standard volume of
								run-out	preload torque	IVIGSS	F: 10: 1	volume of nut	grease replenishing
L	D_1	D_2	W	В	С	Ε	G	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)
								0.070		0.9	5 000		
43	28	51	39	18	31	25	15.5	0.125		1.7	2 300	2.0	1.0
								0.200		2.3	1 020		
								0.070	_	1.0	5 000		
51	32	55	43	20	33	27	16.5	0.125		1.7	2 260	2.8	1.4
								0.200		2.3	1 000		

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

/0.025 A

/0.025 A / 0.014 E

15

Ė

√0.006 E

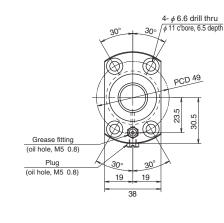
60

368 1 390 1 450

10 7

M15×1.0 = 9

Screw shaft ø20


Lead 10, 20

Unit: mm

Ball screw s	pecification
Ball diameter/screw shaft root diameter	3.175 / 17.2
Accuracy grade/axial play	Ct7 / 0.010 or less
Factory-packed grease	NSK grease LR3

Recommended support unit

	• • •
For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01B (low-profile, square)	WBK20SF-01B (low-profile, square)

Basic load ratings (N) Stroke Screw shaft dimensions Nut Screw shaft Lead diameter length Ball screw No. Dynamic Static Nominal Max. d C_{0a} FSS2010N1D0600 400 451 518 540 600 FSS2010N1D1000 10 10 200 18 600 800 851 45 918 940 000 FSS2010N1D1450 1 390 1 450 1 250 1 301 1 368 20 22 FSS2020N1D0600 400 518 540 600 442 FSS2020N1D1000 800 842 918 940 1 000 20 6 790 11 800 54

1 250

1 292

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2-thin plastic seal

(synthetic plastic)

/0.018 A

L_t (quenching range)

-11 A G

A G

2. Service temperature range is 0 to 80°C.

FSS2020N1D1450

3. Use of NSK support unit is recommended. See page B389 for details.

Le	ad accura		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *5	micornai opaciai	Standard volume of	
Target value	Error	Variation	run-out	torque	11100	Fixed-Simple		grease replenishing	
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	С	(N·cm)	(kg)	r ixeu-sirripie	(cm³)	(cm³)	
	0.195		0.085		1.7	5 000			
	0.310		0.125		2.6	3 310			
	0.490	0.052	0.200			3.6	1 450	3.2	1.6
	0.195		0.085	_ [1.8	5 000	3.2	1.0	
	0.310		0.125		2.7	3 350			
	0.490		0.200		3.8	1 460			

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

∕0.025 A

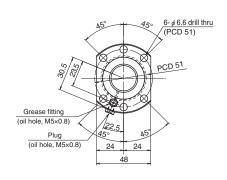
(Fine, Medium, High helix lead)

/0.030 A

∕0.014E

M20 1.0

Screw shaft ø25 Lead 10, 20, 25


Unit: mm

Unit: mm

Ball screw s	Ball screw specification								
Ball diameter/screw shaft root diameter	3.175 / 22.2								
Accuracy grade/axial play	Ct7 / 0.010 or less								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK20-01 (square)	WBK25SF-01 (square)

L [(8.7)]		- 10.006 <i>E</i>	
Lt (quenching range)	L ₁	53	27
$L_{\rm a}$		80	
L ₀			
			-

2-thin plastic seal (synthetic plastic) -U A G

À Ġ

12 10

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Screw shaft dimensions			
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOMINAL	iviax.	L	$L_{\rm t}$	La	L _o	L ₁
FSS2510N1D0600					400	415		493	520	600	
FSS2510N1D1000		10	15 000	32 400	800	815	56	893	920	1 000	27
FSS2510N1D1450					1 250	1 265		1 343	1 370	1 450	
FSS2520N1D0600					400	418		494	520	600	26
FSS2520N1D1000	25	20	7 650	14 800	800	818	54	894	920	1 000	
FSS2520N1D1450					1 250	1 268		1 344	1 370	1 450	
FSS2525N1D0600					400	405		490	520	600	
FSS2525N1D1000		25	7 490	14 600	800	805	63	890	920	1 000	
FSS2525N1D1450					1 250	1 255		1 340	1 370	1 450	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B389 for details.

Le	ad accura	эсу	Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *5	Internal spatial	Standard volume of
Target value	Error	Variation	run-out	torque	iviass	Fixed-Simple	volume of nut	grease replenishing
T	$e_{\scriptscriptstyle \mathrm{p}}$	V ₃₀₀	С	(N·cm)	(kg)	rixeu-Simple	(cm³)	(cm³)
	0.155		0.065		2.6	5 000		
	0.310		0.090		4.0	4 590	4.7	2.4
	0.490		0.130		5.8	1 970		
	0.155		0.065		2.6	5 000		
0	0.310	0.052	0.090	-	4.0	4 570	3.9	2.0
	0.490		0.130		5.8	1 960		
	0.155		0.065		2.6	5 000		
	0.310		0.090		4.1	4 660	4.3	2.2
	0.490		0.130		5.8	1 990		

- 4. The stroke and permissible rotational speed shown in the table are the values when the support unit recommended by NSK is used and Fixed-Supported (ball screw mounting method) is selected.
- 5. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

B-3-1.2 High Speed SS Series HSS Type

♦ Features

The HMS and HMD series, originally developed for machine tools, are an addition to NSK's lineup of standard ball screws. They have a wide range of applications, from general machines to high performance machines such as those requiring high speed and precision.

High speed

The new recirculation system that utilizes NSK's high speed and low noise technology more than doubles the d • n value from 70 000 to 160 000.

To extend the range of the lead to 20mm, high speed operation of over 60m/min. is possible.

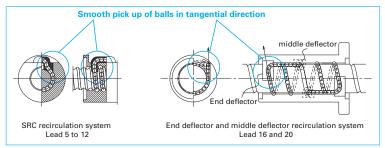


Fig 1 Ball recirculation system

Table 1 Allowable feed speed of combinations of shaft diameter and lead

shaft Lead [mm]	5	10	12	16	20
diameter [mm]					_,
32	25m/min	50m/min			
40		40m/min	48m/min	64m/min	80m/min
45		35m/min			
50		32m/min	38m/min		

^{*} Allowable speed needs to be calculated. See the permissible rotational speed in the dimensions table.

Low noise and vibrations

Compared to our conventional products, the average noise level has been reduced by more than 6dB(A), reducing the number of colliding balls and recirculation parts thanks to high speed, low noise technology.

The vibration level of the nut has also been reduced drastically.

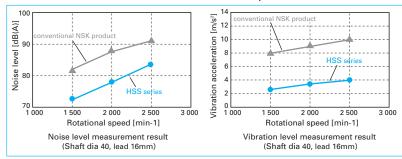


Table 2

Installation

Installation dimension are the same as those of a conventional SS series.

Compact

Achieved high-level stiffness and high load capacity equivalent to that of double nut preload by changing the double nut preload to the offset preload of a single nut, and compact sized nut. Adopted thin seals axially and shorten nut length.

Blank shaft ends

The blank shaft ends can be customized according to customers' requests. See page B27 in NSK's recommended design when drawing up plans for a shaft end. The support units available on page B389 in the case of NSK's recommended design. See "Technical Description: Shaft End Processing" (page B86) for procedures of shaft end processing and precautions.

Oil supply

2 oil holes, M6×1.0, are provided in the nut flange periphery are the end of the nut flange. A plug is standardly screwed into the periphery of the nut flange.

♦ Specifications

Accuracy grade and axial play

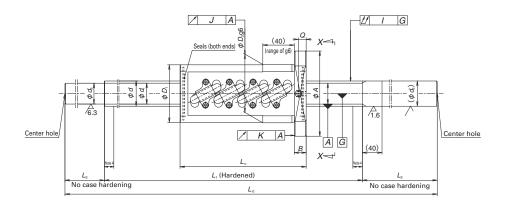
The available standard accuracy grade and axial play are show in Table 2.

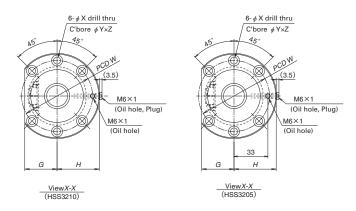
Table 2 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

Dimension tables

Shape dimensions and specifications are listed for every shaft diameter and lead. See Table 3, the "List of pages".

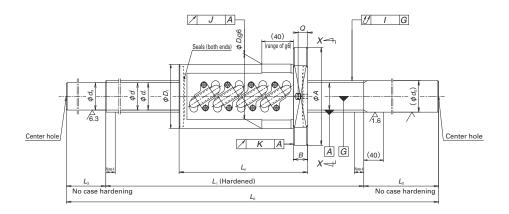

♦ Other


The seal of the ball screw and recirculation parts are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubrican or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Table 3 Combinations of screw shaft diameter and lead

Screw shaft [mm] diameter [mm]	5	10	12	16	20
32	B149	B149			
40		B151	B151	B153	B153
45		B155			
50		B155	B155		


Un	it : mm	SSH
Internal	Standard	

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Dian	nete		Fla	nge		Overall length	
	d	l	D_{w}	d _m	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{oa}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS3205N1D0650																		
HSS3205N1D0950																		
HSS3205N1D1250	32	5	3.175	32.5	29.2	2.5X2	21 800	56 000	920	17.0	57	58	85	32	42	13	89	71
HSS3205N1D1550																		
HSS3205N1D1850																		
HSS3210N1D0850																		
HSS3210N1D1050																		
HSS3210N1D1450	32	10	6.350	33.0	26.4	2.5X2	54 500	110 000	2 310	59.5	73	74	108	41	53.5	15	160	90
HSS3210N1D1850																		
HSS3210N1D2250																		

Notes: 1. Service temperature range is 0 to 60°C.

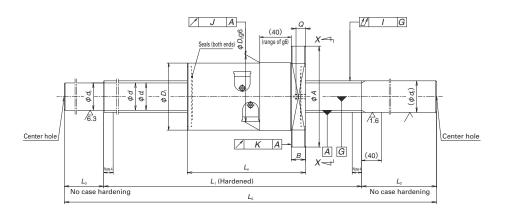
- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

					Screw	/ shaf	t dime	ensior	1	Lea	d accu	racy		Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length		end, Iht	Shaft le		Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Hat	dial -out	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
Χ	Y	Ζ	Q	L_{t}	d_2	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	V _u	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				400		200		50	650	-0.010	0.025	0.020	0.055			5.2	5 000	5 000		
				600		250		100	950	-0.014	0.030	0.023	0.065			7.0	5 000	5 000		
6.6 11 6.5 8	8	900	32	250	29.2	100	1 250	-0.022	0.040	0.027	0.080	0.019	0.013	8.7	5 000	5 000	10	5		
	.6 11 6.5 8	1 150		300		100	1 550	-0.028	0.046	0.030	0.100			10.5	3 500	4 700				
				1 450		300		100	1 850	-0.035	0.054	0.035	0.130			12.2	2 200	2 900		
				500		250		100	850	-0.012	0.027	0.020	0.065			8.9	5 000	5 000		
				700		250		100	1 050	-0.017	0.035	0.025	0.080			10.0	5 000	5 000		
9	14	8.5	10	1 050	32	300	26.4	100	1 450	-0.025	0.046	0.030	0.100	0.019	0.013	12.2	4 100	5 000	43	22
	1 450 1 850			1 450		300		100	1 850	-0.035	0.054	0.035	0.130			14.3	2 100	2 800		
				300		100	2 250	-0.045	0.065	0.040	0.170			16.5	1 200	1 700				

6- \$\psi \times \text{drill thru} \\ C'bore \phi \times \times \text{XZ} \\ 45^\times \\ (3.5) \\ \times \text{M6} \times 1 \\ (0il hole, Plug) \\ \text{M6} \times 1 \\ (0il hole)
G H
ViewX-X

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Diar	nete		Fla	nge		Overall length	
	d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d,	Circuits	C _a	$C_{\circ \circ}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4010N1D0950																		
HSS4010N1D1450	40	10	6 250	41.0	24.4	2.5X2	61 200	137 000	2 600	74.5	81	82	124	47	61.5	18	163	100
HSS4010N1D2100	40	10	6.350	41.0	34.4	2.5/2	01 200	137 000	2 000	/4.5	01	82	124	4/	01.0	18	103	102
HSS4010N1D2900																		
HSS4012N1D1450																		
HSS4012N1D2100	40	12	7.144	41.5	34.1	2.5X2	71 700	154 000	3 050	96.0	85	86	128	48	63.5	18	187	106
HSS4012N1D2900																		

Notes: 1. Service temperature range is 0 to 60°C.


- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

					Screw	/ shaf	t dime	ensior	1	Lea	d accu	racy	I	Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length	Shaft rig		Shaft le		Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Hai	dial -out	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
X	Y	Ζ	Q	$L_{\rm t}$	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	V _u	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				600		250		100	950	-0.014	0.030	0.023	0.050			13.5	4 000	4 000		
11	17.5	11	10	1 050	1,,	300	24.4	100	1 450	-0.025	0.046	0.030	0.070	0.005	0.015	17.9	4 000	4 000		00
11	17.5	11	12	1 600	40	350	34.4	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	23.5	2 200	3 000	52	26
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			30.5	900	1 300		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			19.1	4 000	4 000		
11	17.5	11	12	1 600	40	10 350 34.	34.1	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	24.8	2 200	3 000	67	34

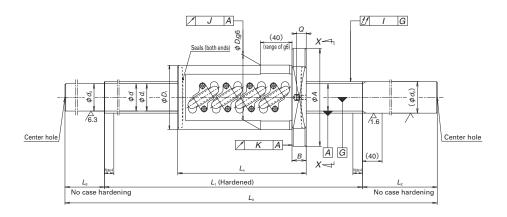
150 2 900 -0.058 0.077 0.046 0.140

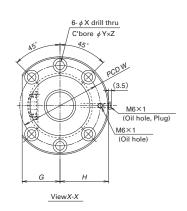
900

1 300

6- φ X drill thru
C'bore ϕ Y×Z
(3.5) M6×1 (Oil hole, Plug) M6×1 (Oil hole)

Unit:mm


	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Diar	nete		Fla	nge		Overall length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d,	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle \mathrm{oa}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4016N1D1450																		
HSS4016N1D2100	40	16	7.144	41.5	34.1	3.7X1	66 900	131 000	2 850	104.0	85	86	128	48	63.5	18	160	106
HSS4016N1D2900																		
HSS4020N1D1450																		
HSS4020N1D2100	40	20	7.144	41.5	34.1	3.7X1	66 500	131 000	2 850	116.5	85	86	128	48	63.5	18	192	106
HSS4020N1D2900																		


Notes: 1. Service temperature range is 0 to 60°C.

- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

					Screw	ı shaf	t dime	nsion	1	Lea	d accur	racy	F	Run-ou	t		Permissible rotation	nal speed (min ⁻¹)	Internal	Standard
Bolt	hole		Oil hole	Threaded length	Shaft rig	Shaft end, Shaft e			Overall length	Travel compensation	Deviation	Variation	Shaft straightness			Mass	Instal	lation	spatial volume of nut	volume of grease replenishing
Χ	Y	Z	Q	Lt	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	V _u	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			19.2	4 000	4 000		
11	17.5	11	11	1 600	40	350	34.1	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	25.0	2 200	3 000	40	20
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			32.2	900	1 300		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			20.3	4 000	4 000		
11	17.5	11	11	1 600	40	350	34.4	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	26.2	2 200	3 000	47	24
			2 400			350		150	2 900	-0.058	0.077	0.046	0.140			33.5	900	1 300		

350

	Screw			Ball		Effective balls turns	Basic load	rating(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Tune ×	Dynamic	Static	Preload	friction torque, median	Diar	nete		Fla	nge		Overall length	
	d	l	D_{w}	d _m	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{OB}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4510N1D1450																		
HSS4510N1D2100	45	10	6.350	46.0	39.4	2.5X2	65 800	157 000	2 710	82.0	87	88	132	50	65.5	18	163	110
HSS4510N1D2900																		
HSS5010N1D1450																		
HSS5010N1D1850	50	10	6.350	51.0	44.4	2.5X2	60 100	174 000	2 000	92.0	92	93	135	51	67	18	163	113
HSS5010N1D2350	50	10	0.350	51.0	44.4	2.5/2	08 100	174 000	2 880	92.0	92	93	135	01	0/	10	103	113
HSS5010N1D2900																		
HSS5012N1D1450																		
HSS5012N1D2100	50	12	7.938	51.5	43.2	2.5X2	91 500	218 000	3 880	136.5	99	100	146	55	72.5	22	193	122
HSS5012N1D2900																		

Notes: 1. Service temperature range is 0 to 60°C.

- 2. Use of NSK support unit is recommended. See page B389 for details.
- 3. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 4. Imperfect hardened areas for one lead exists on both ends of a screw. Exercise care when stroke setting.
- 5. Permissible rotational speed: Calculated values obtained from the critical speed between the threaded length and NSK's recommended shaft end design. See page B27.

	Unit : mm																				
				Screw shaft dimension				1	Lea	d accu	racy		Run-ou	t		Permissible rotational speed (min ⁻¹)		Internal Standard			
Bolt hole Oil hole		Oil hole	Threaded length		end, ht	Shaft le	end, ft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Hu	dial -out	Mass	Instal	lation	spatial volume of nut	volume of grease replenishing		
X	Y	Ζ	Q	Lt	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	V _u	1	J	K	(kg)	Fixed-Free support	Fixed-Fixed support	(cm ³)	(cm ³)	
				1 (1 050		300		100	1 450	-0.025	0.046	0.030	0.070			22.0	3 500	3 500		
11	11 17.5 11	1 12		1 600 45	45 350 39.4	150	2 100	-0.039	0.054	0.035	0.110	0.025 0.0	0.015	0.015 29.2	2 500	3 400	58	29			
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			38.2	1 100	1 500			
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			26.3	3 200	3 200			
11	17 5	11	10	1 450	300		100	1 850	-0.035	0.054	0.035	0.090	0.005	0.015	31.9	3 200	3 200	0.4	20		
11	17.5	11	12	1 850	50	350	44.4	150	2 350	-0.045	0.065	0.040	0.110	0.025	25 0.015	38.8	2 100	2 900	64	32	
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			46.5	1 200	1 700			
				1 050	300		100	1 450	-0.025	0.046	0.030	0.070)	2	28.5	3 200	3 200				
14	20	13	12	1 600	50	350	43.2	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	37.3	2 800	3 200	99	50	

48.2

1 200

1 600

150 2 900 -0.058 0.077 0.046 0.140

B-3-1.3 Finished Shaft End MA type, FA type, SA type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter of each MA, FA, and SA type ball screws, and proceeds to the larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in Table 1.

2. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective threaded length

 (L_1) .

Lead accuracy

Lead accuracy is either C3 or C5 grades

T: Travel compensation

 $e_{
m p}$: Tolerance on specified travel

υ_u: Travel variation

See "Technical Description: Lead Accuracy"

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	1.5	2	2.5	4	5	6
4	B159						
6	B161						
8	B163	B165	B167				
10			B169	B171	B181		
12			B173	B175		B183	
14						B187	
15							
16			B177	B179		B195	
20					B217	B219	
25					B221	B223	B225
28						B229	B233
20						B231	B235
32						B237	B241
						B239	B243
36							
40						B255	
45							
50							

(page B37) for the details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw

shaft. Critical speed depends on the supporting condition of

screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil. For special environments, see pages B70 and D2. For lubricants, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.

8	10	12	16	20	25	32	40	50
	B185							
B189								
	B191			B193				
			B197			B199		
	B201			B203			B205	
	B227			B207	B209			B211
B245	B247				B213	B215		
	B249							
	B251							
	B253							
B257	B259	B263						
	B261	B265						
	B267							
	B269							
	B271							

Lead 1

Unit: mm

l	Ball screw s _l	pecification	s		
Product cl	assification	Preloaded Precise cleara			
Shaft dia. x Lead	/ Direction of turn	4×1 / Right			
Preload / Bal	I recirculation	P-preload / Defle	ctor (bridge type)		
Ball dia. / B	all circle dia.	0.800) / 4.2		
Screw shaft	root diameter	3	.2		
Effective to	urns of balls	1 :	× 2		
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	370			
(N)	Static C _{0a}	370			
Axia	l play	0	0.005 or less		
Prelo	ad (N)	19.6	_		
Dynamic fri	ction torque,	10 1 00 1			
(N·	cm)	1.0 or less	0.3 or less		
Spac	er ball	No	ne		
Factory-page	cked grease	NSK gre	ase PS2		

4-2.9 drill thru

30° 30	PCD 15
<u>14</u>	
View X-X	

Recommended support unit

For drive side (Fixed)	1
WBK06-01A (square)	
WBK06-11 (round)	

	Offit.										
Scre	w shaft le	ngth	Le	ead accura	СУ	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition			
$L_{\rm t}$	La	L _o	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	11	(kg)	Fixed - Free			
44	55	85	0	0.008	0.008	0.015	0.024	3 000			
64	75	105	0	0.008	0.008	0.020	0.026	3 000			
94	105	135	0	0.008	0.008	0.025	0.028	3 000			

C0.2 4	8 -0.2	. C0.2 C0.3	φ4.5h6
$L_{\rm t}$ (hardened)	4 (7)	22.5 7.5	
L _a		30	
	Lo	· >	

Ball scr	Stroke			
Dali Sci	Nominal	Maximum		
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	IVIAXIIIIUIII	
W0400MA-1PY-C3Z1	W0400MA-2Y-C3T1	20	32	
W0400MA-3PY-C3Z1	W0400MA-4Y-C3T1	40	52	
W0401MA-1PY-C3Z1	W0401MA-2Y-C3T1	70	82	

- 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

Screw shaft ø6

Lead 1

Unit: mm

l	Ball screw s _l	pecification	s		
Product cl	assification	Preloaded Precise clears			
Shaft dia. x Lead	/ Direction of turn	6×1 / Right			
Preload / Bal	I recirculation	P-preload / De	flector (bridge)		
Ball dia. / B	all circle dia.	0.800	0 / 6.2		
Screw shaft	root diameter	5	.2		
Effective to	urns of balls	1 :	× 3		
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load rating	Dynamic C _a	680 920			
(N)	Static C _{0a}				
Axia	l play	0	0.005 or less		
Prelo	ad (N)	24.5	_		
· '	ction torque,	1.3 or less	0.3 or less		
· '	cm) er ball	No	ne		

$4-\phi 3.4$ drill thru PCD 18 16

Product cl	assification	Preloaded	Precise clea
Shaft dia. x Lead	/ Direction of turn	6×1,	/ Right
Preload / Bal	I recirculation	P-preload / Deflector (b	
Ball dia. / B	all circle dia.	0.800 / 6.2	
Screw shaft	root diameter	5	.2
Effective to	urns of balls	1 :	× 3
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / -
Basic load	Dynamic $C_{\scriptscriptstyle a}$	68	80
(N)	Static C _{0a}	92	20
Axia	l play	0	0.005 or l
Prelo	ad (N)	24.5	_
′	ction torque, cm)	1.3 or less	0.3 or le

Factory-packed grease

Recommended support unit

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

NSK grease PS2

Unit: mm	

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Free
65	75	105	0	0.008	0.008	0.015	0.039	3 000
95	105	135	0	0.008	0.008	0.020	0.045	3 000
125	135	165	0	0.010	0.008	0.025	0.051	3 000

C0.2 	y 0.008 A X → 11.5 3.5 15	A G (3)	C0.2 C0.3 R0.2 max. E 7 M6x0.75	C0.3
<	$L_{\rm t}$ (hardened)	3 (7)	22.5 7.5	_
-	L _a		30	_
<	Lo			_

Poll cor	Stroke			
Ball SCI	Ball screw No.			
Preloaded (MPFD)	MPFD) Precise clearance (MSFD)		Maximum	
W0600MA-1PY-C3Z1	W0600MA-2Y-C3T1	40	50	
W0601MA-1PY-C3Z1	W0601MA-2Y-C3T1	70	80	
W0601MA-3PY-C3Z1	W0601MA-4Y-C3T1	100	110	

- 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

 $4-\phi 3.4$ drill thru

Screw shaft ø8

Lead 1

Unit: mm

screw s	pecification	s
ification	Preloaded	Precise clearance

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	8 × 1 ,	/ Right			
Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
Ball dia. / B	all circle dia.	0.800) / 8.2			
Screw shaft	root diameter	7	.2			
Effective to	urns of balls	1 :	< 3			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	790				
(N)	Static C _{0a}	1 290				
Axia	l play	0	0.005 or less			
Prelo	ad (N)	29.4	_			
· '	ction torque, cm)	1.8 or less	0.5 or less			
Spac	er ball	None				
Factory-pag	cked grease	NSK gre	ase PS2			

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L _o	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.073	3 000
110	122	168	0	0.010	0.008	0.030	0.084	3 000
140	152	198	0	0.010	0.008	0.030	0.095	3 000
190	202	248	0	0.010	0.008	0.035	0.11	3 000

2000 CO.5	+0.1 0.8 +0.1 6.8	y y y y y y y y y y	# * G A G	10 ⁻⁰² 0.008 A 0.000 C0.2 C0.5 05 <u>F</u>	
		Lo		11:	
				·	

Pall cor	Stroke		
Ball Sci	Ball screw No.		
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum
W0800MA-1PY-C3Z1	W0800MA-2Y-C3T1	40	59
W0801MA-1PY-C3Z1	W0801MA-2Y-C3T1	70	89
W0801MA-3PY-C3Z1	W0801MA-4Y-C3T1	100	119
W0802MA-1PY-C3Z1	W0802MA-2Y-C3T1	150	169

- 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

Screw shaft ø8

Lead 1.5

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	8 × 1.5	/ Right		
Preload / Bal	I recirculation	P-preload / De	flector (bridge)		
Ball dia. / B	all circle dia.	1.000	0 / 8.3		
Screw shaft	root diameter	7	.0		
Effective to	urns of balls	1×3			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load rating	Dynamic $\mathcal{C}_{\scriptscriptstyle a}$	1 270			
(N)			970		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	49.0	_		
Dynamic fri	ction torque,	20 01 1000	0 E or loss		

,	$4-\phi 3.4$ drill thru
30° 30°	oCD 22
< 19	

Recommended support unit

(N·cm) Spacer ball

Factory-packed grease

2.0 or less 0.5 or less

None

NSK grease PS2

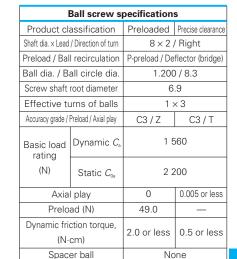
For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

								Unit: mm
Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	Ш	(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.082	3 000
110	122	168	0	0.010	0.008	0.030	0.093	3 000
140	152	198	0	0.010	0.008	0.030	0.10	3 000
190	202	248	0	0.010	0.008	0.035	0.12	3 000

0.008 A 0.008 A C0.2 C0.5 R0.2 0.8 0.8 0.0025 F	2 max. Seals (two places) Seals (two places) X A G 18 4 22	G 10 ⁻⁰² 0.008 A 0.005 E 0.00
_	L _t (hardened)	4 (8) 27 10
9	L _a	37
	Lo	
,		'

Ball scr	Stroke		
Dali Sci	Naminal	Maximum	
Preloaded (MPFD) Precise clearance (MSFD)		Nominal	IVIAXIITIUITI
W0800MA-3PY-C3Z1.5	W0800MA-4Y-C3T1.5	40	53
W0801MA-5PY-C3Z1.5	W0801MA-6Y-C3T1.5	70	83
W0801MA-7PY-C3Z1.5	W0801MA-8Y-C3T1.5	100	113
W0802MA-3PY-C3Z1.5	W0802MA-4Y-C3T1.5	150	163

- Notes: 1. We recommend NSK support unit. See page B389 for details.


 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

Screw shaft ø8

Lead 2

Unit: mm

4-φ3.4 drill thru
30° 30° PCD 23
≥ 20

Factory-packed grease NSK grease PS2 Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

								O
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.09	3 000
110	122	168	0	0.010	0.008	0.030	0.10	3 000
140	152	198	0	0.010	0.008	0.030	0.11	3 000
190	202	248	0	0.010	0.008	0.035	0.13	3 000

C0.5 R0.2 max (0.0025 F)	48 41 629 729 729	C0.2 C0.5 C0.5 R0.2 max. M8x1 4 (8) 27 10
9	La	37
<u></u>	Lo	, , , , , , , , , , , , , , , , , , ,

Palloo	Stroke		
Ball screw No.		Nominal	Maximum
Preloaded (MPFD) Precise clearance (MSFD)		Nominal	IVIAXIITIUITI
W0800MA-5PY-C3Z2	W0800MA-6Y-C3T2	40	49
W0801MA-9PY-C3Z2	W0801MA-10Y-C3T2	70	79
W0801MA-11PY-C3Z2	W0801MA-12Y-C3T2	100	109
W0802MA-5PY-C3Z2	W0802MA-6Y-C3T2	150	159

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

R0.2 max.

Seals (two places)

1 0.008 A →

23 28

L_t (hardened)

* G

A G

√ 0.007 A

CÓ.5

/ 0.0025 F →

F

√ 0.005 E

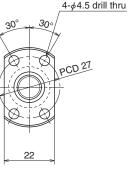
Ř 0.2 max.

> E 9,

← 1 0.0025 E

27

37


M8×1

10

Screw shaft ø10

Lead 2

Unit: mm

4-φ4.5 drill thru
30° 30° PCO 27
View X-X

Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	10 × 2	/ Right	
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.200	/ 10.3	
Screw shaft	root diameter	8	.9	
Effective to	urns of balls	1:	< 3	
Accuracy grade /	Preload / Axial play	C3 / Z	C3/T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 800		
(N)	Static C _{0a}	2 970		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	58.8	_	
Dynamic friction torque, (N·cm)		0.1 – 2.4	0.5 or less	
Spacer ball		None		
Factory-page	cked grease	NSK gre	ase PS2	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

								OTHE. ITHII
Scre	ew shaft le	ngth	Lead accuracy		Shaft run- out ** Mass f f (kg)		Permissible rotational speed N (min-1) Supporting condition	
L_{t}	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	Ш	(kg)	Fixed - Simple support
100	112	158	0	0.008	0.008	0.020	0.13	3 000
150	162	208	0	0.010	0.008	0.030	0.16	3 000
200	212	258	0	0.010	0.008	0.030	0.19	3 000
250	262	308	0	0.012	0.008	0.030	0.22	3 000

Ball scr	Stroke		
Bdil SCI	ew no.	Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	IVIAXIITIUITI
W1001MA-1PY-C3Z2	W1001MA-2Y-C3T2	50	67
W1001MA-3PY-C3Z2	W1001MA-4Y-C3T2	100	117
W1002MA-1PY-C3Z2	W1002MA-2Y-C3T2	150	167
W1002MA-3PY-C3Z2	W1002MA-4Y-C3T2	200	217

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

 $4-\phi 4.5$ drill thru

Screw shaft ø10

Lead 2.5

Unit:	mm

	Ball screw sp	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	10 × 2.5 / Right		
Preload / Bal	I recirculation	P-preload / Deflector (bridge)		
Ball dia. / B	all circle dia.	1.588 / 10.4		
Screw shaft	root diameter	8	.6	
Effective to	urns of balls	1 :	× 3	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load rating	Dynamic C _a	2.5	500	
(N)	Static C _{0a}	3 6	530	
Axia	Axial play		0.005 or less	
Prelo	ad (N)	98.1	_	
'	Dynamic friction torque, (N·cm)		0.5 or less	
Spac	er ball	No	ne	

Factory-packed grease

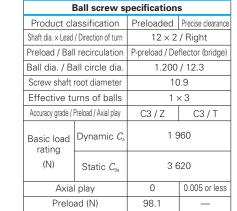
Recommended support unit

NSK grease PS2

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

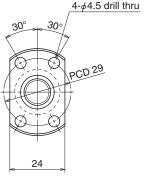
	Unit:	mm	
--	-------	----	--

Scre	ew shaft le	ngth	Lead accuracy		out ** Mass		Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support
100	112	158	0	0.008	0.008	0.020	0.14	3 000
150	162	208	0	0.010	0.008	0.030	0.17	3 000
200	212	258	0	0.010	0.008	0.030	0.20	3 000
250	262	308	0	0.012	0.008	0.030	0.23	3 000


70.007 A 0.007 A 0.007 A 0.0025 F	[Seals (two places) X 0.008 A 27 32 Lt (hardened)	# * G A G	C0.2	0.007 A
9		La		3	7
***		L _o		*	·
<		L ₀			>

Pall cor	Stroke		
Ball Sci	Ball screw No.		
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum
W1001MA-5PY-C3Z2.5	W1001MA-6Y-C3T2.5	50	63
W1001MA-7PY-C3Z2.5	W1001MA-8Y-C3T2.5	100	113
W1002MA-5PY-C3Z2.5	W1002MA-6Y-C3T2.5	150	163
W1002MA-7PY-C3Z2.5	W1002MA-8Y-C3T2.5	200	213

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 3. Contact NSK if the permissible rotational speed is to be exceeded.


Lead 2

Unit: mm

Dynamic friction torque,

(N·cm) Spacer ball Factory-packed grease

4-φ4.5 drill thru
30° 30° PCD 29
View X-X

Recommended support unit

0.4 - 3.4

NSK grease PS2

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

1.0 or less

								Offic. Hilli
Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.20	3 000
160	175	230	0	0.010	0.008	0.030	0.24	3 000
210	225	280	0	0.012	0.008	0.030	0.28	3 000
260	275	330	0	0.012	0.008	0.040	0.32	3 000
310	325	380	0	0.012	0.008	0.040	0.36	3 000

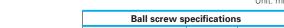
(0.007 A) (0.007 A) (0.007 A) (0.002 A)	O.010 A Seals (two places) X 1 O.008 A X 2 Lt (hardened)	12°0.5 12°0.5	C0.2 C0.5	✓ 0.005 F
10.	L_{a}	-	45	
	Lo			
₹	·			1

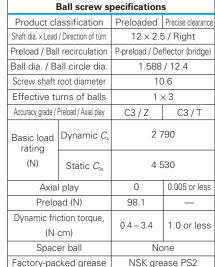
Ball scr	Stroke		
Ball Sci	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INUITIIIIdi	IVIANITIUITI
W1201MA-1PY-C3Z2	W1201MA-2Y-C3T2	50	75
W1201MA-3PY-C3Z2	W1201MA-4Y-C3T2	100	125
W1202MA-1PY-C3Z2	W1202MA-2Y-C3T2	150	175
W1202MA-3PY-C3Z2	W1202MA-4Y-C3T2	200	225
W1203MA-1PY-C3Z2	W1203MA-2Y-C3T2	250	275

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.


View X-X


 $4-\phi 4.5$ drill thru

Screw shaft ø12

Lead 2.5

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK10-01A (square)	WBK10S-01 (square)	
WBK10-11 (round)		

Unit: mm

								OTHE THIT
Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.21	3 000
160	175	230	0	0.010	0.008	0.030	0.25	3 000
210	225	280	0	0.012	0.008	0.030	0.29	3 000
260	275	330	0	0.012	0.008	0.040	0.33	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000

C0.2 C0.5 R0.2 max F 0.003 F	21 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Seals (two places) X 10.008 A X X X X X X X X X	# * G	C0.2 C0.2 R0.2 R0.2 max. (5)	C0.5 C	(0.005 E)
10		La			45	
× '		Lo				

Ball scr	Stroke		
Dali SCI	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	IVIAXIITIUITI
W1201MA-5PY-C3Z2.5	W1201MA-6Y-C3T2.5	50	71
W1201MA-7PY-C3Z2.5	W1201MA-8Y-C3T2.5	100	121
W1202MA-5PY-C3Z2.5	W1202MA-6Y-C3T2.5	150	171
W1202MA-7PY-C3Z2.5	W1202MA-8Y-C3T2.5	200	221
W1203MA-3PY-C3Z2.5	W1203MA-4Y-C3T2.5	250	271

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

 $4-\phi 5.5$ drill thru

M6×1

(oil hole)

Screw shaft ø16

Lead 2

Unit: mm

ı	Ball screw s _l	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	16×2	/ Right	
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588 / 16.4		
Screw shaft	root diameter	14	1.6	
Effective to	urns of balls	1:	× 4	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 1	150	
(N)	Static C _{0a}	8 4	150	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque, (N·cm)		0.5 – 4.9	1.5 or less	
Spacer ball		None		
Factory-pag	cked grease	NSK grease PS2		
Internal spatial vo	olume of nut (cm³)	1	.6	
Standard volume of gr	rease replenishing (cm³)	0	.8	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Screw shaft length		Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)			
Screv	v Siidilit	engun	Le	au accur	acy	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.41	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.48	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.55	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.62	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.77	3 000	3 000

40

Ball scr	Stroke			
Ddii SCi	Nominal	Maximum		
Preloaded (MPFD)	Preloaded (MPFD) Precise clearance (MSFD)			
W1601MA-1PY-C3Z2	W1601MA-2Y-C3T2	50	93	
W1601MA-3PY-C3Z2	W1601MA-4Y-C3T2	100	143	
W1602MA-1PY-C3Z2	W1602MA-2Y-C3T2	150	193	
W1602MA-3PY-C3Z2	W1602MA-4Y-C3T2	200	243	
W1603MA-1PY-C3Z2	W1603MA-2Y-C3T2	300	343	

Notes: 1. We recommend NSK support unit. See page B389 for details.

- Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

B177

29 View *X-X*

M61

(oil hole)

4-φ5.5 drill thru

Screw shaft ø16

Lead 2.5

Unit: mm

	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	16 × 2.5 / Right		
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588	/ 16.4	
Screw shaft	root diameter	14	1.6	
Effective to	urns of balls	1:	× 4	
Accuracy grade / Preload / Axial play		C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 1	50	
(N)	Static C _{0a}	8 4	140	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque, (N·cm)		0.5 – 4.9	1.5 or less	
Spacer ball		None		
Factory-page	cked grease	NSK grease PS2		
Internal spatial v	olume of nut (cm³)	1	.6	
Standard volume of g	rease replenishing (cm³)	0.8		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

									OTHE. THEFT
Caro	Sarawy shaft la		Lead accuracy			Shaft run- Y out ** Mas		Permissible rotatio	nal speed N (min-1)
Screw shaft length			Le	au accur	асу	out ** Mas 		Supporting	g condition
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	υu		(Kg)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.42	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.49	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.64	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.79	3 000	3 000

M5×0.8 Depth 12 P0.003 F A G 35 E 10 M12×1 M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
L _o	

Ball scr	Stı	roke		
Dali Sci	Nominal	Maximum		
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINIAL	Maximum	
W1601MA-5PY-C3Z2.5	W1601MA-6Y-C3T2.5	50	89	
W1601MA-7PY-C3Z2.5	W1601MA-8Y-C3T2.5	100	139	
W1602MA-5PY-C3Z2.5	W1602MA-6Y-C3T2.5	150	189	
W1602MA-7PY-C3Z2.5	W1602MA-8Y-C3T2.5	200	239	
W1603MA-3PY-C3Z2.5	W1603MA-4Y-C3T2.5	300	339	

Notes: 1. We recommend NSK support unit. See page B389 for details.

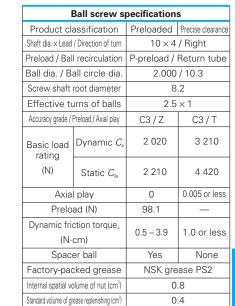
- Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

B179

View X-X

 $4-\phi 4.5$ drill thru

M6×1


(oil hole)

NSK

Screw shaft ø10

Lead 4

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	ew shaft le	ngth	Le	ead accura	су	Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>tt</i>	(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.26	3 000
160	175	230	0	0.010	0.008	0.030	0.28	3 000
210	225	280	0	0.012	0.008	0.030	0.31	3 000
260	275	330	0	0.012	0.008	0.040	0.34	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000
360	375	430	0	0.013	0.010	0.050	0.39	3 000

CO.5 RO.2 max. A G (5)	0.2 C0.5 C0.5 R0.2 max. E 10 M10×1 15 30 15
L _a L _o	45

Rall scr	Stı	roke		
Ball Sci	Bull Sciew No.			
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum	
W1001FA-1P-C3Z4	W1001FA-2-C3T4	50	69	
W1001FA-3P-C3Z4	W1001FA-4-C3T4	100	119	
W1002FA-1P-C3Z4	W1002FA-2-C3T4	150	169	
W1002FA-3P-C3Z4	W1002FA-4-C3T4	200	219	
W1003FA-1P-C3Z4	W1003FA-2-C3T4	250	269	
W1003FA-3P-C3Z4	W1003FA-4-C3T4	300	319	

Notes: 1. We recommend NSK support unit. See page B389 for details.

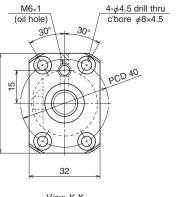
Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

Stroke

Maximum

463


Nominal

450

Screw shaft ø12

Lead 5

Unit: mm

<i>M</i> 6×1 4- <i>ϕ</i> 4.5 drill thru				Unit: mm	
I hole) $\sqrt{\text{c'bore } \phi 8 \times 4.5}$	Ball screw specifications				
30° 30°	Product cla	assification	Preloaded	Precise clearance	
	Shaft dia. x Lead	/ Direction of turn	12 × 5	/ Right	
	Preload / Bal	I recirculation	P-preload /	Return tube	
PCD 40	Ball dia. / Ba	all circle dia.	2.381	/ 12.3	
	Screw shaft	root diameter	9	.8	
	Effective to	urns of balls	2.5	× 1	
	Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
	Basic load	Dynamic $C_{\scriptscriptstyle a}$	2 770	4 390	
32	rating (N)	Static C _{0a}	3 130	6 260	
View X-X	Axia	l play	0	0.005 or less	
	Prelo	ad (N)	98.1	_	
	′	ction torque, cm)	1.0 – 4.4	1.0 or less	

Recommended support unit

Yes

NSK grease PS2

1.2

0.6

Spacer ball

Factory-packed grease

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm²)

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	ew shaft le	ngth	Le	ead accura	СУ	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>1_1</i>	(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.35	3 000
160	175	230	0	0.010	0.008	0.030	0.38	3 000
210	225	280	0	0.012	0.008	0.030	0.42	3 000
260	275	330	0	0.012	0.008	0.040	0.46	3 000
310	325	380	0	0.012	0.008	0.040	0.50	3 000
410	425	480	0	0.015	0.010	0.050	0.58	3 000
510	525	580	0	0.016	0.012	0.065	0.66	3 000

0.007 A 0.010	Seals (two places) X	0.010 A 0.005 E C0.2 C0.5 C0.5 R0.2 max. E 10 10 15
_10 _	La	45
	Lo	

Precise clearance (SFT)	Norminal	IVIAAIITIUITI
W1201FA-2-C3T5	50	63
W1201FA-4-C3T5	100	113
W1202FA-2-C3T5	150	163
W1202FA-4-C3T5	200	213
W1203FA-2-C3T5	250	263
W1204FA-2-C3T5	350	363
	W1201FA-2-C3T5 W1201FA-4-C3T5 W1202FA-2-C3T5 W1202FA-4-C3T5 W1203FA-2-C3T5	Precise clearance (SFT) W1201FA-2-C3T5 50 W1201FA-4-C3T5 100 W1202FA-2-C3T5 150 W1202FA-4-C3T5 200 W1203FA-2-C3T5 250

Notes: 1. We recommend NSK support unit. See page B389 for details.

W1205FA-1P-C3Z5

2. Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

W1205FA-2-C3T5

3. Contact NSK if permissible rotational speed is to be exceeded.

Ball screw No.

View X-X

 $4-\phi 4.5$ drill thru

M6×1

(oil hole)

15

Screw shaft ø12

Lead 10

Unit: mm

φ8×4.5	Ball screw specifications			
	Product cl	assification	Preloaded	Precise clearance
	Shaft dia. x Lead	/ Direction of turn	12 × 10	/ Right
	Preload / Bal	I recirculation	P-preload /	Return tube
,0	Ball dia. / B	all circle dia.	2.381	/ 12.5
	Screw shaft	root diameter	10	0.0
	Effective to	urns of balls	2.5	× 1
	Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T
	Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2 790	4 430
	(N)	Static C _{0a}	3 220	6 430
	Axia	l play	0	0.005 or less
	Prelo	ad (N)	98.1	_
	l '	ction torque, cm)	1.0 – 4.9	1.5 or less
	Spac	er ball	Yes	None

Factory-packed grease

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

NSK grease LR3

1.4

0.7

								Unit: mm
Scre	ew shaft le	ngth	Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
160	175	230	0	0.020	0.018	0.035	0.43	3 000
210	225	280	0	0.023	0.018	0.035	0.47	3 000
310	325	380	0	0.023	0.018	0.050	0.56	3 000
410	425	480	0	0.027	0.020	0.060	0.64	3 000
510	525	580	0	0.030	0.023	0.075	0.72	3 000

(0.010 A) (0.010 A) (0.02 Ma) (0.03 F) (0.003 F)	AX. (10.010 A) 10 50	X * G * * G * * G * A G * X * A G *	(5)	R0.2 max. E 10 M10×1	9U8 0 0000 CO.5	0.008 E
40	L _t (hardened)		5 (10)	30 45	15 <	
10	L _a			45	>	
<	L	0			>	

Ball scr	St	roke		
Ball SCI	Nominal	Maximum		
Preloaded (LPFT)	Precise clearance (LSFT)	NOTTIITIAI	iviaxiffiuffi	
W1201FA-5P-C5Z10	W1201FA-6-C5T10	100	103	
W1202FA-5P-C5Z10	W1202FA-6-C5T10	150	153	
W1203FA-3P-C5Z10	W1203FA-4-C5T10	250	253	
W1204FA-3P-C5Z10	W1204FA-4-C5T10	350	353	
W1205FA-3P-C5Z10	W1205FA-4-C5T10	450	453	

- Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

R0.2 max.

1.15

9.15

/ 0.003 F →

22

✓ 0.010 A

√ 0.010 A

© 9.6 C0.5

F

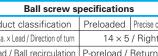
M5×0.8

Depth 12

View X-X

 $4-\phi 5.5$ drill thru

c'bore *ϕ*9.5×5.5


M6×1

(oil hole)

Screw shaft ø14

Lead 5

Unit: mm

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	14 × 5 / Right				
Preload / Bal	I recirculation	P-preload /	Return tube			
Ball dia. / B	all circle dia.	3.175	/ 14.5			
Screw shaft	root diameter	11	1.2			
Effective to	urns of balls	2.5	×1			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	5 020	7 970			
(N)	Static C _{0a}	5 970	11 900			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	147	_			
Dynamic friction torque, (N·cm)		1.5 – 6.9	2.0 or less			
Spacer ball		Yes	None			
Factory-packed grease		NSK gre	ase LR3			
Internal spatial v	olume of nut (cm³)	2	.2			
Standard volume of g	rease replenishing (cm³)	1	.1			

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Coro	v chaft l	shaft length		Lead accuracy			N 4	Permissible rotatio	nal speed N (min-1)	
Sciev	v Silait it	engui	Le	au accur	асу	out **	Mass (kg)	Supporting	g condition	
$L_{\rm t}$	$L_{\rm a}$	L。	T	$e_{\scriptscriptstyle p}$	υu		(kg/	Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.010	0.008	0.020	0.52	3 000	3 000	
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000	
339	354	421	0	0.013	0.010	0.035	0.67	3 000	3 000	
439	454	521	0	0.015	0.010	0.045	0.77	3 000	3 000	
539	554	621	0	0.016	0.012	0.045	0.87	3 000	3 000	
689	704	771	0	0.018	0.013	0.055	1.0	3 000	3 000	

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

ካ	#**G	0.0010 A 0.006 E 0.000 CO.5 CO.5	
		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
لړ	A G	R0.2 / max. 10 / M12×1 / 10.003 E 5 (10) 30 15	
		45	

Rall cor	Stroke			
Ball Sci	Ball screw No.		Maximum	
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum	
W1401FA-1P-C3Z5	W1401FA-2-C3T5	100	143	
W1402FA-1P-C3Z5	W1402FA-2-C3T5	150	193	
W1403FA-1P-C3Z5	W1403FA-2-C3T5	250	293	
W1404FA-1P-C3Z5	W1404FA-2-C3T5	350	393	
W1405FA-1P-C3Z5	W1405FA-2-C3T5	450	493	
W1406FA-1P-C3Z5	W1406FA-2-C3T5	600	643	

Seals (two places)

1 0.008 A

29 40

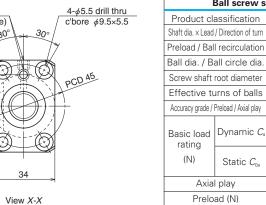
L_t (hardened)

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

M6×1


(oil hole)

Screw shaft ø14

Lead 8

Unit: mm

Recommended support unit

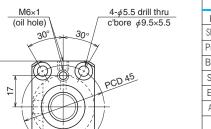
For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Ball screw sp	ecification	•	
		5	
assification	Preloaded Precise cleara		
/ Direction of turn	14 × 8 / Right		
l recirculation	P-preload /	Return tube	
all circle dia.	3.175	/ 14.5	
root diameter	11	1.2	
irns of balls	2.5	×1	
Preload / Axial play	C5 / Z	C5 / T	
Dynamic $C_{\scriptscriptstyle a}$	4 960	7 880	
Static C _{0a}	5 920	11 800	
l play	0	0.005 or less	
ad (N)	147	_	
Dynamic friction torque, (N·cm)		2.4 or less	
er ball	Yes	None	
ked grease	NSK grease LR3		
olume of nut (cm³)	2	.1	
ease replenishing (cm³)	1	.1	
	/ Direction of turn I recirculation all circle dia. root diameter rurns of balls Preload / Axial play Dynamic C _a Static C _{oa} play ad (N) stion torque, cm) er ball sked grease slume of nut (cm)	I Direction of turn 14 \times 8 of recirculation P-preload / all circle dia. 3.175 oto diameter 11 oto diameter 2.5 Preload / Axial play C5 / Z Dynamic C_a 4 960 Static C_{oa} 5 920 play 0 ad (N) 147 oto oto torque, cm) 1.5 - 7.8 or ball Yes chees NSK greelume of nut (cm²) 2	

Coro	oboft l	anath	Lo	ad agair	2014	Shaft run-		Permissible rotatio	nal speed N (min-1)
Screv	v shaft le	engtn	Le	ad accura	acy	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.56	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.61	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.67	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.72	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.78	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.83	3 000	3 000
489	504	571	0	0.027	0.020	0.050	0.88	3 000	3 000
539	554	621	0	0.030	0.023	0.050	0.94	3 000	3 000
589	604	671	0	0.030	0.023	0.065	0.99	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.0	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.1	3 000	3 000
789	804	871	0	0.035	0.025	0.085	1.2	2 830	3 000

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).


(0.014 A	Seals (two places) 6 X A G L ₁ (hardened)	(5)	FO.2 / 10 / 10 / M12x1
22	La	-	45
-	Lo		

Dallas	Ball screw No.			
Ball SC	Dali Sciew No.		Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)			
W1401FA-3P-C5Z8	W1401FA-4-C5T8	100	137	
W1402FA-3P-C5Z8	W1402FA-4-C5T8	150	187	
W1402FA-5P-C5Z8	W1402FA-6-C5T8	200	237	
W1403FA-3P-C5Z8	W1403FA-4-C5T8	250	287	
W1403FA-5P-C5Z8	W1403FA-6-C5T8	300	337	
W1404FA-3P-C5Z8	W1404FA-4-C5T8	350	387	
W1404FA-5P-C5Z8	W1404FA-6-C5T8	400	437	
W1405FA-3P-C5Z8	W1405FA-4-C5T8	450	487	
W1405FA-5P-C5Z8	W1405FA-6-C5T8	500	537	
W1406FA-3P-C5Z8	W1406FA-4-C5T8	550	587	
W1406FA-5P-C5Z8	W1406FA-6-C5T8	600	637	
W1407FA-1P-C5Z8	W1407FA-2-C5T8	700	737	

- 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

View X-X

34

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

ı	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearanc	
Shaft dia. x Lead	/ Direction of turn	15 × 10) / Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.175	/ 15.5	
Screw shaft	root diameter	12	2.2	
Effective to	urns of balls	2.5	× 1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	5 130	8 140	
	Static C _{0a}	6 420	12 800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque, (N·cm)		1.5 – 7.8	2.4 or less	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2.3		
Standard volume of gr	rease replenishing (cm³)	1	.2	

Unit: mm

Screw shaft length		Lead accuracy				Permissible rotational speed N (min-1)			
30161	v Siidilit	ziigili	Le	au accur	асу	out **	Mass (kg)	Supporting	condition
$L_{\rm t}$	L _a	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.67	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.74	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.80	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.86	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.93	3 000	3 000
489	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
539	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
589	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.2	3 000	3 000
789	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000
889	904	971	0	0.040	0.027	0.085	1.5	2 430	3 000
1 089	1 104	1 171	0	0.046	0.030	0.110	1.8	1 600	2 250

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

M5×0.8 Depth 12	C0.5	Seals (two places) 5 X 10.011 A	## * G A G	0.014 A 0.014 A 0.02 CO. 0.02 CO. 0.03 CO. 0.04 E 10 0.004 E 10 0.004 E 45	
-	•	L _o			->

Rall co	Ball screw No.		
Dall 5C	ew no.	Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Norminal	IVIAXIITIUITI
W1501FA-1P-C5Z10	W1501FA-2-C5T10	100	132
W1502FA-1P-C5Z10	W1502FA-2-C5T10	150	182
W1502FA-3P-C5Z10	W1502FA-4-C5T10	200	232
W1503FA-1P-C5Z10	W1503FA-2-C5T10	250	282
W1503FA-3P-C5Z10	W1503FA-4-C5T10	300	332
W1504FA-1P-C5Z10	W1504FA-2-C5T10	350	382
W1504FA-3P-C5Z10	W1504FA-4-C5T10	400	432
W1505FA-1P-C5Z10	W1505FA-2-C5T10	450	482
W1505FA-3P-C5Z10	W1505FA-4-C5T10	500	532
W1506FA-1P-C5Z10	W1506FA-2-C5T10	550	582
W1506FA-3P-C5Z10	W1506FA-4-C5T10	600	632
W1507FA-1P-C5Z10	W1507FA-2-C5T10	700	732
W1508FA-1P-C5Z10	W1508FA-2-C5T10	800	832
W1510FA-1P-C5Z10	W1510FA-2-C5T10	1 000	1 032

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

Recommended support unit

271

321

371

421

471

521

571

621

671

721

771

871

971

1 171

For opposite to drive side

(Simple)

WBK12S-01 (square)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Lead accuracy

 e_n

0.020

0.023

0.023

0.025

0.025

0.027

0.027

0.030

0.030

0.035

0.035

0.035

0.040

0.046

υ...

0.110

 $4-\phi 5.5$ drill thru

M6×1

(oil hole)

For drive side

(Fixed)

WBK12-01A (square)

WBK12-11 (round)

186

236

286

336

386

436

486

536

586

636

686

786

886

1 086

Screw shaft length

204

254

304

354

404

454

504

554

604

654

704

804

904

1 104

Screw shaft ø15

Unit: mm Lead 20

Ball screw specifications Product classification Preloaded | Precise clearance Shaft dia. x Lead / Direction of turn 15×20 / Right Preload / Ball recirculation P-preload / End cap Ball dia. / Ball circle dia 3.175 / 15.5 Screw shaft root diameter Effective turns of balls Accuracy grade / Preload / Axial play C5 / Z

12.2 1.7×1 C5 / T 4 320 5 660 Basic load Dynamic C. rating (N) Static C_{0a} 5 800 8 700

Axial play 0 0.005 or less 147 Preload (N) Dynamic friction torque,

1.5 - 7.82.4 or less (N·cm) Spacer ball Yes None NSK grease LR3 Factory-packed grease Internal spatial volume of nut (cm3) 1.9

Mass

(kg)

1.8

Standard volume of grease replenishing (cm³

Shaft run-

out **

Unit: mm

0.018	0.025	0.61	3 000	3 000	
0.018	0.035	0.68	3 000	3 000	
0.018	0.035	0.75	3 000	3 000	
0.020	0.040	0.81	3 000	3 000	
0.020	0.040	0.88	3 000	3 000	
0.020	0.050	0.95	3 000	3 000	
0.020	0.050	1.0	3 000	3 000	
0.023	0.050	1.1	3 000	3 000	
0.023	0.065	1.1	3 000	3 000	
0.025	0.065	1.2	3 000	3 000	
0.025	0.065	1.3	3 000	3 000	
0.025	0.085	1.4	3 000	3 000	
0.027	0.085	1.5	2 440	3 000	

1 610

1.0

Permissible rotational speed N (min-1)

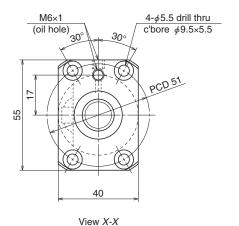
Supporting condition

Fixed - Simple support | Fixed - Fixed

0.030 Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

11 * * G / 0.014 A ✓ 0.015 A 0.014 A - 0.009 E -0.009 **4** 10h6 C0.5 R0.2 max. R0.2 max. F .15 À Ġ (5) E/_10_ **1** 0.011 A M5×0.8 /M12×1 Depth 12 9.15 24 10 11 √ 0.004 E 45 **1** 0.004 F 15 Lt (hardened) 30 22 45


Ball sc	St	roke		
Dail 5C	Bull Screw No.			
Preloaded (UPFC)	Precise clearance (USFC)	Nominal	Maximum	
W1501FA-3PG-C5Z20	W1501FA-4G-C5T20	100	135	
W1502FA-5PG-C5Z20	W1502FA-6G-C5T20	150	185	
W1502FA-7PG-C5Z20	W1502FA-8G-C5T20	200	235	
W1503FA-5PG-C5Z20	W1503FA-6G-C5T20	250	285	
W1503FA-7PG-C5Z20	W1503FA-8G-C5T20	300	335	
W1504FA-5PG-C5Z20	W1504FA-6G-C5T20	350	385	
W1504FA-7PG-C5Z20	W1504FA-8G-C5T20	400	435	
W1505FA-5PG-C5Z20	W1505FA-6G-C5T20	450	485	
W1505FA-7PG-C5Z20	W1505FA-8G-C5T20	500	535	
W1506FA-5PG-C5Z20	W1506FA-6G-C5T20	550	585	
W1506FA-7PG-C5Z20	W1506FA-8G-C5T20	600	635	
W1507FA-3PG-C5Z20	W1507FA-4G-C5T20	700	735	
W1508FA-3PG-C5Z20	W1508FA-4G-C5T20	800	835	
W1510FA-3PG-C5Z20	W1510FA-4G-C5T20	1 000	1 035	

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 - 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space See page D16 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded

2 2 4 0

Lead 5

Unit: mm

ı	Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	16×5	/ Right				
Preload / Bal	I recirculation	P-preload /	Return tube				
Ball dia. / B	all circle dia.	3.175	/ 16.5				
Screw shaft	root diameter	13	3.2				
Effective to	urns of balls	2.5	×1				
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	5 430	8 620				
(N)	Static C _{0a}	6 890	13 800				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	147	_				
Dynamic friction torque, (N·cm)		1.5 – 7.8	2.0 or less				
Spacer ball		Yes	None				
Factory-pag	cked grease	NSK grease LR3					
Internal spatial vo	olume of nut (cm³)	2	.6				
Standard volume of gr	rease replenishing (cm³)	1	.3				

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)		
WBK12-01A (square)	WBK12S-01 (square)		
WBK12-11 (round)			

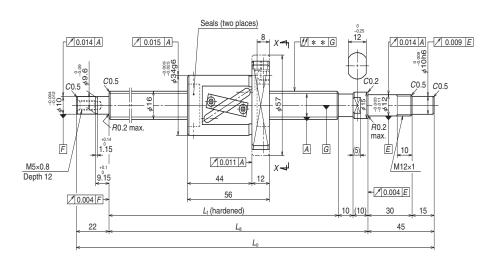
Unit: mm

Cara	v shaft le	on ath	Lead accuracy				Permissible rotational speed N (min ⁻¹)		
30161	/V SHAIL I	engui				out ** Mass	Supporting	g condition	
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.010	0.008	0.020	0.70	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.83	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.97	3 000	3 000
489	504	571	0	0.015	0.010	0.045	1.1	3 000	3 000
689	704	771	0	0.018	0.013	0.055	1.4	3 000	3 000
889	904	971	0	0.021	0.015	0.075	1.6	2 570	3 000

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

M5×0.8 Depth 12	Seals (two places) 6 X 7 0.008 A 31 11 X 42 L ₁ (hardened)	-[f] * * G	615		C0.5 C0.5
22	La			45	
<u>'</u>	Lo				
					•

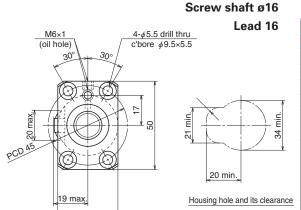

Ball scr	St	roke	
Ball Sci	Nominal	Maximum	
Preloaded (PFT)	Precise clearance (SFT)	Nominal	iviaximum
W1601FA-1P-C3Z5	W1601FA-2-C3T5	100	141
W1602FA-1P-C3Z5	W1602FA-2-C3T5	200	241
W1603FA-1P-C3Z5	W1603FA-2-C3T5	300	341
W1604FA-1P-C3Z5	W1604FA-2-C3T5	400	441
W1606FA-1P-C3Z5	W1606FA-2-C3T5	600	641
W1608FA-1P-C3Z5	W1608FA-2-C3T5	800	841

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X



Ball sc	St	Stroke		
Dail 5Cl	Dull Goldwine.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum	
W1601FA-3P-C5Z16	W1601FA-4-C5T16	100	122	
W1602FA-3P-C5Z16	W1602FA-4-C5T16	150	172	
W1602FA-5P-C5Z16	W1602FA-6-C5T16	200	222	
W1603FA-3P-C5Z16	W1603FA-4-C5T16	250	272	
W1603FA-5P-C5Z16	W1603FA-6-C5T16	300	322	
W1604FA-3P-C5Z16	W1604FA-4-C5T16	350	372	
W1604FA-5P-C5Z16	W1604FA-6-C5T16	400	422	
W1605FA-1P-C5Z16	W1605FA-2-C5T16	450	472	
W1605FA-3P-C5Z16	W1605FA-4-C5T16	500	522	
W1606FA-3P-C5Z16	W1606FA-4-C5T16	550	572	
W1606FA-5P-C5Z16	W1606FA-6-C5T16	600	622	
W1607FA-1P-C5Z16	W1607FA-2-C5T16	700	722	
W1608FA-3P-C5Z16	W1608FA-4-C5T16	800	822	
W1610FA-1P-C5Z16	W1610FA-2-C5T16	1 000	1 022	

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

I	Ball screw specifications								
Product cl	assification	Preloaded	Precise clearance						
Shaft dia. x Lead	/ Direction of turn	16 × 16	7 Right						
Preload / Bal	I recirculation	P-preload /	Return tube						
Ball dia. / B	all circle dia.	3.175	/ 16.75						
Screw shaft	root diameter	13	3.4						
Effective to	urns of balls	1.5	×1						
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T						
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 180	5 480						
(N)	Static C _{0a}	5 390	8 080						
Axia	l play	0	0.005 or less						
Prelo	ad (N)	147	_						
'	ction torque, cm)	1.5 – 7.8	2.4 or less						
Spac	er ball	Yes	None						
Factory-page	cked grease	NSK gre	ase LR3						
Internal spatial vi	olume of nut (cm³)	2	.1						

Standard volume of grease replenishing (cm3)

Unit: mm

1.1

Screv	w shaft le	enath	le	ad accura	acv	Shaft run- out ** Mass		Permissible rotatio	nal speed N (min-1)
	, onare i	Jilgtii	LO				(kg)	Supporting	g condition
$L_{\rm t}$	$L_{\rm a}$	L _o	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple support	Fixed - Fixed
184	204	271	0	0.020	0.018	0.025	0.69	3 000	3 000
234	254	321	0	0.023	0.018	0.035	0.77	3 000	3 000
284	304	371	0	0.023	0.018	0.035	0.84	3 000	3 000
334	354	421	0	0.025	0.020	0.040	0.92	3 000	3 000
384	404	471	0	0.025	0.020	0.040	0.99	3 000	3 000
434	454	521	0	0.027	0.020	0.050	1.1	3 000	3 000
484	504	571	0	0.027	0.020	0.050	1.1	3 000	3 000
534	554	621	0	0.030	0.023	0.050	1.2	3 000	3 000
584	604	671	0	0.030	0.023	0.065	1.3	3 000	3 000
634	654	721	0	0.035	0.025	0.065	1.4	3 000	3 000
684	704	771	0	0.035	0.025	0.065	1.4	3 000	3 000
784	804	871	0	0.035	0.025	0.085	1.6	3 000	3 000
884	904	971	0	0.040	0.027	0.085	1.7	2 720	3 000
1 084	1 104	1 171	0	0.046	0.030	0.110	2.0	1 790	2 480

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Lead 32

Unit: mm

	M6×1 (oil hole)	4-\$\phi 5.5 drill thru
20		PCD 45
	<u>36</u>	>
	View X-X	X

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	16 × 32 / Right				
Preload / Bal	I recirculation	P-preload	/ End cap			
Ball dia. / B	all circle dia.	3.175	/ 16.75			
Screw shaft	root diameter	13	3.4			
Effective to	urns of balls	0.7	×2			
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 800				
(N)	Static C _{0a} 7 !		510			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	118	_			
Dynamic friction torque, (N·cm)		1.5 – 9.8	2.4 or less			
Spacer ball		None				
Factory-pag	cked grease	NSK grease LR3				
Internal spatial vo	olume of nut (cm³)	2.0				
Standard volume of gr	rease replenishing (cm³)	1.0				

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

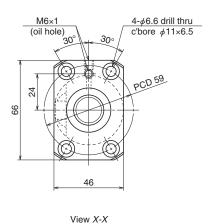
									Unit: mm	
Cara	w abaft l	an ath				Shaft run- out **	N 4	Permissible rotational speed N (min-1)		
Scie	Screw shaft length		Lead accuracy		Lead accuracy		Mass (kg)	Supporting	condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed	
382	404	471	0	0.025	0.020	0.040	0.90	3 000	3 000	
582	604	671	0	0.030	0.023	0.065	1.2	3 000	3 000	
882	904	971	0	0.040	0.027	0.085	1.7	2 670	3 000	
1 282	1 304	1 371	0	0.054	0.035	0.150	2.3	1 250	1 740	

Notes: 5. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

6. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

M5×0.8 Depth 12 0.004 F	13.5 10 10 34 L _t (hardened		C0.2 C0.5 C0.5 R0.2 R0.2 M12×1 12 (10) 30 15
< 22	<u>L</u>	a	45
<		Lo	

Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	NOTTITIAL	iviaximum
W1603FA-7PGX-C5Z32	W1603FA-8GX-C5T32	300	342
W1605FA-5PGX-C5Z32	W1605FA-6GX-C5T32	500	542
W1608FA-5PGX-C5Z32	W1608FA-6GX-C5T32	800	842
W1612FA-1PGX-C5Z32	W1612FA-2GX-C5T32	1 200	1 242


- 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

NSK

Screw shaft ø20

Lead 10

Unit: mm

Recommended support unit

	• • • • • • • • • • • • • • • • • • • •
For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

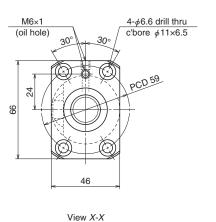
	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20 × 10	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.969	9 / 21	
Screw shaft	root diameter	16	3.9	
Effective to	urns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5/T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	8 350	13 300	
(N)	Static C _{0a}	11 000	21 900	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	196	_	
,	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spac	er ball	Yes	None	
Factory-page	cked grease	NSK grease LR3		
Internal spatial v	olume of nut (cm³)	4.7		
Standard volume of g	rease replenishing (cm³)	2	.4	

Unit: mm

Un								Unit: mm	
Soros	Screw shaft length		Lo	Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)	
30161	v Shart it	-iigtii	Le		acy	out **	Mass (kg)	Supporting	g condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
289	314	399	0	0.023	0.018	0.035	1.4	3 000	3 000
389	414	499	0	0.025	0.020	0.040	1.6	3 000	3 000
489	514	599	0	0.027	0.020	0.050	1.9	3 000	3 000
589	614	699	0	0.030	0.023	0.065	2.1	3 000	3 000
689	714	799	0	0.035	0.025	0.065	2.3	3 000	3 000
789	814	899	0	0.035	0.025	0.085	2.5	3 000	3 000
889	914	999	0	0.040	0.027	0.085	2.8	3 000	3 000
989	1 014	1 099	0	0.040	0.027	0.110	3.0	2 710	3 000
1 089	1 114	1 199	0	0.046	0.030	0.110	3.2	2 220	3 000
1 189	1 214	1 299	0	0.046	0.030	0.150	3.4	1 860	2 570
1 289	1 314	1 399	0	0.054	0.035	0.150	3.7	1 580	2 190

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO.S. M6×1.0 Depth 15	R0.2 1 10.15	0.015 A 0.015	Seals (two p	6 X 1	# * G A G	(5)	FIO.2 max. E 15 M15×1	φ12h6	Ø 0.009 E C0.5
∠ L ₀		25		La				€ 60		
		<			Lo				>	

Poll on	Stroke			
Dali SC	Ball screw No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum	
W2002FA-1P-C5Z10	W2002FA-2-C5T10	200	229	
W2003FA-1P-C5Z10	W2003FA-2-C5T10	300	329	
W2004FA-1P-C5Z10	W2004FA-2-C5T10	400	429	
W2005FA-1P-C5Z10	W2005FA-2-C5T10	500	529	
W2006FA-1P-C5Z10	W2006FA-2-C5T10	600	629	
W2007FA-1P-C5Z10	W2007FA-2-C5T10	700	729	
W2008FA-1P-C5Z10	W2008FA-2-C5T10	800	829	
W2009FA-1P-C5Z10	W2009FA-2-C5T10	900	929	
W2010FA-1P-C5Z10	W2010FA-2-C5T10	1 000	1 029	
W2011FA-1P-C5Z10	W2011FA-2-C5T10	1 100	1 129	
W2012FA-1P-C5Z10	W2012FA-2-C5T10	1 200	1 229	

- Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 20

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

l	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20 × 20) / Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.969	9 / 21	
Screw shaft	root diameter	16	6.9	
Effective to	urns of balls	1.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	6 250	8 190	
(N)	Static C _{0a}	8 760	13 100	
Axia	l play	0 0.005 or les		
Prelo	ad (N)	196	_	
'	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spac	er ball	Yes	None	
Factory-page	cked grease	NSK grease LR3		
Internal spatial v	olume of nut (cm³)	4.2		
Standard volume of g	rease replenishing (cm³)	2	.1	

Unit: mm 👺

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										Ø111t: 111111	
$L_{\rm t}$ $L_{\rm a}$ $L_{\rm o}$ T $e_{\rm p}$ $v_{\rm u}$ t <	Canada ala aft la cantla			Lo				N 4	Permissible rotational speed N (min-1)		
$L_{\rm t}$ $L_{\rm s}$ $L_{\rm o}$ T $e_{\rm p}$ $v_{\rm u}$ $L_{\rm o}$ Fixed - Simple support Fixed -	Screv	w snart ie	ength	Le	ad accura	асу			Supporting	g condition	
410 435 520 0 0.027 0.020 0.050 1.8 3 000 3 000 510 535 620 0 0.030 0.023 0.050 2.0 3 000 3 000 610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle m p}$	υu		(kg)	Fixed - Simple support	Fixed - Fixed	
510 535 620 0 0.030 0.023 0.050 2.0 3 000 3 000 610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	310	335	420	0	0.023	0.018	0.040	1.6	3 000	3 000	
610 635 720 0 0.030 0.023 0.065 2.3 3 000 3 000 710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	410	435	520	0	0.027	0.020	0.050	1.8	3 000	3 000	
710 735 820 0 0.035 0.025 0.085 2.5 3 000 3 000 810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	510	535	620	0	0.030	0.023	0.050	2.0	3 000	3 000	
810 835 920 0 0.040 0.027 0.085 2.7 3 000 3 000 910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	610	635	720	0	0.030	0.023	0.065	2.3	3 000	3 000	
910 935 1 020 0 0.040 0.027 0.110 3.0 3 000 3 000	710	735	820	0	0.035	0.025	0.085	2.5	3 000	3 000	
	810	835	920	0	0.040	0.027	0.085	2.7	3 000	3 000	
1 010 1 005 1 100 0 0 000 0 010 0 00 0 000 0 000	910	935	1 020	0	0.040	0.027	0.110	3.0	3 000	3 000	
1010 1035 1120 0 0.046 0.030 0.110 3.2 2630 3 000	1 010	1 035	1 120	0	0.046	0.030	0.110	3.2	2 630	3 000	
1 110 1 135 1 220 0 0.046 0.030 0.110 3.4 2 160 2 970	1 110	1 135	1 220	0	0.046	0.030	0.110	3.4	2 160	2 970	
1 210 1 235 1 320 0 0.046 0.030 0.150 3.7 1 810 2 500	1 210	1 235	1 320	0	0.046	0.030	0.150	3.7	1 810	2 500	
1 510 1 535 1 620 0 0.054 0.035 0.180 4.4 1 150 1 610	1 510	1 535	1 620	0	0.054	0.035	0.180	4.4	1 150	1 610	

Notes: 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

			Seals (two pla	aces)		0 -0.25		
CO.U. Representation of the control		R0.2 max.	10.011 A 50 63		## * G	17	CO.3 CO.5 CO.5 RO.2 max.	
			L _t (hardened	d)		10 (15	5) 40 20	
	25		L	3		-	60	
	- 7	•		Lo			-1-	

Pall an	Stroke			
Dali Sci	Ball screw No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum	
W2003FA-3P-C5Z20	W2003FA-4-C5T20	200	241	
W2004FA-3P-C5Z20	W2004FA-4-C5T20	300	341	
W2005FA-3P-C5Z20	W2005FA-4-C5T20	400	441	
W2006FA-3P-C5Z20	W2006FA-4-C5T20	500	541	
W2007FA-3P-C5Z20	W2007FA-4-C5T20	600	641	
W2008FA-3P-C5Z20	W2008FA-4-C5T20	700	741	
W2009FA-3P-C5Z20	W2009FA-4-C5T20	800	841	
W2010FA-3P-C5Z20	W2010FA-4-C5T20	900	941	
W2011FA-3P-C5Z20	W2011FA-4-C5T20	1 000	1 041	
W2012FA-3P-C5Z20	W2012FA-4-C5T20	1 100	1 141	
W2015FA-1P-C5Z20	W2015FA-2-C5T20	1 400	1 441	

- Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

1 0.015 A

1 0.011 A →

20 10 11

41

Lt (hardened)

R0.2 max.

1 0.014 A

+0.14 1.15

/ 0.004 F →

25

10.15

F

M6×1.0

Depth 15

_ 1 0.009 E

C0.5

1 0.014 A

R0.2

max.

14 (15)

Ė _15_{_}

1 0.004 E

40

M15×1

60

-0.011 φ12h6

C0.5

20

Screw shaft ø20

Lead 40

Unit: mm

PCD AB	M6×1 (oil hole) 30	$4-\phi 5.5$ drill thru
40		30 PCD 48

(Oil Hole) 30 /	
(SI NOIS) 30 30 PCD 48	

View X-X

l	Ball screw s _l	pecification	S	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20 × 40 / Right		
Preload / Bal	I recirculation	P-preload	/ End cap	
Ball dia. / B	all circle dia.	3.175	/ 20.75	
Screw shaft	root diameter	17	7.4	
Effective to	urns of balls	0.7	× 2	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	5 4	110	
(N)	Static C _{0a}	9 3	360	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	148	_	
•	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spac	er ball	None		
Factory-pag	cked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2.8		
Standard volume of gr	ease replenishing (cm³)	1	.4	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Unit: mm

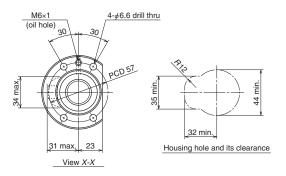
Saraw shaft langth					Shaft run-	N 4	Permissible rotational speed N (min-1)		
Screw snart length		Lead accuracy					Supporting	condition	
L _t	$L_{\rm a}$	L。	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
506	535	620	0	0.030	0.023	0.050	1.7	3 000	3 000
706	735	820	0	0.035	0.025	0.085	2.2	3 000	3 000
906	935	1 020	0	0.040	0.027	0.110	2.7	3 000	3 000
106	1 135	1 220	0	0.046	0.030	0.110	3.1	2 210	3 000
306	1 335	1 420	0	0.054	0.035	0.150	3.6	1 570	2 160
706	1 735	1 820	0	0.065	0.040	0.230	4.6	910	1 270
	L _t 506 706 906 106	L ₁ L ₂ 506 535 706 735 906 935 106 1 135 306 1 335	506 535 620 706 735 820 906 935 1 020 106 1 135 1 220 306 1 335 1 420	L ₁ L ₂ L ₃ L ₄ T 5006 535 620 0 706 735 820 0 906 935 1 020 0 106 1 135 1 220 0 306 1 335 1 420 0	L_{c} L_{e} L_{o} L_{o} T E_{p} 0.030 0.030 0.035 0.035 0.035 0.040 0.054	L_{c} L_{o} L_{o} T e_{p} v_{u} 0.030 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.025	Screw shaft length Lead accuracy $out**$ L_t L_a L_o T e_p v_u L_t L_a L_o T e_p v_u L_t L_a L_o T e_p v_u L_t L_a L_o V_o V_o V_o L_t L_a V_o V_o V_o V_o L_t L_a V_o V_o V_o V_o L_t L_t V_o V_o V_o V_o L_t V_o V_o V_o V_o V_o L_t V_o V	Lead accuracy Out ** Mass (kg) Lt La La La T ep v_u v_u Mass (kg) Lt La La La La La La La	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notes: 5. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.

6. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Ball scr	St	Stroke		
Dali SCI	Nominal	Maximum		
Preloaded (UPFC)	Precise clearance (USFC)	INOTTIITIAI	iviaximum	
W2005FA-5PGX-C5Z40	W2005FA-6GX-C5T40	400	459	
W2007FA-5PGX-C5Z40	W2007FA-6GX-C5T40	600	659	
W2009FA-5PGX-C5Z40	W2009FA-6GX-C5T40	800	859	
W2011FA-5PGX-C5Z40	W2011FA-6GX-C5T40	1 000	1 059	
W2013FA-1PGX-C5Z40	W2013FA-2GX-C5T40	1 200	1 259	
W2017FA-1PGX-C5Z40	W2017FA-2GX-C5T40	1 600	1 659	

 $X \rightarrow \mathbb{Z} \times \mathbb{Z}$


A

G

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 - 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
 - 3. Ball nut does not have seal.
 - 4. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 20

Unit: mm

Ball screw specifications							
Product cla	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	25 × 20 / Right					
Preload / Bal	I recirculation	P-preload /	Return tube				
Ball dia. / B	all circle dia.	4.762	/ 26.25				
Screw shaft	root diameter	21	.3				
Effective to	urns of balls	2.5	× 1				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	11 700	18 600				
(N)	Static C _{0a}	16 300	32 600				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	343	_				
	ction torque, cm)	3.9 – 24.5	4.9 or less				
Spac	er ball	Yes	None				
Factory-pag	cked grease	NSK gre	ase LR3				
Internal spatial vo	olume of nut (cm³)	1	2				
Standard volume of gr	ease replenishing (cm³)		6				

Recommended support unit

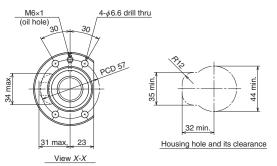
For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)				
WBK20-11 (round)	WBK20-11 (round)					

Unit: mm

Carous shaft langth			Load accuracy			Shaft run-	N 4	Permissible rotational speed N (min-1)		
Screv	Screw shaft length		Lead accuracy			out **	Mass (kg)	Supporting	g condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed	
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800	
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800	
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 590	2 800	
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 860	2 550	
1 550	1 580	1 713	0	0.054	0.035	0.120	6.9	1 400	1 940	
1 750	1 780	1 913	0	0.065	0.040	0.120	7.6	1 090	1 520	
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	720	1 000	

Co.5 (20) (20) (20) (20) (20) (20) (20) (20)	
53 L _a 80 L _o	

Ball screw No.		Stroke	
		Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	ivorninal	IVIAXIITIUITI
W2507FA-1P-C5Z20	W2507FA-2-C5T20	600	640
W2509FA-1P-C5Z20	W2509FA-2-C5T20	800	840
W2511FA-1P-C5Z20	W2511FA-2-C5T20	1 000	1 040
W2513FA-1P-C5Z20	W2513FA-2-C5T20	1 200	1 240
W2515FA-1P-C5Z20	W2515FA-2-C5T20	1 400	1 440
W2517FA-1P-C5Z20	W2517FA-2-C5T20	1 600	1 640
W2521FA-1P-C5Z20	W2521FA-2-C5T20	2 000	2 040


Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 25

Unit: mm

ı	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	25 × 25	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/ 26.25	
Screw shaft	root diameter	21	.3	
Effective to	urns of balls	1.5	× 1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	8 970	11 700	
(N)	Static C _{0a}	13 100	19 700	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	294	_	
	ction torque, cm)	3.9 – 24.5	4.9	
Spacer ball		Yes	None	
Factory-page	cked grease	NSK grease LR3		
Internal spatial v	olume of nut (cm³)	7.5		
Standard volume of gr	ease replenishing (cm³)	3	.8	

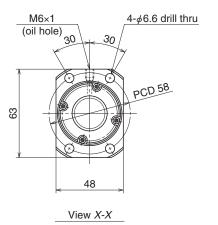
Recommended support unit

For drive side	For opposite to drive side		
(Fixed)	(Fixed)	(Simple)	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	
WBK20-11 (round)	WBK20-11 (round)		

Unit: mm

Screy	v shaft le	anath	Lead accuracy		Shaft run-	Permissible rotational speed N (min-1)			
	/v Silait it	engui	Ĺ	au accur	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 580	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 850	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	7.0	1 400	1 930
1 750	1 780	1 913	0	0.065	0.040	0.120	7.7	1 090	1 510
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	710	1 000

840 20	35 68 12	_	0-0.35 22 (10) (10)	0.3	0.5 Co.5
<	10	Lo	-	< 00	


Rall so	Ball screw No		
Dali Sci	ew no.	Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	INOMINAL	IVIAXIITIUITI
W2507FA-3P-C5Z25	W2507FA-4-C5T25	600	646
W2509FA-3P-C5Z25	W2509FA-4-C5T25	800	846
W2511FA-3P-C5Z25	W2511FA-4-C5T25	1 000	1 046
W2513FA-3P-C5Z25	W2513FA-4-C5T25	1 200	1 246
W2515FA-3P-C5Z25	W2515FA-4-C5T25	1 400	1 446
W2517FA-3P-C5Z25	W2517FA-4-C5T25	1 600	1 646
W2521FA-3P-C5Z25	W2521FA-4-C5T25	2 000	2 046

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Lead 50

Unit: mm

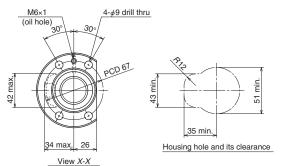
I	Ball screw s _l	pecification	S	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	25 × 50 / Right		
Preload / Bal	I recirculation	P-preload	/ End cap	
Ball dia. / B	all circle dia.	3.969	9 / 26	
Screw shaft	root diameter	21	.9	
Effective to	urns of balls	0.7	×2	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	8 090		
(N)	Static C _{0a}	14 600		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	196	_	
Dynamic friction torque, (N·cm)		2.9 – 21.5	4.9 or less	
Spacer ball		None		
Factory-packed grease		NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	4.2		
Standard volume of gr	ease replenishing (cm³)	2	.1	

Recommended support unit

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

Unit: mm

Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)		onal speed N (min-1) g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	υu		(1.9)	Fixed - Simple support	Fixed - Fixed
844	880	1 013	0	0.040	0.027	0.070	4.1	2 800	2 800
1 144	1 180	1 313	0	0.046	0.030	0.090	5.3	2 600	2 800
1 644	1 680	1 813	0	0.065	0.040	0.120	7.2	1 250	1 720
2 144	2 180	2 313	0	0.077	0.046	0.160	9.1	730	1 010


C0.5 0.013 A C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0	0.3 PO PO PO PO PO PO PO PO PO PO PO PO PO	A G (10)	R0.2 max. E 16 M20×1	✓ 0.010 E
F.0	L _t (hardened)	16 (20)	53 27	-
< 53	< L _a		80	-
<	Lo			-

Palloor	Ball screw No.		гоке
Ball Sci	ew No.	Namainal	Marriagnus
Preloaded (UPFC)	Precise clearance (USFC)	Nominal	Maximum
W2508FA-1PGX-C5Z50	W2508FA-2GX-C5T50	700	780
W2511FA-5PGX-C5Z50	W2511FA-6GX-C5T50	1 000	1 080
W2516FA-1PGX-C5Z50	W2516FA-2GX-C5T50	1 500	1 580
W2521FA-5PGX-C5Z50	W2521FA-6GX-C5T50	2 000	2 080

- Notes: 1. We recommend NSK support unit. See page B389 for details.
 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
 - 3. Ball nut does not have seal.
 - 4. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 25

Unit: mm

Ball screw specifications						
Product cla	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	32 × 25	/ Right			
Preload / Bal	I recirculation	P-preload /	Return tube			
Ball dia. / B	all circle dia.	4.762	/ 33.25			
Screw shaft	root diameter	28	3.3			
Effective to	urns of balls	2.5	× 1			
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T			
Basic load rating	Dynamic <i>C</i> _a	12 900	20 400			
(N)	Static C _{0a}	21 100	42 200			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	441	_			
,	ction torque, cm)	6.8 – 31.5	7.8 or less			
Spac	er ball	Yes	None			
Factory-pag	cked grease	NSK grease LR3				
Internal spatial vo	olume of nut (cm³)	17.5				
Standard volume of gr	ease replenishing (cm³)	8	3.8			

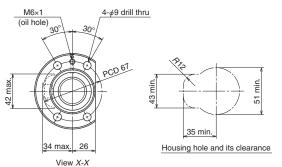
Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)
WBK25-11 (round)	WBK25-11 (round)	

Unit: mm

Screw shaft length				Shaft run-	N 4	Permissible rotational speed N (min-1)			
30161	ew shart length		Lead accuracy		out **	Mass (kg)	Supporting condition		
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 600	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 300
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	800

M25×1.5 20 F 1.35	0.5 NO.3 max.	X	940 940 970 970 970 970 970 970 970 970 970 97	C1
	L _t (hardened)	12 (27)	62 33	
62	- La	•	95	
<	Lo)	-	


Ball scr	Stroke		
Dali Sci	Namainal	Marriagorea	
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W3211FA-1P-C5Z25	W3211FA-2-C5T25	1 000	1 046
W3216FA-1P-C5Z25	W3216FA-2-C5T25	1 500	1 546
W3221FA-1P-C5Z25	W3221FA-2-C5T25	2 000	2 046
W3227FA-1P-C5Z25	W3227FA-2-C5T25	2 600	2 646

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Lead 32

Unit: mm

Ball screw specifications								
Product cla	assification	Preloaded	Precise clearance					
Shaft dia. x Lead	/ Direction of turn	32 × 32	? / Right					
Preload / Bal	l recirculation	P-preload /	Return tube					
Ball dia. / Ba	all circle dia.	4.762	/ 33.25					
Screw shaft	root diameter	28	3.3					
Effective to	irns of balls	1.5	× 1					
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T					
Basic load rating (N)	Dynamic C _a	10 100	13 300					
	Static C _{0a}	16 800	25 200					
Axia	l play	0	0.005 or less					
Prelo	ad (N)	392	_					
•	ction torque, cm)	6.9 – 31.5	7.8 or less					
Space	er ball	Yes	None					
Factory-pag	ked grease	NSK grease LR3						
Internal spatial vo	olume of nut (cm³)	14						
Standard volume of gr	ease replenishing (cm³)	7						

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)				
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)				
WBK25-11 (round)	WBK25-11 (round)					

Unit: mm

									01.11.11
Carayy aboft lawath				Shaft run-		Permissible rotational speed N (min-1)			
Screv	crew shaft length		Lea	Lead accuracy		out **	Mass (kg)	Supporting condition	
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 590	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 290
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	790

C1	0000 0001 0001 0001 0001 0001 0001 000	R0.3 max.	Seals (two places) 10,013 A	X *	000000000000000000000000000000000000000	<u> </u>	\$1000 C1 C1
	62		L _a		×1'- <\-'/>	95	- 50
	<		Lo				

Ball scr	Stroke		
Dali Sci	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	Norminal	iviaximum
W3211FA-3P-C5Z32	W3211FA-4-C5T32	1 000	1 054
W3216FA-3P-C5Z32	W3216FA-4-C5T32	1 500	1 554
W3221FA-3P-C5Z32	W3221FA-4-C5T32	2 000	2 054
W3227FA-3P-C5Z32	W3227FA-4-C5T32	2 600	2 654

Notes: 1. We recommend NSK support unit. See page B389 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Lead 4

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	20 × 4 / Right
Preload / Bal	l recirculation	P-preload / Return tube
Ball dia. / B	all circle dia.	2.381 / 20.3
Effective to	irns of balls	2.5 × 2
Screw shaft	root diameter	17.8
Accuracy gra	ade / Preload	C5 / Z
Basic load	Dynamic $C_{\scriptscriptstyle a}$	6 550
rating (N)	Static C _{0a}	10 900
Prelo	ad (N)	294
,	torque, median, cm)	3.9
Spac	er ball	Yes
Factory-pag	ked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	2.7

6-φ5.5 drill thru c'bore φ9.5×5.5 45° PCO 51 M6×1.0 (oil hole)

View X-X

Recommended support unit

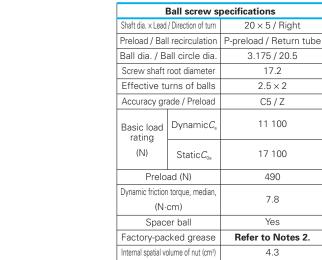
1.4

Standard volume of grease replenishing (cm3)

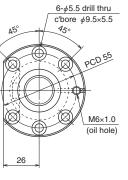
For drive side (Fixed)	For opposite to drive side (Simple)	
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

Unit: mm

						Offic. Hilli	
Load accuracy		Shaft run-		Permissible rotational speed N (min-1)			
Lead accuracy		СУ	out **	Mass (kg)	Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.005	0.023	0.018	0.045	1.1	3 000	3 000	
-0.007	0.023	0.018	0.045	1.2	3 000	3 000	
-0.009	0.025	0.020	0.055	1.5	3 000	3 000	
-0.011	0.027	0.020	0.070	1.7	3 000	3 000	
-0.014	0.030	0.023	0.085	1.9	3 000	3 000	
-0.016	0.035	0.025	0.085	2.1	3 000	3 000	


0.014 A 0.0	R0.2 max.	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	# * G	17 17 17 17 19:61-4	70.018 70.018 70.018 70.018 70.018 70.005	-0.011 <i>φ</i> 12h6	C0.5
	•	Lt (hardened)		25	40	20	
25	-	L _a		·	60	-	
-		L _o					

	Str	oke	Carayy aboft langth			
Ball screw No.	Nominal	Maximum	Screw shaft length			
	INOMINAL	IVIAXIITIUITI	$L_{\rm t}$	La	L。	
W2002SA-1P-C5Z4	150	170	225	250	335	
W2002SA-2P-C5Z4	200	220	275	300	385	
W2003SA-1P-C5Z4	300	320	375	400	485	
W2004SA-1P-C5Z4	400	420	475	500	585	
W2005SA-1P-C5Z4	500	520	575	600	685	
W2006SA-1P-C5Z4	600	620	675	700	785	


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Lead 5

Unit: mm

Standard volume of grease replenishing (cm3)

view	X-X	

Recommended	support	unit
-------------	---------	------

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK15-01A (square)	WBK15S-01 (square)			
WBK15-11 (round)				

Unit: mm

2.2

Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
			out **	Mass	Supporting	g condition	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.005	0.023	0.018	0.045	1.3	3 000	3 000	
-0.007	0.023	0.018	0.045	1.4	3 000	3 000	
-0.009	0.025	0.020	0.055	1.6	3 000	3 000	
-0.011	0.027	0.020	0.070	1.8	3 000	3 000	
-0.014	0.030	0.023	0.085	2.0	3 000	3 000	
-0.019	0.035	0.025	0.110	2.5	3 000	3 000	

(0.014 A) (0.014 A) (0.01	0.015 A	Seals (two places) X 10.011 A] 45 56	# * G	8 8	70.018 C0.3 R0.2 max. E 15 M15×1	φ 12h6	0.012 E
		Lt (hardened)		25	40	20	
25		La		·	60	'	
ļ		Lo				-	

	Str	oke	Screw shaft length			
Ball screw No.						
	Nominal	Maximum	$L_{\rm t}$	L _a	L。	
W2002SA-3P-C5Z5	150	163	225	250	335	
W2002SA-4P-C5Z5	200	213	275	300	385	
W2003SA-2P-C5Z5	300	313	375	400	485	
W2004SA-2P-C5Z5	400	413	475	500	585	
W2005SA-2P-C5Z5	500	513	575	600	685	
W2007SA-1P-C5Z5	700	713	775	800	885	

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. If Fixed is used for opposite driven side, configuration of support bearing area is designed by the customer.
- 5. See B51 and B52 for ball screw supporting method (Fixed-Supported, Fixed-Fixed, etc.).

Lead 4

Unit: mm

		Offit. Iffit				
Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	25 × 4 / Right				
Preload / Bal	I recirculation	P-preload / Return tube				
Ball dia. / B	all circle dia.	2.381 / 25.3				
Screw shaft	root diameter	22.8				
Effective to	urns of balls	2.5 × 2				
Accuracy gra	ade / Preload	C5 / Z				
Basic load rating	Dynamic <i>C</i> _a	7 110				
(N)	Static C _{0a}	13 600				
Prelo	ad (N)	290				
,	torque, median, cm)	4.9				
Spacer ball		Yes				
Factory-pag	cked grease	Refer to Notes 2.				
Internal spatial vo	olume of nut (cm³)	3.2				
Standard volume of gr	ease replenishing (cm ³)	1.6				

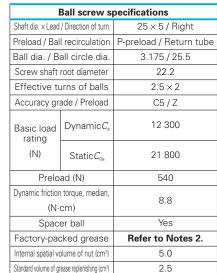
6-\$5.5 drill thru c'bore \$9.5×5.5 45° PCD 57 M6×1.0 (oil hole)

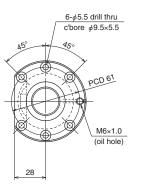
Recommended support unit

	For drive side	For opposite to drive side				
(Fixed)		(Fixed)	(Simple)	٥		
	WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	1		
	WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

Left side shaft	Lead accuracy			Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition		
end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.005	0.023	0.018	0.035	1.6	2 800	_	
П	-0.006	0.023	0.018	0.035	1.8	2 800	_	
П	-0.009	0.025	0.020	0.040	2.2	2 800	_	
П	-0.011	0.027	0.020	0.050	2.5	2 800		
Ι	-0.014	0.030	0.023	0.060	3.0	2 800	2 800	
Ι	-0.018	0.035	0.025	0.075	3.7	2 800	2 800	


Shape I	1.35°01 1.35°01 1.35°01 1.35°01 CO.5 RO.2 max.	3 -	Seals (two places) X - 1 1 0.011 A - 2 37 11 48	## * G	10 14	C0.3 R0.2 max. E 16 M20×1	994512
	1 0.005 <i>F</i> →		L _t (hardened)	,	30	53	27
-	53		La			80	
_	'		Lo			1	


	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Sciew shart length			
	Norminal	IVIAXIITIUITI	$L_{\rm t}$	La	L_{\circ}	
W2502SA-1P-C5Z4	150	166	220	250	349	
W2502SA-2P-C5Z4	200	216	270	300	399	
W2503SA-1P-C5Z4	300	316	370	400	499	
W2504SA-1P-C5Z4	400	416	470	500	599	
W2505SA-1P-C5Z4	500	516	570	600	733	
W2507SA-1P-C5Z4	700	716	770	800	933	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

View	X-X

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	4	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

Unit: mm

Left side	ه ا	ad accura	ACV	Shaft run-				
shaft	Lead accuracy		ш	out **	Mass	Supporting	g condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.005	0.023	0.018	0.035	1.8	2 800	_	
П	-0.006	0.023	0.018	0.035	2.0	2 800	_	
П	-0.009	0.025	0.020	0.040	2.3	2 800	_	
П	-0.011	0.027	0.020	0.050	2.7	2 800	_	
I	-0.014	0.030	0.023	0.060	3.1	2 800	2 800	
I	-0.016	0.035	0.025	0.075	3.4	2 800	2 800	
I	-0.018	0.035	0.025	0.075	3.8	2 800	2 800	
I	-0.023	0.040	0.027	0.090	4.5	2 800	2 800	
I	-0.028	0.046	0.030	0.120	5.2	2 520	2 800	

Shape II \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	L ₀ 15.35 15.	22	8100 9000 9000 9000 8000 8000 8000 8000	CO.5 CO.5
2 0.005 F →	L _t (hardened)	30	53	< 27 →
€ 53	<u>La</u>		80	
	Lo			

	Stroke		Screw shaft length		
Ball screw No.	NI ' I		Screw Share length		
	Nominal	Maximum	$L_{\rm t}$	L_{a}	L。
W2502SA-3P-C5Z5	150	159	220	250	349
W2502SA-4P-C5Z5	200	209	270	300	399
W2503SA-2P-C5Z5	300	309	370	400	499
W2504SA-2P-C5Z5	400	409	470	500	599
W2505SA-2P-C5Z5	500	509	570	600	733
W2506SA-1P-C5Z5	600	609	670	700	833
W2507SA-2P-C5Z5	700	709	770	800	933
W2509SA-1P-C5Z5	900	909	970	1 000	1 133
W2511SA-1P-C5Z5	1 100	1 109	1 170	1 200	1 333

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 6

Unit: mm

		OTHE. THE
ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	25 × 6 / Right
Preload / Bal	l recirculation	P-preload / Return tube
Ball dia. / B	all circle dia.	3.969 / 25.5
Screw shaft	root diameter	21.4
Effective to	urns of balls	2.5 × 2
Accuracy gra	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic C _a	16 600
	Static C _{0a}	26 700
Prelo	ad (N)	685
Dynamic friction torque, median, (N·cm)		13.8
Spacer ball		Yes
Factory-packed grease		Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	7.0
Standard volume of gr	ease replenishing (cm³)	3.5

6-φ5.5 drill thru
c'bore φ9.5×5.5
A5° PCD 6A M6×1.0 (oil hole)
29

	6-¢5.5 ariii thru
/	c'bore φ9.5×5.5
A5°	PCD 64 M6×1.0 (oil hole)
View X-X	
VIEW X-X	

Recommended support unit

or drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	ę	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ſ	
WBK20-11 (round)	WBK20-11 (round)			

Unit: mm

Lead accuracy		Shaft run- out ** Mass		Permissible rotational	nal speed N (min-1)	
			Supporting condition			
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.009	0.025	0.020	0.050	2.5	2 800	2 800
-0.014	0.030	0.023	0.060	3.2	2 800	2 800
-0.018	0.035	0.025	0.075	3.9	2 800	2 800
-0.028	0.046	0.030	0.120	5.2	2 450	2 800

C0.5 (1.0) (X-1 10 10 10 10 10 10 10 10 10 1	A G 10 14	RO.2 max.	C0.5
	$L_{\rm t}$ (hardened)	30	53 27	
53	La	· · · · · · · · · · · · · · · · · · ·	80	
	Lo		· 	

	Stro	oke	Screw shaft length			
Ball screw No.	Niereinel	N. 4	Screw Shart length			
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W2503SA-3P-C5Z6	250	302	370	400	533	
W2505SA-3P-C5Z6	450	502	570	600	733	
W2507SA-3P-C5Z6	650	702	770	800	933	
W2511SA-2P-C5Z6	1 050	1 102	1 170	1 200	1 333	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used.

View X-X

6- ϕ 6.6 drill thru c'bore ϕ 11×6.5

Screw shaft ø25

Lead 10

Unit: mm

		Offit: Iffit				
Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	25 × 10 / Right				
Preload / Bal	l recirculation	P-preload / Return tube				
Ball dia. / B	all circle dia.	4.762 / 25.5				
Screw shaft	root diameter	20.5				
Effective to	urns of balls	1.5 × 2				
Accuracy gra	ade / Preload	C5 / Z				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	13 600				
(N)	Static C _{0a}	18 900				
Prelo	ad (N)	585				
	torque, median, cm)	13.8				
Spac	er ball	Yes				
Factory-pag	cked grease	Refer to Notes 2.				
Internal spatial vo	olume of nut (cm³)	9.5				
Standard volume of gr	ease replenishing (cm³)	4.8				

Recommended support unit

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	4		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	1		
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
	eau accurac	Jy 	out **	Mass	Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg) Fixed - Simple support		Fixed - Fixed	
-0.009	0.025	0.020	0.050	3.2	2 800	2 800	
-0.014	0.030	0.023	0.060	3.8	2 800	2 800	
-0.018	0.035	0.025	0.075	4.5	2 800	2 800	
-0.023	0.040	0.027	0.090	5.2	2 800	2 800	
-0.028	0.046	0.030	0.120	5.9	2 390	2 800	
-0.035	0.054	0.035	0.150	6.9	1 490	2 060	

∕ 0.01	17 A	Ø 0.019 A	Seals (two places)	<i>х</i> - ¶	<u>#</u> * * G	-0.35 22	0.01	7A	-/ 0.012 E
C0.5	16 F 1.35 15.35 15.35 F		70.013 A 15 81	-	A G	10 14	C0.3 R0.2 M20x A0005 E		C0.5
			L _t (hardened)			30	53	27	
	53		La			-	80		
	ļ		Lo						

	Stro	oke	Screw shaft length			
Ball screw No.	N	Maximum	Sciew shart length			
	Nominal	Iviaximum	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2503SA-4P-C5Z10	250	283	370	400	533	
W2505SA-4P-C5Z10	450	483	570	600	733	
W2507SA-4P-C5Z10	650	683	770	800	933	
W2509SA-2P-C5Z10	850	883	970	1 000	1 133	
W2511SA-3P-C5Z10	1 050	1 083	1 170	1 200	1 333	
W2514SA-1P-C5Z10	1 350	1 383	1 470	1 500	1 633	

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -8 mm when Fixed-Fixed is used.

Lead 5

Unit: mm

		Offic. If it			
Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	28 × 5 / Right			
Preload / Bal	l recirculation	P-preload / Return tube			
Ball dia. / B	all circle dia.	3.175 / 28.5			
Screw shaft	root diameter	25.2			
Effective to	urns of balls	2.5 × 2			
Accuracy gra	ade / Preload	C5 / Z			
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	13 000			
(N)	Static C _{0a}	24 400			
Prelo	ad (N)	540			
	torque, median, cm)	9.8			
Spac	er ball	Yes			
Factory-pag	cked grease	Refer to Notes 2.			
Internal spatial vo	olume of nut (cm³)	6.0			
Standard volume of gr	ease replenishing (cm³)	3.0			

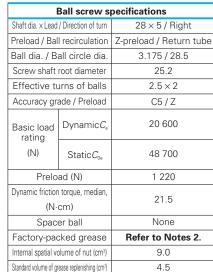
6- ϕ 6.6 drill the c'bore ϕ 11×	
45° 45°	
PCO	69
Me	6×1.0
	hole)
31	

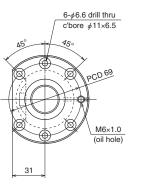
+ (() 1==±X)X4	, localac, g.	aao
M6×1.0	Basic load rating	Dynami
(oil hole)	(N)	Static
31	Prelo	ad (N)
	Dynamic friction	torque, med
View X-X	(N·	cm)
	Spac	er ball

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	4	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

Unit: mm

Left side shaft	Le	Lead accuracy		Shaft run- out ** Mass		Permissible rotatio	
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.5	2 500	_
П	-0.009	0.025	0.020	0.040	2.9	2 500	_
П	-0.011	0.027	0.020	0.050	3.3	2 500	_
I	-0.014	0.030	0.023	0.060	3.8	2 500	2 500
I	-0.018	0.035	0.025	0.075	4.7	2 500	2 500
Ι	-0.024	0.040	0.027	0.090	5.6	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.5	2 500	2 500


Shape II	Seals (two places) X - 1 88 - 2 8 50 - 2 8 50 - 3 8 50 - 3 8 50 - 4 4 12 56	A G 10 14	C0.3 C0	φ 15h6
70.005 F 12	Lt (hardened)	30	53	27
53	La	<u> </u>	80	→
-	L _o			→


	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Jorew Shart length			
	NOTTIITIAI	IVIAXIITIUITI	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2802SA-1P-C5Z5	200	208	270	300	399	
W2803SA-1P-C5Z5	300	308	370	400	499	
W2804SA-1P-C5Z5	400	408	470	500	599	
W2805SA-1P-C5Z5	450	502	558	600	733	
W2807SA-1P-C5Z5	650	702	758	800	933	
W2809SA-1P-C5Z5	850	902	958	1 000	1 133	
W2811SA-1P-C5Z5	1 050	1 102	1 158	1 200	1 333	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

View X-X

Recommended support unit

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	٤		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ		
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

_									
L	eft side	Lo	ad accura	161/	Shaft run-		Permissible rotational speed N (min-1)		
	shaft	LO	au accura	icy	out **	Mass	Supporting condition		
	end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
	Π	-0.006	0.023	0.018	0.035	2.8	2 500	_	
	Π	-0.009	0.025	0.020	0.040	3.2	2 500		
	Π	-0.011	0.027	0.020	0.050	3.7	2 500	_	
	Ι	-0.013	0.030	0.023	0.060	4.2	2 500	2 500	
	I	-0.018	0.035	0.025	0.075	5.1	2 500	2 500	
	Ι	-0.023	0.040	0.027	0.090	5.9	2 500	2 500	
	I	-0.028	0.046	0.030	0.120	6.8	2 500	2 500	

Shape II	Seals (two places) X 10.019 A	-0.35 22	C0.3 R0.2 max. E 16 M20x	1100- 1100- CO.5	<u>√ 0.012 E</u>
(10.005 F) 12	L _t (hardened)	30	53	27	
53	La		80		
-	L _o				

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	NOTTIITIAI	IVIdXIIIIUIII	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2802SA-2Z-C5Z5	150	178	270	300	399	
W2803SA-2Z-C5Z5	250	278	370	400	499	
W2804SA-2Z-C5Z5	350	378	470	500	599	
W2805SA-2Z-C5Z5	450	472	558	600	733	
W2807SA-2Z-C5Z5	650	672	758	800	933	
W2809SA-2Z-C5Z5	850	872	958	1 000	1 133	
W2811SA-2Z-C5Z5	1 050	1 072	1 158	1 200	1 333	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

View X-X

6-φ6.6 drill thru c'bore φ11×6.5

Screw shaft ø28

Lead 6

Unit: mm

		÷
ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	28 × 6 / Right
Preload / Bal	I recirculation	P-preload / Return tube
Ball dia. / B	all circle dia.	3.175 / 28.5
Screw shaft	root diameter	25.2
Effective to	urns of balls	2.5 × 2
Accuracy gra	ade / Preload	C5 / Z
Basic load rating	Dynamic C _a	12 900
(N)	Static C _{0a}	24 300
Prelo	ad (N)	540
Dynamic friction torque, median, (N-cm)		11.8
Spacer ball		Yes
Factory-packed grease		Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	6.0
Standard volume of gr	ease replenishing (cm³)	3.0

Recommended support unit

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	4		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)			
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

_eft side	Lo	ad accura	101/	Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
shaft	Le	Lead accuracy			Mass	Supporting	g condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
Π	-0.009	0.025	0.020	0.040	3.0	2 500	_	
\blacksquare	-0.014	0.030	0.023	0.060	3.9	2 500	_	
I	-0.018	0.035	0.025	0.075	4.9	2 500	2 500	
I	-0.023	0.040	0.027	0.090	5.8	2 500	2 500	
ī	-0.028	0.046	0.030	0 120	6.6	2 500	2 500	

Shape II	Seals (two places) X - 1 0.019 A Seals (two places) X - 1 0.013 A 51 12 63	## * G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C0.3 C0. \$\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	φ15h6
12 12 12	Lt (hardened)	30	53	27
53	La	·	80	→
€	L _o			\rightarrow

	Str	oke	Screw shaft length			
Ball screw No.	Namainal	Marriagram	Sciew shall length			
	Nominal	Maximum	$L_{\rm t}$	L _a	L。	
W2803SA-3P-C5Z6	250	301	370	400	499	
W2805SA-3P-C5Z6	450	501	570	600	699	
W2807SA-3P-C5Z6	650	695	758	800	933	
W2809SA-3P-C5Z6	850	895	958	1 000	1 133	
W2811SA-3P-C5Z6	1 050	1 095	1 158	1 200	1 333	

Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 6

Unit: mm

		Unit: mn
ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	28 × 6 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	3.175 / 28.5
Screw shaft	root diameter	25.2
Effective to	urns of balls	2.5 × 2
Accuracy gra	ade / Preload	C5 / Z
Basic load rating	Dynamic <i>C</i> _a	20 600
(N)	Static C _{0a}	48 700
Prelo	ad (N)	1 220
Dynamic friction torque, median, (N·cm)		23.5
Spacer ball		None
Factory-packed grease		Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	9.5
Standard volume of gr	ease replenishing (cm³)	4.8

	-φ6.6 drill thru bore φ11×6.5
45° 4	PCD 69
	PCUS
	M6×1.0 (oil hole)
31	
View X-X	_

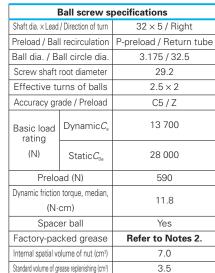
Recommended support unit

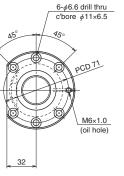
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ę		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	1		
WBK20-11 (round)	WBK20-11 (round)				

Unit: mm

Left side shaft	Lead accuracy		Shaft run- out **	Mass	Permissible rotatio Supporting		
end	T	$e_{\scriptscriptstyle p}$	υu	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.4	2 500	—
П	-0.014	0.030	0.023	0.060	4.3	2 500	_
I	-0.018	0.035	0.025	0.075	5.3	2 500	2 500
I	-0.023	0.040	0.027	0.090	6.2	2 500	2 500
I	-0.028	0.046	0.030	0.120	7.1	2 500	2 500

70.017 C0.5 Shape I	15.35 % 1	X -	C0.3 C0.17 A \$\frac{1}{8}\frac{1}{8}\frac{1}{9}1	90012 E
	10.005 F → 12	30	53 2	7
-	53 <u>La</u>	-	80	-
-	L _o			→


Ball screw No.	Stro	oke	Screw shaft length		
	Nominal	Maximum			
	Norminal	IVIAXIITIUITI	$L_{\rm t}$	L_{a}	L。
W2803SA-4Z-C5Z6	250	265	370	400	499
W2805SA-4Z-C5Z6	450	465	570	600	699
W2807SA-4Z-C5Z6	650	659	758	800	933
W2809SA-4Z-C5Z6	850	859	958	1 000	1 133
W2811SA-4Z-C5Z6	1 050	1 059	1 158	1 200	1 333


- Notes: 1. We recommend NSK support unit. See page B389 for details.

 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.
 - 4. The maximum stroke is -2 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

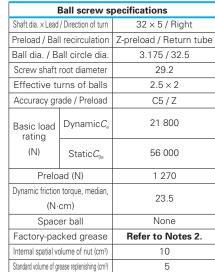
6-φ6.6 driii tnru
c'bore φ11×6.5
/
-0 / 4:
450
* *
PCD 71
TI: () TI: (
(O)`T/(O)//\
M6×1.0
(oil hole)
(oii riole)
32
-
View X-X
AIGM V-V

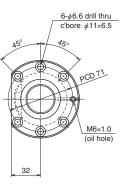
Recommended support unit

or drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	ę	
VBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	ſ	
WBK25-11 (round)	WBK25-11 (round)			

Unit: mm

Left side	Le	ad accura	асу	Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition		
shaft end				1 1	(kg)			
enu	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support	Fixed - Fixed	
П	-0.006	0.023	0.018	0.040	3.1	2 180	_	
П	-0.009	0.025	0.020	0.050	3.7	2 180	_	
П	-0.011	0.027	0.020	0.050	4.2	2 180	_	
П	-0.014	0.030	0.023	0.060	4.8	2 180	_	
I	-0.016	0.035	0.025	0.075	5.6	2 180	2 180	
I	-0.018	0.035	0.025	0.075	6.1	2 180	2 180	
I	-0.023	0.040	0.027	0.090	7.3	2 180	2 180	
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180	
I	-0.035	0.054	0.035	0.150	10.2	2 100	2 180	


	L ₀ 16.35 16.35 10.019 A	27 27 12 15	5000 80000 90000 90000	9402¢ C1
	$L_{\rm t}$ (hardened)	35	62	33
62	La		95	
	L _o			


Ball screw No.	Stroke		Screw shaft length		
	N	N.A	Screw shart length		
	Nominal	Maximum	L_{t}	La	L。
W3202SA-1P-C5Z5	150	201	265	300	415
W3203SA-1P-C5Z5	250	301	365	400	515
W3204SA-1P-C5Z5	350	401	465	500	615
W3205SA-1P-C5Z5	450	501	565	600	715
W3206SA-1P-C5Z5	550	601	665	700	857
W3207SA-1P-C5Z5	650	701	765	800	957
W3209SA-1P-C5Z5	850	901	965	1 000	1 157
W3211SA-1P-C5Z5	1 050	1 101	1 165	1 200	1 357
W3214SA-1P-C5Z5	1 350	1 401	1 465	1 500	1 657

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 5

Unit: mm

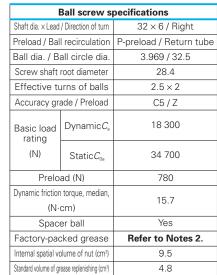
View X-X

1	opaco: ban
Refer to I	Factory-packed grease
10	Internal spatial volume of nut (cm³)

Recommended support unit

For drive side, for opposite to drive side (Fixed)	
WRK25DE-31H (round)	

							Unit: mm	
Left side shaft end	Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
				out **	Mass	Supporting	g condition	
	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.007	0.023	0.018	0.040	3.5	2 180	_	
П	-0.009	0.025	0.020	0.050	4.1	2 180	_	
П	-0.012	0.027	0.020	0.060	4.7	2 180	_	
П	-0.014	0.030	0.023	0.060	5.3	2 180	_	
I	-0.016	0.035	0.025	0.075	6.1	2 180	2 180	
I	-0.019	0.035	0.025	0.090	6.7	2 180	2 180	
I	-0.024	0.040	0.027	0.090	7.9	2 180	2 180	
I	-0.028	0.046	0.030	0.120	9.0	2 180	2 180	
I	-0.036	0.054	0.035	0.150	10.8	2 100	2 180	


Shape II	- o - o - o - o - o - o - o - o - o - o	L ₀ 10,019 A 10,019 A 10,019 A 10,019 A 10,019 A	Seals (two places) X - 1 70.013 A - 2 86	# * G	20.5	-0.013 φ20h6	0.013 E
	✓ 0.006 <i>F</i> →		Lt (hardened)	20	89	51	
	- 09		L _a	•	140		

	Stro	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw Shart length			
	ivominai	Iviaximum	$L_{\rm t}$	La	L。	
W3202SA-2Z-C5Z5	150	186	280	300	460	
W3203SA-2Z-C5Z5	250	286	380	400	560	
W3204SA-2Z-C5Z5	350	386	480	500	660	
W3205SA-2Z-C5Z5	450	486	580	600	760	
W3206SA-2Z-C5Z5	550	586	680	700	929	
W3207SA-2Z-C5Z5	650	686	780	800	1 029	
W3209SA-2Z-C5Z5	850	886	980	1 000	1 229	
W3211SA-2Z-C5Z5	1 050	1 086	1 180	1 200	1 429	
W3214SA-2Z-C5Z5	1 350	1 386	1 480	1 500	1 729	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

Lead 6

Unit: mm

$6-\phi6.6$ drill thru

/	C'bore ¢11×6.5
45°	95° PCD 75
	M6×1.0 (oil hole)
34	
View X-X	

Recommended support unit

For drive side	For opposite to drive side					
(Fixed)	(Fixed)	(Simple)	ę			
VBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	1			
WBK25-11 (round)	WBK25-11 (round)					

Unit: mm

Left side shaft end	Lead accuracy			Shaft run-	Mass	Permissible rotational speed N (min-1) Supporting condition		
				out **				
	Τ	$e_{\scriptscriptstyle \! p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	3.8	2 180	_	
П	-0.014	0.030	0.023	0.060	5.0	2 180	_	
I	-0.018	0.035	0.025	0.075	6.3	2 180	2 180	
I	-0.023	0.040	0.027	0.090	7.4	2 180	2 180	
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180	
I	-0.035	0.054	0.035	0.150	10.2	2 050	2 180	

Shape II		Seals (two places) X 10.013 A X 14 15 12 63 14 (bardaged)		12 15	0.0008 0.0014 0.0014	94024 6027 C1
2 0.006 F → 62	-	L _t (hardened)	*	35	95	33
- UZ	 	L _o			e 33	
le-						

	Stro	oke	Screw shaft length			
Ball screw No.	N1 . 1					
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W3203SA-3P-C5Z6	250	294	365	400	515	
W3205SA-3P-C5Z6	450	494	565	600	715	
W3207SA-3P-C5Z6	650	694	765	800	957	
W3209SA-3P-C5Z6	850	894	965	1 000	1 157	
W3211SA-3P-C5Z6	1 050	1 094	1 165	1 200	1 357	
W3214SA-3P-C5Z6	1 350	1 394	1 465	1 500	1 657	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.
- 4. The maximum stroke is -9 mm when Fixed-Fixed is used for left shaft end shape I.

View X-X

6-φ6.6 drill thru c'bore φ11×6.5

Screw shaft ø32

Lead 6

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	32 × 6 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	3.969 / 32.5
Screw shaft	root diameter	28.4
Effective to	urns of balls	2.5 × 2
Shaft dia. x Lead / Direction of turn Preload / Ball recirculation Ball dia. / Ball circle dia Screw shaft root diameter Effective turns of balls Accuracy grade / Preloac	ade / Preload	C5 / Z
	Dynamic <i>C</i> _a	29 100
	Static C _{0a}	69 300
Prelo	ad (N)	1 710
'		35.0
Spac	er ball	None
Factory-page	cked grease	Refer to Notes 2.
Internal spatial v	olume of nut (cm³)	14
Standard volume of gr	ease replenishing (cm³)	7

Recommended support unit

For drive side, for opposite to drive side (Fixed)					
WBK25DF-31H (round)					

Unit: mm

Left side		Lead accuracy			Shaft run-	Mass	Supporting condition		
shaft end	out **								
	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed		
	Π	-0.009	0.025	0.020	0.050	4.5	2 180	_	
	Π	-0.014	0.030	0.023	0.060	5.6	2 180	_	
	I	-0.019	0.035	0.025	0.090	7.0	2 180	2 180	
	I	-0.024	0.040	0.027	0.090	8.1	2 180	2 180	
	I	-0.028	0.046	0.030	0.120	9.3	2 180	2 180	
_	I	-0.036	0.054	0.035	0.150	11.0	2 060	2 180	

Shape II C1 R0.3 max. 10.017 A C0.5 Shape I C1 R0.3 max. R0.3 max. R0.3 max.	L ₀ 16.35 10.019 A		20.5 20.5	990028 C1	- 0208
/ 0.006 F →	$L_{\rm t}$ (hardened)	20	89	51	
₹ 89	L _a		140		
<	L _o			-	

	Str	oke	Screw shaft length			
Ball screw No.	Nominal Maximum		Sciew shar		length	
			$L_{\rm t}$	La	L。	
W3203SA-4Z-C5Z6	250	273	380	400	560	
W3205SA-4Z-C5Z6	450	473	580	600	760	
W3207SA-4Z-C5Z6	650	673	780	800	1 029	
W3209SA-4Z-C5Z6	850	873	980	1 000	1 229	
W3211SA-4Z-C5Z6	1 050	1 073	1 180	1 200	1 429	
W3214SA-4Z-C5Z6	1 350	1 373	1 480	1 500	1 729	

Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 8

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	32 × 8 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	4.762 / 32.5
Screw shaft	root diameter	27.5
Effective to	urns of balls	2.5 × 1
Accuracy grade / Preload		C5 / Z
Basic load rating	Dynamic <i>C</i> _a	20 600
(N)	Static C _{0a}	40 900
Preload (N)		1 320
Dynamic friction torque, median, (N·cm)		31.0
Spacer ball		None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial v	olume of nut (cm³)	13
Standard volume of grease replenishing (cm ³)		6.5

	6-ø9 drill thru
	bore φ14×8.5
/	PCD 82 M6×1.0 (oil hole)

View X-X

Recommende	d support unit
ne of grease replenishing (cm³)	6.5

For drive side, for opposite to drive side (Fixed)
WBK25DF-31H (round)

Jnit: mm

							Onit. mm	
Left side	1 -			Shaft run-		Shaft run- Permissible rotational speed		nal speed N (min-1)
shaft	Le	ad accura	асу	out **	Mass	Supporting	condition	
end	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>1_f</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	4.7	2 180	_	
П	-0.014	0.030	0.023	0.060	5.8	2 180	_	
I	-0.019	0.035	0.025	0.090	7.2	2 180	2 180	
I	-0.024	0.040	0.027	0.090	8.3	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.1	1 960	2 180	

Shape II C1 R0.3 C0.5 Shape I C1 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3 R0.3	L ₀ 16.35 7 0.019 A Seals (two places) X - (10.013 A) (10.013 A	A G	COF	0.013 E
/ 0.006 F →	L _t (hardened)	20	89	51
89	L _a		140	
	Lo			

	Stroke		Screw shaft length		
Ball screw No.	Namainal	Marriagram	0010	w shart longth	
	Nominal Maximum		$L_{\rm t}$	La	L。
W3203SA-5Z-C5Z8	250	290	380	400	560
W3205SA-5Z-C5Z8	450	490	580	600	760
W3207SA-5Z-C5Z8	650	690	780	800	1 029
W3209SA-5Z-C5Z8	850	890	980	1 000	1 229
W3214SA-5Z-C5Z8	1 350	1 390	1 480	1 500	1 729

Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 10

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	32 × 10 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 33
Screw shaft	root diameter	26.4
Effective to	urns of balls	2.5 × 1
Accuracy grade / Preload		C5 / Z
Basic load rating	Dynamic <i>C</i> _a	30 000
(N)	Static C _{0a}	55 100
Prelo	ad (N)	1 960
Dynamic friction torque, median, (N·cm)		54.0
Spacer ball		None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	22
Standard volume of grease replenishing (cm²)		11

6-∮9 drill thru
c'bore φ14×8.5
M6×1.0 (oil hole)

View	X-X

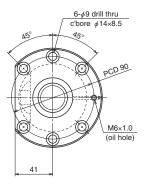
Recommended support unit

For drive side, for opposite to drive side (Fixed)
WBK25DF-31H (round)

Jnit: mm

							Unit: mm	
Left side	Lo	ad accura	nev/	Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le	au accura	тсу	out **	Mass (kg)	Supporting	g condition	
end	T	$e_{\scriptscriptstyle p}$	υ _u	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	5.5	2 180	_	
П	-0.012	0.027	0.020	0.060	6.0	2 180	_	
П	-0.014	0.030	0.023	0.060	6.6	2 180	_	
I	-0.016	0.035	0.025	0.075	7.4	2 180	2 180	
I	-0.019	0.035	0.025	0.090	7.9	2 180	2 180	
I	-0.024	0.040	0.027	0.090	9.0	2 180	2 180	
I	-0.028	0.046	0.030	0.120	10.1	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.7	1 920	2 180	
I	-0.043	0.065	0.040	0.200	13.3	1 310	1 810	

Shape II C1 R0.3 max. C0.5 Shape I R0.3 max. C1 R0.3 max. C1 R0.3 max. C2 R0.3 max. C3 R0.3 max. C4 R0.3 max. C5 R0.3 max. C6 M25x1.5	16.35	->-		0.013 E
1 0.006 F →	$L_{\rm l}$ (hardened)	20	89	51
89	La	-1	140	
	Lo			


	Stroke		Screw shaft length		
Ball screw No.	NIiI	Maximum	Screw shart length		
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	La	L。
W3203SA-6Z-C5Z10	250	272	380	400	560
W3204SA-3Z-C5Z10	350	372	480	500	660
W3205SA-6Z-C5Z10	450	472	580	600	760
W3206SA-3Z-C5Z10	550	572	680	700	929
W3207SA-6Z-C5Z10	650	672	780	800	1 029
W3209SA-6Z-C5Z10	850	872	980	1 000	1 229
W3211SA-5Z-C5Z10	1 050	1 072	1 180	1 200	1 429
W3214SA-6Z-C5Z10	1 350	1 372	1 480	1 500	1 729
W3217SA-1Z-C5Z10	1 650	1 672	1 780	1 800	2 029

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	32 × 10 / Right
Preload / Bal	I recirculation	D-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 33
Screw shaft	root diameter	26.4
Effective to	urns of balls	2.5 × 2
Accuracy gr	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic C _a	54 500
	Static C _{0a}	110 000
Prelo	ad (N)	3 230
,	torque, median, cm)	83.0
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial v	olume of nut (cm³)	44
Standard volume of gr	ease replenishing (cm³)	22

View X-X

Factor

Recommended support unit

For drive side, for opposite to drive side (Fixed)
WBK25DFD-31H (round)

Init:	mm	

							Unit: mm
Left side	Lo	ad accura	101	Shaft run-			nal speed N (min-1)
shaft	Le	au accura	icy	out **	Mass	Supporting	g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	7.5	2 180	_
П	-0.012	0.027	0.020	0.060	8.1	2 180	_
П	-0.014	0.030	0.023	0.060	8.6	2 180	_
Ι	-0.016	0.035	0.025	0.075	9.5	2 180	2 180
I	-0.019	0.035	0.025	0.090	10.0	2 180	2 180
I	-0.024	0.040	0.027	0.120	11.1	2 180	2 180
I	-0.028	0.046	0.030	0.120	12.2	2 180	2 180
I	-0.036	0.054	0.035	0.150	13.8	2 050	2 180
I	-0.043	0.065	0.040	0.200	15.4	1 380	1 910

Shape II	Seals (two places) X Oot of the control of the c	C0.5 C1 (200 C0 0.013 E	
		20 104 51	
104	L _a L _o	155	

	Stro	oke	Screw shaft length		
Ball screw No.	Nisasiasi	Maximum			
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	La	L。
W3203SA-7D-C5Z10	150	182	380	400	575
W3204SA-4D-C5Z10	250	282	480	500	675
W3205SA-7D-C5Z10	350	382	580	600	775
W3206SA-4D-C5Z10	450	482	680	700	959
W3207SA-7D-C5Z10	550	582	780	800	1 059
W3209SA-7D-C5Z10	750	782	980	1 000	1 259
W3211SA-6D-C5Z10	950	982	1 180	1 200	1 459
W3214SA-7D-C5Z10	1 250	1 282	1 480	1 500	1 759
W3217SA-2D-C5Z10	1 550	1 582	1 780	1 800	2 059

Notes: 1. We recommend NSK support unit. See page B389 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 10

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	36 × 10 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 37
Screw shaft	root diameter	30.4
Effective to	urns of balls	2.5 × 1
Accuracy gra	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic <i>C</i> _a	32 000
	Static C _{0a}	61 100
Prelo	ad (N)	2 060
'	torque, median, cm)	59.0
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	32
Standard volume of gr	ease replenishing (cm³)	16

View X-X

Recommended	support	unit
necommenueu	Support	unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK30DF-31H (round)	WBK25DF-31H (round)

Unit: mm

Left side shaft	Le	ad accura	асу	Shaft run- out **	Mass	Permissible rotational speed N (min Supporting condition	
end	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	7.4	1 940	_
П	-0.016	0.035	0.025	0.050	8.8	1 940	_
I	-0.024	0.040	0.027	0.065	11.1	1 940	1 940
I	-0.033	0.054	0.035	0.100	13.9	1 940	1 940
I	-0.043	0.065	0.040	0.130	16.6	1 510	1 940

Shape II C1 R0.018 A 16.35 135 C1 R0.3 Max. P0.018 A R0.3 Max. F1 26 M25x1.5	Seals (two places) X — 0.019 A	## * G	C0.5 C0.5 2 E M30×1.5 26	A 0.013 E
/ 0.006 F →	Lt (hardened)	20	89	61
89	La		150	
-	L _o			

Ball screw No.	Str	oke	Screw shaft length			
	Nisasiasi	N. 4	Screw shart length			
	Nominal	Maximum	L_{t}	La	Lo	
W3604SA-1Z-C5Z10	350	370	480	500	670	
W3606SA-1Z-C5Z10	550	570	680	700	870	
W3609SA-1Z-C5Z10	850	870	980	1 000	1 239	
W3613SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639	
W3617SA-1Z-C5Z10	1 650	1 670	1 780	1 800	2 039	

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	36 × 10 / Right				
Preload / Bal	I recirculation	D-preload / Return tube				
Ball dia. / B	all circle dia.	6.35 / 37				
Screw shaft	root diameter	30.4				
Effective to	urns of balls	2.5 × 2				
Accuracy gra	ade / Preload	C5 / Z				
Basic load rating	Dynamic <i>C</i> _a	58 000				
rating (N)	Static C _{0a}	122 000				
Prelo	ad (N)	3 430				
Dynamic friction torque, median, (N·cm)		93.0				
Spacer ball		None				
Factory-packed grease		Refer to Notes 2.				
Internal spatial vo	olume of nut (cm³)	64				
Standard volume of or	ease replenishing (cm ³)	27				

/	c'bore ϕ 17.5×11
45°	45° PCD 98
	M6×1.0
45	(oil hole)

View X-X

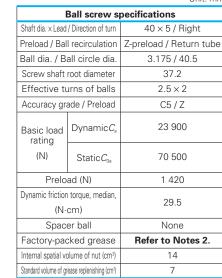
6-ø11 drill thru

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Fixed)			
WBK30DFD-31H (round)	WBK25DFD-31H (round)			

Unit: mm

Left side	۵ ا	Lead accuracy			N 4	Permissible rotatio	nal speed N (min-1)
shaft	Lead accuracy			out ** Mass		Supporting condition	
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	9.3	1 940	_
П	-0.016	0.035	0.025	0.050	10.7	1 940	_
I	-0.024	0.040	0.027	0.080	13.1	1 940	1 940
I	-0.033	0.054	0.035	0.100	15.9	1 940	1 940
I	-0.043	0.065	0.040	0.130	18.6	1 600	1 940


Shape II C1 R0.3 max. 10 0.018 A 12 C1 Shape I 26 M25x1.5	L _o 16.35 35.0 ⁻¹⁴ C1 Seals (two places) X 91 6 78 18 193		C0.5 M30×1.5 26		0.013 E
 2 0.006 F →	L _i (hardened)	20	104	61	
104	< L _a		165		
-	L _o			-	

	Stro	oke	Screw shaft length		
Ball screw No.	Nisasiasi	Maximum			
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	L _a	L。
W3604SA-2D-C5Z10	250	280	480	500	685
W3606SA-2D-C5Z10	450	480	680	700	885
W3609SA-2D-C5Z10	750	780	980	1 000	1 269
W3613SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669
W3617SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

_	6-φ9 drill thru c'bore φ14×8.5
A5°	PCD 83
	Rc 1/8
39	(oil hole)

View X-X

|--|

For drive side, for opposite to drive side (Fixed)
WBK30DE-31H (round)

Jnit: mm

							Unit: mm
Left side Load accuracy	Shaft run-		Permissible rotatio	nal speed N (min-1)			
shaft	Lead accuracy		out ** Mass		Supporting	condition	
end	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.035	6.3	1 750	_
П	-0.014	0.030	0.023	0.040	8.1	1 750	_
I	-0.019	0.035	0.025	0.065	10.3	1 750	1 750
I	-0.024	0.040	0.027	0.065	12.2	1 750	1 750
I	-0.028	0.046	0.030	0.080	14.0	1 750	1 750
I	-0.038	0.054	0.035	0.100	17.7	1 750	1 750

Shape II 22 17.75	L _o Seals (two places) X 10.019 A	# * G	C1 C C C C C C C C C C C C C C C C C C	- ₀₀₁₃ \$25h6
△ 0.006 F →	L _t (hardened)	20	89	61
89	L_{a}	-1-	150	
	Lo		•	

	Stroke		Screw shaft length			
Ball screw No.			Screw shart length			
	Nominal Maximum		L_{t}	La	L。	
W4003SA-1Z-C5Z5	250	284	380	400	572	
W4005SA-1Z-C5Z5	450	484	580	600	772	
W4007SA-1Z-C5Z5	650	684	780	800	1 039	
W4009SA-1Z-C5Z5	850	884	980	1 000	1 239	
W4011SA-1Z-C5Z5	1 050	1 084	1 180	1 200	1 439	
W4015SA-1Z-C5Z5	1 450	1 484	1 580	1 600	1 839	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 8

Unit: mm

ı	Ball screw s	pecifications			
Shaft dia. x Lead	/ Direction of turn	40 × 8 / Right			
Preload / Bal	I recirculation	Z-preload / Return tube			
Ball dia. / B	all circle dia.	4.762 / 40.5			
Screw shaft	root diameter	35.5			
Effective to	urns of balls	2.5 × 2			
Accuracy gra	ade / Preload	C5 / Z			
Basic load rating (N)	Dynamic <i>C</i> _a	41 100			
	Static C _{0a}	103 000			
Prelo	ad (N)	2 450			
'	torque, median, cm)	64.0			
Spac	er ball	None			
Factory-pag	cked grease	Refer to Notes 2.			
Internal spatial vo	olume of nut (cm³)	27			
Standard volume of gr	ease replenishing (cm³)	14			

	6- 6- 6- 6- 6- 6- 6- 6- 6- 6-
45°	50
	PCD 90
	Rc 1/8 (oil hole)
41	

/	0 bolc φ 1+λ0.5
A5°	PCD 90
41	Rc 1/8 (oil hole)

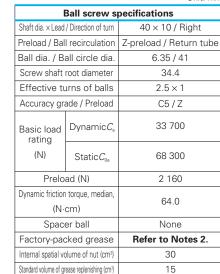
View X-X

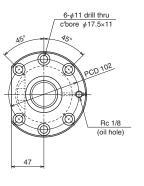
Recommended support unit

For drive side, for opposite to drive side (Fixed)	
WRK30DF-31H (round)	

							Onit. min				
Left side	Lood accuracy		Load accuracy			Permissible rotatio	nal speed N (min-1)				
shaft	Le	Lead accuracy		Lead accuracy		.eau accuracy		out **	Mass	Supporting	g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed				
П	-0.009	0.025	0.020	0.035	7.4	1 750	_				
П	-0.014	0.030	0.023	0.040	9.2	1 750	_				
I	-0.019	0.035	0.025	0.065	11.3	1 750	1 750				
I	-0.024	0.040	0.027	0.065	13.1	1 750	1 750				
I	-0.028	0.046	0.030	0.080	14.9	1 750	1 750				
I	-0.038	0.054	0.035	0.100	18.5	1 750	1 750				

Shape II	17.75 0.0019 A	Seals (two places) X - 1	## * G	C1	94452 C1	0.013 E
Ø 0.006 F →		L _t (hardened)	2	0 89	61	
89		La		150)	


	Stro	oke	Screw shaft length				
Ball screw No.	Namainal	N A a visa v vaa	Sciew shart length				
	Nominal	Maximum	$L_{\rm t}$	L_{a}	L。		
W4003SA-2Z-C5Z8	200	243	380	400	572		
W4005SA-2Z-C5Z8	400	443	580	600	772		
W4007SA-2Z-C5Z8	600	643	780	800	1 039		
W4009SA-2Z-C5Z8	800	843	980	1 000	1 239		
W4011SA-2Z-C5Z8	1 000	1 043	1 180	1 200	1 439		
W4015SA-2Z-C5Z8	1 400	1 443	1 580	1 600	1 839		


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View	X-X

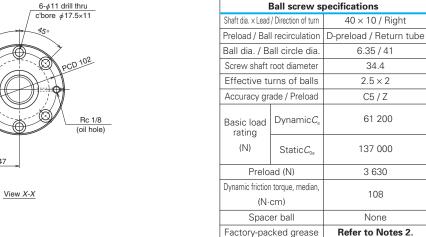
|--|

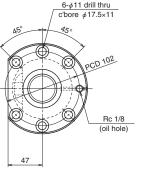
For drive side, for opposite to drive side (Fixed)
WBK30DF-31H (round)

Init: mm

							Unit: mm	
Left side	Left side Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)			
shaft	Le	au accure	ю	out **	Mass	Supporting	g condition	
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.012	0.027	0.020	0.040	8.7	1 750	_	
П	-0.014	0.030	0.023	0.040	9.6	1 750	_	
П	-0.016	0.035	0.025	0.050	10.4	1 750	_	
I	-0.019	0.035	0.025	0.065	11.7	1 750	1 750	
I	-0.024	0.040	0.027	0.065	13.4	1 750	1 750	
I	-0.028	0.046	0.030	0.080	15.1	1 750	1 750	
I	-0.033	0.054	0.035	0.100	16.9	1 750	1 750	
I	-0.038	0.054	0.035	0.100	18.6	1 750	1 750	
I	-0.043	0.065	0.040	0.130	20.3	1 710	1 750	
I	-0.057	0.077	0.046	0.170	25.5	940	1 320	

26 M3	RO.3 max.	Seals (two places) X A G A G A G A G A G A G A A	C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	
	06 F→ Lt (r	hardened) 20	89 61	
* 89		L_a ,	150	


	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum				
	Nominai	IVIaximum	$L_{\rm t}$	La	L。	
W4004SA-1Z-C5Z10	350	370	480	500	672	
W4005SA-3Z-C5Z10	450	470	580	600	772	
W4006SA-1Z-C5Z10	550	570	680	700	872	
W4007SA-3Z-C5Z10	650	670	780	800	1 039	
W4009SA-3Z-C5Z10	850	870	980	1 000	1 239	
W4011SA-3Z-C5Z10	1 050	1 070	1 180	1 200	1 439	
W4013SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639	
W4015SA-3Z-C5Z10	1 450	1 470	1 580	1 600	1 839	
W4017SA-1Z-C5Z10	1 650	1 670	1 780	1 800	2 039	
W4023SA-1Z-C5Z10	2 250	2 270	2 380	2 400	2 639	


Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 10

Unit: mm

Recommended	support	unit
	ouppoit	

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

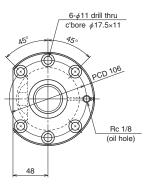
For drive side, for opposite to drive side (Fixed)
WBK30DFD-31H (round)

59

30

							Unit: mm	
Left side	-GIL SING Load accuracy		Shaft run-		Permissible rotational speed N (min-1)			
shaft	L C	au accura	ю	out **	Mass	Supporting	g condition	
end	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>tt</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.012	0.027	0.020	0.040	11.0	1 750	_	
П	-0.014	0.030	0.023	0.040	11.9	1 750	_	
П	-0.016	0.035	0.025	0.050	12.7	1 750	_	
I	-0.019	0.035	0.025	0.065	14.1	1 750	1 750	
I	-0.024	0.040	0.027	0.080	15.8	1 750	1 750	
Ι	-0.028	0.046	0.030	0.080	17.5	1 750	1 750	
I	-0.033	0.054	0.035	0.100	19.3	1 750	1 750	
I	-0.038	0.054	0.035	0.100	21.0	1 750	1 750	
I	-0.043	0.065	0.040	0.130	22.7	1 750	1 750	
I	-0.057	0.077	0.046	0.170	27.9	980	1 370	

Shape II 17.75			്പാദ 425h6	0.013 E
<u>√10.006 F</u>	20	104	61	
104 L _a L _o	-	165		


	Str	oke	- Screw shaft length			
Ball screw No.						
	Nominal	Maximum	L_{t}	La	L。	
W4004SA-2D-C5Z10	250	280	480	500	687	
W4005SA-4D-C5Z10	350	380	580	600	787	
W4006SA-2D-C5Z10	450	480	680	700	887	
W4007SA-4D-C5Z10	550	580	780	800	1 069	
W4009SA-4D-C5Z10	750	780	980	1 000	1 269	
W4011SA-4D-C5Z10	950	980	1 180	1 200	1 469	
W4013SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669	
W4015SA-4D-C5Z10	1 350	1 380	1 580	1 600	1 869	
W4017SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069	
W4023SA-2D-C5Z10	2 150	2 180	2 380	2 400	2 669	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Lead 12

Unit: mm

View	X-X

	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	40 × 12 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	7.144 / 41.5
Screw shaft	root diameter	34.1
Effective to	urns of balls	2.5 × 1
Accuracy grade / Preload		C5 / Z
Basic load rating (N)	Dynamic C _a	39 500
	Static C _{0a}	77 200
Prelo	ad (N)	2 550
,	n torque, median, cm)	83.0
Spac	er ball	None
Factory-packed grease		Refer to Notes 2.
Internal spatial v	olume of nut (cm³)	33
Standard volume of gr	rease replenishing (cm³)	17

Recommended support unit

For drive side, for opposite to drive side (Fixed)	
WRK30DF-31H (round)	

Unit: mm

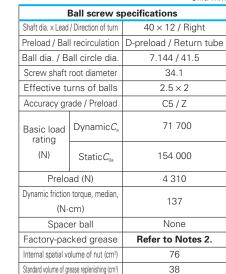
Lood course.		Shaft run-		Permissible rotational speed N (min-1)			
L	Lead accuracy		out **	Mass	Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
-0.016	0.035	0.025	0.050	11.6	1 750	1 750	
-0.024	0.040	0.027	0.065	14.2	1 750	1 750	
-0.033	0.054	0.035	0.100	17.7	1 750	1 750	
-0.043	0.065	0.040	0.130	21.2	1 710	1 750	
-0.060	0.077	0.046	0.170	27.2	870	1 210	

C1 C1 C1 R0.3 max. F 26 M30x1.5	0,025 A	Seals (two places) X-1 (10.015 A) = 99 117 117	## * G	C1 2 E M30×1.5 26	944524 C1 C1	
		Lt (hardened)	20	89	61	
89		La		150		
<		Lo			-	

Ball screw No.	Str	oke	Screw shaft length			
			Jorew Shart length			
	Nominal	Maximum	$L_{\rm t}$	La	L _o	
W4006SA-3Z-C5Z12	500	556	680	700	939	
W4009SA-5Z-C5Z12	800	856	980	1 000	1 239	
W4013SA-3Z-C5Z12	1 200	1 256	1 380	1 400	1 639	
W4017SA-3Z-C5Z12	1 600	1 656	1 780	1 800	2 039	
W4024SA-1Z-C5Z12	2 300	2 356	2 480	2 500	2 739	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


View X-X

6-φ11 drill thru c'bore φ17.5×11

Screw shaft ø40

Lead 12

Unit: mm

Recommended	support unit

For drive side, for opposite to drive side (Fixed)	
WBK30DFD-31H (round)	

Unit: mm

Lood accuracy		Shaft run-		Permissible rotational speed N (min-1)				
Lead accuracy		СУ	out **	Mass	Supporting condition			
Т	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple support	Fixed - Fixed		
-0.016	0.035	0.025	0.050	14.8	1 750	1 750		
-0.024	0.040	0.027	0.080	17.4	1 750	1 750		
-0.033	0.054	0.035	0.100	20.9	1 750	1 750		
-0.043	0.065	0.040	0.130	24.3	1 750	1 750		
-0.060	0.077	0.046	0.170	30.4	910	1 270		

C1 C1 C1 R0.3 R0.3 R0.3 F P P P P P P P P P P P P P P P P P P	(10.015 A)	A G	C1	29 H 25 P 1	0.2
	L_{t} (hardened)	20	104	61	
104	L _a	.,	165		
	Lo				

	Str	oke	- Screw shaft length			
Ball screw No.	Niereinel	N. 4				
	Nominal	Maximum	$L_{\rm t}$	La	L _o	
W4006SA-4D-C5Z12	400	448	680	700	969	
W4009SA-6D-C5Z12	700	748	980	1 000	1 269	
W4013SA-4D-C5Z12	1 100	1 148	1 380	1 400	1 669	
W4017SA-4D-C5Z12	1 500	1 548	1 780	1 800	2 069	
W4024SA-2D-C5Z12	2 200	2 248	2 480	2 500	2 769	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

View X-X

6-φ11 drill thru c'bore φ17.5×11

Rc 1/8

Screw shaft ø45

Lead 10

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	45 × 10 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 46
Screw shaft	root diameter	39.4
Effective to	urns of balls	2.5 × 1
Accuracy gra	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	36 300
	Static C _{0a}	78 500
Prelo	ad (N)	2 260
	torque, median, cm)	69.0
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial vo	olume of nut (cm³)	33
Standard volume of gr	ease replenishing (cm²)	17

Recommended support unit

For drive side, for opposite to drive side (Fixed)	
WBK35DE-31H (round)	

Unit: mm

Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)		
		out **		Supporting condition		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.016	0.035	0.025	0.050	13.4	1 550	1 550
-0.024	0.040	0.027	0.065	16.7	1 550	1 550
-0.033	0.054	0.035	0.100	21.2	1 550	1 550
-0.043	0.065	0.040	0.130	25.6	1 550	1 550
-0.060	0.077	0.046	0.170	33.4	990	1 390

C1 C1 C1 R0.3 R0.3 max FF R0.3	Seals (two places) X 10.025 A	A G 2	C1 PHO PROPERTY OF THE PROPERT	+0.3
	L _t (hardened)	20	92 63	*
92	La		155	>
	L _o			=

Ball screw No.	Stro	oke	Screw shaft length			
	Nominal	Maximum	Sciew shart length			
			$L_{\rm t}$	La	L。	
W4506SA-1Z-C5Z10	550	568	680	700	947	
W4509SA-1Z-C5Z10	850	868	980	1 000	1 247	
W4513SA-1Z-C5Z10	1 250	1 268	1 380	1 400	1 647	
W4517SA-1Z-C5Z10	1 650	1 668	1 780	1 800	2 047	
W4524SA-1Z-C5Z10	2 350	2 368	2 480	2 500	2 747	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

View X-X

0.093

-0.062

0.054

0.170

6-ø11 drill thru

c'bore *ϕ*17.5×11

Screw shaft ø50

Lead 10

Unit: mm

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	50 × 10 / Right			
Preload / Bal	I recirculation	Z-preload / Return tube			
Ball dia. / B	all circle dia.	6.35 / 51			
Screw shaft	root diameter	44.4			
Effective to	urns of balls	2.5 × 1			
Accuracy gra	ade / Preload	C5 / Z			
Basic load rating	Dynamic <i>C</i> _a	37 500			
(N)	Static C _{0a}	87 200			
Prelo	ad (N)	2 450			
· ·	torque, median, cm)	79.0			
Spacer ball		None			
Factory-pag	cked grease	Refer to Notes 2.			
Internal spatial vo	olume of nut (cm³)	37			
Standard volume of gr	ease replenishing (cm³)	19			

Recommended support unit

For drive side, for opposite to drive side (Fixed)
WBK40DF-31H (round)

Unit: mm

Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1) Supporting condition		
		out **				
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple support	Fixed - Fixed
-0.014	0.030	0.023	0.050	14.8	1 400	1 400
-0.019	0.035	0.025	0.065	17.6	1 400	1 400
-0.024	0.040	0.027	0.080	20.3	1 400	1 400
-0.028	0.046	0.030	0.080	23.1	1 400	1 400
-0.036	0.054	0.035	0.100	27.3	1 400	1 400
-0.048	0.065	0.040	0.130	34.2	1 400	1 400

42.5

1 030

C(0.018 A C1 F C1 C1 C2 C2 C3 C4 C4 C4 C4 C4 C4 C4	0.025 A	Seals (two places) X - 1 85 18 L ₄ (hardened)	# * G	C1 2 E M40x1.5 30 92	2/A 0.00 2/A 0.00 2/A 18	
	92		La	> < >	170		
			Lo		·		

Ball screw No.	Stroke		Screw shaft length			
	N		Screw shart length			
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W5005SA-1Z-C5Z10	450	468	580	600	862	
W5007SA-1Z-C5Z10	650	668	780	800	1 062	
W5009SA-1Z-C5Z10	850	868	980	1 000	1 262	
W5011SA-1Z-C5Z10	1 050	1 068	1 180	1 200	1 462	
W5014SA-1Z-C5Z10	1 350	1 368	1 480	1 500	1 762	
W5019SA-1Z-C5Z10	1 850	1 868	1 980	2 000	2 262	
W5025SA-1Z-C5Z10	2 450	2 468	2 580	2 600	2 862	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

1 400

View X-X

6-φ11 drill thru c'bore φ17.5×11

(oil hole)

Screw shaft ø50

Lead 10

Unit: mm

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	50 × 10 / Right		
Preload / Bal	I recirculation	Z-preload / Return tube		
Ball dia. / B	all circle dia.	6.35 / 51		
Screw shaft	root diameter	44.4		
Effective to	urns of balls	2.5 × 2		
Accuracy gr	ade / Preload	C5 / Z		
Basic load rating (N)	Dynamic <i>C</i> _a	68 100		
	Static C _{0a}	174 000		
Prelo	ad (N)	4 020		
	n torque, median, cm)	137		
Spac	er ball	None		
Factory-pag	cked grease	Refer to Notes 2.		
Internal spatial v	olume of nut (cm³)	59		
Standard volume of gr	rease replenishing (cm³)	30		

Recommended support unit

(Fixed)	
WBK40DFD-31H (round)	

Unit: mm

Shaft run- Permissible rotational speed N (n	nin-1)
Lead accuracy Out ** Mass Supporting condition	
T e_{p} v_{u} (kg) Fixed - Simple support Fixed - Fi	xed
-0.014 0.030 0.023 0.050 16.8 1 400 1 400	
-0.019 0.035 0.025 0.065 19.6 1 400 1 400	
-0.024 0.040 0.027 0.080 22.3 1 400 1 400	
-0.028 0.046 0.030 0.080 25.1 1 400 1 400	
-0.036 0.054 0.035 0.100 29.3 1 400 1 400	
-0.048 0.065 0.040 0.130 36.2 1 400 1 400	

44.6

1 060

0.170

0.054

C1 C1 C1	0.025 A	Seals (two places) Value	X-1 A G	2	C1 (C1) (C	
		Lt (hardened)		20	107	78
107	•	La			185	
_		L _o				

	Stro	oke	Screw shaft length			
Ball screw No.			Scrow Shart length			
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W5005SA-2Z-C5Z10	350	408	580	600	892	
W5007SA-2Z-C5Z10	550	608	780	800	1 092	
W5009SA-2Z-C5Z10	750	808	980	1 000	1 292	
W5011SA-2Z-C5Z10	950	1 008	1 180	1 200	1 492	
W5014SA-2Z-C5Z10	1 250	1 308	1 480	1 500	1 792	
W5019SA-2Z-C5Z10	1 750	1 808	1 980	2 000	2 292	
W5025SA-2Z-C5Z10	2 350	2 408	2 580	2 600	2 892	

Notes: 1. We recommend NSK support unit. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

1 400

-0.062

0.093

B-3-1.4 Finished Shaft End Ball Screws Made of Stainless Steel KA Type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter ball screw, and proceeds to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The stroke limit that the nut
can move.

Lead accuracy

Lead accuracy is C3 and C5 grades.

- T: Travel compensation
- e_p : Tolerance on specified travel
- ນູ: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n : Limited by the relative peripheral

speed between screw shaft and nut.

Critical speed: Limited by the natural frequency

of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	2
6	B275	
8	B277	B279
10		B281
12		B285
15		
16		B295
20		

3. Material

A martensitic stainless steel is used. A special heat treatment technology provides the ball groove section with sufficient hardness which produces high load carrying capacity and durability.

4. Other

Seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details of standard stock products, contact NSK.

4	5	10	20
B283			
	B287	B289	
		B291	B293
			B297

∕ 0.009 A

(15)

✓ 0.008 A M * * G

Ls (stroke range)

1 0.008 A

21

(Fine lead)

_ 1 0.005 E

- **/** 0.008 | **A** |

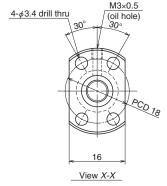
E/M6×0.75

30

R0.2 max.

► 10.0025 E

Nut model: MPFD


Screw shaft ø6

Lead 1

Unit: mm

Unit: mm 줄

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	6 × 1 / Right			
Preload / Bal	I recirculation	P-preload / Deflector (bridge)			
Ball dia. / B	all circle dia.	0.800 / 6.2			
Screw shaft	root diameter	5.2			
Effective to	urns of balls	1×3			
Accuracy gr	ade / Preload	C3 / Z			
Basic load	Dynamic $C_{\scriptscriptstyle a}$	555			
rating (N)	Static C _{0a}	680			
Axia	l play	0			
Prelo	ad (N)	24.5			
Dynamic fri	ction torque,	1.0 1			
(N·cm)		1.3 or less			
Spac	er ball	None			
Factory-pag	cked grease	Refer to Notes 1.			

4-ø3.4 drill thru	M3×0.5 (oil hole)
30°	30°
	PCD 18
<	16
_ V	iew X-X

Ball screw No.	Strol	Stroke L _s		Thread longth			
			Thread length				
	Nominal Maximum		L_{t}	L ₁	La	L _o	
W0601KA-3PY-C3Z1	100	102	125	128	135	174	

- Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
 - Use of NSK Clean Grease LG2 is recommended.
 - 2. Ball nut does not have seal.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>f f</i> (kg)		Fixed - Simple support
0	0.010	0.008	0.025	0.06	3 000

NSN

Screw shaft ø8

Lead 1

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	8 × 1 / Right
Preload / Bal	I recirculation	P-preload / Deflector (bridge)
Ball dia. / Ba	all circle dia.	0.800 / 8.2
Screw shaft	root diameter	7.2
Effective to	urns of balls	1 × 3
Accuracy gra	ade / Preload	C3 / Z
Basic load	Dynamic $C_{\scriptscriptstyle a}$	645
rating (N)	Static C _{0a}	955
Axia	l play	0
Prelo	ad (N)	29.4
Dynamic friction torque, (N·cm)		1.8 or less
Space	er ball	None

Factory-packed grease

4-φ3.4 drill thru	M3×0.5
	(oil hole)
33	90° 30° PCD 21
_	View X-X

Recommended support unit

Refer to Notes 1.

For drive side (Fixed)	For opposite to drive side (Free)	
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run- out ** N		Permissible rotational speed N (min-1)		
			Mass	Supporting condition		
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple support	
0	0.010	0.008	0.035	0.12	3 000	

0.008 A 0.0	Z 0.009 A			.2 \(\begin{align*}	0.005 E
	<u>.</u>	<u>L</u> t →	4 (8)	27	10
9	-	La	****	37	*
		L _o			

	Stroke L _s		Thread length			
Ball screw No.			Triread lerigiti			
	Nominal Maximum		$L_{\rm t}$	L_1	La	L _o
W0802KA-1PY-C3Z1	150	155	190	194	202	248

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Ball nut does not have seal.

NSN

Screw shaft ø8

Lead 2

Unit: mm

I	Ball screw sp	pecifications		
Shaft dia. x Lead	/ Direction of turn	8 × 2 / Right		
Preload / Bal	I recirculation	P-preload / Deflector (bridge)		
Ball dia. / B	all circle dia.	1.200 / 8.3		
Screw shaft	root diameter	6.9		
Effective to	urns of balls	1×3		
Accuracy gr	ade / Preload	C3 / Z		
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	1 270		
	Static C _{0a}	1 630		
Axia	l play	0		
Prelo	ad (N)	49.0		
Dynamic friction torque, (N⋅cm)		2.0 or less		
Spac	er ball	None		
Factory-pag	cked grease	Refer to Notes 1.		
Internal spatial v	olume of nut (cm³)	0.34		
Standard volume of gr	rease replenishing (cm³)	0.17		

M3×0.5
30° (oil hole)
30° 30°
4-φ3.4 drill thru
N N PO
PCD 23
``
20
17
View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)				
WBK08-01C (square, clean)	WBK08S-01C (square, clean)				
WBK08-11C (round, clean)					

Unit: mm

Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
Lead accuracy		out **	Mass	Supporting condition			
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support		
0	0.010	0.008	0.035	0.13	3 000		

0.008 A 0.008 A C0.2 R0.2 ✓0.008 A × ✓	CO.2 CO.5 CO.5 P. S.	
<u> 6.8</u> <u> 6.8</u> <u> 10.0025 </u> F →	22 6 X	+[/[0.0025] <i>E</i>]
-	<u>L</u> i	(8) 27 10
9	La	37
<	Lo	
		'

	Stroke L _s		Thread length			
Ball screw No.	N	N 4 i	Trillead letigtif			
	Nominal Maximum		$L_{\rm t}$	L_1	La	Lo
W0802KA-5PY-C3Z2	150	154	190	194	202	248

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

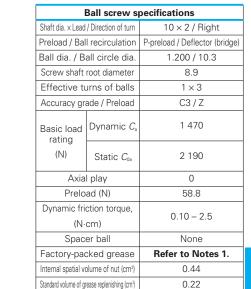
Use of NSK Clean Grease LG2 is recommended.

(Fine lead)

Nut model: MPFD

 $4-\phi 4.5$ drill thru

M3×0.5


(oil hole)

View X-X

Screw shaft ø10

Lead 2

Unit: mm

Recommended support unit

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Free)	
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

Unit: mm

					Onto the terms	
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
L	eau accurat	У	out **	out **	out ** Mass	Supporting condition
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.012	0.008	0.030	0.22	3 000	

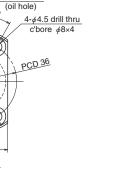
<	(33)	Ls (stroke range)	>< 14 	10	
(0.007 A) (0.007 A)	0.009 A	Seals (two places) 3 X (two places) 9 1	A G (width of flats)	C0.2 C0.8 R0.2 R0.2 R0.2 M8×1 4	C0.5
			*	(8) 27 10	
9		La		37	
			Lo	- 11-	

	Stroke L _s		Thread length			
Ball screw No.	Name in all Name in a constant					
	Nominal	Maximum	$L_{\rm t}$	$L_{\scriptscriptstyle 1}$	La	L。
W1002KA-3PY-C3Z2	200	203	250	254	262	308

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

View X-X


NSN

Screw shaft ø10

Lead 4

Unit: mm

	Ball screw s	pecifications		
Shaft dia. x Lead	/ Direction of turn	10 × 4 / Right		
Preload / Bal	I recirculation	P-preload / Return tube		
Ball dia. / B	all circle dia.	2.000 / 10.3		
Screw shaft	root diameter	8.2		
Effective to	urns of balls	2.5 × 1		
Accuracy gr	ade / Preload	C3 / Z		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2 630		
(N)	Static C _{0a}	3 270		
Axia	l play	0		
Prelo	ad (N)	98.1		
'	ction torque, cm)	0.5 – 3.9		
Spac	er ball	None		
Factory-page	cked grease	Refer to Notes 1.		
Internal spatial v	olume of nut (cm³)	0.8		
Standard volume of gr	rease replenishing (cm³)	0.4		

M6×1.0

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

	Lead accuracy			Mass	Permissible rotational speed N (min-1) Supporting condition
T	e _p	$\upsilon_{\scriptscriptstyle u}$	<i>\</i>	(kg)	Fixed - Simple support
0	0.010	0.008	0.030	0.29	3 000
0	0.013	0.008	0.050	0.39	3 000

(37) (37)	Ls (stroke range) Seals (two places) To 0.010 A Seals 24 10 X	13 12 ^{-0.55} 70.010 A 70.005 E 70.010 A 70.005 E 70.010 A 70.005 E 70.010 A 70.005 E
/ 0.003 F →	L _t L ₁	5 (10) 30 15
10	L _a L _o	45

	Stroke L _s		Thread length			
Ball screw No.	Ball screw No. Nominal Maximum					
			L_{t}	$L_{\scriptscriptstyle 1}$	La	L。
W1001KA-3P-C3Z4	100	110	160	165	175	230
W1003KA-3P-C3Z4	300	310	360	365	375	430

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
 See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

(Fine lead)

M3×0.5

View X-X

4-φ4.5 drill thru

NSN

Screw shaft ø12

Lead 2

Unit: mm

ı	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	12 × 2 / Right
Preload / Bal	I recirculation	P-preload / Deflector (bridge)
Ball dia. / B	all circle dia.	1.200 / 12.3
Screw shaft	root diameter	10.9
Effective to	urns of balls	1×3
Accuracy gr	ade / Preload	C3 / Z
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 600
(N)	Static C _{0a}	2 670
Axia	l play	0
Prelo	ad (N)	98.1
Dynamic fri	ction torque,	0.4 – 3.4
(N·	cm)	0.4 - 5.4
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 1.
Internal spatial v	olume of nut (cm³)	0.53
Standard volume of gr	ease replenishing (cm³)	0.27

ne of grease replenishing (cm²) 0.27 Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)
WBK10-01C (square, clean)	WBK10S-01C (square, clean)
WBK10-11C (round, clean)	

Unit: mm

					51.11.11.11.1
Landanaviron		Shaft run-		Permissible rotational speed N (min-1)	
L	Lead accuracy		out **	Mass	Supporting condition
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		f (kg)	Fixed - Simple support
0	0.010	0.008	0.030	0.24	3 000
0	0.012	0.008	0.040	0.36	3 000

(38)	Ls (stroke range)	13 0 -0.25	
C0.2 SO CO.2 C0.5 RO CO.2 RO CO.5 RO CO	0.010 A	A G (width of flats) (7) 5	R0.2 10 M10×1
k '	L _o		<u>'</u>

Ball screw No.	Stroke $L_{ m s}$		Thread length			
	Nisasiasi	N 4 - v dissa v vosa	Tillead length			
	Nominal	Maximum	L_{t}	L_1	La	L _o
W1201KA-3PY-C3Z2	100	109	160	165	175	230
W1203KA-1PY-C3Z2	250	259	310	315	325	380

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

(Fine lead)

View X-X

 $4-\phi 4.5$ drill thru

c'bore ∮8×4

M6×1.0

(oil hole)

Screw shaft ø12

Lead 5

Unit: mm

cations	

I	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	12 × 5 / Right
Preload / Bal	I recirculation	P-preload / Return tube
Ball dia. / B	all circle dia.	2.381 / 12.3
Screw shaft	root diameter	9.8
Effective to	urns of balls	2.5 × 1
Accuracy gr	ade / Preload	C3 / Z
Basic load	Dynamic C _a	3 590
(N)	Static C _{0a}	4 630
Axia	l play	0
Prelo	ad (N)	98.1
Dynamic fri	ction torque,	10-44
(N·	cm)	1.0 - 4.4
Spac	er ball	None
Factory-page	cked grease	Refer to Notes 1.
Internal spatial v	olume of nut (cm³)	1.2
Standard volume of gr	rease replenishing (cm³)	0.6

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.012	0.008	0.040	0.47	3 000
0	0.016	0.012	0.065	0.66	3 000

70.007 A 70.007 A 70.000 A Seals 5 X 70.0010 A Seals 5 X 70.0010 A 80.2 70.003 F 70.003 F 10.008 A 10.0	< (40)	Ls (stroke range)	12 J 0.25 L 12 J
·	C0.5 0.9 max.	/(two places) A G 40 L L L L L L L L L L L L L	C0.2 C0.5 C0.5 C0.5 P

Ball screw No.	Strol	Stroke L _s Thread lend		lonath	nath	
	Nisasiasi	N 4 i	Triread lerigiti			
	Nominal M	Maximum	$L_{\rm t}$	L_1	La	Lo
W1202KA-3P-C3Z5	200	208	260	265	275	330
W1205KA-1P-C3Z5	450	458	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

View X-X

M6×1.0 (oil hole)

 $4-\phi 4.5$ drill thru c'bore $\phi 8\times 4$

NSN

Screw shaft ø12

Lead 10

Unit: mm

I	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	12 × 10 / Right
Preload / Bal	I recirculation	P-preload / Return tube
Ball dia. / B	all circle dia.	2.381 / 12.5
Screw shaft	root diameter	10.0
Effective to	urns of balls	2.5 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	3 620
	Static C _{0a}	4 750
Axia	l play	0
Prelo	ad (N)	98.1
,	ction torque, cm)	1.0 – 4.9
Spacer ball		None
Factory-page	cked grease	Refer to Notes 1.
Internal spatial v	olume of nut (cm³)	1.4
Standard volume of gr	rease replenishing (cm³)	0.7

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle m p}$	υ_{u}	(kg)		Fixed - Simple support
0	0.023	0.018	0.050	0.56	3 000
0	0.030	0.023	0.075	0.72	3 000

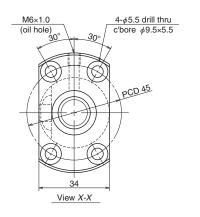
(44) **	Ls (stroke range)	13 0.25	
	0.012 A Seals (two places) X Seals (twop	A G (width of flats) (7) 5	0.2 C0.5 C0.5 R0.2 max M10x1
<	L ₁	(10)	30 15
10	L _a	-	45
<	L ₀		>

	Strol	Thread length				
Ball screw No.	Naminal Massimos		Tillead length			
	Nominal	Maximum	$L_{ m t}$	L_1	La	L _o
W1203KA-3P-C5Z10	250	253	310	315	325	380
W1205KA-3P-C5Z10	450	453	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.


NSN

Screw shaft ø15

Lead 10

Unit: mm

i	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	15 × 10 / Right
Preload / Bal	l recirculation	P-preload / Return tube
Ball dia. / Ba	all circle dia.	3.175 / 15.5
Screw shaft	root diameter	12.2
Effective to	irns of balls	2.5 × 1
Accuracy gra	ade / Preload	C5 / Z
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	6 660
(N)	Static C _{0a}	9 480
Axia	play	0
Prelo	ad (N)	147
· '	ction torque, cm)	1.5 – 7.9
Space	er ball	None
Factory-pag	ked grease	Refer to Notes 1.
Internal spatial vo	olume of nut (cm³)	2.3
Standard volume of gr	ease replenishing (cm³)	1.4

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

						Other train
	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
			out **	Mass	Supporting condition	
	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
	0	0.027	0.020	0.050	0.99	3 000
	0	0.035	0.025	0.065	1.2	3 000
	0	0.046	0.030	0.110	1.7	1 610

(48)	Ls (stroke range)	14 0 -0.25	
(0.014 A) (0.014	HH224		0.2 C0.5 C0.5 R0.2 max E 10 M12x1 45

	Stro	ke L _s	Thread length		
Ball screw No.	Namainal	Marriage	Trillead lerigiti		
	Nominal	Maximum	L_{t}	La	L。
W1504KA-3P-C5Z10	400	427	489	504	561
W1506KA-3P-C5Z10	600	627	689	704	761
W1510KA-1P-C5Z10	1 000	1 027	1 089	1 104	1 161

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

(Medium lead)

Nut model: UPFC

M6×1.0 (oil hole)

View X-X

4-φ5.5 drill thru

Screw shaft ø15

1.5 - 7.9

None

Refer to Notes 1.

1.9

1.0

Lead 20

Shaft dia. x Lead	/ Direction of turn	15 × 20 / Right
Preload / Bal	I recirculation	P-preload / End cap
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw shaft	root diameter	12.2
Effective to	urns of balls	1.7 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	4 630
	Static C _{0a}	6 430
Axia	l play	0
Prelo	ad (N)	147
Dynamic fri	ction torque,	45.70

(N·cm) Spacer ball

Factory-packed grease

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3)

Ball screw specifications

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)	
		out **		Supporting condition	
T	$e_{\scriptscriptstyle P}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple support
0	0.027	0.020	0.050	1.0	3 000
0	0.035	0.025	0.065	1.3	3 000
0	0.046	0.030	0.110	1.8	1 610

0.014 A 0.015 12025	70.014 850 70.2	(0.005 E) A) (92 C0.5 C0.5	
12 L ₃ L ₀	(18)	30 45	15

	Strol	ke L _s	т	h	
Ball screw No.	Nisasiasi	N 4 i	Thread length		
	Nominal Maximum	$L_{\rm t}$	La	L _o	
W1504KA-7PG-C5Z20	400	424	486	504	561
W1506KA-7PG-C5Z20	600	624	686	704	761
W1510KA-3PG-C5Z20	1 000	1 024	1 086	1 104	1 161

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

(Fine lead)

Nut model: MPFD

Screw shaft ø16

Siluit Dio

Lead 2

Unit: mm

Ball screw specifications Shaft dia. x Lead / Direction of turn 16×2 / Right Preload / Ball recirculation P-preload / Deflector (bridge) Ball dia. / Ball circle dia. 1.588 / 16.4 Screw shaft root diameter 14.6 Effective turns of balls 1×4 Accuracy grade / Preload $C3$ / Z Basic load rating Dynamic C_s 3400 Fatic C_{0a} 6240 Axial play 0 Preload (N) 147 Dynamic friction torque, (N-cm) $0.5 - 4.9$ Spacer ball None Factory-packed grease Refer to Notes 1. Internal spatial volume of gresse replerishing (cm²) 0.8			
$ \begin{array}{c} \text{Preload / Ball recirculation} \\ \text{Ball dia. / Ball recirculation} \\ \text{Ball dia. / Ball circle dia.} \\ \text{Screw shaft root diameter} \\ \text{Effective turns of balls} \\ \text{Accuracy grade / Preload} \\ \text{C3 / Z} \\ \\ \text{Basic load rating} \\ \text{(N)} \\ \text{Static C_{0a}} \\ \text{Static C_{0a}} \\ \text{O} $	ı	Ball screw s	pecifications
$\begin{array}{c} \text{Ball dia. / Ball circle dia.} \\ \text{Screw shaft root diameter} \\ \text{Effective turns of balls} \\ \text{Accuracy grade / Preload} \\ \text{C3 / Z} \\ \\ \text{Basic load rating} \\ \text{(N)} \\ \\ \text{Static C_{0a}} \\ \text{Static C_{0a}} \\ \text{O}	Shaft dia. x Lead	/ Direction of turn	16 × 2 / Right
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Preload / Bal	I recirculation	P-preload / Deflector (bridge)
Effective turns of balls Accuracy grade / Preload C3 / Z Basic load rating (N) Static C_{oa} Axial play Preload (N) Preload (N) Dynamic friction torque, (N·cm) Spacer ball Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm²)	Ball dia. / B	all circle dia.	1.588 / 16.4
$ \begin{array}{c c} Accuracy grade / Preload & C3 / Z \\ \\ Basic load \\ rating \\ (N) & Static C_{0a} & 3 400 \\ \\ Static C_{0a} & 6 240 \\ \\ \hline Axial play & 0 \\ Preload (N) & 147 \\ \\ \hline Dynamic friction torque, \\ (N \cdot cm) & 0.5 - 4.9 \\ \\ \hline Spacer ball & None \\ \hline Factory-packed grease & \textbf{Refer to Notes 1.} \\ \\ Internal spatial volume of nut (cm^3) & 1.6 \\ \\ \hline \end{array} $	Screw shaft	root diameter	14.6
$\begin{array}{c c} \text{Basic load} \\ \text{rating} \\ \text{(N)} & \text{Static } C_{\text{ls}} \\ & \text{Static } C_{\text{ls}} \\ & \text{6 240} \\ \\ & \text{Axial play} \\ & \text{O} \\ & \text{Preload (N)} \\ & \text{Dynamic friction torque,} \\ & \text{(N-cm)} \\ & \text{Spacer ball} \\ & \text{None} \\ \\ & \text{Factory-packed grease} \\ & \text{Refer to Notes 1.} \\ \\ & \text{Internal spatial volume of nut (cm^3)} \\ & \text{1.6} \\ \\ \end{array}$	Effective to	urns of balls	1 × 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accuracy gra	ade / Preload	C3 / Z
$ \begin{array}{c ccc} (N) & Static \ \textit{C}_{\tiny{0a}} & 6 \ 240 \\ \hline & Axial \ play & 0 \\ \hline & Preload \ (N) & 147 \\ \hline & Dynamic \ friction \ torque, \\ & (N\cdot cm) & 0.5 - 4.9 \\ \hline & Spacer \ ball & None \\ \hline & Factory-packed \ grease & \textbf{Refer to Notes 1.} \\ \hline & Internal \ spatial \ volume \ of \ nut \ (cm^3) & 1.6 \\ \hline \end{array} $		Dynamic $C_{\scriptscriptstyle a}$	3 400
Preload (N) 147 Dynamic friction torque, (N-cm) 0.5 - 4.9 Spacer ball None Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm²) 1.6		Static C _{0a}	6 240
Dynamic friction torque, (N⋅cm) 0.5 − 4.9 Spacer ball None Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm²) 1.6	Axia	l play	0
(N-cm) 0.5 - 4.9 Spacer ball None Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm²) 1.6	Prelo	ad (N)	147
(N-cm) None Spacer ball None Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm³) 1.6	Dynamic fri	ction torque,	0.5.40
Factory-packed grease Refer to Notes 1. Internal spatial volume of nut (cm³) 1.6	(N·	cm)	0.5 – 4.9
Internal spatial volume of nut (cm³) 1.6	Spac	er ball	None
'	Factory-pag	cked grease	Refer to Notes 1.
Standard volume of grease replenishing (cm²) 0.8	Internal spatial vo	olume of nut (cm³)	1.6
	Standard volume of gr	ease replenishing (cm³)	0.8

M6×1.0 (oil hole)	30° 30°	4-φ5.5 drill thru
-		CD 35
	29 View <i>X-X</i>	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

Load acquiracy		Shaft run-		Permissible rotational speed N (min-1)		
Lead accuracy		out ** Mass		Supporting condition		
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.020	0.46	3 000	
0	0.013	0.010	0.035	0.75	3 000	

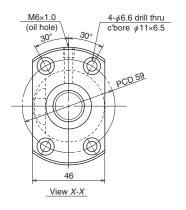
(39)	Ls (stroke range)	13 12 2025
(0.007 A) (0.007	0.010 A Seals (two places) 5 X 4 4 4 4 4 4 4 4 4	CO.2 CO.5 CO.5 RO2 M12×1 A G 8 6 M12×1
<	Lo	

Ball screw No.	Strol	ke L _s	Thread length			
	Nominal	Maximum	$L_{\rm t}$	L _a	L。	
W1601KA-3PY-C3Z2	100	137	189	204	261	
W1603KA-1PY-C3Z2	300	337	389	404	461	

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.


NSN

Screw shaft ø20

Lead 20

Unit: mm

I	Ball screw s	pecifications		
Shaft dia. x Lead	/ Direction of turn	20 × 20 / Right		
Preload / Bal	I recirculation	P-preload / Return tube		
Ball dia. / B	all circle dia.	3.969 / 21		
Screw shaft	root diameter	16.9		
Effective to	urns of balls	1.5 × 1		
Accuracy gr	ade / Preload	C5 / Z		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	6 700		
(N)	Static C _{0a}	9 710		
Axia	l play	0		
Prelo	ad (N)	196		
Dynamic friction torque, (N·cm) Spacer ball		2.0 – 11.8		
		None		
Factory-page	cked grease	Refer to Notes 1.		
Internal spatial v	olume of nut (cm³)	4.2		
Standard volume of gr	rease replenishing (cm³)	2.1		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK15-01C (square, clean)	WBK15S-01C (square, clean)	
WBK15-11C (round, clean)		

Unit: mm

L	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.030	0.023	0.050	2.0	3 000
0	0.035	0.025	0.085	2.5	3 000
0	0.046	0.030	0.110	3.4	2 160

 < (61) 	Ls (stroke range)	* 15	۹ ۰		
C0.5 R0.2 max. 10.15	Seals (two places) (two places) (two places) (two places) (two places) (two places) (two places) (two places)	8 X 1		C0.5	009 E 904715 CO.5
+	-	<u>L₀</u>			→

Ball screw No.	Stro	ke L _s	Thread length			
	Nominal	Maximum				
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	La	L_{\circ}	
W2005KA-3P-C5Z20	400	434	510	535	608	
W2007KA-3P-C5Z20	600	634	710	735	808	
W2011KA-3P-C5Z20	1 000	1 034	1 110	1 135	1 208	

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

B-3-1.5 Blank Shaft End MS Type, FS Type, SS Type

1. Order of the dimension tables

The dimension table begins with the smallest shaft diameter of each MS, FS and SS type ball screws, and proceed to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in the **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Lead accuracy

Lead accuracy is either C3 or C5 grades.

T: Travel compensation

e_n: Tolerance of specified travel

 υ_{\parallel} : Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural

frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft. Criterion of maximum rotational speed

: 3 000 min-1

The lower of the two criteria, d·n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Shaft end processing

MS, FS, and SS types require shaft end processing to your specification. The exclusive support units (page B389) are available to design the bearing seats. See "Configuration of shaft end" (page B27 and following pages) when

using a support unit. See "Technical Description: Shaft End Processing" (page B86) for procedures of shaft end processing and precautions.

4. Other

The seals of the ball screw, ball recirculating deflectors and end caps are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil. For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

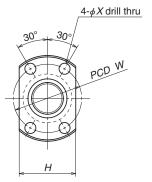

Note: For details of standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Screw shaft diameter(mm)	1	1.5	2	2.5	4	5	6
4	B301						
6	B301						
8	B301	B303	B303				
10			B303	B305	B309		
12			B305	B305		B309	
14						B311	
15							
16			B307	B307		B315	
20					B321	B321	
25					B323	B323	B323
					D323	B325	D323
28						B327	B327
20						B329	B329
						B331	B331
32						B333	B333
						B335	B000
36							
40						B337	
45							
50							

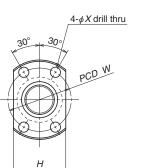
8		10	12	16	20	25	32	40	50
		B309							
B31	1								
		B311			B313				
				B315			B313		
		B315			B315			B313	
		B325			B317	B317			B317
		B327			5017	5017			B017
-		B335							
B33	3	B337				B319	B319		
		B339							
		B337							
		B339							
		B341	B341						
B34	1	B343							
	B343 B343								
		B347							
		B345							
		B347							

Screw shaft ø4, ø6, ø8, Lead 1

View X-X

Unit: mm

dir	mensio	ns	Sc	rew s	haf	t dir	nen	sion	S	Lea	ad acc	uracy	F	Run-ou	t	Mass	Permissible rotational	SIN
Overall length	Bolt		Threaded length	Shaft 6	end,	right	Shaft e	end, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	
L _n	W	X	$L_{\rm t}$	d_2	L_1	L_2	d_3	L ₃	L_{\circ}	T	$e_{\scriptscriptstyle extsf{D}}$	$ u_{\scriptscriptstyle u}$	I	J	K		N (min-1)	
12	15	2.9	80	6.0	4	40	3.3	10	130	0	0.008	0.008	0.030	0.009	0.008	0.026	3 000	
15	18	3.4	125	8.0	4	50	5.3	15	190	0	0.010	0.008	0.030	0.009	0.008	0.063	3 000	
16	21	3.4	110 190	10.2	4	60	7.3	25	195 275	0	0.010	0.008	0.030 0.050	0.009	0.008	0.11	3 000	


Co. Center hole	C0.2	X-1 X-1 A G	$\begin{array}{c c} \hline I & \hline G \\ \hline \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline$
	_ L ₃	L _t (hardened)	L ₂
	Not case harde	ned L_{\circ}	Not case hardened
		Nut type code: MSFD	7

(Fine lead: Deflector (bridge) type)

Ball screw No.	Stroke Max. <i>L</i> _r - <i>L</i> _n	Screw shaft dia.	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Effective ball	(1	- 1	Axial play Max.	Outside dia.		ut -lange	
	—t —n	d_1		Dw	um	G _r		$C_{\scriptscriptstyle a}$	C_{0a}		D	Α	Н	В
W0400MS-1Y-C3T1	68	4	1	0.8	4.2	3.2	2	370	370	0.005	10	20	14	3
W0601MS-1Y-C3T1	110	6	1	0.8	6.2	5.2	3	680	920	0.005	12	24	16	3.5
W0801MS-1Y-C3T1 W0802MS-1Y-C3T1	94 174	8	1	0.8	8.2	7.2	3	790	1 290	0.005	14	27	18	4

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Ball nut does not have seal.
- 4. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

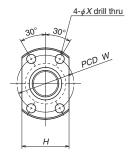
Screw shaft ø8 Lead 1.5, 2 Screw shaft ø10 Lead 2

View X-X

Co.1	C0.2	Seals (two places) X X A B A G	6.3(or/)	Co.5
	L ₃	L_1 (hardened)	Min. ∠1 ≥ L2	
	Not case harden		Not case hardened	

(Fine lead: Deflector (bridge) type)

Nut type code: MSFD


Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective ball	1)	ad rating V) Static	Axial play	Outside dia.	Nı	ut Flange	 e
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	l	$D_{\rm w}$	d _m	d_{r}	turns	C_{a}	C_{0a}	Max.	D	Α	Н	В
W0801MS-2Y-C3T1.5	88	8	1.5	1.0	8.3	7.0	3	1 270	1 970	0.005	15	28	19	4
W0802MS-2Y-C3T1.5	168	0	1.5	1.0	0.3	7.0)	1 2/0	1 970	0.005	15	20	19	4
W0801MS-3Y-C3T2	84	8	2	1.2	8.3	6.9	3	1 560	2 200	0.005	16	29	20	4
W0802MS-3Y-C3T2	164	0		1.2	0.5	0.5	3	1 300	2 200	0.005	10	23	20	4
W1001MS-1Y-C3T2	122	10	2	1.2	10.3	8.9	3	1 900	2 970	0.005	18	35	22	5
W1002MS-1Y-C3T2	222	10		1.2	10.3	0.9	3	1 000	2 970	0.005	10	33	22	5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

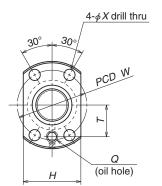
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by dn value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

dim	ensio	ns	S	Screw	sha	ft di	mensi	ons		Le	ad acc	curacy	F	≀un-ou	ıt	Mass	Permissible rotational	
Overall length	Bolt	hole	Threaded length	Shaft e	end, r	right	Shaft en	d, left	Overall		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	
L_{n}	W	X	$L_{\rm t}$	d ₂			d ₃	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	
22	22	3.4	110	10.2	4	60	7.2	25	195	0	0.010	0 000	0.030	0.000	0.008	0.12	3 000	
22	22	3.4	190	10.2	4	00	1.2	25	275	0	0.010	0.006	0.050	0.009	0.000	0.15	3 000	
26	23	3.4	110	10.2	4	60	7.0	25	195	_	0.010	0 008	0.030	n nna	0.008	0.12	3 000	
20	20	5.4	190	10.2	4	00	7.0	23	275	0	0.010	0.000	0.050	0.003	0.000	0.15	3 000	
28	27	4.5	150	12.2	4	70	9.0	30	250	0	0.010	0.008	0.035	n nna	0.008	0.22	3 000	
20	۷/	4.5	250	12.2	+	70	5.0	30	350	U	0.012	0.000	0.050	0.003	0.000	0.17	3 000	

Screw shaft ø10 Lead 2.5 Screw shaft ø12 Lead 2, 2.5

View X-X

Conter hole	C0.2	Seals (two places) X A A A G	6.3(or /)	Center hole
		L _n	Min. <u>∠L1</u>	
	<u>L₃</u>	L _t (hardened)	L ₂	1
	Not case hardened	d L _o	Not case hardened	
	•	Nut type code: MSFD		•


Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	ball	1)	ad rating V) Static	Axial play	Outside dia.		Nut Flange	 e
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}	turns	$C_{\rm a}$	C_{0a}	Max.	D	Α	Н	В
W1001MS-2Y-C3T2.5	118	10	2.5	1 500	10.4	0.6	3	2 500	3 630	0.005	10	26	22	E
W1002MS-2Y-C3T2.5	218	10	2.5	1.588	10.4	8.6	3	2 500	3 030	0.005	19	36	23	5
W1202MS-1Y-C3T2	182	12	2	1.200	12 2	10.9	3	1 960	3 620	0.005	20	37	24	5
W1203MS-1Y-C3T2	282	12		1.200	12.5	10.3	3	1 300	0 020	0.003	20	37	24	5
W1202MS-2Y-C3T2.5	178	12	2.5	1.588	12 /	10.6	3	2 790	1 530	0.005	21	38	25	5
W1203MS-2Y-C3T2.5	278	12	2.5	1.500	12.4	10.0	3	2 / 30	7 330	0.005	21	50	25	5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

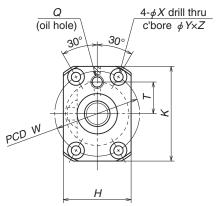
dim	ensio	ns	5	Screw	sha	ft di	mensi	ons		Le	ad acc	uracy	R	un-ou		Mass	Permissible rotational
Overall length	Bolt	hole	Threaded length	Shaft e	end, r	ight	Shaft en	d, left	Overall		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed
L_{n}	W	X	$L_{\rm t}$	d ₂	L ₁	L2	d ₃	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)
32	28	4.5	150	12.2	4	70	8.7	30	250	٥	0.010	0.008	0.035	0.010	0.008	0.23	3 000
32	20	4.5	250	12.2	4	70	0.7	30	350	U	0.012	0.000	0.050	0.010	0.000	0.28	3 000
28	29	4.5	210	14.2	5	80	11.0	35	325	n	0.012	0.008	0.050	0.010	0.008	0.36	3 000
20	23	4.5	310	14.2	5	00	11.0	33	425	0	0.012	0.008	0.060	0.010	0.000	0.44	3 000
32	30	4.5	210	14.2	5	80	10.7	35	325	0	0.012	0.008	0.050	0.010	0.008	0.37	3 000
32	30	4.5	310	14.2	J	00	10.7	30	425	U	0.012	0.006	0.060	0.010	0.008	0.45	3 000

Lead 2, 2.5

View X-X

Co.:	6.3	Seals (two places) X B K A B L A	Min. L1.	C0.5 Center hole
	Not case hardene	L _t (hardened)	Not case hardened	
	 INULUASE HARDENE 	L _o	Not case natuened	
		Nut type code: MSFD		

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead	Ball dia.	Ball circle dia. d _m	Root dia. d _r	Effective hall	1)	ad rating (V) Static C_{0a}	Axial play Max.	Outside dia.	F	lang H	Nut e B		Bolt	hole
W1602MS-1Y-C3T2	210	16	2	1.588	16.4	116	4	4 150	0.450	0.005	25	44	29	10	40	25	5.5
W1604MS-1Y-C3T2	360	10	2	1.000	10.4	14.0	4	4 100	0 400	0.005	25	44	29	10	40	33	5.5
W1602MS-2Y-C3T2.5	206	16	2 -	1.588	16.4	116	4	4 150	8 440	0.005	25	44	29	10	44	2 .	5.5
W1604MS-2Y-C3T2.5	356	10	2.5	000.1	10.4	14.0	4	4 100	0 440	0.005	25	44	29	10	44	33	0.0


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	dimens	ions	Scr	ew s	shaf	t dir	men	sior	าร	Lea	ad acc	uracy	F	Run-ou		Mass	Permissible rotational	Internal spatial volume of nut	3	SIN
	Oil h	ole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed		replenishing	
	Q	Τ	$L_{\rm t}$	L_1	L ₂	d_3	L ₃	length $L_{ m o}$	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu	I	J	Κ		N (min-1)	(cm³)	(cm³)		
	M6×1	16	250	16.2	30	100	1/1 7	40	390	n	0.012	0.008	0.035	0.010	0.008	0.71	3 000	1.5	0.8	
	IVIOXI	10	400	10.2	30	100	14.7	40	540	U	0.013	0.010	0.050	0.010	0.008	0.93	3 000	1.5	0.0	
	N/C+/1	10	250	100	20	100	1 1 7	40	390	0	0.012	0.008	0.035	0.010	0.000	0.73	2 000	1.5	0.0	
M6×1 1	16	400	16.2	30	100	14.7	40	540	U	0.013	0.010	0.050	0.010	0.008	0.95	3 000	1.5	0.8		

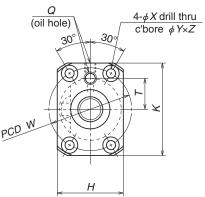
Screw shaft ø10 Lead 4 Screw shaft ø12 Lead 5, 10

View X-X

Q	$4-\phi X$ drill thru
(oil hole)	c'bore $\phi Y \times Z$
PCD W	X

Unit: mm

dimens Oil he		71	_				dime Shaft en		Overall			uracy Variation	Shaft	Run-ou Radial		Mass (kg)	Permissible rotational speed	volume of nut	Standard volume of grease replenishing
Q	T	length L _t	d_2	L	L ₁	L_2	d ₃	L ₃	length L _o	Т	$e_{\scriptscriptstyle m p}$	$v_{\rm u}$	straightness $oldsymbol{I}$	J	K	(1.9)	N (min ⁻¹)	(cm³)	(cm³)
M6×1	14	160 260 360		5	40	70	8.2	35	265 365 465	0	0.010 0.012 0.013	0.008 0.008 0.010	0.040	0.010	0.008	0.34 0.39 0.45	3 000	0.86	0.43
M6×1	15	150 250 450	14	5	40	70	9.8	35	255 355 555	0	0.010 0.012 0.015	0.008 0.008 0.010	0.040	0.010	0.008	0.44 0.52 0.67	3 000	1.2	0.6
M6×1	15	250 450	14	8	40	70	10.0	35	355 555	0	0.023 0.027	0.018 0.020		0.012	0.010	0.57 0.74	3 000	1.4	0.7


L_3 L_1 (hardened) L_2 Not case hardened L_0 Not case hardened	Co. Center hole	5 C0.2	Sea 960 \$\phi\$			71.6 Min.	C0.5 Center hole
Not case hardened L_{o} Not case hardened		L ₃	Lt	(hardened)	_	L ₂	
		Not case harde	ned	Lo		Not case hardene	ed

Nut type code: SFT, LSFT

Ball screw No.	Stroke Max. Lt-Ln	Screw shaft dia. d_1	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic	ad rating N) Static C _{0a}	Axial play Max.	Outside dia. D	F A	=lar H	nge K	N B	ut Overall length L _n	B	olt	ho Y	le Z
W1001FS-1-C3T4	126	10	4	0.000	10.0	0.0	0 5 4	0.040	4 400	0.005	00	40	00	4.0	4.0	0.4	00	4.5	_	4.5
W1002FS-1-C3T4 W1003FS-1-C3T4	226 326	10	4	2.000	10.3	8.2	2.5×1	3 210	4 420	0.005	26	46	28	42	10	34	36	4.5	8	4.5
W1201FS-1-C3T5	110																			П
W1202FS-1-C3T5	210	12	5	2.381	12.3	9.8	2.5×1	4 390	6 260	0.005	30	50	32	45	10	40	40	4.5	8	4.5
W1204FS-1-C3T5	410																			
W1202FS-2-C5T10	200	12	10	2 221	12 5	100	2 5 1	4 430	6 430	0 005	30	50	33	15	10	50	10	1 5	Q	4.5
W1204FS-2-C5T10	400	12	10	2.301	12.5	10.0	2.581	4 430	0 430	0.005	30	50	JZ	40	10	50	40	4.5	O	4.5

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 3. The permissible rotational speed is determined by dn value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Lead 5, 8 Screw shaft ø15 Lead 10

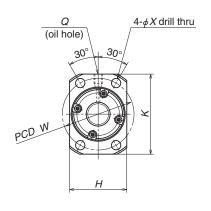
View X-X

U	nit:	mm

dimens	ions	Sc	rev	v s	haf	t di	men	sio	ns	Le	ad acc	curacy	F	Run-ou	ıt	Mass	Permissible rotational	Internal spatial	Standard volume of grease	3
Oil h	ole	Threaded length	Sha	ft ei	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	(am3)	replenishing	
Q	T	L _t	$d_{\scriptscriptstyle 2}$	Lu	L_1	L2	d ₃	L ₃	L _o	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\shortparallel}$	I	J	K		N (min-1)	(CITT)	(cm³)	
M6×1	17	350	15	5	40	100	11.2	10	490	٨	0.013	0.010	0.035	0.012	0.008	0.78	3 000	2.0	1.0	
IVIOXI	17	600	13	5	40	100	11.2	40	740	U	0.016	0.012	0.055	0.012	0.006	1.0	3 000	2.0	1.0	
M6×1	17	500	15	8	40	100	11.2	40	640	_	0.027	0.020	0.065	0.015	0.011	1.0	3 000	2.0	1.0	
IVIOXI	17	800	15	0	40	100	11.2	40	940	U	0.035	0.025	0.085	0.013	0.011	1.3	3 000	2.0	1.0	
		400							570		0.025	0.020	0.050			1.0				
NAGV1	600	600	15	8	10	120	12.2	E	770	_	0.030	0.023	0.065	0.015	0.011	1.3	3 000	2.3	1.2	
M6×1 17 9	900	15	0	40	120	12.2	100	1 070	0	0.040	0.027	0.110	0.015	0.011	1.7	3 000	2.3	1.2		
		1 100							1 270		0.046	0.030	0.150			1.9				

Center hole Center hole L_3 Not case hardened L_0 Not case hardened L_0 Not case hardened L_0 Not case hardened			/ J A	Seals (two pla	ces)	I G	
$ \begin{array}{c c} L_3 & L_t \text{ (hardened)} \\ \hline $		\$ p \$ \$			A 4	### ##################################	C0.5
Not case hardened Not case hardened				L_{n}	<i>X</i> -	Min. <u>Lu</u> <u>L1</u> >	
Not case hardened ∠ Not case hardened ∠ L _o	_	L ₃	<	$L_{\rm t}$ (hardened)		L ₂	>
	Ň	Not case ha	rdened	Lo		Not case hardened	d >

Nut type code: SFT, LSFT


Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	dia.	circle dia.	Root dia.	Turns x	(N Dynamic	ad rating V) Static	Axial	Outside dia.	ı	Flar	nge		ut Overall length	В	olt	ho	le
	$L_{t}-L_{n}$	d_1	ι	$D_{\rm w}$	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$		D	Α	Н	Κ	В	Ln	W	X	Y	Z
W1403FS-1-C3T5	310	14	5	2 175	115	11 2	2 Ev1	7 070	11 000	0.005	24	E 7	24	ΕO	11	40	1 =		0 E	E E
W1406FS-1-C3T5	560	14	5	3.175	14.5	11.2	Z.5X1	7 970	11 900	0.005	34	57	34	50	11	40	45	ე.ე	9.0	0.0
W1405FS-1-C5T8	454	14	8	2 175	115	11 0	2 5.71	7 000	11 000	0.005	24	E 7	24	ΕO	11	16	1 =		0 E	
W1408FS-1-C5T8	754	14	0	3.175	14.5	11.2	Z.5X1	7 000	11 000	0.005	34	57	34	50	11	40	45	0.0	9.0	5.5
W1504FS-1-C5T10	349																			
W1506FS-1-C5T10	549	15	10	2 175	155	12.2	2 5 1	0 1 1 0	12 000	0.005	24	57	21	50	11	E1	15	E E	0 5	5.5
W1509FS-1-C5T10	849	10	10	3.1/5	10.5	12.2	Z.3X1	0 140	12 000	0.005	34	57	34	50	11	01	45	0.5	J.D	0.5
W1511FS-1-C5T10	1 049																			

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is

Screw shaft ø15 Lead 20 Screw shaft ø16 Lead 32 Screw shaft ø20

Lead 40

Unit: mm

View X-X

	1	JA			
C0.5	C0.3 6.3 Not case ha	K A	T X A A B C rdened)	L_{u} L_{1} Not case ha	Center hole
	ivoi case na	ardened	1.0	inot case na	raeriea

Nut type code: USFC

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Turns	(N Dynamic		Axial play Max.	Outside dia.	Α	FI.	ang <i>K</i>	Nut ge		Overall length	Bolt	hole
W1504FS-2G-C5T20	355																		
W1506FS-2G-C5T20	555	1	20	0 175	1	100	1 71	E 660	0 700	م ممد	0.4		20	Ε0	10	11	4.5	4 -	
W1509FS-2G-C5T20	855	15	20	3.175	15.5	12.2	1.7×1	5 000	8 700	0.005	34	ხხ	30	50	10	11	45	45	5.5
W1511FS-2G-C5T20	1 055																		
W1609FS-2GX-C5T32	866	1.0	20	0 175	10.75	10.4	0.70	1 220	6 760	0.005	0.4		00	٦.	10	10 F	2.4	4 -	
W1613FS-1GX-C5T32	1 266	16	32	3.1/5	10./5	13.4	0.7×2	4 320	0 700	0.005	34	ხხ	30	50	10	10.5	34	45	5.5
W2011FS-1GX-C5T40	1 059	20	40	0 175	00.75	17 /	0.70	4 070	0.420	0.005	20	F0	40	F0	10	11	11	40	
W2017FS-1GX-C5T40	1 659	20	40	3.1/5	20./5	17.4	0.7×2	4 6/0	0 420	0.005	38	58	40	52	10	П	41	48	5.5

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed Fixed.

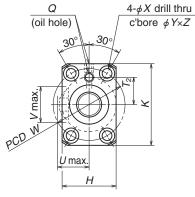
aft dimensions	Lead accuracy	Run-out	 Permissible	Internal spatial	Standard volume	æ

dimen	sions	Sc	crev	V S	haf	t di	men	sio	ns	Le	ad acc	curacy	F	Run-ou	it	Mass	Permissible rotational	Internal spatial volume of nut	01 910000	0.
Oil h	ole	Threaded length	Sha	ft ei	nd, r	ight	Shaft en	d, left	Overall length	Travel com- pensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	(cm³)	replenishing	
Q	T	L_{t}	d_2	$L_{\rm u}$	L_1	L_2	d ₃	L ₃	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min ⁻¹)	(0111)	(cm³)	
		400							570		0.025	0.020	0.050			1.0				
NAC: -1	600	15.0	10	10	100	100		770	_	0.030	0.023	0.065	0.015	0 011	1.3	2 000	1.0	1.0	Н	
M6×1	5	900	115.2	13	40	120	12.2	50	1 070	U	0.040	0.027	0.110	0.015	0.011	1.7	3 000	1.9	1.0	
	1 10	1 100							1 270		0.046	0.030	0.150			2.0				
NAC: 41	90	900	10.0	10	40	150	10.4	co	1 110	0	0.040	0.027	0.110	0.015	0.011	1.9	2 000	0	1.0	
IVIOXI	M6×11 5 ⊢	1 300	10.2	19	40	150	13.4	00	1 510	U	0.054	0.035	0.150	0.015	0.011	2.5	3 000	2.0	1.0	
Mevi	M6×1 5	1 100	20.2	22	60	150	17.4	00	1 330	0	0.046	0.030	0.150	0.015	0.011	3.5	3 000	2.7	1.4	
IVIOXI	M6×1 5	1 700	20.2	22	00	100	17.4	00	1 930	U	0.065	0.040	0.200	0.015	0.011	4.9	3 000	2.7	1.4	

C0.5

Not case hardened

Center hole


C0.5

Center hole

1.6

Not case hardened

Screw shaft ø16 Lead 5, 16 Screw shaft ø20 Lead 10, 20

U min. Housing hole and its clearance (only applicable to shaft dia. ϕ 16, lead 16)

View X-X

Nut type code: SFT, LSFT

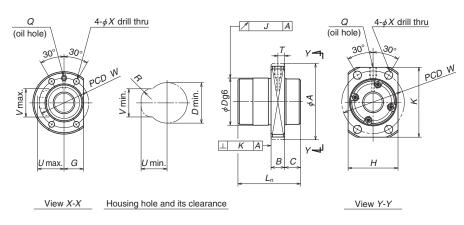
Lo

В

/ K A

Lt (hardened)

Seals (two places)


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead l	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic	1)	Axial	Outside dia.	F A	=lar H	nge K		ut Overall length L _n	Bo W	olt X	hc Y	ole Z
W1605FS-1-C3T5	458	16	5	3.175	16.5	13.2	2.5×1	8 620	13 800	0.005	40	63	40	55	11	42	51	5.5	9.5	5.5
W1609FS-1-C3T5 W1606FS-1-C5T16	858 544		10	0.175	10.75	10.4	1 51	F 400	0.000	0 005	0.4	F 7	0.4	F0	10	F.C.	4.5		٥٢	
W1611FS-1-C5T16	1 044		16	3.175	16.75	13.4	1.5×1	5 480	8 080	0.005	34	57	34	50	12	56	45	5.5	9.5	5.5
W2009FS-1-C5T10 W2013FS-1-C5T10	846 1 246	20	10	3.969	21	16.9	2.5×1	13 300	21 900	0.005	46	74	46	66	13	54	59	6.6	11	6.5
W2010FS-1-C5T20 W2015FS-1-C5T20	937 1 437	20	20	3.969	21	16.9	1.5×1	8 190	13 100	0.005	46	74	46	66	13	63	59	6.6	11	6.5

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

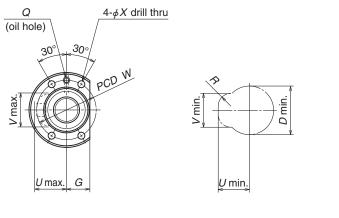
		_																						
	di	ime	ension	S							nens				ad acc	uracy	R	un-oı	ut	Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease	5
Proje	cting	tube R	Oil h	nole T.	e T.	Threaded length	Shaf	t en	d, ri	ght / .	Shaft en	d, left	Overall length	Т	Deviation e_{n}	Variation $\upsilon_{\shortparallel}$	Shaft straightness T	Radial	run-out	(kg)	speed N (min ⁻¹)	l .	replenishing (cm³)	
	,		M6×1	6	17	500	16.2		40	150	13.2	60	710	0	- p	0.010	0.055	0 012	0.008	1.4	3 000	2.6	1.3	
			IVIOXI	0	/	900	10.2	5	40	150	13.2	00	1 110	U	0.021	0.015	0.095	0.012	0.006	1.9	3 000	2.0	1.3	
10	20	8	M6×1	8	17	600	16.2	10	10	150	13.4	60	810	n	0.030	0.023	0.085	0.015	0.011	1.5	3 000	2.1	1.1	
10	20	U	IVIOAI		17	1 100	10.2	10	40	100	13.4	00	1 310	U	0.046	0.030	0.150	0.013	0.011	2.3	2 480	2.1	1.1	_
			M6×1	6	24	900	20.2	10	len.	150	16.9	lon.	1 130	٨	0.040	0.027	0.110	0.015	0.011	3.2	3 000	4.7	2.4	
			IVIOXI	U	24	1 300	20.2	10	00	150	10.3	00	1 530	U	0.054	0.035	0.150	0.015	0.011	4.1	2 190	4.7	2.4	
			M6×1	8	24	1 000	20.2	13	60	150	16.9	ลก	1 230	0	0.040	0.027	0.110	0.015	0.011	3.6	3 000	4.2	2.1	
_			IVIOXI	٥	24	1 500	20.2	13	00	130	10.3	00	1 730	U	0.054	0.035	0.200	0.010	0.011	4.8	1 610	4.2	۷.۱	

Screw shaft ø25 Lead 20, 25, 50

Nut type code: USFC

Proje			nsions Oil ho	ole.	Something Shares				t dir ight	nen Shaft e		Overall length		ad acc Deviation			un-oı Radial		IVIass	Permissible rotational speed	Internal spatial volume of nut	Standard volume of grease replenishing	5
U	V	R	Q	T	Lt	d_2	Lu	L ₁	L ₂	d_3	L ₃	Lo	Т	$e_{\scriptscriptstyle m D}$	$\upsilon_{\scriptscriptstyle \sf u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
31	35	12	M6×1		1 350	25.2	12	70	200	21.2	100	1 650	Λ	0.054	0.035	0.120	0.015	0.011	6.8	2 550	12	6.0	
31	30	12	IVIOXI		2 150	20.2	13	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.013	0.011	9.8	1 000	12	0.0	H
32	24	10	NAC 4		1 350	25.0	1.5	70	200	21.2	100	1 650	^	0.054	0.035	0.120	0.015	0.011	6.8	2 540	10	F 0	
32	34	12	M6×1	_	2 150	25.2	15	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	1 000	10	5.0	
			MGv4	6	1 500	25.2	26	70	200	21.0	100	1 800	0	0.054	0.035	0.120	0.015	0.011	7.3	1 250	E O	2.7	
			M6×1	O	2 150	25.2	20	/0	200	21.9	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	1 000	5.3	2.7	

	JA	Seals (two places)	[1] I G	
C0.5 C0. 6.3	\$\frac{\phi}{\phi}	X A B C Ln	71.6 Min. Lu, L1,	C0.5
L ₃		Lt (hardened)	L ₂	
Not case h	ardened	Lo	Not case hardened	


Nut type code: LSFT

Ball screw No.	Stroke Max. <i>L</i> _t - <i>L</i> _n	Screw shaft dia. \mathcal{d}_1	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	MOOL	Turns	Dynamic	۷)	Axial	Nut type code	Outside dia.	Α	G G		Nut		С	Overall length	Bolt	
W2513FS-1-C5T20 W2521FS-1-C5T20		125	20	4.762	26.25	21.3	2.5×1	18 600	32 600	0.005	LSFT	44	71	23	_	_	12	8	96	57	6.6
W2513FS-2-C5T25	1 260	25	25	4.762	26.25	21.3	1.5×1	11 700	19 700	0.005	LSFT	44	71	23			12	10	90	57	6.6
W2521FS-2-C5T25 W2515FS-1GX-C5T50																					
W2521FS-3GX-C5T50		25	50	3.969	26	21.9	0.7×2	7 280	13 200	0.005	USFC	46	70		48	63	12	13	50	58	6.6

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Lead 25, 32

View X-X

Housing hole and its clearance

Unit: mm

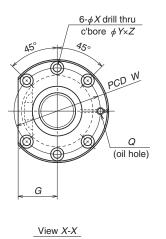
d	ime	nsic	ns	Sc	crev	v sł	naft	t din	nen	sior	ıs	Lea	ad acc	uracy	R	un-oı	ut	Mass	Permissible rotational	Internal spatial	volume	æ
Proj	ecting t	tube	Oil hole	Threaded length	Sha	ıft er	nd, r	ight	Shaft e	nd, left	Overall length	Travel com- censation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	(cm³)	of grease replenishing	
U	V	R	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	Lu	L_1	L_2	d_3	L ₃	Ľ.	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	Κ		N (min ⁻¹)	(0111)	(cm ³)	
34	42	12	M6×1	1 700	32.3	1 =	70	250	28.3	120	2 070	Λ	0.065	0.040	0.160	0.010	0.013	13.8	2 180	17	0.5	
34	42	12	IVIOXI	2 700	32.3	15	70	250	۷٥.٥	120	3 070	U	0.093	0.054	0.210	0.019	0.013	20.0	800	17	8.5	
0.4	2	10	N 4 C 1	1 700	20.0	10	70	٥٥٥	20.2	100	2 070	^	0.065	0.040	0.160	0.010	0.010	13.9	2 180	1 -	7.5	
34	42	12	M6×1	2 700	32.3	19	/0	250	28.3	120	3 070	U	0.093	0.054	0.210	0.019	0.013	20.0	790	15	7.5	

		J A	Seals (two places)		I G	
Co.5	C0.3	\$\frac{\phi}{\phi} \phi \phi \phi \phi \qua		A G	1.6 Min. L ₁	Co.5
	L ₃		$L_{\rm t}$ (hardened)		L ₂	
	Not case har	dened	L _o		Not case hardened	

Nut type code: LSFT

Ball screw No.	Stroke Max.		Lead	Ball dia.	Ball circle	Root	Effective ball turns Turns	/.	ad rating J)	Axial				Ν	ut			
Dall Sciew No.	l . · .		1	n n	dia.	,			Static	play Max.	Outside dia.		Flar	nge		Overall length	Bolt	hole
	L_t - L_n	d_1	ι	$D_{\rm w}$	$d_{\rm m}$	$d_{\rm r}$	Circuits	$C_{\rm a}$	C_{0a}	IVIUX.	D	Α	G	В	С	L	W	X
W3217FS-1-C5T25	1 583	32	25	1 762	22.25	20.2	2 5 1	20 400	42 200	0 005	E1	85	26	15	10	117	67	9
W3227FS-1-C5T25	2 583	32	25	4.702	33.ZU	20.3	Z.5X1	20 400	42 200	0.005	01	00	20	10	10	117	07	9
W3217FS-2-C5T32	1 591	22	22	4 700	22.25	20.2	1 51	10 000	25 200	0.005	E 1	O.F.	20	15	12	100	67	
W3227FS-2-C5T32	2 591	32	32	4./62	33.ZD	28.3		13 300	25 200	0.005	ומ	85	26	15	12	109	0/	9

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
Fixed-Fixed.

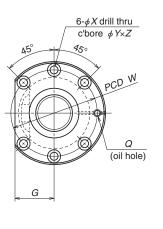
Not case hardened

Not case hardened

Lead 4, 5

Center hole	C0.5	Seals (two places) X Q X A A G	C1
	La	L ₁ (hardened)	Min. L ₁

Nut type code: PFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. D_{w}	Ball circle dia. d _m	Root dia.	Turns	1) Dvnamic	ad rating N) Static C _{0a}	Preload (NI)	Dynamic friction torque, median (N·cm)	Uutside dia	FI A	anç G	Nut ge B	Overall length Ln	_	hole
W2003SS-1P-C5Z4	251																	
W2005SS-1P-C5Z4	451	20	4	2.381	20.3	17.8	2.5×2	6 550	10 900	290	3.9	40	63	24	11	49	51	5.5
W2008SS-1P-C5Z4	751																	
W2003SS-2P-C5Z5	244																	
W2005SS-2P-C5Z5	444	20	E	0 175	20 5	170	0 5.40	11 100	17 100	400	7.0	11	67	20	11	E.C.	e e	E E
W2007SS-1P-C5Z5	644	20	5	3.1/5	20.5	17.2	2.5×2	100	17 100	490	7.8	44	0/	26	11	56	25	ე.5
W2010SS-1P-C5Z5	944																	

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

U	n	ιt	:	r	Y	۱r	Υ

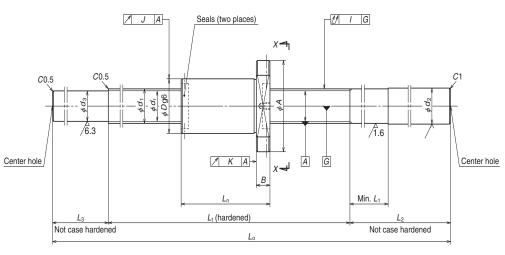
dir	ner	nsions	Scr	ew	sha	aft d	ime	nsic	ons	Lead	d accu	ıracy	F	ในท-oเ	ıt	Mass	Permissible rotational	Internal spatial	Standard volume	00
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Radial	run-out	(kg)	эроси	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L ₂	d ₃	L ₃	L _o	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
			300			150		_	450	-0.007	0.023	0.018	0.055			1.5				
9.5	5.5	M6×1	500	20.2	40	150	17.8	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.0	3 000	2.7	1.4	
			800			200		100	1 100	-0.019	0.035	0.025	0.140			2.9				
			300			150		_	450	-0.007	0.023	0.018	0.055			1.6				
0.5	15551	NAC-41	500	20.2	40	150	170	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.2	2 000	4.0		
9.5	.5 5.5	IVIOXI	700	20.2	40	200		100	1 000	-0.017	0.035	0.025	0.110	0.015	0.011	2.8	3 000	4.3	2.2	
			1 000			200		100	1 300	-0.024	0.040	0.027	0.180			3.5				

Lead 4, 5, 6

View X-X

	Seals (two places) X-4	I G
Conter hole	96 O O O O O O O O O O O O O O O O O O O	C1 Canter hole
L ₃	$L_{\rm t}$ (hardened)	L ₂
Not case hardened	L _o	Not case hardened

Nut type code: PFT

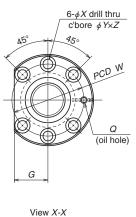

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(1) Dvnamic	N)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç <i>G</i>	_		Bolt W	
W2503SS-1P-C5Z4	252																	
W2506SS-1P-C5Z4	552	25	4	2.381	25.3	22.8	2.5×2	7 110	13 600	290	4.9	46	69	26	11	48	57	5.5
W2510SS-1P-C5Z4	952																	
W2503SS-2P-C5Z5	245																	
W2505SS-1P-C5Z5	445	25	5	3.175	25.5	22.2	2 5/2	12 300	21 900	540	8.8	E0	72	20	11	55	61	5.5
W2508SS-1P-C5Z5	745	25)	3.175	25.5	22.2	2.002	12 300	21 000	540	0.0	50	/3	20	' '	55	01	5.5
W2512SS-1P-C5Z5	1 145																	
W2504SS-1P-C5Z6	338																	
W2508SS-2P-C5Z6	738	25	6	3.969	25.5	21.4	2.5×2	16 600	26 700	690	13.8	53	76	29	11	62	64	5.5
W2512SS-2P-C5Z6	1 138																	

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

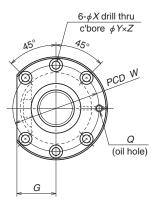
dir	ner	nsions		ew							d accu	,		lun-ou	ıt	Mass		spatial	Standard volume	0
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft strainhtness	Radial	run-out		specu	volume of nut	of grease replenishing	
Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	Ľ.	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
			300			150		_	450	-0.007	0.023	0.018	0.040			2.2				
9.5	5.5 M6×1	600	25.2	40	200	22.8	100	900	-0.014	0.030	0.023	0.075	0.015	0.011	3.8	2 800	3.2	1.6	Н	
			1 000			200		100	1 300	-0.024	0.040	0.027	0.120			5.2				
			300			200		_	500	-0.007	0.023	0.018	0.040			2.5				•
9.5		M6×1	500	25.2	10	200	22.2	50	750	-0.012	0.027	0.020	0.060	0.015	0.011	3.4	2 800	5.2	2.6	
9.0	0.0	IVIOXI	800	20.2	40	250	ZZ.Z	100	1 150	-0.019	0.035	0.025	0.090	0.015	0.011	4.8	2 000	0.2	2.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				
			400			200		_	600	-0.010	0.025	0.020	0.050			3.0				
9.5	5.5	M6×1	800	25.2	40	250	21.4	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	4.8	2 800	7.0	3.5	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				

Lead 5, 10


(Fine lead: Deflector (bridge) type)

Nut type code: ZFD

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic	N)	(NI)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut	Overall length L _n	Bolt	hole
W2502SS-1ZY-C5Z5	184																	
W2504SS-3ZY-C5Z5	334																	
W2506SS-2ZY-C5Z5	534	25	5	3.175	25.75	22.4	1×3	11 600	22 900	740	13.8	40	63	24	11	66	51	5.5
W2509SS-1ZY-C5Z5	834																	
W2512SS-3ZY-C5Z5	1 134																	
W2504SS-4ZY-C5Z10	312																	
W2506SS-3ZY-C5Z10	512																	
W2508SS-3ZY-C5Z10	712	25	10	4.762	26.25	21.3	1×2	13 300	21 200	880	21.5	42	69	26	15	88	55	6.6
W2511SS-1ZY-C5Z10	1 012																	
W2515SS-2ZY-C5Z10	1 412																	

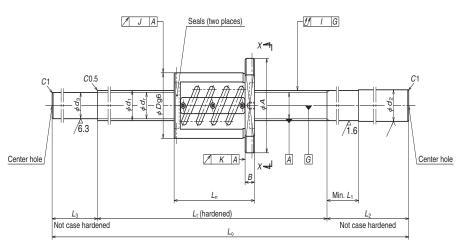

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic	ons	Lead	d accu	iracy	F	lun-ou	ıt	Mass		spatial	Standard volume
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	sheen	volume of nut	of grease replenishing
Υ	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	Ľ.	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)
			250			200		_	450	-0.005	0.023	0.018	0.040			2.1			
			400			200		50	650	-0.009	0.025	0.020	0.060			2.8			
9.5	5.5	M6×1	600	25.2	40	250	22.4	100	950	-0.013	0.030	0.023	0.075	0.015	0.011	3.9	2 800	800 5.4 2.7	2.7
			900			250		100	1 250	-0.021	0.040	0.027	0.090			4.9		00 5.4 2.7	
			1 200			300		100	1 600	-0.028	0.046	0.030	0.120			6.2			
			400			200		50	650	-0.008	0.025	0.020	0.060			3.0			
			600			250		100	950	-0.012	0.030	0.023	0.075			4.1			
11	6.5	M6×1	800	25.2	60	250	21.3	100	1 150	-0.017	0.035	0.025	0.090	0.015	0.011	4.8	2 800	9.0	4.5
11			1 100	1		300		100	1 500	-0.024	0.046	0.030	0.120			6.0			
			1 500			300		100	1 900	-0.034	0.054	0.035	0.150			7.4			

Lead 10 Screw shaft ø28 Lead 5, 6

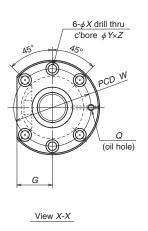
View X-X


C1	C0.5 6.3	Seals (two places) X A G B A G	7 G	Center hole
	,	L_1 (hardened)	Min. L ₁	
	Not case hardened	L _i (nardened) >	Not case hardened	

Nut type code: PFT

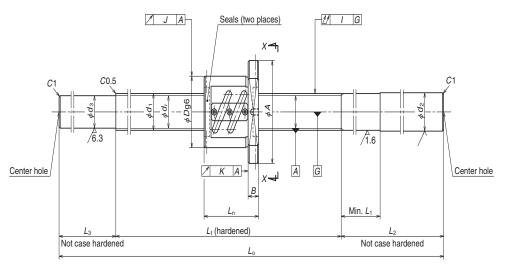
							_											
Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns		ad rating ()	Preload	Dynamic friction torque,				Nut	t		
Dali Sciew No.					dia.	ļ .	. ×	Dynamic	Static	(N)	median	Outside dia.	FI	anç	ge	Overall length	Bolt	hole
	L_{t} - L_{n}	d_1	l	D_w	$d_{\rm m}$	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(1.4)	(N·cm)	D	Α	G	В	Ln	W	X
W2504SS-2P-C5Z10	319																	
W2507SS-1P-C5Z10	619	25	10	4.762	25.5	20.5	1 5./2	13 600	10 000	500	13.8	20	0.5	32	15	01	71	6.6
W2510SS-2P-C5Z10	919	20	10	4.702	20.0	20.5	1.082	13 000	10 900	090	13.0	50	00	SZ	10	01	/ 1	0.0
W2515SS-1P-C5Z10	1 419																	
W2804SS-1P-C5Z5	344																	
W2806SS-1P-C5Z5	544	28	5	3.175	28.5	25.2	2.5×2	12 000	24 400	540	9.8	55	85	21	12	56	60	6.6
W2808SS-1P-C5Z5	744	20)	3.173	20.5	25.2	2.5/2	13 000	24 400	340	3.0	00	00	31	12	30	03	0.0
W2812SS-1P-C5Z5	1 144																	
W2804SS-3P-C5Z6	337																	
W2806SS-3P-C5Z6	537	28	6	3.175	28.5	25.2	2.5×2	12 000	24 200	E40	10.8	55	85	21	12	63	60	6.6
W2808SS-3P-C5Z6	737	20	0	3.173	20.0	20.2	2.082	12 900	24 300	340	10.0	90	00	J I	12	03	03	0.0
W2812SS-3P-C5Z6	1 137																	

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
 Fixed-Fixed.


																				Unit: mm	
C	lin	ner	sions	Scr	ew	sha	aft c	lime	nsic	ons	Lead	d accu	ıracy	F	lun-ou	ıt	Mass		spatial	Standard volume	SS
В	olt l	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		specu	volume of nut	of grease replenishing	
	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	Ľ.	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
Ī				400			200		50	650	-0.010	0.025	0.020	0.060			3.8				
1	1	6.5	M6×1	700	25.2	60	250	20.5	100	1 050	-0.017	0.035	0.025	0.090	0.019	0.013	5.1	2 800	9.7	4.9	
1	I	0.0	IVIOXI	1 000	25.2	00	250	20.5	100	1 350	-0.024	0.040	0.027	0.120	0.019	0.013	6.1		9.7	4.9	
				1 500			300		100	1 900	-0.036	0.054	0.035	0.150			8.0	2 050			
				400			200		_	600	-0.010	0.025	0.020	0.050			3.7				
1	1	٥ ـ	N 10: .1	600	00.0	40	250	05.0	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.2	0.500	0.1	0.1	
I	1	6.5	M6×1	800	28.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.1	2 500	6.1	3.1	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.1				
T				400			200		_	600	-0.010	0.025	0.020	0.050			3.8				
1	1	٥ ـ	N401	600	00.0	40	250	05.0	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.3	0.500	0.1	0.1	
1	1	6.5	M6×1	800	28.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.2	2 500	6.1	3.1	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.2				

Nut type code: ZFT

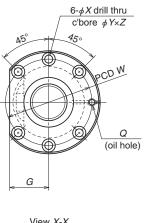
Ball screw No.	Stroke Max. L _t -L _n	shaft dia.	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(1) Dvnamic	ad rating V) Static C_{0a}	Preload (NI)	Dynamic friction torque, median (N·cm)	Outside dia. D	FI A	anç <i>G</i>	Nut ge B	Overall length L _n	Bolt	hole
W2804SS-2Z-C5Z5	314																	
W2806SS-2Z-C5Z5	514	28	5	2 175	20 E	25.2	2 5 > 2	20 600	10 700	1 225	21.5	55	0E	21	12	26	60	6.6
W2808SS-2Z-C5Z5	714	20	5	3.173	20.5	25.2	Z.0XZ	20 000	40 /00	1 220	21.0	00	00	31	12	00	03	0.0
W2812SS-2Z-C5Z5	1 114																	
W2804SS-4Z-C5Z6	301																	
W2806SS-4Z-C5Z6	501	28	6	2 175	28 5	25.2	2 5~2	20 600	/R 700	1 1 225	22.5	55	85	21	12	aa	60	6.6
W2808SS-4Z-C5Z6	701] 20		0.170	20.5	20.2	2.3^2	20 000	40 700	1 220	22.0	00	00	١٥١	12	00	03	0.0
W2812SS-4Z-C5Z6	1 101	1																


- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299
 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is
 Fixed-Fixed.

dir	ner	sions		ew							d accu	,		Run-ou	ut	Mass	Permissible rotational	spatial	Standard volume
Bolt	hole Z	Oil hole	Threaded length	Shaft d ₂	end	, right L_2	Shaft e	nd, left	Overall length	Travel compensation	Deviation $e_{\scriptscriptstyle m D}$	Variation $\upsilon_{\shortparallel}$	Shaft straightness T	Radial	run-out <i>K</i>		speed N(min-1)	volume of nut (cm³)	of grease replenishing (cm³)
,	_	Q.	400	G ₂		200			600	-0.010		0.020	0.050		Α.	4.7			
11	6.5	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.012	5.5	2 500	9.2	4.6
11	0.0	IVIOXI	800	20.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.4	2 500	9.2	4.6
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.4			
			400			200		_	600	-0.010	0.025	0.020	0.050			4.2			
11	6 5	M6v1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.013	5.7	2 500	9.5	4.8
''	0.5	6.5 M6×1	800	20.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.6	2 500	9.5	4.0
		1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.6				

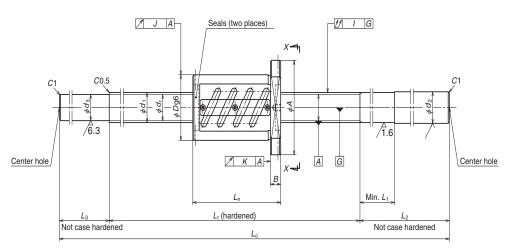
Screw shaft ø32

Lead 5, 6



Nut type code: PFT

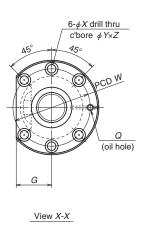
Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. <i>d</i> 1	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	dia.	Turns	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W3204SS-1P-C5Z5	344															
W3206SS-1P-C5Z5	544															
W3208SS-1P-C5Z5	744	32	5	3.175	32.5	29.2	2.5×2	13 700	28 000	590	10.8	58	85	32	12	56
W3212SS-1P-C5Z5	1 144															
W3215SS-1P-C5Z5	1 444															
W3206SS-3P-C5Z6	537															
W3210SS-1P-C5Z6	937	32	6	3.969	32.5	28.4	2.5×2	18 300	34 700	780	15.6	62	89	34	12	63
W3215SS-3P-C5Z6	1 437															


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

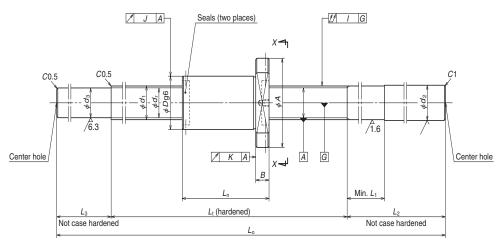
View X-X

	din	nens	sion	S	Sc	rew	sh	aft c	dime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	spatial	volume	33
	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	molonishina	
W	' X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			4.8				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.5				Н
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	7.7	2 180	6.9	3.5	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.3				Г
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.1				
					600			250			950	-0.014	0.030	0.023	0.075			6.7				•
75	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.2	2 180	9.4	4.7	
					1 500			300			1 900	-0.036	0.054	0.035	0.150			12.1				



Nut type code: ZFT

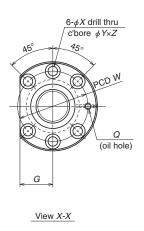
Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns X Circuits	(N Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut ang <i>G</i>		Overall length
W3204SS-2Z-C5Z5	314															
W3206SS-2Z-C5Z5	514															
W3208SS-2Z-C5Z5	714	32	5	3.175	32.5	29.2	2.5×2	21 800	56 000	1 270	22.5	58	85	32	12	86
W3212SS-2Z-C5Z5	1 114															
W3215SS-2Z-C5Z5	1 414															
W3206SS-4Z-C5Z6	501															
W3210SS-2Z-C5Z6	901	32	6	3.969	32.5	28.4	2.5×2	29 100	69 300	1 720	34.5	62	89	34	12	99
W3215SS-4Z-C5Z6	1 401															
W3206SS-5Z-C5Z8	518															
W3210SS-3Z-C5Z8	918	32	8	4.762	32.5	27.5	2.5×1	20 600	40 900	1 320	30.5	66	100	38	15	82
W3215SS-5Z-C5Z8	1 418															


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	un-oı	ut	Mass	Permissible rotational	spatial	Standard volume	Co
Е	3olt	hole	Э	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed		of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Ľ	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	Κ		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			5.1				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.9				f
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	8.0	2 180	10	5.0	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.1				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.4				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.1				
75	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.7	2 180	15	7.5	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.3				
82	9	14	8.5	M6×1	1 000	32.3	50	300	27.5	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.8	2 180	7.9	4.0	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				

Lead 5, 10



Nut type code: ZFD

Ball screw No.	Stroke Max.	shaft dia.	Lead	Ball dia.	circle dia.	dia.	Turns	Basic loa (N Dynamic	۷)	Preload (N)	Dynamic friction torque, median	Outside dia.		Nut lang		Overall length
	$L_{t}-L_{n}$	d_1	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits		C_{0a}		(N·cm)	D	Α	G	В	Ln
W3204SS-3ZY-C5Z5	323															
W3206SS-6ZY-C5Z5	523															
W3209SS-1ZY-C5Z5	823	32	5	3.175	32.75	29.4	4	16 800	40 600	1 080	19.6	48	75	29	12	77
W3212SS-3ZY-C5Z5	1 123															
W3216SS-1ZY-C5Z5	1 523															
W3205SS-3ZY-C5Z10	380															
W3207SS-3ZY-C5Z10	580															
W3210SS-6ZY-C5Z10	880	32	10	6.35	33.75	27.1	3	30 500	52 500	1 860	49.0	54	88	34	15	120
W3214SS-3ZY-C5Z10	1 280															
W3218SS-3ZY-C5Z10	1 680															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-ou	ut	Mass	Permissible rotational	Internal spatial	Standard volume	ö
	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	renlenishinn	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm ³)	(cm ³)	
					400			200		50	650	-0.009	0.025	0.020	0.060			4.6				
					600			250		100	950	-0.013	0.030	0.023	0.075			6.4				
61	6.6	11	6.5	M6×1	900	32.3	40	250	29.4	100	1 250	-0.021	0.040	0.027	0.090	0.015	0.011	8.1	2 180	22	11	
					1 200			300		100	1 600	-0.028	0.046	0.030	0.120			10.2				
					1 600			300		100	2 000	-0.037	0.054	0.035	0.150			12.6				
					500			250		100	850	-0.010	0.027	0.020	0.075			6.2				
					700			250		100	1 050	-0.015	0.035	0.025	0.090			7.3				
70	9	14	8.5	M6×1	1 000	32.3	60	300	27.1	100	1 400	-0.022	0.040	0.027	0.120	0.019	0.013	9.3	2 180	23	12	
					1 400			350		120	1 870	-0.032	0.054	0.035	0.150			11.9				
					1 800			350		120	2 270	-0.041	0.065	0.040	0.200			14.1				

Not case hardened

Center hole

/ J A

Center hole

Screw shaft ø32, ø36 Lead 10 Screw shaft ø40 Lead 5

Nut type code: ZFT

/ K A →

Lt (hardened)

Seals (two places)

-11 I G

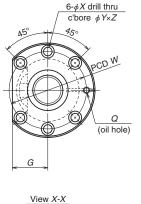
G

Min. L₁

Not case hardened

À

Ball screw No.	Stroke Max.	Screw shaft dia. d_1	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	dia.	Effective ball turns Turns × Circuits	Dasic io.	Static	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nu	е	Overall length
W3205SS-1Z-C5Z10	400	·		"			Circuits	C _a	C_{0a}		(IN-CIII)	D	Α	G	В	L _n
W3207SS-1Z-C5Z10	600															
W3210SS-4Z-C5Z10	900	32	10	6.350	33	26.4	2.5×1	30 000	55 100	1 960	50	74	108	41	15	100
W3214SS-1Z-C5Z10	1 300															
W3218SS-1Z-C5Z10	1 700															
W3607SS-1Z-C5Z10	597															
W3612SS-1Z-C5Z10	1 097	36	10	6.350	37	30.4	2.5×1	32 000	61 100	2 060	56	75	120	45	18	103
W3620SS-1Z-C5Z10	1 897															
W4006SS-1Z-C5Z5	511															
W4010SS-1Z-C5Z5	911	40	5	3.175	40.5	37.2	2.5×2	23 900	70 500	1 420	28.5	67	101	39	15	89
W4016SS-1Z-C5Z5	1 511															


- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

																				Unit	t: mm	
	dir	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	of grease replenishing	
V	$V \mid X$	Y	Z	Q	$L_{\rm t}$	d_2	L_1	L ₂	d ₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm ³)	(cm³)	
					500			250		100	850	-0.012	0.027	0.020	0.075			7.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			8.5	2 180			
9	0 9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	10.5	2 100	22	11	
		9 14 8.5 N		1 400			350		120	1 870	-0.034	0.054	0.035	0.150			13.1					
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			15.2	1 820			
					700			300		100	1 100	-0.017	0.035	0.025	0.065			10.9				
9	8 11	17.5	11	M6×1	1 200	36.3	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	14.9	1 940	27	14	
					2 000			350		120	2 470	-0.048	0.065	0.040	0.130			20.4				
					600			300			1 000	-0.014	0.030	0.023	0.050			11.1				
8	3 9	14	8.5	Rc1/8	1 000	40.3	50	300	37.2	100	1 400	-0.024	0.040	0.027	0.080	0.019	0.013	14.8	1 750	14	7.0	
					1 600			350			2 050	-0.038	0.054	0.035	0.130			20.8				

Screw shaft ø32, ø36

Lead 10

Unit: mm

2 000

C1 C0.5 / 6.3	Seals (two places) X A G K A G K A G	C1 C1 C1 Center hole
L ₃	L _t (hardened)	L ₂
Not case hardene	L_{\circ}	Not case hardened →

Nut type code: DFT

Ball screw No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns X Circuits	Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)		F A	Nu lang		Overall length
W3205SS-2D-C5Z10	310															
W3207SS-2D-C5Z10	510															
W3210SS-5D-C5Z10	810	32	10	6.350	33	26.4	2.5×2	54 500	110 000	3 240	83	74	108	41	15	190
W3214SS-2D-C5Z10	1 210															
W3218SS-2D-C5Z10	1 610															
W3607SS-2D-C5Z10	507															
W3612SS-2D-C5Z10	1 007	36	10	6.350	37	30.4	2.5×2	58 000	122 000	3 430	93	75	120	45	18	193
W3620SS-2D-C5Z10	1 807															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	dim	nens	sion	S	Sc	rew	sh	aft c	dime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	3olt	hole)	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	of grease replenishing	
W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L ₂	d ₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	υu	I	J	K	Ĭ	N (min-1)	(cm³)		
					500			250		100	850	-0.012	0.027	0.020	0.075			9.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			10.6	2 100			
90	9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	12.5	2 180	57	29	
					1 400			350		120	1 870	-0.034	0.054	0.035	0.150			15.1				
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			17.2	1 910			
					700			300		100	1 100	-0.017	0.035	0.025	0.065			12.8				
98	11	17.5	11	M6×1	1 200	36.3	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	16.8	1 940	67	34	

120 2 470 -0.048 0.065 0.040 0.130

Not case hardened

Center hole

1 J A

Lead 8, 10, 12

Nut type code: ZFT

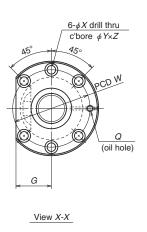
/ K A >

Lt (hardened)

Seals (two places)

-11 I G

Min. L_1


Not case hardened

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	circle	Root dia.	Effective ball turns Turns		۷)	Preload	Dynamic friction torque,	Outside		Nut		0 11
	L_{t} - L_{n}	d ₁	l	$D_{\rm w}$	dia. $d_{\scriptscriptstyle m}$	d _r	× Circuits	Dynamic <i>C</i> _a	Static C _{0a}	(N)	median (N·cm)	dia.	F A	lang <i>G</i>	je B	Overall length
W4007SS-1Z-C5Z8	570							ū.	- CG							-11
W4012SS-1Z-C5Z8	1 070	40	8	4.762	40.5	35.5	2.5×2	41 100	103 000	2 450	64	74	108	41	15	130
W4018SS-1Z-C5Z8	1 670															
W4007SS-2Z-C5Z10	597															
W4010SS-2Z-C5Z10	897															
W4014SS-1Z-C5Z10	1 297	40	10	6.350	41	34.4	2.5×1	33 700	68 300	2 160	64	82	124	47	18	103
W4018SS-2Z-C5Z10	1 697															
W4024SS-1Z-C5Z10	2 297															
W4010SS-4Z-C5Z12	883															
W4016SS-2Z-C5Z12	1 483	40	12	7.144	41.5	34.1	2.5×1	39 500	77 200	2 550	83	86	128	48	18	117
W4025SS-1Z-C5Z12	2 383															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

 See page D13 for details
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

																					OTT	C. 1111111	
		din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	spatial	volume	SS
	Е	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	of grease replenishing	
	W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L ₂	d_3	L ₃	Ľ.	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	Κ		N (min-1)	(cm³)	(cm³)	
Ī						700			300		100	1 100	-0.017	0.035	0.025	0.065			13.0				
	90	9	14	8.5	Rc1/8	1 200	40.3	50	350	35.5	100	1 650	-0.029	0.046	0.030	0.100	0.019	0.013	18.0	1 750	27	14	
						1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.5				
Ī						700			300		100	1 100	-0.017	0.035	0.025	0.065			13.3				
						1 000			300		100	1 400	-0.024	0.040	0.027	0.080			15.9				
1	102	11	17.5	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	20.0	1 750	30	15	
						1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.4				
						2 400			400		150	2 950	-0.058	0.077	0.046	0.170			29.4				
ı						1 000			300		100	1 400	-0.024	0.040	0.027	0.080			16.7	4 750			
•	106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	22.9	1 750	35	18	
						2 500			400		150	3 050	-0.060	0.077	0.046	0.170			31.1	1 220			

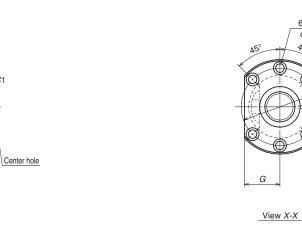
B342

Not case hardened

Center hole

/ J A

Seals (two places)


-<u>U</u> I G

Min. L_1

Not case hardened

A

Lead 10, 12

Nut type code: DFT

Lt (hardened)

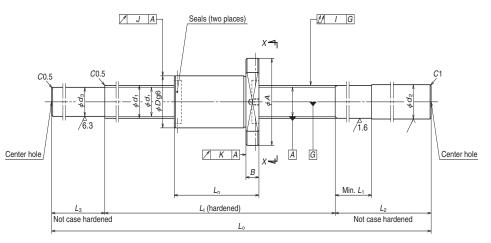
/ K A →

Ball screw No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	(N Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W4007SS-3D-C5Z10	507															
W4010SS-3D-C5Z10	807															
W4014SS-2D-C5Z10	1 207	40	10	6.350	50 41	34.4	2.5×2	61 200 1	137 000	3 630	108	82	124	47	18	193
W4018SS-3D-C5Z10	1 607															
W4024SS-2D-C5Z10	2 207															
W4010SS-5D-C5Z12	775															
W4016SS-3D-C5Z12	1 375	40	12	7.144	41.5	34.1	2.5×2	71 700	154 000	4 310	138	86	128	48	18	225
W4025SS-2D-C5Z12	2 275		12		11.0	04.1										

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

Unit:	mm

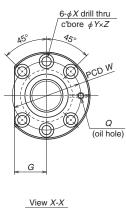

	din	nens	sion	S	Sc	Screw shaft din									0.6			Mass	Permissible rotational	spatial	volume	00
E	3olt	hole)	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	ranlanishinn	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Ľ.	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			15.5				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			18.1	1 750			H
102	11	17.5	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	22.2	1 750	74	37	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			25.6				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			31.6	1 370			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	1 750			
106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	25.8	1 750	93	47	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			34.0	1 260			

6- ϕX drill thru c'bore $\phi Y \times Z$

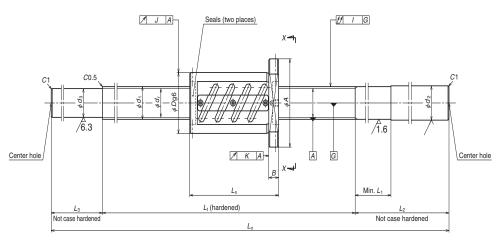
(oil hole)

Screw shaft ø40, ø50 Lead 10

(Fine lead: Deflector (bridge) type)


Nut type code: ZFD

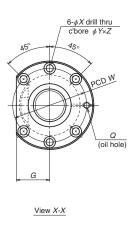
Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective ball		۷)	Preload	Dynamic friction torque,	Outside		Nut		Overall
	L_{t} - L_{n}	d ₁	l	D _w	d _m	d _r	turns	Dynamic $C_{\scriptscriptstyle a}$	Static $C_{\scriptscriptstyle \mathrm{Oa}}$	(N)	median (N·cm)	dia.	A	lang <i>G</i>	e B	length L _n
W4007SS-4ZY-C5Z10	557															
W4010SS-6ZY-C5Z10	857															
W4014SS-3ZY-C5Z10	1 257	40	10	6.350	41.75	35.1	4	45 200 93 1	93 100	2 840	83	62	104	40	18	143
W4018SS-4ZY-C5Z10	1 657															
W4024SS-3ZY-C5Z10	2 257															
W5007SS-1ZY-C5Z10	557															
W5010SS-3ZY-C5Z10	857															
W5015SS-3ZY-C5Z10	1 357	50	10	6.350	51.75	45.1	4	51 500	122 000	3 240	108	72	114	44	18	143
W5020SS-3ZY-C5Z10	1 857															
W5026SS-3ZY-C5Z10	2 457															


Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

3. The permissible rotational speed is determined by d-n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	spatial	Standard volume	33
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft strainhtness	Radial	run-out	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.015	0.035	0.025	0.065			12.1				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			14.7	1 750			
82	11	17.5	11	Rc1/8	1 400	40.3	60	350	35.1	120	1 870	-0.032	0.054	0.035	0.100	0.019	0.013	18.9	1 750	32	16	
					1 800			350		120	2 270	-0.041	0.065	0.040	0.130			22.5				
					2 400			400		150	2 950	-0.056	0.077	0.046	0.170			28.5	1 320			
					700			300		100	1 100	-0.015	0.035	0.025	0.065			18.3				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			22.5				
92	11	17.5	11	Rc1/8	1 500	50.3	60	400	45.1	150	2 050	-0.034	0.054	0.035	0.130	0.019	0.013	31.8	1 400	39	20	
					2 000			400		150	2 550	-0.046	0.065	0.040	0.170			38.9				
					2 600			500		200	3 300	-0.060	0.093	0.054	0.220			49.5	1			



Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	shaft dia.	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	Basic loa (N Dynamic <i>C</i> _a		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W4510SS-1Z-C5Z10	897															
W4516SS-1Z-C5Z10	1 497	45	10	6.350	46	39.4	2.5×1	36 300	78 500	2 260	69	88	132	50	18	103
W4525SS-1Z-C5Z10	2 397															
W5010SS-1Z-C5Z10	897															
W5015SS-1Z-C5Z10	1 397	50	10	6.350	51	44.4	2.5×1	37 500	87 200	2 450	78	93	135	51	18	103
W5020SS-1Z-C5Z10	1 897	30	10						07 200	2 400	70	33	133	51	10	103
W5026SS-1Z-C5Z10	2 497															
W5010SS-2Z-C5Z10	837															
W5015SS-2Z-C5Z10	1 337	50	10	6.350	51	44.4	2.5×2	68 100	17/ 000	4 020	138	93	135	51	18	163
W5020SS-2Z-C5Z10	1 837	50	10	0.350	01	44.4	Z.UXZ	00 100	00 174 000	4 020	130	33	133	וני	10	103
W5026SS-2Z-C5Z10	2 437															

Notes: 1. Use of NSK support unit is recommended. See page B389 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. The permissible rotational speed is determined by d·n value, critical speed, and maximum rotational speed. See B299 and B47. The permissible rotational speed shown in the table is the value when the ball screw mounting method is Fixed-Fixed.

	din	nens	sion	S	Sc	Screw shaft di				nsio	ns	Lead	accu	racy	R	un-oı		Mass	Permissible rotational	Internal spatial	Standard volume
Е	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	volume of nut	of grease replenishing
W	Χ	Y	Ζ	Q	Lt	d_2	L_1	L ₂	d ₃	L ₃	L	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm ³)	(cm³)
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	1 550		
110	11	17.5	11	Rc1/8	1 600	45.3	60	400	39.4	150	2 150	-0.038	0.054	0.035	0.130	0.025	0.015	28.1	1 550	34	17
					2 500			450		150	3 100	-0.060	0.077	0.046	0.170			38.8	1 400		
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			23.8			
110	11	17 5	11	D-1/0	1 500	F0.0		400		150	2 050	-0.036	0.054	0.035	0.130	0.005	0.015	32.9	1 400	07	10
113	11	17.5	11	Rc1/8	2 000	50.3	60	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	39.8	1 400	37	19
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			48.9			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			25.5			
440		47.5		D 4/0	1 500			400		150	2 050	-0.036	0.054	0.035	0.130	0.005	0.045	34.6			00
113	11	17.5	11	Rc1/8	2 000	50.3	60	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	41.5	1 400	59	30
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			50.7			

B-3-1.6 Ball Screws for Transfer Equipment

1. Features

Transporting mechanism

A series with accuracy grades of Ct7 and Ct10 only demonstrates high ball screw performance for transporting mechanism of Cartesian type robots and single axis actuators.

The following types are categorized ball screw for transfer equipment. VFA and RMA types have finished shaft ends. RMS type, R series of RNFTL, RNFBL, RNCT, RNFCL, and RNSTL types have blank shaft ends. Table 1 Classifications of ball screws for transfer equipment

Finished shaft end	VFA type, RMA type
	RMS type
D	R Series
Blank shaft end	RNFTL type, RNFBL type
	RNCT type, RNFCL type, RNSTL type

Interchangeable screw shaft and ball nut

Screw shaft and nut assembly components are sold separately, and randomly-matched. The maximum axial play after assembly is shown in the dimension tables.

2. Specifications

(1) Ball recirculation system

Figs. 1, 2, and 3 show the structures of ball return tube, deflector (bridge type), and end cap ball recirculation systems.

Deflector (bridge type) recirculation system has the feature of compact nut outside diameter for small lead. End cap recirculation system is for screws with high helix lead and multiple start threads. Since the leads are in the range larger than 1.3 times of the screw shaft diameter, it is suitable for high-speed operation.

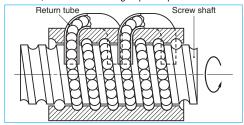


Fig. 1 Structure of return tube recirculation system B349

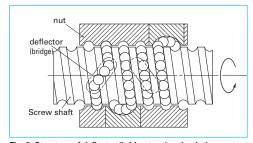


Fig. 2 Structure of deflector (bridge type) recirculation system

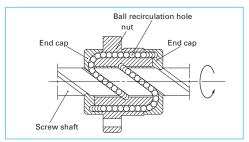


Fig. 3 Structure of end cap recirculation system

(2) Accuracy grade and axial play

Standard lead accuracy and axial play are shown on **Table 2**. Axial play varies with internal specification. Refer to the dimension tables.

Table 2 Accuracy grade and axial play

Accuracy grade	VFA type, RMA type, RMS type: Ct7 R Series: Ct10
Axial play	See dimension tables

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

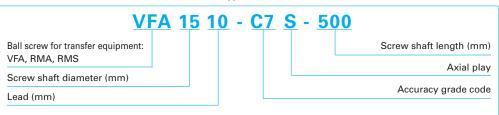
Table 3 Allowable d·n value and the criterion of maximum rotational speed

Allowable d∙n value	50 000 or less							
Criterion of maximum rotational speed	3 000 min ⁻¹							
d•n value: shaft dia. d [mm] × rotational speed n [min-1]								

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

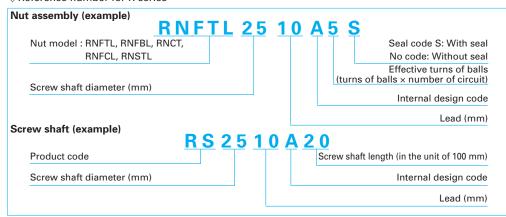
3. Product categories

Ball screws for transfer equipment have models as follows.


Table 4 Product categories of ball screws for transfer equipment

Nut model	Shape	Flange shape	Recirculation system	Preload system	Page
VFA		Flanged rectangular	Return tube type	Non- preload Slight axial play	353 - B358
RMA RMS		Flanged Circular II	Deflector (bridge) type	Non- preload Slight axial play	B359 - B372
RNFTL	internation of annualization	Flanged Circular I Projecting tube type	Return tube type	Non- preload Slight axial play	B373 - B378
RNFBL		Flanged Circular II	Return tube type	Non- preload Slight axial play	B379 - B380
RNCT		V-thread (no flange) Projecting tube type	Return tube type	Non- preload Slight axial play	B381 - B382
RNFCL		Flanged Circular II	End cap type	Non- preload Slight axial play	B383 - B386
RNSTL	mannana a mannananan	Square type	Return tube type	Non- preload Slight axial play	B387 – B388

4. Structure of reference number


The followings describe the structure of "Reference number for ball screw".

♦ Reference number for VFA, RMA, and RMS types

○Reference number for R series

5. Combinations of shaft diameter and lead

Combinations of shaft diameter and lead are shown below.

For details of standard stock products, contact NSK.

Table 5 Combinations of shaft diameter and lead for VFA, RMA, RMS types

Lead Screw shaft diameter	1	1.5	2	10	20
6	B359, 371				
8	B361, 371	B363, 371	B365, 371		
10			B367, 371		
12			B369, 371	B353	
15				B355	B357

Table 6 Combinations of shaft diameter and lead for R series

Screw shaft		Lead (mm)													
diameter (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80
10	○B373 △B381			○B373●B379											
12					○B373 ●B379		○B377@B383								
14			○B373 ●B379 △B381 □B387												
15									©B383						
16						○B373		○B377 ○B383			©B385				
18					○B373 ●B379 △B381 □B387										
20			○B373 ●B379 △B381 □B387			○B373 ●B379 □B387			○B377 ○B383			©B385			
25			○B373 ●B379 △B381 □B387			○B359 ●B365 △B367 ■B373				○B377 ○B383			○B385		
28				○B375 ●B379 △B381 □B387											
32						○B375 ●B379 △B381 □B387					○B377 ○B383			○B385	
36						○B375 ●B379 △B381 □B387									
40						○B375△B381 ●B379						○B377 ○B383			©B385
45							○B375 △B381□B387								
50						○B375 △B381		○B375 △B381					©B383		

O: RNFTL ●: RNFBL △: RNCT O: RNFCL □: RNSTL

6. Precautions for designing

As shown in the illustration on Page B83 and B103, general precautions for ball screw.

(1) Nut assembly

When delivered, the nut of R series is separated from the screw shaft, and inserted into an arbor shaft. The nut must be inserted to the screw shaft when mounting ball screw.

(a) Consideration to end configuration of screw shaft

The balls may fall out during moving the assembled nut from the arbor to the screw shaft if the sizes and shapes of the arbor and the screw shaft are not appropriate.

If the end of the ball groove can touch the end of the arbor, connect both ends and move the assembled nut from the arbor to the screw shaft (Fig. 4). If the end face of the arbor cannot connect to the end face of the screw because of configuration of both ends of screw shaft, wrap a tape outside of ball screw shaft so that the layers of tape is equal

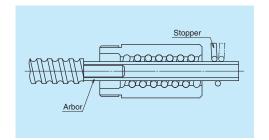


Fig. 4 Inserting nut into screwshaft

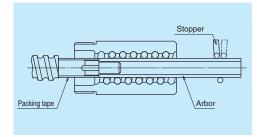


Fig. 5 Arbor and shaft end configuration

with the outside diameter of the arbor (Fig. 5). If there is a key way or a nick along the way, fill such gaps prior to moving the ball nut.

(b) Installation of arbor

Confirm the correct nut orientation for installation.

Remove the stop ring on the side from where the assembled nut is to be removed. Align the centers of the screw shaft and the arbor while pressing firmly the screw shaft end against the arbor.

(c) Moving the nut

Slide the nut until it lightly touches the shoulder of the ball groove section, and stop it. Turn the ball nut to the direction so that it moves to the ball grooves, while pressing the arbor to the screw shaft. Do not separate the arbor from the screw shaft until the ball groove end appears completely in the ball nut.

(2) Shaft end configuration

RMS type and R seriese must be machining of blank shaft ends. See page B27, use of NSK suport unit.

(a) Cutting screw shaft

Carry out the same process as "(1) Machining of blank shaft ends of precision ball screws" above.

(b) Annealing the shaft end (Heat the section of the shaft end to be machined with an acetylene torch. Then gradually cool it in ambient atmosphere.)

* The area not machined loses hardness if exposed to heat. This may shorten the all screw life. Cool with water the areas where should not be heated to avoid heat conduction.

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for the shaft end accuracy.

(d) Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

(e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent.

Note: Contact NSK if nut is accidentally removed.

φ3

(oil hole)

40

1 0.014 A ⇒

50

Lt (hardened)

5.5

4.5

Lo

11 * * G−

Min. 180

(range of 12h8 dia.)

25

C0.5 % 8421

√ 0.014 *E*

√ 0.025 A

10

/M10×1

45

€ 1 0.008 E

30

Ė

C0.5 C0.5

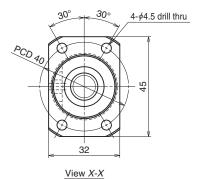
15

G

 $(\phi 14.5)$

5.5

30


φ4 drill 9 deep

Screw shaft ø12

Lead 10

Unit: mm

	Ball screw s	pecification
Shaft dia.xLead / Direction of turn		12 × 10 / Right
Ball reci	rculation	Return tube
Ball dia. / Ball circle dia.		2.381 / 12.5
Screw sha	ft root dia.	10.0
Effective to	urns of balls	2.5 × 1
Accuracy grade	/ Axial play code	Ct7 / S
	Dynamic C _a	4 430
rating (N)	Static C _{0a}	6 430
Axia	l play	0.010 or less
,	ction torque cm)	1.5 or less
Spacer ball		None
Factory-pag	cked grease	NSK grease LR3
Internal spatial v	olume of nut (cm³)	1.4
Reference of grease	replenishing amount	0.7

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK10-01A (square)	WBK12SF-01 (square)	
WBK10-11 (round)		Ī

Ball screw No.	Str	oke	Screw shaft length		
	Naminal	Maximum			
	Nominal	$(L_t$ -nut length)	$L_{\rm t}$	La	L。
VFA1210C7S-410	250	260	310	365	410
VFA1210C7S-610	450	460	510	565	610

Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

- Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

							Offic. Hilli
ĺ	Lood courses		Shaft		Permissible rotational speed N (min ⁻¹)		
	L	ead accurac	у	run-out**	run-out** Mass Supporting condition		g condition
	Τ	$e_{\scriptscriptstyle p}$	V ₃₀₀			Fixed - Simple support	Fixed - Free
	0	0.085	0.052	0.100	0.56	3 000	3 000
	0	0.155	0.052	0.160	0.73	3 000	1 300

 ϕ 3.5 (oil hole) 0.018 A

40

52

Lt (hardened)

7 5

Min. 230

(range of 15h8 dia.)

25

/ 0.014 E

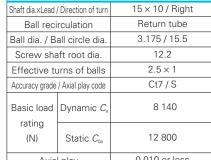
C0.5 C0.5 C0.5

C0.3

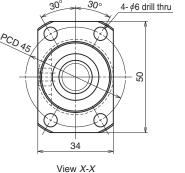
10

15

/M12×1


€ 1 0.008 E

30


45

30

Ball screw specification

Shaft dia.xLead	/ Direction of turn	15 × 10 / Right	
Ball rec	irculation	Return tube	
Ball dia. / B	all circle dia.	3.175 / 15.5	
Screw sha	aft root dia.	12.2	
Effective to	urns of balls	2.5 × 1	
Accuracy grade	/ Axial play code	Ct7 / S	
Basic load	Dynamic C _a	8 140	
rating (N)	Static C _{0a}	12 800	
Axia	l play	0.010 or less	
,	iction torque cm)	2.5 or less	
Spacer ball		None	
Factory-pa	cked grease	NSK grease LR3	
Internal spatial v	olume of nut (cm³)	2.3	
Reference of grease	e replenishing amount	1.2	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK12-01A (square)	WBK15SF-01 (square)	
WBK12-11 (round)		

Ball screw No.	Str	oke	Screw shaft length		
	Naminal	Maximum			
	Nominal	(L _t -nut length)	$L_{\rm t}$	La	L _o
VFA1510C7S-500	300	348	400	455	500
VFA1510C7S-700	500	548	600	655	700
VFA1510C7S-1000	800	848	900	955	1 000

-11 * * G

A G

Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

Lead accuracy		Shaft		Permissible rotational speed N (min ⁻¹)			
	Lead accuracy		Tull out		Supporting condition		
Т	$e_{\scriptscriptstyle m p}$	$v_{\scriptscriptstyle 300}$		(kg)	Fixed - Simple support	Fixed - Free	
0	0.120	0.052	0.075	0.89	3 000	2 600	
0	0.195	0.052	0.110	1.1	3 000	1 150	
0	0.310	0.052	0.180	1.5	2 340	510	

 $\frac{\phi 3.5}{\text{(oil hole)}}$

1 0.018 A →

57

Lt (hardened)

Min. 230

(range of 15h8 dia.)

25

√ 0.014 E

φ4 drill 12 deep

12.5 C0.3

30

√ 0.030 A

10

15

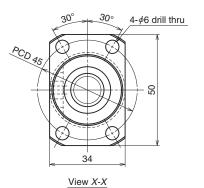
/M12×1

□ 0.008 E

30

45

11 * * G


A G

Screw shaft ø15

Lead 20

Unit: mm

	Ball screw s	pecification
Shaft dia.xLead / Direction of turn		15 × 20 / Right
Ball reci	rculation	Return tube
Ball dia. / Ball circle dia.		3.175 / 15.5
Screw sha	ft root dia.	12.2
Effective to	ırns of balls	1.5 × 1
Accuracy grade	/ Axial play code	Ct7 / S
	Dynamic $C_{\scriptscriptstyle a}$	5 080
rating (N)	Static C _{0a}	7 460
Axia	play	0.010 or less
,	ction torque cm)	2.5 or less
Spacer ball		None
Factory-packed grease		NSK grease LR3
Internal spatial vo	olume of nut (cm³)	2.3
Reference of grease	replenishing amount	1.4

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)	VF,
WBK12-01A (square)	WBK15SF-01 (square)	_
WBK12-11 (round)		

Ball screw No.	Str	oke	- Screw shaft length		
	Nominal	Maximum			
	ivominai	(Lt-nut length)	L_{t}	La	L。
VFA1520C7S-500	300	343	400	455	500
VFA1520C7S-700	500	543	600	655	700
VFA1520C7S-1000	800	843	900	955	1 000

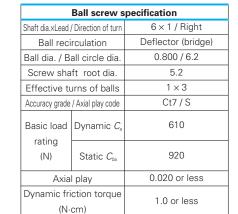
Notes: 1. We recommend NSK support units (page B389). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

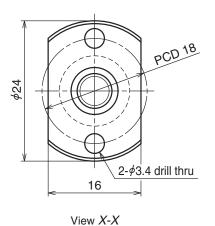
Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B349.

						Onit. mm	
Load course.			Shaft		Permissible rotational speed N (min ⁻¹)		
Lead accuracy		run-out** Mass	Mass (kg)	Supporting condition			
Τ	$e_{\scriptscriptstyle m p}$	V ₃₀₀	\sqcup	(kg)	Fixed - Simple support	Fixed - Free	
0	0.120	0.052	0.075	0.94	3 000	2 630	
0	0.195	0.052	0.110	1.2	3 000	1 160	
0	0.310	0.052	0.180	1.6	2 350	510	

Not case hardened


Max. 7


C0.3

Screw shaft ø6

Lead 1

Unit: mm

Recommended support unit

Spacer ball

Factory-packed grease

None

See Notes 2.

For drive side (Fixed)	
WBK04R-11 (round)	

	Str	oke	Carayy aboft langth		
Ball screw No.	Nominal	Maximum	Screw shaft length		
		(L _t -Nut length)	L_{t}	L。	
RMA0601C7S-160	100	124	139	160	
RMA0601C7S-260	200	224	239	260	

15

L_t (hardened)

 $X \longrightarrow$

G

11 ** G

 $\phi 4$ f8

Max. 7

R0.15

Or less

7.5

Not case hardened

15

M4×0.5

*∲*3h9

6

C0.3, C0.3

Notes: 1. We recommend NSK support bearing kit (page B401).

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

					Offic. Hilli	
	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	Ц	(Ng)	N (min ⁻¹)	
0	0.052	0.052	0.060	0.045	3 000	
0	0.085	0.052	0.090	0.065	3 000	

−0.05 −0.10 **φ14**

Not case hardened

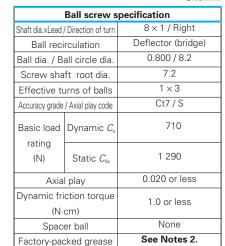
Max. 7

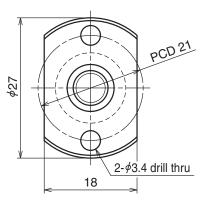
C0.3

M6×0.75

φ4.5h9

8


7.5


C0.3 C0.3

Screw shaft ø8

Lead 1

Unit: mm

View X-X

Recommended	support	unit
-------------	---------	------

For drive side (Fixed)	
WBK06R-11 (round)	

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum	Screw SII	art ierigtri	
	Norminal	(L_t -Nut length)	L_{t}	L_{\circ}	
RMA0801C7S-180	100	130	146	180	
RMA0801C7S-280	200	230	246	280	

 χ

11 ** G

9

Max. 7

0

Ġ

16

L₀⁺²0

Lt (hardened)

C0.3

 ϕ 6f8

Not case hardened

26

Notos:	1 \\/\0	recommend	NICK	cupport	hoaring	Vi+ /	nago	R/101	١
ivotes:	I. vve	recommena	NSK	SUDDOIT	pearing	KIT (nage	B401	1.

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

	Lead accuracy		Shaft run-out** 1 1	Mass (kg)	Permissible rotational speed
Target compensation ${\cal T}$	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(9)	N (min ⁻¹)
0	0.052	0.052	0.060	0.085	3 000
0	0.085	0.052	0.090	0.12	3 000

Not case hardened

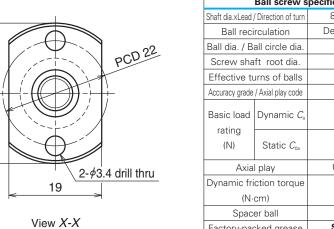
Max. 7

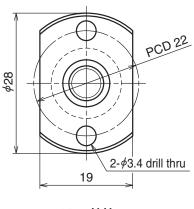
C0.3

M6×0.75

φ4.5h9

8


_7.5


C0.3 C0.3

Screw shaft ø8

Lead 1.5

Unit: mm

Ball screw specification					
Shaft dia.xLead	/ Direction of turn	8 × 1.5 / Right			
Ball reci	rculation	Deflector (bridge)			
Ball dia. / B	all circle dia.	1.000 / 8.3			
Screw sha	ft root dia.	7.0			
Effective to	urns of balls	1×3			
Accuracy grade	/ Axial play code	Ct7 / S			
	Dynamic $C_{\scriptscriptstyle a}$	955			
rating (N)	Static C _{0a}	1 580			
Axia	l play	0.020 or less			
'	ction torque cm)	1.0 or less			
Spac	er ball	None			
Factory-pag	cked grease	See Notes 2.			

Recommended support unit

For drive side (Fixed)	
WBK06R-11 (round)	

nit:	mm	

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)	
0	0.052	0.052	0.060	0.093	3 000	
0	0.085	0.052	0.090	0.13	3 000	

	Str	oke	Carayyyahaft lamath		
Ball screw No.	Nominal	Maximum	Screw shaft length		
	Nominal	(L_{t} -Nut length)	L_{t}	L_{\circ}	
RMA0801.5C7S-180	100	124	146	180	
RMA0801.5C7S-280	200	224	246	280	

 $X \rightarrow$

11 ** G

9

Max. 7

0

G

22

L₀⁺²0

L_t (hardened)

C0.3

φ6f8

Not case hardened

26

Notes: 1. We recommend NSK support bearing kit (page B401).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

φ 16 φ

C0.3

ര≬

Not case hardened

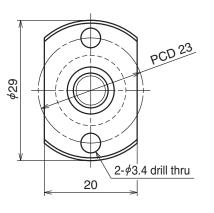
Max. 7

M6×0.75

φ4.5h9

8


7.5


C0.3 C0.3

Screw shaft ø8

Lead 2

Unit: mm

View X-X

Recommended support unit

For drive side (Fixed)	
WBK06R-11 (round)	

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)	
0	0.052	0.052	0.060	0.10	3 000	
0	0.085	0.052	0.090	0.14	3 000	

	Str	oke	Carayyalaaft lamath		
Ball screw No.	Nominal	Maximum	Screw shaft length		
	Nominal	(L_t -Nut length)	L_{t}	L _o	
RMA0802C7S-180	100	120	146	180	
RMA0802C7S-280	200	220	246	280	

 $X \rightarrow$

11 ** G

9

Max. 7

 ϕ_{10}

G

 $X \rightarrow I$

L₀⁺²0

26

Lt (Hardened)

C0.3

*∲*6f8

Not case hardened

26

Notes: 1. We recommend NSK support bearing kit (page B401).

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

φ 18 φ 18

0

Not case hardened

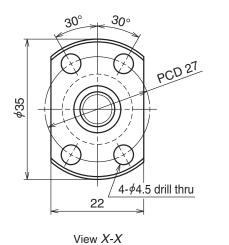
Max. 7

C0.3

φ8.9 ¥ M8×1

 ϕ 6h9

10


9

C0.5 C0.5

Screw shaft ø10

Lead 2

Unit: mm

	Ball screw s	pecification
Shaft dia.xLead	Direction of turn	10 × 2 / Right
Ball reci	rculation	Deflector (bridge)
Ball dia. / B	all circle dia.	1.200 / 10.3
Screw sha	ft root dia.	8.9
Effective to	urns of balls	1×3
Accuracy grade	/ Axial play code	Ct7 / S
Basic load	Dynamic C _a	1 460
rating (N)	Static C _{0a}	2 620
Axia	l play	0.020 or less
Dynamic fri	ction torque	1.0 or loss
(N·	cm)	1.0 or less
Spac	er ball	None
Factory-pag	cked grease	See Notes 2.

Recommended support unit

For drive side (Fixed)	
WBK08-01A (square)	
WBK08-11 (round)	ı

Ball screw No.	Str	oke	Screw shaft length		
	Nominal	Maximum			
	INOMINAL	(L_t -Nut length)	L_{t}	L _o	
RMA1002C7S-250	150	173	201	250	
RMA1002C7S-350	250	273	301	350	

 $X \rightarrow$

11 ** G

12

Max. 7

 $\phi_{11.5}$

Ġ

5

L₀⁺²0

28

L_t (hardened)

C0.3

 ϕ 8f8

Not case hardened

39

Notes:	 VVe 	recommend	NSK	support	bearing	kit (page	B389).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

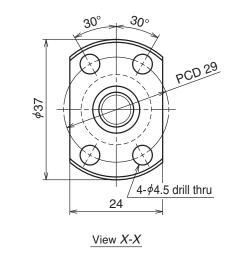
3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

					Unit: mm	
Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)	
0	0.085	0.052	0.070	0.19	3 000	
0	0.085	0.052	0.100	0.25	3 000	

Not case hardened Max. 7

C0.3

M10×1


48h9

15

10

C0.5 C0.5

Lead 2

	Ball screw s	pecification
Shaft dia.xLead	Direction of turn	12 × 2 / Right
Ball reci	rculation	Deflector (bridge)
Ball dia. / B	all circle dia.	1.200 / 12.3
Screw sha	ft root dia.	10.9
Effective to	urns of balls	1×3
Accuracy grade	/ Axial play code	Ct7 / S
	Dynamic C _a	1 590
rating (N)	Static C _{0a}	3 190
Axia	l play	0.020 or less
Dynamic fri	ction torque	1.0 or less
(N·	cm)	1.0 of less
Spac	er ball	None
Factory-pag	cked grease	See Notes 2.

Recommended support unit

For drive side (Fixed)
WBK10-01A (square)
WBK10-11 (round)

WBK10-01A (square)	
WBK10-11 (round)	
	ľ

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum				
	NOTTITIAL	(L _t -Nut length)	$L_{\rm t}$	L _o		
RMA1202C7S-250	150	162	190	250		
RMA1202C7S-350	250	262	290	350		

 $X \longrightarrow$

G

5

L₀⁺²0

28

L_t (hardened)

11 ** G

15

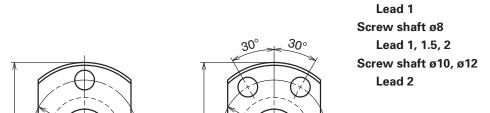
Max. 7

C0.3

φ10f8

Not case hardened

45


Notes: 1. We recommend NSK support bearing kit (page B389).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B349.

					Onit. mm
	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	Ц	(Ng)	N (min ⁻¹)
0	0.060	0.052	0.070	0.26	3 000
0	0.085	0.052	0.100	0.34	3 000

Screw shaft ø6

φĄ

View X-X (for screw shaft of 6 and 8 dia.)

Н

 $2-\phi 3.4$ drill thru

View X-X (for screw shaft of 10 and 12 dia.)

 $\sqrt{4-\phi}4.5$ drill thru

Unit: mm

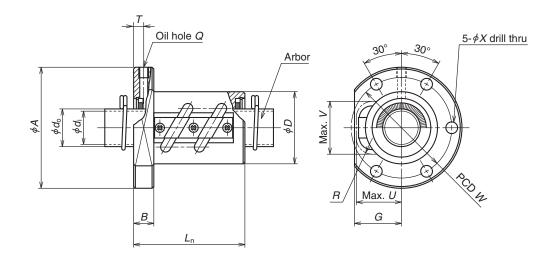
	N	ut dim	nensior	ıs		Screw	shaft o	dimensi	ons	Le	ead accur	, I	Shaft run-out**	Mass	Permissible rotational
						Effective thread length	Shaf	t end	Overall length	Target compensation	Deviation	Variation	1 1 1	(Kg)	speed
D	Α	Н	В	Ln	W	L _t	L ₁	d ₂	L _o	T	$e_{\scriptscriptstyle p}$	υ300			N (min ⁻¹)
12	24	16	3.5	15	18	250	50	4	300	0	0.085	0.052	0.09	0.075	
14	27	18		16	21									0.13	
15	28	19	4	22	22	250	50	6	300	0	0.085	0.052	0.09	0.14	3 000
16	29	20		26	23									0.15	
18	35	22	5	28	27	290	60	8	350	0	0.085	0.052	0.10	0.25	
20	37	24	5	28	29	290	60	10	350	0	0.085	0.052	0.10	0.35	

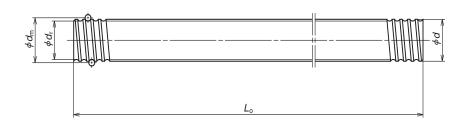
	X □	
		<u></u>
C0.3	\/	C0.3
\$ \qua		
		5
	$\bigcap_{B} X \rightarrow \bigcup$	
Not case hardened Max. 7	< >	Not case hardened Max. 7
L _t (hardened)		L ₁ (un-carburizing area)
<	L ₀ ⁺⁵ 0	>

Dell constant	Stroke Shaft				Ball circle	Root	Effective	Basic loa	Axial play	
Ball screw No.	Max. L _t -L _n	dia. d	Lead <i>l</i>	Ball dia. <i>D</i> _w	dia. <i>d</i> _m	dia.	turns of balls	Dynamic $C_{\scriptscriptstyle a}$	Static C _{0a}	Max.
RMS0601C7S-300	235	6	1	0.800	6.2	5.3	3	610	920	0.02
RMS0801C7S-300	234		1	0.800	8.2	7.3		710	1 290	
RMS0801.5C7S-300	228	8	1.5	1.000	8.3	7.2	3	955	1 580	0.02
RMS0802C7S-300	224		2	1.200	8.3	7.0		1 260	1 940	
RMS1002C7S-350	262	10	2	1.200	10.3	9.0	3	1 460	2 620	0.02
RMS1202C7S-350	262	12	2	1.200	12.3	11.0	3	1 590	3 190	0.02

Notes: 1. We recommend NSK support unit (page B389) or support kit (page B401).

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


3. Seal is not installed.


4. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B349.

RNFTL 2510A5S

B373

Unit: mm

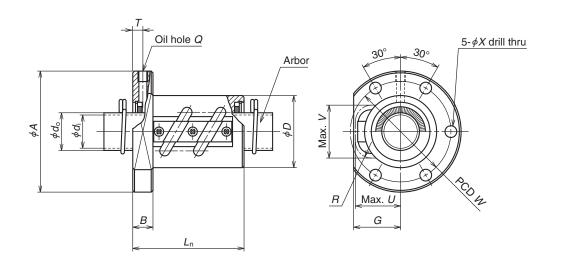
	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns		ad rating N)	Axial	Ball nut dimensions	
Ball nut No.	d	l	D _w	dia. d _m	d,	×	Dynamic	Static	play Max.	Outside dia.	
	-	•				Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		D	
RNFTL 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	4 440	6 700	0.10	20	
RNFTL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	3 280	4 730	0.10	20	
RNFTL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	4 290	6 610	0.10	25	
RNFTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	25	
RNFTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	30	
RNFTL 1610A2.5	16	10	3.175	16.75	13.3	2.5×1	6 910	11 600	0.10	30	
RNFTL 1610A2.5S	10	10	3.175	10.75	13.3	2.5/1	0 010	11 000	0.10	50	
RNFTL 1808A3.5	18	8	4.762	18.5	13.6	3.5×1	15 500	26 200	0.15	34	
RNFTL 1808A3.5S	10	0	4.702	10.5	13.0	3.581	15 500	20 200	0.15	34	
RNFTL 2005A2.5	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	40	
RNFTL 2005A2.5S	20	J	3.173	20.5	17.0	2.5/1	7 300	14 200	0.10	40	
RNFTL 2010A2.5	20	10	4.762	21.25	16.2	2.5×1	12 700	21 600	0.15	40	
RNFTL 2010A2.5S	20	10	4.702	21.25	10.2	2.5/1	12 700	21 000	0.13	40	
RNFTL 2505A5	25	5	3.175	25.5	22.0	2.5×2	15 100	36 300	0.10	42	
RNFTL 2505A5S	20		3.173	20.0	22.0	2.3^2	13 100	30 300	0.10	42	
RNFTL 2510A2.5						2.5×1	20 500	34 900		44	
RNFTL 2510A2.5S	25	10	6.35	26	19.0	2.5/1	20 300	0 + 000	0.20	7-7	
RNFTL 2510A5	20	10	0.55	20	13.0	2 5 2	27 200	60 900	0.20	11	

Notes: 1. Protruding portion of tube does	not interfere with bal	I nut housing if its	dimensions correspo	onding to U and '	V are large
enough					

2. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same as those without.

37 300 69 800

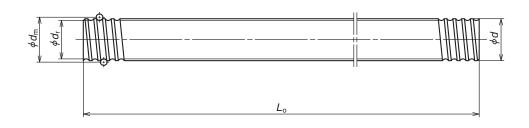

44

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal

																						_~
	Ball nut dimensions									Nut	Ar	bor		Sc	rew s	haft	Shaft	Internal spatial	Standard volume	series		
	F	lang	е	Length	Bolt	hole	Oil ho	ole	Proje	ecting	tube	Mass.	Outside dia.	Bore	Stand	Standard length Sc		Screw shaft	mass/m	Volume	of greas replenishing	88
	Α	G	В	L	W	Χ	Q	T	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	(cm³)		
ı	40	15	6	34	30	4.5	M3×0.5	3.0	15	15	7	0.092	8.1	6.1	400	800	-	RS1003A··	0.50	-	-	
	40	15	6	36	30	4.5	M3×0.5	3.5	15	15	5	0.095	8.1	6.1	400	800	-	RS1006A··	0.56	1.1	0.6	
Į	45	19	8	46	35	4.5	M3×0.5	5.5	19	18	7	0.18	9.6	7.6	400	800	-	RS1208A··	0.74	1.8	0.9	
	50	19	10	43	40	4.5	M6×1	5.0	19	20	7	0.20	11.5	9.5	500			RS1404A··	1.02	2.0	1.0	
ı	50	22	10	45	40	4.5	M6×1	5.0	22	21	8	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	2.4	1.2	
	53	23	10	54	41	5.5	M6×1	5.5	23	22.5	8	0.28	13.3	11.3	500	1 000	1 500	RS1610A··	1.37	2.7	1.4	
	63	27	12	58	49	6.6	M6×1	6.0	27	27	8	0.43	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.2	2.6	
	60	28	10	46	50	4.5	M6×1	5.0	28	27	10	0.42	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	3.5	1.8	
	67	30	12	59	53	6.6	M6×1	6.0	30	29	12	0.55	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.1	3.6	
	71	28	12	66	57	6.6	M6×1	6.0	28	31	10	0.62	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	6.5	3.3	
	80	34	15	62	62	9	M6×1	7.5	34	37	17	0.75	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	13	6.5	
	80	34	15	92	62	9	M6×1	7.5	34	37	17	0.75	19.0	0.01	1 000	2 000	2 500	nozo IVA	3.13	18	9.0	

- 4. Nut assembly with arbor and screw shaft are separate at time of delivery.5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where
- 6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 7. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 8. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia.	Effective turns of balls Turns X Circuits	Basic loa (f Dynamic C _a		Axial play Max.	Ball nut dimensions Outside dia. D
RNFTL 2806A2.5 RNFTL 2806A2.5S	- 28	6	3.175	28.5	25.0	2.5×1	8 760	20 200	0.10	50
RNFTL 2806A5 RNFTL 2806A5S	20		3.175	20.0	25.0	2.5×2	15 900	40 500		50
RNFTL 3210A5 RNFTL 3210A5S	32	10	6.35	33.75	27.0	2.5×2	42 000	91 800	0.20	55
RNFTL 3610A2.5 RNFTL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	24 700	50 800	0.20	60
RNFTL 3610A5 RNFTL 3610A5S	30	10	0.55	37	30.0	2.5×2	44 900	102 000		60
RNFTL 4010A7 RNFTL 4010A7S	40	10	6.35	41.75	35.0	3.5×2	63 100	164 000	0.20	65
RNFTL 4512A5 RNFTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	58 500	147 000	0.23	70
RNFTL 5010A7 RNFTL 5010A7S	50	10	6.35	51.75	45.0	3.5×2	70 100	205 000	0.20	80
RNFTL 5016A5 RNFTL 5016A5S	50	16	9.525	52	42.0	2.5×2	117 000	299 000	0.23	85


Notes: 1. Protruding portion of tube does not i	terfere with ball nut housing if its dimensions corresponding to U and V are large
Anguah	

2. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal.

Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

Unit: mm

Flange Length Bolt hole Oil hole Projecting tube Mass. Oilside Bore Standard length Screw Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Shaft Mass. Oilside Bore Standard length Screw Shaft No. Sha																					
Flange Length Bolt hole Oil hole Projecting tube A G B L_n W X Q T U V R	Standard volume	Internal spatial	Shaft	haft	rew sl	Sc		bor	Ar	Nut				ons	dimensio	ll nut	Ва				
A G B L _n W X Q T U V R 109 d ₀ d ₀ d ₁ L _n shaft No. 109 (cm) 79 33 15 55 65 6.6 M6x1 7.5 33 34 10 1.07 25.0 22.6 1 000 2 000 2 500 RS2806A·· 4.47 8.4 97 39 18 97 75 11 M6x1 9.0 39 42 17 1.55 27.0 24.6 1 000 2 000 3 000 RS3210A·· 5.53 29 102 42 18 68 80 11 M6x1 9.0 42 46 17 1.47 21	of greas replenishing	volume		Screw	ength	dard I	Stan	Bore	Outside dia		g tube	ecting	Proj	ole	Oil h	hole	Bolt	Length	je	lang	F
79 33 15 79 65 6.6 M6x1 7.5 33 34 10 1.07 25.0 22.6 1000 2000 2500 RS2806A·· 4.47 97 39 18 97 75 11 M6x1 9.0 39 42 17 1.55 27.0 24.6 1000 2000 3000 RS3210A·· 5.53 29 102 42 18 68 80 11 M6x1 9.0 42 46 17 1.47	(cm³)	(cm ³)	(Kg)	shaft No.		L。		d	d _o	(kg)	R	V	U	T	Q	Χ	W	Ln	В	G	Α
79 33 15 79 65 6.6 M6×1 7.5 33 34 10 1.07 88.4 97 39 18 97 75 11 M6×1 9.0 39 42 17 1.55 27.0 24.6 1000 2000 3000 RS3210A·· 5.53 29 102 42 18 68 80 11 M6×1 9.0 42 46 17 1.47	3.0	5.9	1 17	BC2806V··	2 500	2 000	1 000	22.6	25.0	0.85	10	34	33	7.5	M6×1	6.6	65	55	15	33	79
102 42 18 68 80 11 M6x1 9.0 42 46 17 1.47	4.2	8.4	4.47	1132000A	2 300	2 000	1 000	22.0	25.0	1.07	10	34	33	7.5	M6×1	6.6	65	79	15	33	79
	15	29	5.53	RS3210A··	3 000	2 000	1 000	24.6	27.0	1.55	17	42	39	9.0	M6×1	11	75	97	18	39	97
	11	21	6.01	BC2610A	2 000	2 000	1 000	27.6	30 O	1.47	17	46	42	9.0	M6×1	11	80	68	18	42	102
102 42 18 98 80 11 M6x1 9.0 42 46 17 1.80 50.0 27.0 1 000 2 000 1	17	33	0.91	1133010A	3 000	2 000	1 000	27.0	30.0	1.80	17	46	42	9.0	M6×1	11	80	98	18	42	102
114 44 20 120 90 14 M6x1 10.0 44 50 20 2.49 35.0 31.8 2 000 3 000 4 000 RS4010A·· 8.87 42	21	42	8.87	RS4010A··	4 000	3 000	2 000	31.8	35.0	2.49	20	50	44	10.0	M6×1	14	90	120	20	44	114
130 47 22 116 100 18 M6x1 11.0 47 55 20 3.07 39.0 35.8 2000 3000 4000 RS4512A·· 11.16 49	25	49	11.16	RS4512A··	4 000	3 000	2 000	35.8	39.0	3.07	20	55	47	11.0	M6×1	18	100	116	22	47	130
140 52 22 122 110 18 M6x1 11.0 52 59 20 4.06 45.0 41.8 2 000 3 000 4 000 RS5010A·· 14.15 53	27	53	14.15	RS5010A··	4 000	3 000	2 000	41.8	45.0	4.06	20	59	52	11.0	M6×1	18	110	122	22	52	140
163 57 28 146 125 22 M6x1 14.0 57 63 25 6.42 42.0 38.8 2 000 3 000 4 000 RS5016A · 13.48 94	47	94	13.48	RS5016A··	4 000	3 000	2 000	38.8	42.0	6.42	25	63	57	14.0	M6×1	22	125	146	28	57	163

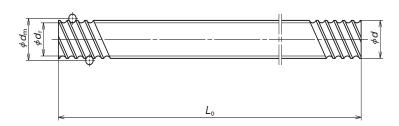
4. Nut assembly with arbor and screw shaft are separate at time of delivery.

5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

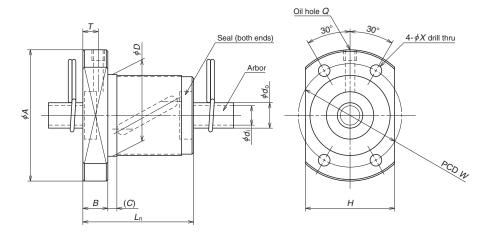
7. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

8. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals.


Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns ×	Dasicio	ad rating N) Static	Axial play Max.	Ball nut dimensions Outside dia.
		l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d _r	Circuits	$C_{\rm a}$	$C_{\scriptscriptstyle \mathrm{0a}}$	IVIGA.	D
RNFTL 1212A3	12	12	2.381	12.65	10.1	1.5×2	3 900	6 250	0.10	24
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778	16.65	13.6	1.5 × 2	5 440	9 550	0.10	30
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175	20.75	17.3	1.5 × 2	8 080	15 700	0.10	35
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969	26	22.0	1.5 × 2	12 100	24 500	0.12	45
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762	33.25	28.0	1.5 × 2	17 600	37 700	0.15	55
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.35	41.75	35.0	1.5 × 2	28 100	62 900	0.20	70

Notes: 1. Protruding portion of tube does not inte	ere with ball nut housing if its dimensions corresponding to U and V are large
enouah.	


- 2. Actual screw shaft length may become slightly longer than nominal length Lo due to manufacturing tolerance.
- 3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same as those without
- In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Rrush" seal.

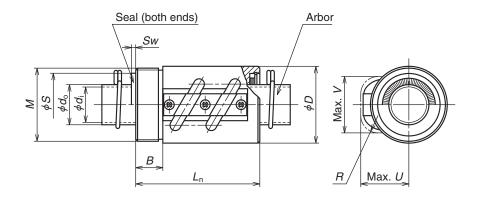
																			01111	. 1111111
			Ва	ll n	ut dir	mensio	ns				Nut	Ar	bor		Scr	ew s	shaft	Shaft	Internal spatial	Standard volume
FI	lang	е	Length	Во	lt hole	Oil h	ole	Proje	cting	tube		Outside dia.	Bore	Stand	dard le	ength	Screw	mass/m	volume of nut	of greas replenishing (cm³)
Α	G	В	Ln	W	X	Q	T	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	di		L_{\circ}		shaft No.	(kg)	(cm³)	(cm³)
44	17	8	44	34	4.5	M3 × 0.5	4.0	17	16	5	0.16	10.1	8.1	400	800	-	RS1212A··	0.74	1.7	0.9
55	22	10	50	43	6.6	M6 × 1	5.0	22	22	7	0.29	13.6	11.6	500	1 000	1 500	RS1616A··	1.37	2.8	1.4
68	25	12	59	52	9	M6 × 1	6.0	25	27	8	0.49	17.3	14.9	500	1 000	2 000	RS2020A··	2.19	4.9	2.5
80	31	12	69	63	9	M6 × 1	6.0	31	32	10	0.80	22.0	19.6	1 000	2 000	2 500	RS2525A··	3.43	9.1	4.6
100	37	15	84	80	11	M6 × 1	7.5	37	40	12	1.46	28.0	25.6	1 000	2 000	3 000	RS3232A··	5.71	19	9.5
120	46	18	103	95	14	M6 × 1	9.0	46	49	15	2.69	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	39	20

- 4. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with · · .
- 6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

 7. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 8. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

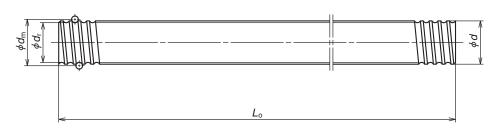
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	(ad rating N)	Axial play	Bal rut dimensions Outside dia.
Bail Hat 140.	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic <i>C</i> ₃	Static $C_{\circ \circ}$	Max.	D
RNFBL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	3 280	4 730	0.10	26
RNFBL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	4 290	6 610	0.10	29
RNFBL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	31
RNFBL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	32
RNFBL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	15 500	26 200	0.15	50
RNFBL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	40
RNFBL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	12 700	21 600	0.15	52
RNFBL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	8 340	18 100	0.10	43
RNFBL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	15 100	36 300	0.10	43
RNFBL 2510A2.5S	25	10	6.35	26	19.0	2.5×1	20 500	34 900	0.20	60
RNFBL 2510A5S	25	10	0.55	20	19.0	2.5×2	37 300	69 800	0.20	00
RNFBL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	8 760	20 200	0.10	50
RNFBL 2806A5S	20	0	3.175	20.0	25.0	2.5×2	15 900	40 500	0.10	50
RNFBL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	23 100	45 900	0.20	67
RNFBL 3210A5S	32	10	0.35	33.75	27.0	2.5×2	42 000	91 800	0.20	07
RNFBL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	24 700	50 800	0.20	70
RNFBL 3610A5S	36	10	0.35	37	30.0	2.5×2	44 900	102 000	0.20	'0
RNFBL 4010A5S	40	10	6.35	41.75	35.0	2.5×2	47 200	116 000	0.20	76

Notes: 1. Actual screw shaft length may become slightly longer than nominal length Lo due to manufacturing tolerance.


- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with · · .

						nsions			Nut	Ark				rew sh	aft	Shaft	Internal	
F	lange	-	Len	gth	Bolt	hole	Oil hol	e	Mass.	Outside dia.	Bore	Star	ndard le	ength	Screw shaft		spatial volume	volume of greas
Α	Н	В	Overall length Ln	(C)	W	X	Q	Т	(kg)	$d_{\scriptscriptstyle 0}$	d_{i}		L。		No.	(kg)	of nut	replenishing (cm³)
42	29	8	36	3	34	4.5	M3×0.5	5.0	0.16	8.1	6.1	400	800	_	RS1006A··	0.56	1.1	0.6
45	32	8	44	3	37	4.5	M3×0.5	5.5	0.21	9.6	7.6	400	800	-	RS1208A··	0.81	1.6	0.8
50	37	10	40	4	40	4.5	M6×1	5.0	0.25	11.5	9.5	500	1 000	ı	RS1404A··	1.02	2.4	1.2
50	38	10	40	4	40	4.5	M6×1	5.0	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.9	1.0
80	60	12	61	4	65	6.6	M6×1	6.0	1.00	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.8	2.9
60	46	10	40	4	50	4.5	M6×1	5.0	0.37	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.8	1.4
82	64	12	61	5	67	6.6	M6×1	6.0	1.05	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.6	3.8
67	50	10	40 55	4	55	5.5	M6×1	5.0	0.40	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	3.5 4.7	_
96	72	15	66 96	5	78	9.0	M6×1	7.5	1.52	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	14	7.0
80	60	12	47 65	5	65	6.6	M6×1	6.0	0.70	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	4.5	2.3
103	78	15	67 97	5	85	9.0	M6×1	7.5	1.72 2.25	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	20 28	10 14
110	82	17	69 99	5	90	11.0	M6×1	8.5	1.97 2.53	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	21 29	11 15
116	88	17	99	5	96	11.0	M6×1	8.5	2.86	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	36	18

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.
- 6. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
- 7. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.


Ball nut No.	Shaft dia.	Lead l	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns ×	Dynamic	Static	Axial play Max.	Ball nut dimensions Outside dia.
RNCT 1003A3.5	10		2.381	10.65	8.1	Circuits 3.5 × 1	C _a	C ₀₈	0.10	D 20
RNCT 1003A3.5		3					4 440			
RNCT 1404A3.5S	14	4	2.778	14.5	11.5	3.5 × 1	6 310		0.10	25
	14	5	3.175	14.5	11.0	2.5 × 1	6 170	9 940	0.10	30
RNCT 1808A3.5 RNCT 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	15 500	26 200	0.15	34
RNCT 2005A2.5 RNCT 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	7 500	14 200	0.10	40
RNCT 2505A5 RNCT 2505A5S	25	5	3.175	25.5	22.0	2.5 × 2	15 100	36 300	0.10	42
RNCT 2510A5 RNCT 2510A5S	25	10	6.35	26	19.0	2.5 × 2	37 300	69 800	0.20	44
RNCT 2806A5 RNCT 2806A5S	28	6	3.175	28.5	25.0	2.5 × 2	15 900	40 500	0.10	50
RNCT 3210A5 RNCT 3210A5S	32	10	6.35	33.75	27.0	2.5 × 2	42 000	91 800	0.20	55
RNCT 3610A5 RNCT 3610A5S	36	10	6.35	37	30.0	2.5 × 2	44 900	102 000	0.20	60
RNCT 4010A7 RNCT 4010A7S	40	10	6.35	41.75	35.0	3.5 × 2	63 100	164 000	0.20	65
RNCT 4512A5 RNCT 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	58 500	147 000	0.23	70
RNCT 5010A7 RNCT 5010A7S	50	10	6.35	51.75	45.0	3.5 × 2	70 100	205 000	0.20	80
RNCT 5016A5 RNCT 5016A5S	50	16	9.525	52	42.0	2.5 × 2	117 000	299 000	0.23	85

Notes: 1. Protruding portion of tube does not interfere with ball nut housing if its dimensions corresponding to U and V are large

Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same

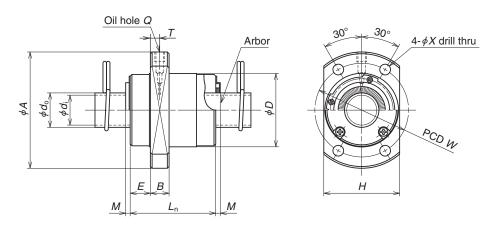
In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal.

Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

Unit: mm

Ва	all nu	t dime	nsion	S		Nut	Seal dim	ensions	Ark	oor		Sc	rew s	haft	Shaft	Internal spatial	Standard volume
V-thread	t	Length	Proje	ecting	tube			Thickness	Outside dia.	Bore	Stand	dard le	ength	Screw shaft	mass/m	volume	
М	В	L _n	U	V	R	(kg)	S	Sw	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	(kg)	(cm ³)	(cm³)
M18 × 1	10	38	15	15	7	0.049	-	-	8.1	6.1	400			RS1003A··	0.50	-	-
M24 × 1	10	43	19	20	7	0.083	-	_	11.5	9.5		1 000	_	RS1404A··	1.02	2.7	_
M26 × 1.5	10	45	22	21	8	0.15	-	-	11.0	9.0	500	1 000	-	RS1405A··	1.00	3.1	1.6
M32 × 1.5	12	58	27	27	8	0.21	28.5	2.5	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	6.6	3.3
M36 × 1.5	12	48	28	27	10	0.28	29.5	2.5	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	4.8	2.4
M40 × 1.5	15	69	28	31	10	0.38	34.5	2.5	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	8.4	4.2
M42 × 1.5	15	92	34	37	17	0.49	38.5	2.5	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	21	1
M45 × 1.5	15	79	33	34	10	0.68	37.5	2.5	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	9.7	4.9
M50 × 1.5	18	97	39	42	17	0.79	45.5	2.5	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	32	16
M55 × 2	18	98	42	46	17	0.97	50.5	3.0	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	32	16
M60 × 2	25	125	44	50	20	1.37	54.5	3.0	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	51	26
M65 × 2	30	124	47	55	20	1.42	60.5	3.0	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	60	30
M75 × 2	40	140	52	59	20	2.41	64.5	3.0	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	76	38
M80 × 2	40	158	57	63	25	3.14	68.5	3.0	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	114	57

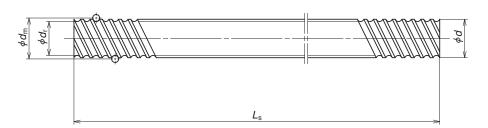
4. Nut assembly with arbor and screw shaft are separate at time of delivery.


5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

7. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

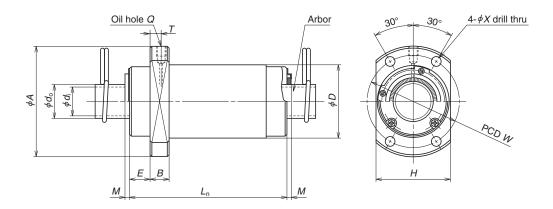
8. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

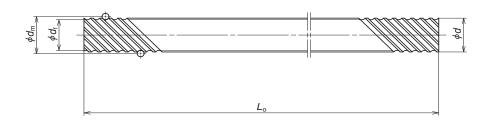


	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic lo	ad rating V)	Axial	Ball nut dimensions
Ball nut No.				dia.		Turns ×	Dynamic			Outside dia.
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	C _a	C_{oa}	Max.	D
RNFCL 1212A3	12	12	2.381	12.65	10.1	1.7 × 2	4 350	6 580	0.10	26
RNFCL 1212A6	12	12	2.381	12.00	10.1	1.7 × 4	7 890	13 200	0.10	20
RNFCL 1520A3	15	20	3.175	15.5	12.2	1.7 × 2	7 510	12 300	0.10	33
RNFCL 1520A3S	15	20	3.173	10.0	12.2	1.7 X Z	7 510	12 300	0.10	33
RNFCL 1616A3						1.7 × 2	6 060	10 300		
RNFCL 1616A3S	16	16	2.778	16.65	13.5	1.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 000	10 000	0.10	32
RNFCL 1616A6	'0	10	2.770	10.00	10.0	1.7 × 4	11 000	20 500		02
RNFCL 1616A6S								20 000		
RNFCL 2020A3						1.7 × 2	9 000	16 700		
RNFCL 2020A3S	20	20	3.175	20.75	17.3				0.10	39
RNFCL 2020A6						1.7 × 4	16 300	33 400		
RNFCL 2020A6S										
RNFCL 2525A3						1.7 × 2	13 400	26 100		
RNFCL 2525A3S RNFCL 2525A6	25	25	3.969	26	22.0				0.12	47
RNFCL 2525A6						1.7 × 4	24 400	52 200		
RNFCL 3232A3										
RNFCL 3232A3S						1.7 × 2	19 600	39 800	l	
RNFCL 3232A6	32	32	4.762	33.25	28.0				0.15	58
RNFCL 3232A6S						1.7 × 4	35 600	79 600		
RNFCL 4040A3						4 7 0	04.000	00.000		
RNFCL 4040A3S		4.0	0.05	44.75	05.0	1.7 × 2	31 300	66 800		70
RNFCL 4040A6	40	40	6.35	41.75	35.0	4 7 4	F0.000	404.000	0.20	73
RNFCL 4040A6S						1.7 × 4	56 900	134 000		
RNFCL 5050A3						1.7 × 2	46 800	104 000		
RNFCL 5050A3S	50	50	7.938	52.25	44.0	1./×2	40 800	104 000	0.25	90
RNFCL 5050A6	1 50	50	7.938	52.25	44.0	1.7 × 4	0E 000	209 000		90
RNFCL 5050A6S						1./ X 4	05 000	209 000		

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Length of nut becomes longer (2 x M) for those with "brush" seals.


Unit: mm

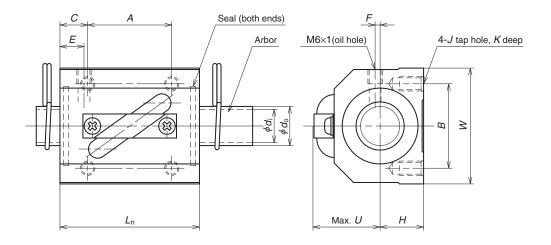

			Bal	l nut	dime	nsior	ıs			Nut	Arl	oor		Sci	ew sl	naft	Shaft	Internal	Standard volume
	Flange	Э	L	.engt	h	Bolt	hole	Oil ho	le	Mass.	Outside dia.	Bore	Stan	dard le	ength	Screw shaft	mass/m	spatial volume	
Α	Н	В	Ε	L	М	W	Χ	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	(cm³)	(cm³)
44	28	6	9	30	-	35	4.5	M3 × 0.5	3.0	0.12	10.1	8.1	400	800	-	RS1212A··	0.74	-	-
51	35	10	11	45	3	42	4.5	M6 × 1	5.0	0.28	12.2	10.2	500	1 000	1 500	RS1520A··	1.15	3.3	1.7
53	34	10	10	38	3	42	4.5	M6 × 1	5.0	0.23	13.5	11.5	500	1 000	1 500	RS1616A··	1.37	2.6	1.3
					3													2.6	1.3
62	41	10	11.5	46	3	50	5.5	M6 × 1	5.0	0.27	17.3	1/1 0	500	1 000	2 000	RS2020A··	2.19	4.4	2.2
02	41	10	11.5	40	3	50	5.5	IVIO X I	5.0	0.57	17.3	14.3	300	1 000	2 000	1132020A	2.13	4.9	2.5
74	49	12	13	55	3	60	6.6	M6 × 1	6.0	0.62	22.0	10.6	1 000	2 000	2 500	RS2525A··	3.43	8.2	4.1
74	49	12	13	00	- 3	00	0.0	IVIOXI	0.0	0.02	22.0	19.0	1 000	2 000	2 500	N32020A**	3.43	8.9	4.5
92	60	12	16	70	- 3	74	9	M6 × 1		1 10	20.0	25.6	1 000	2 000	2 000	RS3232A··	5.71	16	8.0
92	60	12	10	/0	3	/4	9	IVIOXI	5.5	1.10	28.0	25.0	1 000	2 000	3 000	N53232A	5.71	17	8.5
	-	4.5	40.5	0.5	3.5	00			0.5		00	04.0				D040404	0.00	32	16
114	75	15	19.5	85	3.5	93	11	M6 × 1	6.5	2.09	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	33	17
135	92	20	21.5	107	- 3.5	112	1.4	MG v 1	7.0	2.00	44.0	40.0	2 000	2 000	4 000	RS5050A··	12.01	64	32
135	92	20	21.5	107	3.5	112	14	I X GIVI	7.0	3.90	44.0	40.8	2 000	3 000	4 000	noououA	13.81	68	34

6. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

	mm	

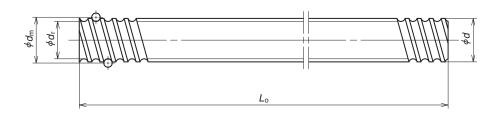
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns		ad rating N) Static		Ball nut dimensions Outside dia.
	d	l	$D_{\rm w}$	d _m	d_{r}	Circuits	C _a	Coa	Max.	D
RNFCL 1632A2 RNFCL 1632A2S						0.7 × 4	4 880	8 330		
RNFCL 1632A3 RNFCL 1632A3S	16	32	2.778	16.65	13.5	1.7 × 2	5 760	10 300	0.10	32
RNFCL 1632A6 RNFCL 1632A6S						1.7 × 4	10 500	20 500		
RNFCL 2040A2 RNFCL 2040A2S						0.7 × 4	7 170	13 200		
RNFCL 2040A3 RNFCL 2040A3S	20	40	3.175	20.75	17.3	1.7 × 2	8 480	16 500	0.10	38
RNFCL 2040A6 RNFCL 2040A6S						1.7 × 4	15 400	33 100		
RNFCL 2550A2 RNFCL 2550A2S						0.7 × 4	10 700	20 700		
RNFCL 2550A3 RNFCL 2550A3S	25	50	3.969	26	22.0	1.7 × 2	12 700	26 500	0.12	46
RNFCL 2550A6 RNFCL 2550A6S						1.7 × 4	23 000	53 000		
RNFCL 3264A3 RNFCL 3264A3S	32	64	4.762	33.25	28.0	1.7 × 2	17 900	40 200	0.15	58
RNFCL 3264A6S						1.7 × 4	32 400	80 300		
RNFCL 4080A3 RNFCL 4080A3S	40	80	6.350	41.75	35.0	1.7 × 2	29 500	67 900	0.20	73
RNFCL 4080A6 RNFCL 4080A6S	.0	0	21300	, 6	33.0	1.7 × 4	53 600	136 000	2.20	. 3


Notes:	 Actual screw 	shaft length ma	v become slightly	longer than	nominal length I	_ due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK. 5. Length of nut becomes longer $(2 \times M)$ for those with "brush" seals.

			Ball	nut di	mens	sions				Nut	Arl	oor			Screv	v sha	ft	Shaft	Internal	Standard volume	
	lange)	L	engtl	h	Bolt	hole	Oil h	ole	Mass.	Outside dia.	Bore	Sta	Standard length			Screw	mass/m	volume	of greas replenishing	,
Α	Н	В	Ε	Ln	М	W	Χ	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L	-0		shaft No.	(kg)	(cm ³)	replenishing (cm³)	
				34	3					0.21									2.4	1.2	١,
50	34	10	10	66	3	41	4.5	M6 × 1	5.5	0.33	13.5	11.5	500	1 000	1 500	-	RS1632A··	1.34	3.9	2.0	
				66	3					0.33									4.1	2.1	3
				41	3					0.31									4.1	2.1	
58	40	10	11	81	3	48	5.5	M6 × 1	5.5	0.53	17.3	14.9	500	1 000	1 500	2 000	RS2040A··	2.15	6.3	3.2	H
				81	3					0.53									7.0	3.5	
				50	3					0.53									8.4	4.2	
70	48	12	13	100	3	58	6.6	M6 × 1	7.0	0.91	22.0	19.6	1 000	2 000	2 500	-	RS2550A··	3.37	14	7.0	
				100	3					0.91									15	7.5	
92	60	12	15.5	126	3	74	9	M6 × 1	7.5	1.76	28.0	25.6	1 000	2 000	2 000	4 000	RS3264A	5.63	24	12	
92	00	12	10.0	120	3	/4	9	IVIO X I	7.5	1.70	20.0	20.0	1 000	2 000	3 000	4 000	N33204A**	5.03	26	13	_
114	75	15	19	158	3.5	93	11	M6 × 1	10.0	3.44	35.0	21.0	2 000	2 000	4 000	E 000	RS4080A	8.69	52	26	
114	75	15	19	108	3.5	93	11	IVIO X I	10.0	3.44	33.0	31.8	2 000	3 000	4 000	5 000	no4080A**	0.09	55	28	

6. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.


^{7.} Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic lo	Basic load rating (N)		Ball nut dimensions Length
Buil Hat No.	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic C _a	Static $C_{\circ \circ}$	play Max.	Ln
RNSTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	38
RNSTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	38
RNSTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	15 500	26 200	0.15	56
RNSTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	38
RNSTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	12 700	21 600	0.15	58
RNSTL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	8 340	18 100	0.10	35
RNSTL 2510A5S	25	10	6.35	26	19.0	2.5×2	37 300	69 800	0.20	94
RNSTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	8 760	20 200	0.10	42
RNSTL 2806A5S	20	O	3.175	20.0	25.0	2.5×2	15 900	40 500	0.10	67
RNSTL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	23 100	45 900	0.20	64
RNSTL 3210A5S	32	10	0.55	33.75	27.0	2.5×2	42 000	91 800	0.20	94
RNSTL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	24 700	50 800	0.20	64
RNSTL 3610A5S	30	10	0.55	37	30.0	2.5×2	44 900	102 000	0.20	96
RNSTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	58 500	147 000	0.23	115

Notes: 1. Actual screw shaft length may become slightly longer than nominal length $L_{\scriptscriptstyle 0}$ due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where marked with ·

	Ball nut dimensions									Nut	Arbor		Screw shaft				Shaft	Internal	Standard
Width	Center height		В	olt ho	le		Oil h	ole		Mass.	Outside dia.	Bore	Standard length		Caraurahaft	mass/m	spatial volume	volume of greas	
W	Н	Α	В	С	J	Κ	Ε	F	U	(kg)	d _o	d _i		L。		Screw shaft No.	(ka)		replenishing
34	13	22	26	8	M4	7	7	3	20	0.20	11.5	9.5	500	1 000	-	RS1404A··	1.02	1.6	0.8
34	13	22	26	8	M4	7	7	3	21	0.20	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.8	0.9
48	17	35	35	10.5	M6	10	8	3	26	0.31	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	3.4	1.7
48	17	22	35	8	M6	9	6	2	27	0.24	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.5	1.3
48	18	35	35	11.5	M6	10	10	2	28	0.35	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	6.3	3.2
60	20	22	40	6.5	M8	10	6	0	27	0.31	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	2.6	1.3
60	23	60	40	17	M8	12	10	0	32	1.32	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	18	9.0
60	22	18	40	12	M8	12	8	0	32	0.65	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	3.5	1.8
60	22	40	40	13.5	IVIO	12	0	U	32	1.04	25.0	22.0	1 000	2 000	2 500	1132000A	4.47	7.0	3.5
70	26	45	50	9.5	M8	12	10	0	38	1.12	27.0	24.6	1 000	2 000	2 000	RS3210A··	5.53	18	9.0
70	26	60	50	17	IVIO	12	10	U	30	1.75	27.0	24.0	1 000	2 000	3 000	N33210A**	0.00	27	14
86	29	45	60	9.5	M10	16	11	0	41	1.76	30.0	27.6	1 000	2 000	2 000	RS3610A··	6.91	18	9.0
86	29	60	60	18	IVITU	10	11	U	41	2.64	30.0	27.0	1 000	2 000	3 000	U99010A	0.91	27	14
100	36	75	75	20	M12	20	13	0	46	1.22	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	47	24

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a
- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
 Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

NS

B-3-1.7 Accessories

Accessories to use with NSK ball screws are available.

Table 1 Support unit categories

Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page
		WBK**-01*	Fixed support side	Angular contact ball bearing	φ4 – φ25	B395 -
Small equipment, So light load	quare	WBK**S-01*	Simple support	Deep groove ball bearing	φ6 – φ25	B399 -
		WBK**SF-01	side	Deep groove ball bearing	φ12, φ15 (exclusive for VFA type)	B399

1. Classification

Ball screw support units are classified into categories by their shape (**Table 1**). Select the type that best suits your particular needs.

2. Features

Bearings and seals

On the fixed support side, the angular contact ball bearing is used. It has great rigidity and low friction torque, which match the rigidity of the ball screw. The thrust angular contact ball bearing with high precision and great rigidity is another choice for the fixed support side.

An oil seal is installed to the fixed support side used with an angular contact ball bearing. Fine clearance may occur with this seal.

A deep-groove ball bearing with a shield on both sides is used on the simple support side.

Lock nut is provided.

A lock nut with fine grade finish is provided to fix the bearing with high precision.

The lock nuts are designed to be difficult to loosen, but they can still loosen if subjected to strong mechanical vibration. If necessary, this should be prevented by applying threadlocking adhesive or taking similar precautions.

Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page	
Small equipment,	Round	WBK**R-11 (Support kit)	Fixed support	Deep groove ball bearing (arranged to have angular contact)	φ4, φ6 (exclusive for RMA and RMS types)	B401	
light load	nounu	WBK**-11*	side	Angular contact ball bearing	φ4 – φ25	B397 -	
Machine tools, high speed, heavy load	Round	WBK**DF*-31H	Fixed support side	Thrust angular contact ball bearing	φ17 – φ40	B407 –	Support unit

3. Reference number coding

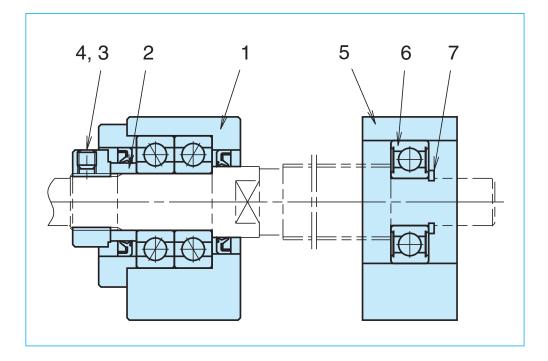
(For light load)	
Example: WBK 08 S - 0	01 A
Product code for support unit	No code or A: For general use
Nominal size code*	B: Low-profile type (only for square type) C: For clean environment use
Mounting code No code: Fixed support unit	M: Miniature general-purpose use W: Lost-wax product
S: Simple support unit SF: Simple support unit (for FSS and VFA)	01: Square type 11: Round type
R: Fixed support unit (support kit for miniature ball screws)	7,70

*) In case of simple support unit, please note that the nominal size code of 12 or less does not strictly represent internal bore of bearing in millimeters. Please refer to the dimensional table for internal bore of bearing.

(1) Support Units for Light Load and Small Equipment

Support units for light load and small equipment provide both fixed and support side bearing assemblies to support screw shafts. They provide all required parts such as bearing locknuts so that you can mount them directly to NSK standard ball screws, of which shaft ends are machined.

Please refer to the dimensions listed on the dimension table for the configuration of standard screw shaft ends for NSK standard ball screws with blank shaft ends. For ball screws for transfer equipment, you require optional spacers when mounting fixed support side support units.


(a) Features

- Prompt deliverySupport units are standard products.
- Best selection of bearings for your application

General use support units for fixed support side are equipped with highly rigid angular contact ball bearings that have been assembled with proper preload, and packed with the appropriate volume of grease. On the other hand, clean support units for fixed support side uses low dust emission grease, and low torque special bearings. Sealed deep groove ball bearings are used for simple support side units for both general and clean environment use.

Support units provide everything necessary for mounting ball screws to machines. (Please refer to the table below.)

* Do not disassemble fixed support side units as they are equipped with bearings and oil seals.

Antirust treatment

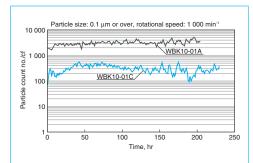
The table on the right shows the surface treatment for the bearing housing, and material of small parts.

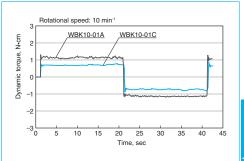
Fi	ixed support side	Simple support side				
Part No.	Name of parts	Part No.	Name of parts			
1	Bearing housing	5	Bearing housing			
2	Spacer	6	Bearing			
3	Locknut	7	Snap ring			
4	Set screw					
4	with brass pad					

	General support unit
Bearings and grease	Angular contact ball bearings, PS2
Surface treatment	Black oxide
Screws and snap rings	Standard material

Outstanding low dust emission
Clean support unit uses "NSK clean grease
LG2" which has a proven feature of low
dust emission. It reduces dust emission to
1/10 of general support units.

Low torque


It features low torque characteristics because of special bearings. (50% lower than general support unit.)


High antirust specification

Low temperature chrome plating is applied to bearing housings, retaining plates, locknuts and spacers to improve antirust properties. Moreover, bolts and snap rings are made of stainless steel.

The table below shows the surface treatment of the bearing housing and material of small parts.

	Clean support unit
Bearing • grease	Special bearings, LG2
Surface treatment	Low temperature chrome plating
Set screw and snap ring material	Stainless steel

Support Unit (Support Units for Light Load and Small Equipment)

NSK

Set screw

69 (M3)

69 (M3)

69 (M3)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

490 (M6)

Fightening torque (reference) [N-cm]

Locknut

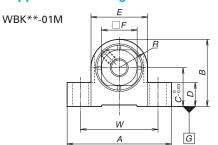
100

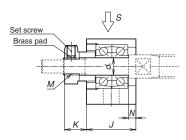
190

230

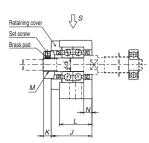
280

630

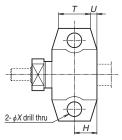

790

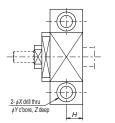

910

1670

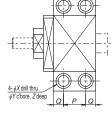

2060

Support Units for Light Load and Small Equipment




Fixed support side support unit (square type)

Reference No.	Use	d ₁	А	В	С	D	Ε	F	L	J	К	R
WBK04-01M	General	4	27	17	10	6	14	10	_	14	5.5	7
WBK06-01M	General	6	35	22.5	13	8	19	12	_	17	7.5	9.5
WBK06-01A*1	General	6	42	25	13	20	18	12	20	20	5.5	_
WBK08-01A*1	General		52	32	17	26	25		23	23	7	
WBK08-01B	Low type	8	62	31	15.5	31	_	14	21.5	25.5	4.5	-
WBK08-01C*1	Clean environment		52	32	17	26	25		23	23	7	
WBK10-01A	General			43	25	35	36					
WBK10-01B	Low type	10	70	38	20	38	_	17	24	30	5.5	_
WBK10-01C	Clean environment			43	25	35	36					
WBK12-01A	General			43	25	35	36					
WBK12-01B	Low type	12	70	38	20	38	_	19	24	30	5.5	-
WBK12-01C	Clean environment			43	25	35	36					
WBK15-01A	General			50	30	40	41					
WBK15-01B	Low type	15	80	42	22	42	_	22	25	31	12	_
WBK15-01C	Clean environment			50	30	40	41					
WBK17-01A	General	17	86	64	39	55	50	24	35	44	7	_
WBK20-01	General	20	95	58	30	45	56	30	42	52	10	_
WBK25-01W	General	25	105	68	35	25	66	36	48	61	13	_


Notes: 1. Use datum surface A for mounting to machine base.

- 2. Tighten set screw after locknut has been adjusted and tightened.
- 3. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.
- Deep groove ball bearing and snap ring are also provided for simple support side. (except WBK04-01M, WBK06-01M and WBK06-01A)

View S (WBK06 - 15)

View S (WBK17 - 20)

4- 4X drill thru Q 15_15_0 Q For \$6 reamer)

View S (WBK25)

Reference No.

WBK04-**

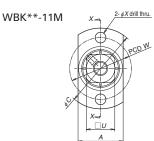
WBK06-**

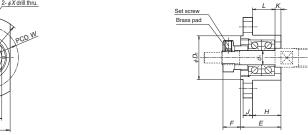
WBK08-**

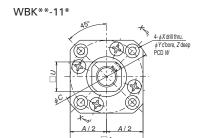
WBK10-**

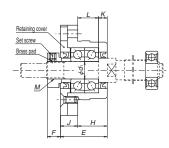
WBK12-**

WBK15-**

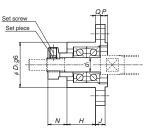

WBK17-**

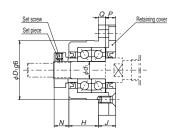

WBK20-**


WBK25-**


												Offits, friiff
Т	U	N		Со	unterb	ore di	mensi	ons		Mass	Locknut screw	Attached bearing for support side
			Н	Р	Q	W	X	Y	Ζ	(kg)	М	support side
9	2.5	2	7	_	_	21	3.5	_	_	0.03	M4×0.5	_
12	2.5	2.5	8.5	_	_	26	5.5	_	_	0.05	M6×0.75	_
_	_	3.5	10	_	_	30	5.5	9.5	11	0.15	M6×0.75	_
		4	11.5			38	6.6	11	12	0.25		606ZZ
_	-	3.5	11	_	_	46	9	14	18	0.3	M8×1	606ZZ
		4	11.5			38	6.6	11	12	0.25		606VV
									11	0.5		608ZZ
_	-	6	12	_	_	52	9	14	19	0.45	M10×1	608ZZ
									11	0.5		608VV
									11	0.5		6000ZZ
_	_	6	12	_	_	52	9	14	19	0.4	M12×1	6000ZZ
									11	0.5		6000VV
									15	0.7		6002ZZ
_	-	5	12.5	_	_	60	11	17	23	0.6	M15×1	6002ZZ
									15	0.7		6002VV
_	_	7	_	19	8	68	9	14	11	1.3	M17×1	6203ZZ
_	_	10	_	22	10	75	11	17	15	1.4	M20×1	6204ZZ
_	_	14	_	30	9	85	11	_	_	1.9	M25×1.5	6205ZZ
	•	•										

- 5. Bearings for WBK04-01M and WBK06-01M are equipped with non-contact metal shield.
- *1) For retaining cover side of WBK06-01A, WBK08-01A and WBK08-01C, there are no seals.
- 6. Contact NSK if the rotational speed is 50 min⁻¹ and below.


View X-X (example 1)


Fixed support side support unit (round type)

Reference No.	Use	d_1	Α	С	D_1	D_2	Ε	Н	L	К	F	N
WBK04-11M	General	4	14	26	14	14	13.5	8.5	7	1.5	5.5	6.6
WBK06-11M	General	6	19	34	19	18.5	17	12	9.5	2.5	7.5	8
WBK06-11*	General	6	28	35	22	_	20	13	9.5	3.5	5.5	6.5
WBK08-11B	High-load type		42	52	34		25.5	15.5	12	3.5	4.5	7
WBK08-11*	General	8	35	43	28	_	23	14	10	4	7	8
WBK08-11C*	Clean environment		33	43	20		23	14	10	4	/	0
WBK10-11	General	10	42	52	34		27	17	12	5	7.5	8.5
WBK10-11C	Clean environment	10	42	52	34		21	17	12	5	7.5	8.5
WBK12-11	General	12	44	54	36		27	17	12	5	7.5	8.5
WBK12-11C	Clean environment	12	44	54	30	_	21	17	12	5	7.5	0.5
WBK15-11	General	15	52	63	40		32	17	11	6	12	14
WBK15-11C	Clean environment	15	52	03	40		32	17	' '	0	12	14
WBK20-11	General	20	68	85	57	_	52	30	20	10	10	14
WBK25-11	General	25	79	98	63	_	57	30	20	10	13	20

Motoci	1	Tighton	oot c	00000	oftor	lookput	hoo	haan	adiustad	and	tightened	
MOTES:	п.	Lianten	SPTS	crew	atter	IOCKNIIT	ทลร	neen	adillisted	and	tiantenea	

- 2. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.
- 3. Deep groove ball bearing and snap ring are also provided for simple support side. (except WBK04-11M, WBK06-11M and WBK06-11)

(example 2)

10

15

22

27

Reference No.	Tightening torque (reference) [N-cm					
neierence No.	Locknut	Set screw				
WBK04-**	100	69 (M3)				
WBK06-**	190	69 (M3)				
WBK08-**	230	69 (M3)				
WBK10-**	280	147 (M4)				
WBK12-**	630	147 (M4)				
WBK15-**	790	147 (M4)				
WBK17-**	910	147 (M4)				
WBK20-**	1670	147 (M4)				
WBK25-**	2060	490 (M6)				

Units: mm

U	P	Q	С	ounterk	ore dir	nensior	ns	Mass	Locknut screw	Attached bearing for support side
			J	W	X	Y	Z	(kg)	М	Support side
10	2.6	2.4	3	20	3.5	_	_	0.02	M4×0.5	_
12	3	2	4	26	4.5	_	_	0.04	M6×0.75	_
12	4.5	2.5	7	28	2.9	5.5	3.5	0.1	M6×0.75	_
	6		10	42	4.5	8		0.2		606ZZ
14	5	4	9	35	3.4	6.5	4	0.15	M8×1	606ZZ
	5		9	35	3.4	0.5		0.15		606VV
17	6	4	10	42	4.5	8	4	0.2	M10×1	608ZZ
17	0	4	10	42	4.5	0	4	0.2	IVITUXT	608VV

4. Bearings for WBK04-11M and WBK06-11M are equipped with non-contact metal shield.

8

9.5

11

15

4

6

10

13

0.25

0.4

1.1

1.5

M12×1

M15×1

M20×1

M25×1.5

*For retaining cover side of WBK06-11, WBK08-11 and WBK08-11C, there are no seals.

4.5

5.5

6.6

9

5. Contact NSK if the rotational speed is 50 min⁻¹ and below.

44

50

70

80

6000ZZ

6000VV 6002ZZ

6002VV

6204ZZ

6205ZZ

19

22

30

36

6

8

14

17

8

10

Simple support side support unit (square type

												0.	nto. IIIIII
Reference No.	Use	$d_{\scriptscriptstyle 2}$	A	В	С	D	E	R	Coun	terbore	dimen	sions	Mass
									W	X	Y	Z	(kg)
WBK08S-01	General		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK08S-01B	Low type	6	62	31	15.5	31	_	16	46	9	14	18	0.2
WBK08S-01C	Clean environment		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK10S-01	General	8	70	43	25	35	36	20	52	9	14	11	0.4
WBK10S-01C	Clean environment	0	70	43	25	30	30	20	52	3	14	''	0.4
WBK12S-01	General			43	25	35	36					11	0.35
WBK12S-01B	Low type	10	10 70	38	20	38	_	20	52	9	14	19	0.4
WBK12S-01C	Clean environment			43	25	35	36	20	52			11	0.35
WBK12SF-01*2	General	12	43	25	30	30					''	0.3	
WBK12SF-01B*1	Low type	12	62	31	15.5	31	_	18	46			18	0.2
WBK15S-01	General			50	30	40	41					11	0.45
WBK15S-01B	Low type		80	42	22	42	_	20	60			23	0.4
WBK15S-01C	Clean environment	15		50	30	40	41	20		9	14	11	0.45
WBK15SF-01*2	General		70	43	25	35	36		52			''	0.3
WBK15SF-01B*1	Low type		70	38	20	38	_	18	52			19	0.3
WBK17S-01	General	17	86	64	39	55	50	23	68	9	14	11	0.8
WBK20S-01	General	20	95	58	30	45	56	26	75	11	17	15	0.8
WBK20SF-01B	Low type	20	20 80	42	22	42		22	60] ' '	' /	23	0.4
WBK25S-01W	General	25	105	68	35	25	66	30	85	11	_	_	0.9
WBK25SF-01*1	General	20	95	58	30	45	56	22	75	11	17	15	0.55

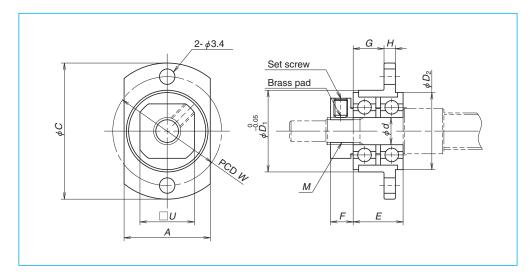
Notes: 1. Use datum surface B for mounting to machine base.
2. For reference No. 12 or lower numbers, note that the reference numbers and inner dimensions of the bearing are different.
3. WBK ** SF is a type supporting screw shaft OD.
4. See page B400 for bearing reference number and the basic dynamic load rating in the radial direction.
5. *1 is exclusive for FSS type.
6. *2 is exclusive for VFA type.

Courtesy of Steven Engineering, Inc - (800) 258-

B399

Support Unit (Support Units for Light Load and Small Equipment)

NSK


Specifications of support unit

	Fixed s	support side si	upport unit			Simple supp	ort side su	pport unit
Reference No.	Use	Axia Basic dynamic load rating Ca [N]	al direction Load limit [N]		Maximum starting torque [N·cm]	Reference No.	Bearing reference No.	Radial direction Basic dynamic load rating C [N]
WBK04-01M	General	1 470	464	39	0.2	_	_	_
WBK04-11M	General	1 470	464	39	0.2	_	_	_
WBK06-01A	General	2 670	1 040	28	0.49	_	_	_
WBK06-01M	General	2 760	854	60	0.35	_	_	_
WBK06-11	General	2 670	1 040	28	0.49	_	_	_
WBK06-11M	General	2 760	854	60	0.35	_	_	_
WBK08-01A	General	4 400	1 450	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-01B	Low type	6 600	2 730	94	1.9	WBK08S-01B WBK12SF-01B*1	606ZZ 6801ZZ	2 260 1 920
WBK08-01C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11	General	4 400	1 450	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-11B	High load	6 600	2 730	94	1.9	_	606ZZ	2 260
WBK08-11C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK10-01A	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
14/01/40 04/0		0.000	0.700	0.4	1.0	WBK12SF-01*2	6001ZZ	5 100
WBK10-01B	Low type	6 600	2 730	94	1.9	_	608ZZ	3 300
WBK10-01C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
WBK10-11C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK12-01A	General	7 100	3 040	104	2.1	WBK12S-01 WBK15SF-01*2	6000ZZ 6902ZZ	4 550
WBK12-01B	Low type	7 100	3 040	104	2.1	WBK155F-01 WBK12S-01B	6902ZZ	4 350 4 550
WDN 12-UID	Low type	7 100	3 040	104	2.1	WBK15SF-01B*1	6902ZZ	4 350
WBK12-01C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11	General	7 100	3 040	104	2.1	WBK12S-01	6000ZZ	4 550
WBK12-11C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK15-01A	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-01B	Low type	7 600	3 380	113	2.4	WBK15S-01B	6002ZZ	5 600
	, ,					WBK20SF-01B*1	6804ZZ	4 000
WBK15-01C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-11C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK17-01A	General	13 400	5 800	120	3.5	WBK17S-01	6203ZZ	9 550
WBK20-01	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
						WBK25SF-01*1	6005ZZ	10 100
WBK20-11	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
WBK25-01W	General	20 200	10 000	192	7.2	WBK25S-01W	6205ZZ	14 000
WBK25-11	General	20 200	10 000	192	7.2	WBK25S-01W	6205ZZ	14 000
WBK04R-11	General	615	490	6.5	0.59	_	_	_
WBK06R-11	General	1 280	930	9	0.59	_	_	_

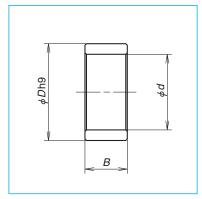
Support kits for ball screws for transfer equipment

Support kits are for RMA type ball screw.

In case of RMA1002 or larger rolled ball screws, please use support units for general use.

- 1	Inits:	mm

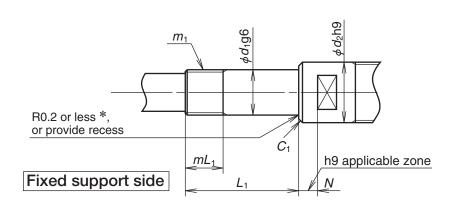
Reference No.	А	С	d	<i>D</i> ₁	D_2	Ε	F	G	Н	W	U	М	Mass (kg)
WBK04R-11	14	25	4	13	12.5	9	5	5	2.5	19	10	M4×0.5	0.13
WBK06R-11	19	30	6	18	17	11	5	6.8	2.5	24	12	M6×0.75	0.23


Reference No.	Applicable ball screw	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]
WBK04R-11	RMA0601	100	38 (M2.5)
WBK06R-11	RMA0801 RMA0801.5 RMA0802	190	69 (M3)

- 1. Oscillate bearings slowly so that they fall into place in which run-out of mounting surface is minimal, and then tighten locknut.
- 2. Support kit is on provisional shaft (bolt) during shipping.
- 3. When securing support unit on shaft, insert brass pad that is provided with support unit into lock nut hole, and then tighten set screw.

Spacer

When using a fixed support unit, it may require an optional spacer to have an effective shoulder surface at where the ball thread is threaded to the end of the shoulder. This is common for the R series for transporting ball screws.


Support Unit (Support Units for Light Load and Small Equipment)

					Units: mm
Reference No.	Internal	Outside	Width	Mass	Applicable
	diameter, d	diameter, D	В	(g)	support unit
WBK06K	6	9.5	5.0	2	WBK06-**
WBK08K	8	11.5	5.5	2	WBK08-**
WBK10K	10	14.5	5.5	4	WBK10-**
WBK12K	12	15.0	5.6	3	WBK12-**
WBK15K	15	19.5	10.0	10	WBK15-**
WBK17K	17	24.4	7.0	13	WBK17-**
WBK20K	20	25.5	11.0	17	WBK20-**
WBK25K	25	32.0	14.0	34	WBK25-**

Screw shaft end configuration


Dimensions of the shaft end configurations for light load and small equipment support units are shown in the table below. When using a spacer with a ball screw for transporting equipment, add the width of the spacer (B from the table of spacer dimensions on page B402) to L₁ dimension below.

Radius marked with * above is 0.15 or less for WBK04R-11 and WBK06R-11.

U	nits:	mr

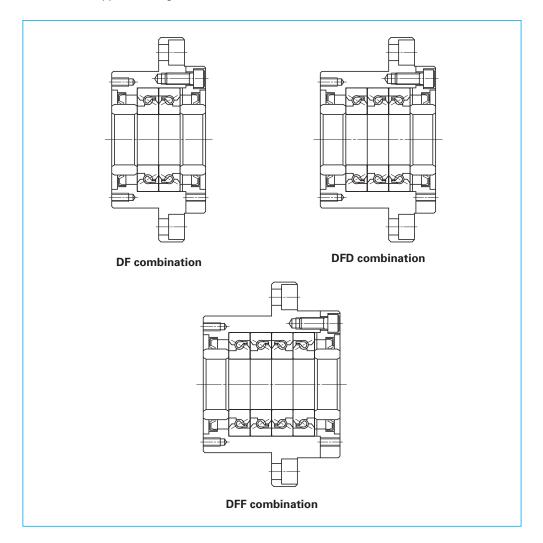
Fixed support side										
Reference No.	Bearing	j journal	Locknut	t thread	Sealin	Chamfer				
nererence No.	d ₁	L ₁	m₁	mL ₁	d ₂	N	C ₁			
WBK06- * *	6	22.5	M6×0.75	7	9.5	3.5	0.2			
WBK08- * *	8	27	M8×1	9	11.5	4	0.2			
WBK10- * *	10	30	M10×1	10	14	6	0.2			
WBK12- * *	12	30	M12×1	10	15	6	0.2			
WBK15- * *	15	40	M15×1	15	19.5	5	0.3			
WBK17- * *	17	46	M17×1	17	24	7	0.3			
WBK20- * *	20	53	M20×1	16	25	10	0.3			
WBK25- * *	25	62	M25×1.5	20	32	14	0.5			
WBK04R-11	4	15	M4×0.5	7.5	_	_	0.3			
WBK06R-11	6	17	M6×0.75	7.5	_	_	0.3			

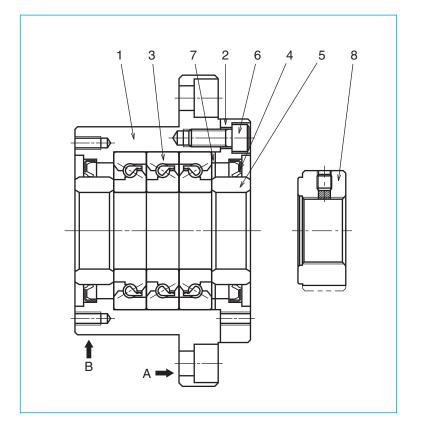
23.9

16.35

0.5

	Units: mm									
		Simp	le support sid	е						
Reference No.	Bearing	journal	Sı	Snap ring groove						
nererence no.	d₃	L ₂	n	dn	nL	C_2				
	_	_	_	_	_	_				
WBK08S- * *	6	9	0.8	5.7	6.8	0.2				
WBK10S- * *	8	10	0.9	7.6	7.9	0.2				
WBK12S- * *	10	22	1.15	9.6	9.15	0.5				
WBK15S- * *	15	25	1.15	14.3	10.15	0.5				
WBK17S- * *	17	16	1.15	16.2	13.15	0.5				
WBK20S-**	20	19	1.35	19	15.35	0.5				


1.35

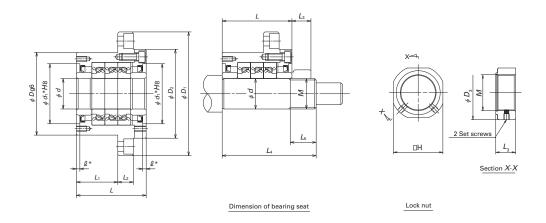

WBK25S- * *

(2) Support unit for ball screws for high-speed and heavy-load machine tools

Support units for high-speed and heavy-load machine tools use the ball screw support bearings NSKHPS™ BSBD series. This series has very suitable functions and structure as a ball screw support bearing. There are three

bearing combinations as shown below.

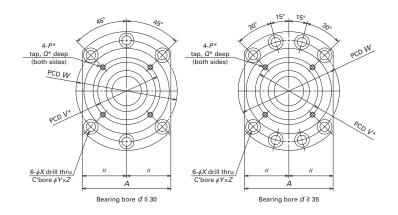
Parts list


Part No.	Part name	Quantity
1	Housing	1
2	Retaining cover	1
3	High accuracy thrust angular contact ball bearing	One set
4	Dust seal	2
5	Collar	2
6	Preload bolt	6 or 8
7	Shim	One set
8	Lock nut	1

Notes:

- Surface A and B are the datum surfaces to mount a support unit to machine housing.
- NSK support units are precisely preloaded and adjusted. Do not disassemble the components 1, 2, 3, 4, 5, 6 and 7.
- 3. Grease is packed into the bearings.
- 4. Lock nut 8 is exclusively prepared for ball screws. End surface of nut is in strict control being precisely perpendicular to the V thread. Secure lock nut using set screw.
- Lock nut is also available as accessory. (See page R409)
- See page B415 as well for NSKTAC C Series angular contact thrust ball bearings for ball screw support.

Support Unit (For high speed, heavy load machine tools)



Support unit No.	No.									Basic dynamic load rating	Limiting axial load								
	d	D	D_1	D_2	L	L ₁	L ₂	Α	W	Χ	Y	Z	d, *	Q*	V*	P*	Q*	C _a [N]	[N]
WBK17DF-31H	17	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK20DF-31H	20	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK25DF-31H					66	33												29 900	40 500
WBK25DFD-31H	25	85	130	90	81	48	18	100	100 110	11	17.5	11	57	4	70	M6	12	48 500 (29 900)	81 500 (40 500)
WBK30DF-31H					66	33												30 500	43 000
WBK30DFD-31H	30	85	130	90	81	48	18	100	110	11	17.5	11	57	4	70	M6	12	50 000 (30 500)	86 000 (43 000)
WBK35DF-31H					66	33												32 500	50 000
WBK35DFD-31H	35	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	53 000 (32 500)	100 000 (50 000)
WBK35DFF-31H					96	48												53 000	100 000
WBK40DF-31H					66	33												33 500	52 000
WBK40DFD-31H	40	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	54 000 (33 500)	104 000 (52 000)
WBK40DFF-31H					96	48												54 000	104 000

Notes: 1. Rigidity

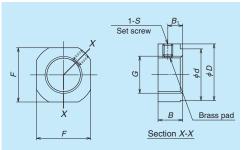
Values in the table are theoretical values obtained from the elastic deformation between ball groove and balls.

- 2. Starting torque
 - Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.
- 3. The tolerance of the shaft bearing seat
 - We recommend h5 class of the fits tolerance.
- 4. Values in parentheses of basic dynamic load rating and permissible axial load are the values when axial load is applied in a line.

					Lock nu	t					Permissible	
Preload	Axial rigidity	Starting torque	Dimension torque (reference			Screwing torque (reference)	Bearing seat for unit			rotational	Mass	
C _a [N]	[N/µm]	[N · cm]	М	Н	$D_{\scriptscriptstyle 3}$	L ₃	[N · cm]	d	L ₄	Ls	[min ⁻¹]	[kg]
1 450	630	14	M17×1.0	32	37	18	4 100	17	81	23	6 900	1.9
1 450	630	14	M20×1.0	36	40	18	4 500	20	81	23	6 900	1.9
2 280	850	21							89			3.1
3 100	1 250	28	M25×1.5	5 41	45	20	8 500	25	104	26	5 200	3.4
2 400	890	23							89			3.0
3 260	1 310	30	M30×1.5	46	50	20	10 100	30	104	26	4 900	3.3
2 750	1 030	27							92			3.4
3 740	1 500	34	M35×1.5	50	55	22	13 800	35	107	30	4 100	4.3
5 490	2 060	43							122			5.0
2 860	1 080	28							92			3.6
3 900	1 590	36	M40×1.5	55	60	22	15 500	40	107	30	4 100	4.2
5 730	2 150	46							122			4.7

- 5. Dimensions with * (asterisk) mark
- *Pilot diameter and tapped screws marked with asterisk are used for seal unit installation for NSK standard hollow shaft ball screws. They also can be used for dust cover and damper installation.
- 6. Grease is packed into bearing. It is not necessary to apply grease before use.
- 7. Permissible axial load is 0.7 times of limiting axial load.
- 8. Contact NSK if the rotational speed is 50 min⁻¹ and below.

Lock nut


NS

In addition to the support units, NSK has other components for ball screws as shown below.

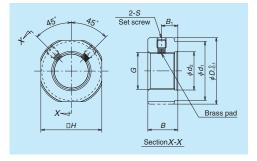
(3) Lock nuts

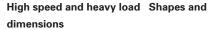
Ball screw support bearings must be installed

with minimum inclination against ball screw center. NSK lock nuts exclusive for ball screw support bearings help to reduce this inclination.

Light load Shapes and dimensions

Light load lock nuts


Light load lock nuts


Lock nut reference No.	G	D	F	В	d
WBK04L-01	M4×0.5	11.5	10	5	6
WBK06L-01	M6×0.75	14.5	12	5	10
WBK08L-01	M8×1	17	14	6.5	13
WBK10L-01	M10×1	20	17	8	16
WBK12L-01	M12×1	22	19	8	17
WBK15L-01	M15×1	25	22	10	21
WBK17L-01	M17×1	29	24	13	24
WBK20L-01	M20×1	35	30	13	26
WBK25L-01	M25×1.5	42	36	16	34

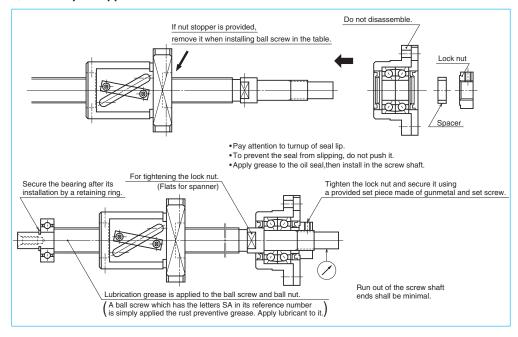
Note: Insert brass pad and then tighten securing set screw.

High speed and heavy load lock nuts

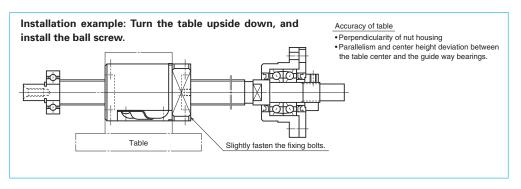
Lock nut reference No.	G	D-0.1	В	d_1	d_2
WBK17L-31H	M17×1	37	18	30	18
WBK20L-31H	M20×1	40	18	30	21
WBK25L-31H	M25×1.5	45	20	40	26
WBK30L-31H	M30×1.5	50	20	40	31
WBK35L-31H	M35×1.5	55	22	49	36
WBK40L-31H	M40×1.5	60	22	49	41

High speed and heavy load lock nuts

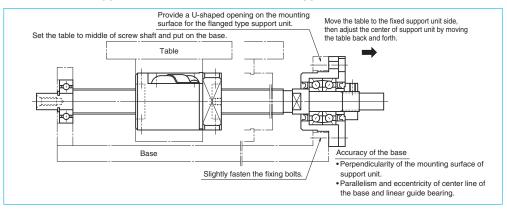
B ₁	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
2.75	M3, with a brass pad	100	69 (M2.5)	3.0
2.75	M3, with a brass pad	190	69 (M3)	3.8
4	M3, with a brass pad	230	69 (M3)	6.4
5	M4, with a brass pad	280	147 (M4)	11.2
5	M4, with a brass pad	630	147 (M4)	12.8
6	M4, with a brass pad	790	147 (M4)	20.0
8	M4, with a brass pad	910	147 (M4)	33.1
8	M4, with a brass pad	1 670	147 (M4)	50.0
10	M6, with a brass pad	2 060	490 (M6)	87.0

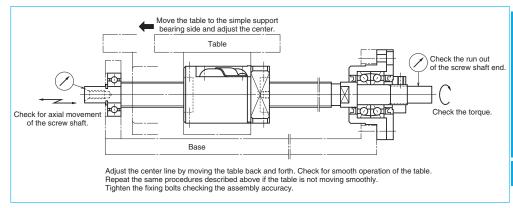

Unit: mm

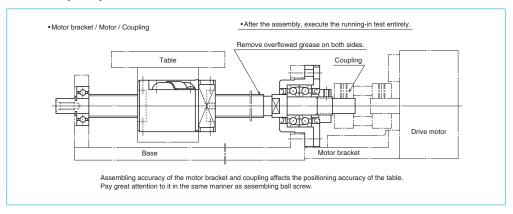
B_1	Н	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
10	32	M6	4 100	490 (M6)	100.9
10	36	M6	4 500	490 (M6)	117.3
11	41	M6	8 500	490 (M6)	163.8
11	46	M6	10 100	490 (M6)	186.7
12	50	M6	13 800	490 (M6)	233.4
12	55	M6	15 500	490 (M6)	258.8


Installation of Ball Screw and Support Unit

The illustrations below show typical installation procedures for a standard ball screw and a support unit.


1) Assembly of support unit


2) Installation of ball nut to the table


3) Base and the support unit installation on the fixed support side

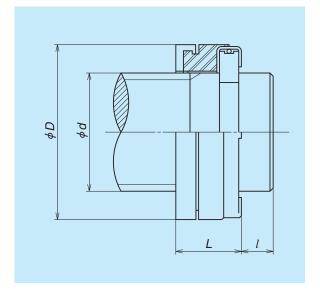
4) Base and bearing installation on simple support side, and confirming assembling accuracy.

5) Assembly completed.

(4) Grease unit

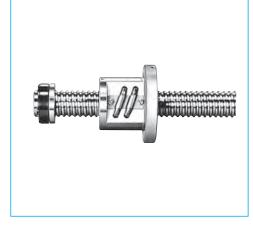
NSK has numerous grease types that are exclusive for ball screw lubrication. They come in bellows-shaped tubes, which can be attached to a hand grease pump quickly. For details of grease types, see page D13 and for a hand grease pump and nozzles, see page D19.

NSK greases


Lubricant greases

Name	Use	Base oil viscosity mm²/s (40°C)		
NSK Grease AS2	For heavy load	130		
NSK Grease PS2	High-speed, light load	15		
NSK Grease LR3	High-speed, medium load	30		
NSK Grease LG2	Clean environment	30		
NSK Grease LGU	Clean environment	100		

(5) Travel stopper (made-to-order)


A travel stopper is installed in some cases to prevent the ball nut from overrunning to the end of ball thread due to a malfunction of the safety system of the equipment or by a human error. NSK has several series of shock-absorbing travel stoppers. The travel stopper is not sold as a single item since it is not for general use.

Also, a travel stopper cannot be used for ball screw with the end cap type ball recirculation system, because the stopper would come directly into contact with the component for ball recirculation. Please request NSK for the installation of the travel stoppers when ordering a ball screw.

				Unit: mm
Stopper No.	Applicable shaft dia.	Outer dia.	Length	Shaft end width (Min.)
	d	D	L	l
BSR 20	20	32	16	5
BSR 25	25	38	16	5
BSR 32	32	46	20	6
BSR 40	40	60	22	6
BSR 50	50	72	24	7
BSR 63	63	85	25	7

Note: This stopper is patented by NSK Ltd.

Shock-absorbing travel stopper

(6) NSKHPS angular contact thrust ball bearings for ball screw support

1. Features

This is highly rigid and accurate ball screw support bearing often used for the machine tools driving mechanism.

NSKHPS:Reliability has been improved by focusing on material cleanliness, which has the biggest impact on bearing life, by employing NSK's proprietary material evaluation technology. The dynamic load rating has been improved by 5% compared with that of conventional bearings.

The NSKTAC C Series features high axial rigidity and is suitable for machine tool feeding mechanisms, while the NSKTAC 03 Series with its high axial load capacity is well suited for the support of large ball screws in high-load drive applications such as electric injection molding machines. With these series users can achieve much lower torque and higher accuracy than with roller bearings.

(a) High axial rigidity

The axial rigidity is high because of a higher contact angle of 60°

(b) Low starting torque

Compared with tapered roller bearings or cylindrical roller bearings, this type has lower starting torque; so smoother rotation is possible with driving force.

(c) Easy Installation

The clearance in each indivisual bearing in a combination is adjusted to obtain the optimum preload. With universal combination bearings (combination symbol SU), a specific preload is obtained when used with others having the same bearing number in any combination (DB, DF, and others).

Fig. 1 Axial rigidity of various bearings

(d) Structural simplicity

Since this type can sustain both axial and radial loads, the surrounding structure is simpler and more compact than when using a combination of radial and thrust bearings.

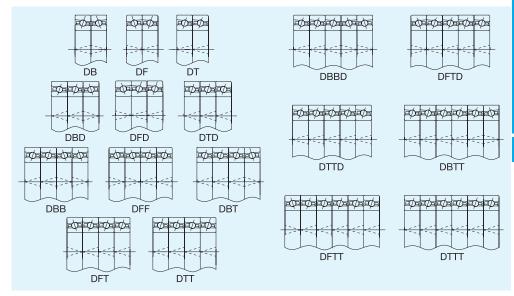
(e) Easy handling

Since the Inner and outer rings are inseparable, handling is easy.

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1)	Starting torque	Preload adjustment	Installation structure
Ball screw support bearings	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Tapered roller bearing	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK when you use these bearings other than the purpose of ball screw support.


2. Bearing combinations

Angular contact thrust ball bearings for ball screw support are generally used in two or more rows with preload applied.

Universal Combination Bearings

NSK manufactures universal combination bearings which have been controlled to have the same amount of stand-out (offset) on their front and back faces. That way, for bearings with the same bearing number, users will achieve the specified amount for each standard preload, regardless of which combination they chose. Each universal combination bearing comes with a V-shaped mark on the surface of the outer ring to simplify identification of the correct direction when mounting and to ensure that the correct combination is achieved. The V-shaped mark points to the direction of the axial load that the inner ring supports (contact angle).

Combination Mark and Matching Method for Universal Combination Bearings

NSK has defined the limiting static axial load as the smaller of the two values listed below:

- (1) Limiting axial load that produces shoulder override
 The limiting load at which the contact ellipse
 generated between the ball and the raceway
 overrides the shoulder of the raceway groove
 (Fig. 2)
- (2) Limiting axial load in terms of surface pressure The limiting load at which the contact stress at the center of the contact area between the ball and the raceway groove reaches a level that leaves an indentation as defined in the basic static load rating (Fig. 3)

To maintain optimal bearing performance, NSK has defined permissible static axial load values by applying a safety factor to the limiting axial load based on many years of experience.

The formula for calculating the basic static axial load rating $C_{\scriptscriptstyle 0a}$ does not take the shoulder height of the raceway groove into account. Therefore, in some cases the $C_{\scriptscriptstyle 0a}$ value may exceed the limiting axial load that produces shoulder override.

In such cases, the maximum load that the bearing can sustain is lower than the $C_{\rm 0a}$ value, making the $C_{\rm 0a}$ value unsuitable (Fig. 4). Therefore, instead of $C_{\rm 0a}$ values, we have listed limiting axial load values in the bearing tables where necessary, particularly for angular contact thrust ball bearings as they are usually used to support heavy axial loads.

4. Rolling contact fatigue life

The relationship between basic load rating, bearing load, and basic rating life for the rolling bearing is presented in the following formula.

$$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C_{\rm a}}{P}\right)^3$$

Where, L_b: Basic rating life (h)

C_a: Basic dynamic load rating (N)

P: Dynamic equivalent load (N)

n: Rotational speed (min⁻¹)

See the right table for dynamic equivalent load in each combination.

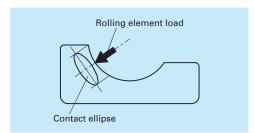


Fig. 2 Ride-over limit axial load

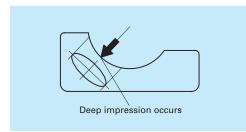


Fig. 3 Contact pressure limit axial load

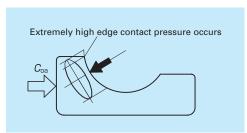


Fig. 4 C_{oa} and limit axial load

Dynam	10 00	uival	ont L	004	D _	VE .	VE

	Bearing configu Combination		Du	plex		Triple	×	Quadruplet			
(4	ther of the control to the service	20%	DF	DT	DF	D	DTD	DFT	DFF	DFT	
е	Material to the limit of the l		One row	Two rows	One row	Two rows	Three rows	One row	Two rows	Three rows	
_	F _a /F _r ≤e	Χ	1.9	ı	1.43	2.33	-	1.17	1.9	2.53	
Γ,	a/ r _r ≥ e	Υ	0.55	-	0.77	0.35	-	0.89	0.55	0.26	
F	F _a /F _r >e -	Χ	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
,		Υ	1	1	1	1	1	1	1	1	

Ball screw support bearings

NSK

5. Fits

Recommended interference values for standard operating conditions of ball screws are listed in Tables 3. When using angular contact thrust ball bearings for high-load drive ball screw support, in cases where a single end is supported and moment loads are high, it is advisable to increase shaft interference, for example by choosing k5 etc. as required.

Table 3 Tolerances for Shaft and Housing Bore Diameters Unit: um

			Toleran	ce of sha	ft outer d	iameter				
Housing Bo	r Diameter, re Diameter m)	Angular contact thrust ball			bearings	contact to for high-lapplication	oad drive	Tolerance of housing bore diameter		
Over	Incl.		Min.	Max.		Min.	Max.		Min.	Max.
10	18		-8	0		-4	4		-	-
18	30		-9	0		-4.5	4.5		_	-
30	50		-10	0		-5.5	5.5		0	16
50	80		-13	0		-6.5	6.5		0	19
80	120	h5	_	-	js5	-7.5	7.5	H6	0	22
120	180		_	-		-9.0	9.0		0	25
180	250		_	-		-	-		0	29
250	315		-	-		-	-		0	32
315	400		-	-		-	-		0	36

6. Bearing Accuracy

Table 4 to 6 shows accuracy for angular contact thrust ball bearings for ball screw support.

Table 4 Tolerances for angular contact thrust ball bearings NSKTAC C for high-rigidity ball screw support (Class PN7C (1))

												- 7 Office print
Nominal Bore (or outer diameter) (mm)		Bore Diame	ane Mean ter Deviation Imp	Deviation of Single Bore Diameter Δds		Single Plane Mean Outside Diameter Deviation ΔDmp		Deviation of Single Outside Diameter ΔDs				Inner ring (Outer Ring) Face Runout with Raceway Sia (Sea)
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	Max.
10	18	0	-4	0	-4	-	-	-	-	0	-120	2.5
18	30	0	-5	0	-5	-	-	-	-	0	-120	2.5
30	50	0	-6	0	-6	0	-6	0	-6	0	-120	2.5 2.5
50	80	0	-7	0	-7	0	-7	0	-7	0	-150	2.5
80	120	-	-	-	-	0	-8	0	-8	-	-	2.5

Note: 1. NSK specification

Table 5 Tolerances for angular contact thrust ball bearings NSKTAC 03 for high-load drive applications ball screw support (Class PN5D (2) Unit: µm

(or outer	al Bore diameter) m)	Bore Diamet	ne Mean er Deviation mp	Outside Diam	ane Mean eter Deviation Imp	Inner Rir	of Single ng Width 8s	Inner ring (Outer Ring) Face Runout with Raceway <i>Sia</i> (<i>Sea</i>)
Over	Incl.	High	Low	High	Low	High	Low	Max.
10	18	0	-5	-	-	0	-80	5
18	30	0	-6	-	-	0	-120	5
30	50	0	-8	0	-7	0	-120	5
50	80	0	-9	0	-9	0	-150	8
80	120	0	-10	0	-10	0	-200	8
120	150	0	-13	0	-11	0	-250	10
150	180	0	-13	0	-13	0	-250	10
180	250	-	-	0	-15	-	-	10
250	315	-	-	0	-18	-	-	11
315	400	_	_	Λ	_20	_	_	13

Note: 2. NSK specification

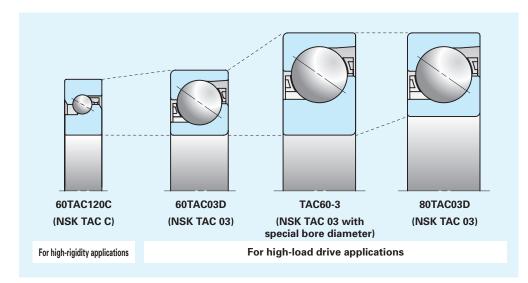
Table 6. Tolerances for RSRD Series double-row bearings (Class D2R (3) of RSE and RSN series)

Table 6 Tole	rances for ba	Series dou	Table 6 Tolerances for bodd Series double-row bearings (class F2b of bor and both series) Unit: µm													
	al Bore er (mm)	Bore Diamet	ane Mean ter Deviation mp	Outside Diam	ane Mean eter Deviation Imp	Inner Ring Face Runout with Raceway Sia	Radial Runout of Inner Ring <i>Kia</i>		olerance							
Over	Incl.	High	Low	High	Low	Max.	Max.	High	Low							
10	18	0	-5	0	-10	1.5	1.5	0	-250							
18	30	0	-5	0	-10	2.5	2.5	0	-250							
30	50	0	-5	0	-10	2.5	2.5	0	-250							
50	80	0	-8	0	-15	2.5	2.5	0	-250							

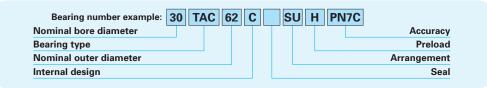
Note: 3. NSK specification

NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Rigidity Applications

A larger number of balls and a 60° contact angle provide high axial rigidity and make these bearings ideally suited for machine tool feeding mechanisms.


The "DDG" seals used for the sealed bearings of this series are light-contact seals for high-speed capability; a strong sealing effect is achieved by a labyrinth between the seal lip and the seal groove of the inner ring. This ensures that no foreign particles can get into the bearing and no grease can leak out, thus helping to keep the surrounding area clean. Some bearings from this series are also available as non-contact sealed bearings for even lower torque and lower heat generation.

For ease of handling and increased efficiency, NSKTAC C bearings come prepacked with "WPH" grease that resists high temperatures and is less likely to soften and leak.


NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Load Drive Applications

Optimized internal design has led to a higher limiting axial load. The number of rows may be reduced, contributing to smaller sized devices. We also offer bearings with special bore diameters. That way, bearings with higher load capacity may be employed without any need to modify the shaft diameter, allowing for more compact screw shaft ends.

For the validity of this series for industries except Injection molding machines and machine tools, please ask NSK.

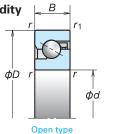
Numbering System of NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Rigidity Applications

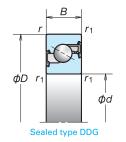
30	Nominal bore diameter	Bore diameter (mm)
TAC	Bearing type	Angular contact thrust ball bearing
62	Nominal outer diameter	Outer diameter (mm)
С	Internal design	Contact angle 60°
	Seal	No symbol: Open type DDG: Contact rubber seal V1V: Non-contact rubber seal
SU	Arrangement	SU: Universal arrangement (single-row)
Н	Preload	H: Heavy preload (standard in the HPS Series)
PN7C	Accuracy	PN7C: NES Class 7C (axial runout equivalent to P2)

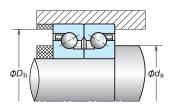
Numbering System of NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw Support in High-Load Drive Applications

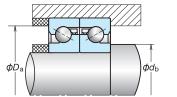
Bearing number example: 60 TAC 03 D T85 SU M PN5D

Nominal bore diameter Accuracy


Bearing type Preload


Dimension series Arrangement


Internal design Cage


60	Nominal bore diameter	Bore diameter (mm)
TAC	Bearing type	Angular contact thrust ball bearing
03	Dimension series	02: 02 Series
D	Internal design	Contact angle 55°
T85	Cage	T85: Polyamide cage M:Brass Cage
SU	Arrangement	SU: Universal arrangement (single-row)
M	Preload	M: Medium preload EL: Extra light preload
PN5D	Accuracy	PN5D: Standard accuracy (equivalent to ISO Class 5)

NSKHPS is not applicable for TAC160-3 and 180TAC03D.

Calculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in table B.

Table		DFD	DFF	DFT
В		ØØØ	ØØØØ	ØØØØ
		DBD	DBB	DBT
		ØØØ	ØØØØ	ØØØØ
	Preload factor	1.36	2.00	1.57
	Axial rigidity	1.49	2.00	1.89
	Starting torque	1.35	2.00	1.55

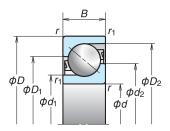
(Open type)

Bearing	Во	Boundary Dimensions (mm)				Abutme	Abutment and Fillet Dimensions (mm)				Contact angle	Limiting Speeds ⁽²⁾ (min ⁻¹)		Mass (kg)
Numbers	d	D	В	r (Min.)	<i>I</i> 1 (Min.)	D₀ (Max.)	d₃ (Min.)	D₃ (Max.)	d₀ (Min.)	Quantities (cc)	(degree)	Grease	Oil	(approx.)
15TAC47C	15	47	15	1	0.6	42	19.5	41	19.5	2.2	60	6 900	9 200	0.146
17TAC47C	17	47	15	1	0.6	42	23	41	23	2.2	60	6 900	9 200	0.140
20TAC47C	20	47	15	1	0.6	42	25	41	25	2.2	60	6 900	9 200	0.135
25TAC62C	25	62	15	1	0.6	57	31	56	31	3.0	60	5 200	6 900	0.252
30TAC62C	30	62	15	1	0.6	57	36	56	36	3.2	60	4 900	6 400	0.224
35TAC72C	35	72	15	1	0.6	67	42	66	42	3.8	60	4 100	5 800	0.310
40TAC72C	40	72	15	1	0.6	67	47	66	47	3.9	60	4 100	5 500	0.275
40TAC90C	40	90	20	1	0.6	85	48	84	48	8.8	60	3 500	4 600	0.674
45TAC75C	45	75	15	1	0.6	68	54	67	54	4.2	60	3 700	4 900	0.270
45TAC100C	45	100	20	1	0.6	93	55	92	55	9.7	60	3 000	4 100	0.842
50TAC100C	50	100	20	1	0.6	92	60	91	60	10.2	60	3 000	3 900	0.778
55TAC100C	55	100	20	1	0.6	92	63	91	63	10.2	60	3 000	3 900	0.714
55TAC120C	55	120	20	1	0.6	112	63	111	63	12	60	2 500	3 500	1.23
60TAC120C	60	120	20	1	0.6	112	70	111	70	12	60	2 500	3 500	1.16

(Sealed Type)

Bearing	В	ounda	ry Dim (mm)	ensior	าร	Abutment and Fillet Dimensions (mm)				Contact angle	Limiting Speeds ⁽²⁾ (min ⁻¹)	Mass (kg)
Numbers ⁽¹⁾	d	D	В	B r r ₁ (Min.)		D _b (Max.)	d₃ (Min.)	D _a (Max.)	d₀ (Min.)	(degree)	Grease	(approx.)
* 15TAC47CDDG	15	47	15	1	0.6	42	19.5	41	19.5	60	6 900	0.146
* 17TAC47CDDG	17	47	15	1	0.6	42	22	41	22	60	6 900	0.140
* 20TAC47CDDG	20	47	15	1	0.6	42	25	41	25	60	6 900	0.135
* 25TAC62CDDG	25	62	15	1	0.6	57	30	56	30	60	5 200	0.252
30TAC62CDDG	30	62	15	1	0.6	57	36	56	36	60	4 900	0.224
35TAC72CDDG	35	72	15	1	0.6	67	41	66	41	60	4 100	0.310
40TAC72CDDG	40	72	15	1	0.6	67	46	66	46	60	4 100	0.275
40TAC90CDDG	40	90	20	1	0.6	85	47	84	47	60	3 500	0.674
45TAC100CDDG	45	100	20	1	0.6	93	54	92	54	60	3 000	0.842
50TAC100CDDG	50	100	20	1	0.6	92	59	91	59	60	3 000	0.778
55TAC100CDDG	55	100	20	1	0.6	92	63	91	63	60	3 000	0.714

Note: 1. An asterisk (*) indicates bearings that are also available as non-contact sealed bearings.


- 2. Limiting speeds are based on high preload (H). The values shown are valid for all types of bearing arrangement.
- 3. To calculate permissible axial load, multiply limiting axial load by 0.7.

Preload (DB and DF Arrangement) (N)	Axial Rigidity (DB and DF Arrangement) (N/µm)	Starting Torque (DB and DF Arrangement) ⁽⁴⁾ (N·m)(reference)	Basic dyna number o	mic load ra f rows sust		Lir by number	oad taining Fa ⁽³⁾	
Н	Н	Н	1 row (kN)	2 rows (kN)	3 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
2 280	850	0.15	29.9	48.5	64.5	40.5	81.5	122
2 400	890	0.16	30.5	50.0	66.0	43.0	86.0	129
2 750	1 030	0.18	32.5	53.0	70.5	50.0	100	150
2 860	1 080	0.19	33.5	54.0	72.0	52.0	104	157
3 450	1 150	0.29	62.0	101	134	89.5	179	269
3 100	1 170	0.20	34.5	56.0	74.5	57.0	114	170
4 440	1 340	0.40	64.5	105	140	99.0	198	298
4 650	1 410	0.42	66.0	107	142	104	208	310
4 650	1 410	0.42	66.0	107	142	104	208	310
5 450	1 660	0.49	70.5	115	153	123	246	370
5 450	1 660	0.49	70.5	115	153	123	246	370

Preload (DB and DF Arrangement) (N)	Axial Rigidity (DB and DF Arrangement) (N/µm)	Starting Torque (DB and DF Arrangement) (N·m) (reference)	Basic dyna number o	mic load ra f rows sust		Limiting axial load by number of rows sustaining Fa ^{SI}		
Н	Н	Н	1 row (kN)	2 rows (kN)	3 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
2 280	850	0.15	29.9	48.5	64.5	40.5	81.5	122
2 400	890	0.16	30.5	50.0	66.0	43.0	86.0	129
2 750	1 030	0.18	32.5	53.0	70.5	50.0	100	150
2 860	1 080	0.19	33.5	54.0	72.0	52.0	104	157
3 450	1 150	0.29	62.0	101	134	89.5	179	269
4 440	1 340	0.40	64.5	105	140	99.0	198	298
4 650	1 410	0.42	66.0	107	142	104	208	310
4 650	1 410	0.42	66.0	107	142	104	208	310

- 4. The starting torque values in the table apply to grease lubricated bearings. Contact seal torque is not included. For oil lubricated bearings, multiply by 1.4.
- 5. Abutment and fillet dimensions are recommendable values for the use of standard Machine tool applications. For heavy load applications, please ask NSK

for High-Load Drive Applications

Bearing	Во	undar	y Din (mm)	nensio	ns	Refe	erence (m	Dimens m)	ions	Recommended Grease	Contact	Limiting Speeds ⁽²⁾ (min ⁻¹)		Mass (kg) (approx.)
Numbers ⁽¹⁾	d	D	В	r (Min.)	<i>[</i> 71 (Min.)	d ₁	d ₂	<i>D</i> ₁	D ₂	Quantities (degree)	Grease	Oil		
15TAC02D	15	35	11	0.6	0.3	19.1	24.5	26	31.9	1	55	12 000	14 800	0.047
20TAC03D	20	52	15	1.1	0.6	27.2	35.3	37.5	46.1	2.7	55	8 300	10 300	0.155
25TAC02D	25	52	15	1	0.6	30.8	38.1	39.6	47.3	3	55	7 700	9 700	0.137
TAC35-3	35	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	6 000	0.712
40TAC03D	40	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	5 700	0.659
TAC40-3	40	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	5 000	1.28
45TAC03D	45	100	25	1.5	1	56.5	71.7	74.7	90.8	18	55	4 100	5 200	0.877
TAC45-3	45	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 800	1.21
50TAC03D	50	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 700	1.14
TAC50-3	50	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	4 200	2.00
55TAC03D	55	120	29	2	1	68	86.4	90.2	109.7	32	55	3 400	4 300	1.44
60TAC03D	60	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	3 900	1.80
TAC60-3	60	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 300	4.47
70TAC03D	70	150	35	2.1	1.1	86.3	108.6	113.4	137.8	59	55	2 700	3 400	2.67
75TAC03D	75	160	37	2.1	1.1	92.4	116.2	121	146.2	67	55	2 500	3 200	3.20
80TAC03D	80	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 000	3.80
TAC80-3	80	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 600	8.66
100TAC03D	100	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 400	7.54
TAC100-3	100	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 100	14.8
120TAC03D	120	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 000	13.3
* TAC120-3M	120	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 800	24.5
* 140TAC03DM	140	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 700	22.5
* TAC140-3M	140	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 600	34.5
* 160TAC03DM	160	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 500	32.0
* TAC160-3M	160	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	46.8
* 180TAC03DM	180	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	43.7

Note: 1. An asterisk (*) indicates bearings that are also available equipped with screw holes for mounting bolts.

2. Limiting speeds are based on the standard preload of each bearing. The values shown are valid for all types of bearing arrangement.

3. Preload values for bearings with a bore diameter of 100mm or more as well as for TAC80-3 are based on EL preload.

Ball screw support bearings NSKTAC 03 series

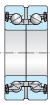
Multi-row combination calculations

Calculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in table B.

Number of load-sustaining rows	2 rd	ows		3 rows		4 r	ows	5 rows
	DFD	DFF	DFT	DFFD	DFFF	DFTD	DFFT	DFTT
	ØØØ	DDDD	ØØØØ	ØØØØØ	ØØØØØØ	ØØØØØ	ØØØØØØ	ØØØØØØ
	DBD	DBB	DBT	DBBD	DBBB	DBTD	DBBT	DBTT
	ØØØ	ØØØØ	ØØØØ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ØØØØØØ	ØØØØØ	ØØØØØØ	ØØØØØ
Preload factor	1.36	2.00	1.57	2.42	3.00	1.72	2.72	1.83
Axial rigidity	1.49	2.00	1.89	2.51	3.00	2.24	2.97	2.57
Starting torque	1.35	2.00	1.55	2.41	3.00	1.68	2.71	1.77

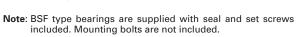
Preload ⁽³⁾ (DB and DF	Axial Rigidity ⁽³⁾ (DB and DF	Starting Torque ⁽⁴⁾ (DB and DF		,		0	ting Ca by Limiting axial load taining Fa by number of rows sustaining Fa ⁽⁵⁾							
Arrangement) (N)	Arrangement) (N/µm)	Arrangement) (N·m)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)		
400	290	0.017	21.0	34.0	45.0	55.5	64.5	18.6	37.5	56.0	74.5	93.0		
830	430	0.026	42.5	69.5	92.0	113	132	38.5	77.0	116	154	193		
690	430	0.036	37.0	60.0	79.5	97.5	114	36.0	72.5	109	145	181		
2 500	780	0.26	113	184	244	299	350	118	235	355	470	590		
2 500	780	0.26	113	184	244	299	350	118	235	355	470	590		
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905		
2 800	830	0.31	133	216	287	350	410	142	283	425	565	710		
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905		
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905		
5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210		
4 280	1 060	0.68	190	310	410	500	585	210	420	630	840	1 050		
5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210		
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940		
6 400	1 250	1.1	262	425	565	690	810	305	615	920	1 230	1 530		
7 230	1 330	1.3	283	460	610	750	875	345	690	1 040	1 380	1 730		
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940		
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550		
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550		
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400		
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400		
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950		
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950		
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200		
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200		
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800		
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800		

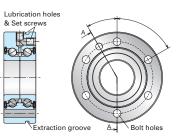
- 4. The starting torque values in the table apply to grease lubrication.5. To calculate permissible axial load, multiply limiting axial load by 0.7.


Features

The bearings of this series are double-row angular contact thrust ball bearings with a 60° contact angle and a single outer ring. The specifications are the same as those of the NSKTAC bearings, both series being optimized for the support of ball screws in machine tools. All BSBD Series bearings are equipped with a rubber contact seal and prepacked with high performance grease.

BSN Type


The BSN type of ball screw support bearings are double row angular contact thrust ball bearings in a back-to-back arrangement, with a single outer ring.


The bearings are prepacked with high performance grease. Lubrication holes allow for relubrication during operation if necessary. The contact seal offers minimized friction and temperature rise while providing excellent sealing performance.

BSF Type

The BSF type of bearings is equivalent to the BSN range of bearings, with bolt holes on the outer ring for easy direct mounting. Two lubrication holes – one in the outer surface and one in the face of the outer ring – allow for relubrication during operation if required. If not used, these holes are closed off with set screws. An extraction groove on the outer surface of the outer ring aids removal of the bearing.

BSN Type Single product

Bearing Numbers	d	Bounda D	ry Dim (mm) <i>B</i>	r (min)	r ₁ (min)		t and Fillet ons (mm) ϕD_b (max)	Contact Angle (°)	(k	ad Rating N) C _{oa} (Static)	Limiting [®] Axial Load (kN)	Preload (N)	Axial Rigidity (N/µm)	Mass (kg)	Limiting speed (min ⁻¹) Greased	Starting torque (N·m)	Recommended Clamping force (N)
BSN1242	12	42	25	0.6	0.3	15	33	60	18.5	24.0	17.6	720	375	0.20	8 000	0.038	4 030
BSN1545	15	45	25	0.6	0.3	19	35	60	19.4	26.9	19.4	675	400	0.22	7 100	0.034	4 050
BSN1747	17	47	25	0.6	0.6	21	37	60	20.3	29.7	21.2	880	450	0.23	6 700	0.05	4 400
BSN2052	20	52	28	0.6	0.6	24	43	60	26.4	41.0	29.3	1 885	650	0.31	5 800	0.13	7 600
BSN2557	25	57	28	0.6	0.6	29	48	60	28.3	48.0	34.0	2 245	750	0.36	5 100	0.16	8 100
BSN3062	30	62	28	0.6	0.6	34	53	60	30.0	55.5	38.5	2 625	850	0.40	4 500	0.19	8 600
BSN3072	30	72	38	0.6	0.6	35	64	60	60.5	94.0	66.5	4 855	950	0.74	3 900	0.59	11 100
BSN3572	35	72	34	0.6	0.6	40	62	60	42.0	77.5	52.0	2 630	900	0.66	3 800	0.21	13 500
BSN4075	40	75	34	0.6	0.6	46	67	60	44.5	88.0	58.5	3 065	1 000	0.65	3 500	0.24	14 100
BSN4090	40	90	46	0.6	0.6	46	80	60	78.5	135	91.0	7 220	1 200	1.38	3 100	1.02	18 700
BSN5090	50	90	34	0.6	0.6	56	82	60	48.0	110	71.5	4 020	1 250	0.93	2 800	0.33	15 400
BSN50110	50	110	54	0.6	0.6	57	98	60	116	219	149	7 435	1 400	2.46	2 500	1.06	19 100
BSN60110	60	110	45	0.6	0.6	68	100	60	86.5	187	126	4 780	1 300	1.82	2 400	0.50	20 900

Notes: 1. Permissible axial load equals 0.7 times of limiting axial load.

2. The values indicate starting torque of preloaded bearings, not including seal torque.

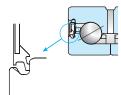
BSBD Series Bearings for ball screw support

NSK

NSKHPS BSBD Series

Bearing number Example: BS F 30 80 DDU H P2B DT

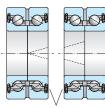
Bearing type

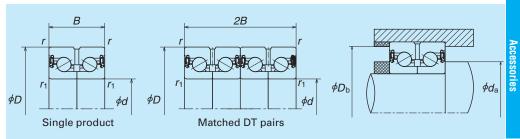

F: Flange type
N: No Flange type
Bore diameter

Outer diameter

Arrangement
P2B is an accuracy class specific to the BSBD Series, indicating the following:
Running accuracy:
ISO Class 2
Others: NSK-specific

Seal


Rubber contact seal on both sides. Triple lip structure provides high grease sealing performance and dust resistance.

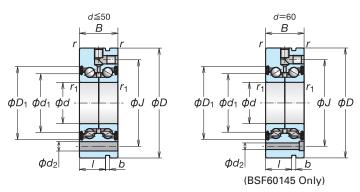

Matched DT pairs

BSBD bearings are available in matched DT pairs

for applications with large external loads or where high rigidity and long life are required. The mating surfaces of the 2- row bearing set are controlled for offset, so as to have no impact on the preload of each individual bearing.

Mating surfaces controlled for offset

BSN Type Matched DT pairs


Bearing	E	Bounda	ry Dim (mm)	ension	1	Dimensi		Contact Angle	(k	ad Rating N)	Limiting ⁽¹⁾ Axial Load	Axial Rigidity	Mass	Limiting speed (min ⁻¹)	Starting torque (N·m)	Recommended
Numbers	d	D	2B	r (min)	<i>r</i> ₁ (min)	φd₃ (min)	φD₀ (max)	(°)	C _a (Dynamic)	C₀₃ (Static)	(kN)	(N/µm)	(kg)	Greased	Н	force (N)
BSN1747-DT	17	47	50	0.6	0.6	21	37	60	33.0	59.5	42.5	790	0.46	6 700	0.10	4 400
BSN2052-DT	20	52	56	0.6	0.6	24	43	60	43.0	82.0	58.5	1 180	0.62	5 800	0.26	7 600
BSN2557-DT	25	57	56	0.6	0.6	29	48	60	46.0	96.0	68.0	1 370	0.71	5 100	0.32	8 100
BSN3062-DT	30	62	56	0.6	0.6	34	53	60	49.0	111	77.0	1 580	0.80	4 500	0.37	8 600
BSN3072-DT	30	72	76	0.6	0.6	35	64	60	98.0	188	133	1 800	1.47	3 900	1.17	11 100
BSN3572-DT	35	72	68	0.6	0.6	40	62	60	68.0	155	104	1 630	1.32	3 800	0.41	13 500
BSN4075-DT	40	75	68	0.6	0.6	46	67	60	72.0	176	117	1 850	1.30	3 500	0.49	14 100
BSN4090-DT	40	90	92	0.6	0.6	46	80	60	128	269	182	2 300	2.76	3 100	2.03	18 700
BSN5090-DT	50	90	68	0.6	0.6	56	82	60	78.0	220	143	2 330	1.86	2 800	0.66	15 400
BSN50110-DT	50	110	108	0.6	0.6	57	98	60	188	440	299	2 690	4.92	2 500	2.11	19 100

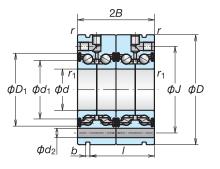
- Inner rings can be separable easily. Please push or pull bearings by clamping innerring at mounting and dismounting.
- 4. Abutment and fillet simensions are recommendable values for the use of standard Machine tool applications. For heavy load applications, please ask NSK.

BSBD Series Bearings for ball screw support

NSK

NSKHPS[™] BSBD Series

BSF Type Single product


Bearing	Воц	undary	Dimen	sions (n	nm)	Basic Load	Rating (kN)	Limiting ⁽¹⁾	Axial	Mass	Limiting speed (min ⁻¹)
Numbers	d	D	В	(min)	(min)	C _a (Dynamic)	<i>C</i> ₀₃ (Static)	Axial Load (kN)	Rigidity (N/µm)	(kg)	Grease
BSF1255	12	55	25	0.6	0.3	18.5	24.0	17.6	375	0.37	8 000
BSF1560	15	60	25	0.6	0.3	19.4	26.9	19.4	400	0.44	7 100
BSF1762	17	62	25	0.6	0.6	20.3	29.7	21.2	450	0.46	6 700
BSF2068	20	68	28	0.6	0.6	26.4	41.0	29.3	650	0.61	5 800
BSF2575	25	75	28	0.6	0.6	28.3	48.0	34.0	750	0.73	5 100
BSF3080	30	80	28	0.6	0.6	30.0	55.5	38.5	850	0.79	4 500
BSF30100	30	100	38	0.6	0.6	60.5	94	66.5	950	1.71	3 900
BSF3590	35	90	34	0.6	0.6	42.0	77.5	52.0	900	1.20	3 800
BSF40100	40	100	34	0.6	0.6	44.5	88.0	58.5	1 000	1.49	3 500
BSF40115	40	115	46	0.6	0.6	78.5	135	91.0	1 200	2.56	3 100
BSF50115	50	115	34	0.6	0.6	48.0	110	71.5	1 250	1.89	2 800
BSF50140	50	140	54	0.6	0.6	116	219	149	1 400	4.46	2 500
BSF60145	60	145	45	0.6	0.6	86.5	187	126	1 300	4.06	2 400

BSF Type Matched pairs

Bearing	Воц	ındary l	Dimens	sions (n	nm)	Basic Load	Rating (kN)	Limiting ⁽¹⁾	Axial	Mass	Limiting speed (min ⁻¹)
Numbers	d	D	2 <i>B</i>	r (min)	<i>r</i> ₁ (min)	C _a (Dynamic)	<i>C</i> ₀₃ (Static)	Axial Load (kN)	Rigidity (N/µm)	(kg)	Grease
BSF1762-DT	17	62	50	0.6	0.6	33.0	59.5	42.5	790	0.890	6 700
BSF2068-DT	20	68	56	0.6	0.6	43.0	82.0	58.5	1 180	1.17	5 800
BSF2575-DT	25	75	56	0.6	0.6	46.0	96.0	68.0	1 370	1.46	5 100
BSF3080-DT	30	80	56	0.6	0.6	49.0	111	77.0	1 580	1.58	4 500
BSF30100-DT	30	100	76	0.6	0.6	98.0	188	133	1 800	3.41	3 900
BSF3590-DT	35	90	68	0.6	0.6	68.0	155	104	1 630	2.30	3 800
BSF40100-DT	40	100	68	0.6	0.6	72.0	176	117	1 850	2.88	3 500
BSF40115-DT	40	115	92	0.6	0.6	128	269	182	2 300	5.12	3 100
BSF50115-DT	50	115	68	0.6	0.6	78.0	220	143	2 330	3.78	2 800
BSF50140-DT	50	140	108	0.6	0.6	188	440	299	2 690	8.92	2 500

Notes: 1. Permissible axial load equals 0.7 times of limiting axial load.

The values refer to the limiting load of the bearing only, without taking the mounting bolts into account.

Reference Dimensions (mm)

 d_2

6.8

6.8

6.8

6.8

6.8

6.8

8.8

8.8

8.8

8.8

8.8

8.8

17

17

17

19

19

19

30

25

25

36

25

45

35

3

3

3

3

3

3

3

3

3

3

3

3

3

 d_1

23.7

26.7

28.1

32.6 | 43

37.6

42.6 | 53

49.1

53.1

55.1

63.1

70.1

78.1

32.7

35.7

37.7

48

64.4

62.2

67.2

80.1

82.2

97.5

99.3

42

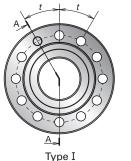
46

48

53

58

80


75

80

94

113

120

4

12

6

12

8

Type

 Π

 \prod

 \blacksquare

 Π

Π

 \blacksquare

Π

Π

Π

 \prod

Π

M8

M8

M8

M10

M8

t

3 x 120°

3 x 120°

3 x 120°

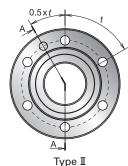
4 x 90°

4 x 90°

6 x 60°

8 x 45°

4 x 90°


4 x 90°

12 x 30°

6 x 60°

12 x 30°

8 x 45°

Mountin	g Bolts	Preload	Starting torque ⁽²⁾ (N·m)	Recommended
Bolt Dia.	Number of Bolts	(N)	Н	Clamping Force (N)
M6	3	720	0.038	4 030
M6	3	675	0.034	4 050
M6	3	890	0.05	4 400
M6	4	1 885	0.13	7 600
M6	4	2 245	0.16	8 100
M6	6	2 625	0.19	8 600
M8	8	4 855	0.59	11 100
M8	4	2 630	0.21	13 500

0.24

1.02

0.33

1.06

0.50

14 100

18 700

15 400

19 100

20 900

3 065

7 220

4 020

7 435

4 780

	R	eferenc	e Dime	nsions	(mm)		T	Mountin	g Bolts	Starting torque ⁽²⁾ (N·m)	Recommended
d ₁	D_1	J	d_2	l	b	t	Type	Bolt Dia.	Number of Bolts	Н	Clamping Force (N)
28.1	37.7	48	6.8	42	3	6 x 60°	I	M6	5	0.10	4 400
32.6	43	53	6.8	47	3	8 x 45°	I	M6	7	0.26	7 600
37.6	48	58	6.8	47	3	8 x 45°	I	M6	7	0.32	8 100
42.6	53	63	6.8	47	3	12 x 30°	I	M6	11	0.37	8 600
49.1	64.4	80	8.8	68	3	8 x 45°	Π	M8	8	1.17	11 100
53.1	62.2	75	8.8	59	3	8 x 45°	I	M8	7	0.41	13 500
55.1	67.2	80	8.8	59	3	8 x 45°	I	M8	7	0.49	14 100
63.1	80.1	94	8.8	82	3	12 x 30°	П	M8	12	2.03	18 700
70.1	82.2	94	8.8	59	3	12 x 30°	I	M8	11	0.66	15 400
78.1	97.5	113	11	99	3	12 x 30°	П	M10	12	2.11	19 100

- 2. The values indicate starting torque of preloaded bearings, not including seal torque.
- Inner rings can be separable easily. Please push or pull bearings by clamping inner ring at mounting and dismounting.

NSK

1. End Deflector Type B431

2. Tube Type B437

3. Deflector(bridge) Type B469

4. End Cap Type B483

B-3-2 Dimension Table and Reference Number of Standard Nut Ball Screws

B-3-2.1 End Deflector Type Ball Screws

This product is being applied for a patent.

1. Features

Low and less offensive noise

The average noise level is reduced by more than 6 dB(A) compared with our existing products. At low-speed rotation, the ball screws are nearly silent, while their noise is unprecedentedly low at high-speed rotation.

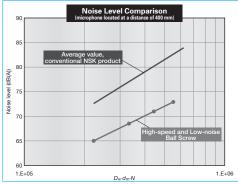


Fig. 1 Comparison of noise level

High-speed operation

Realizes the d-n of 180 000, outstanding for ball screws and far surpassing the 100 000 d-n performance of existing return tube type products. For high-lead ball screws, high-speed operation at over 200 m/min is also possible.

■Compact

The external diameter of the ball nut is 30% smaller than our existing models. Compact configurations are possible for low-profile XY tables as well as for other devices and equipment.

Grease fitting provided as standard equipment

The ball screws with shaft diameters equal to or less than $\emptyset 25$ are equipped with a grease fitting (M5 \times 0.8) as a standard. Lubrication ports are provided in 2 places for ease of maintenance. The ball screws can be easily connected to an integrated lubrication system.

2. Specifications

(1) Ball recirculation system

Fig. 2 shows the structure of the end-deflector recirculation system.

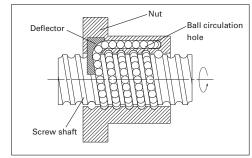


Fig. 2 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

	C0, C1, C2, C3, C5, Ct7
Avial play	Z, 0 mm (preloaded); T, 0.005 mm or less;
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value : 180 000 or less Standard of rotational speed: 5 000 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Seal

A compact and thin plastic seal is used. Nut outside diameter is compact compare with the return tube recirculation system.

(5) Option

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please contact NSK when using NSK K1.

3. Design precautions

When designing the shaft end of a ball screw which diameter is 25 mm or less, or 32 mm or over, and the lead is the same as its shaft diameter, one end of the screw must meet either one of the following conditions. If not, we

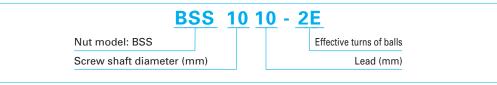
cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

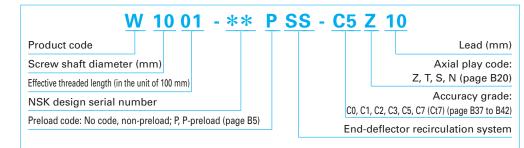
For general precautions regarding ball screws, refer to "Design Precautions"(page B83) and "Handling Precautions"(page B103).

4. Product categories

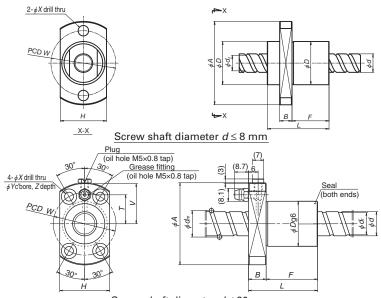
End deflector type ball screws have the model as follows.


Table 2 End-deflector type ball screw product categories

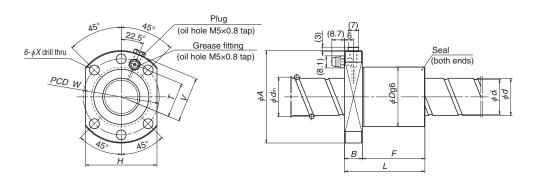
Nut model	Shape	Flang shape	Nut shape	Preload system
BSS		Circular Ⅱ, Ⅲ	Circular	Non-preload, Slight axial play P-preload (light preload)


5. Structure of model number and reference number

The following describe the structure of "Model number" and "Reference number for ball screw".



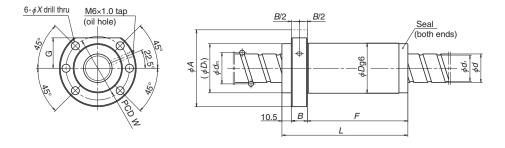
♦ Reference number for ball screw

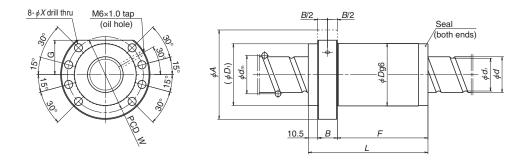


Screw shaft diameter $d \le 20 \text{ mm}$

	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective	Basic load	rating (N)	Axial rigidity
Model No.	Stiatt ula.	Leau	Dall Ula.	dia.	noot uia.	turns of	Dynamic	Static	K
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d _r	balls	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
BSS0608-2E		8				2	620	725	32
BSS0608-4E	6	8	1.2	6.2	4.9	4	1 330	1 750	75
BSS0612-2E	0	12	1.2	0.2	4.9	2	600	720	29
BSS0612-4E		12				4	1 280	1 770	69
BSS0810-2E		10				2	1 040	1 280	43
BSS0810-4E	8	10	1.588	8.3	6.6	4	2 220	3 090	99
BSS0815-2E	0	15	1.000	0.3	0.0	2	1 010	1 290	40
BSS0815-4E		15				4	2 170	3 170	93
BSS1005-3E	10	5	2.000	10.3	8.2	3	3 420	4 840	133
BSS1010-2E	10	10	2.000	10.3	0.2	2	2 290	2 980	81
BSS1205-3E		5				3	3 750	5 810	154
BSS1210-3E	12	10	2 000	12.3	10.2	3	3 760	5 780	150
BSS1220-2E	12	20	2.000			2	2 330	3 600	86
BSS1230-2E		30				2	2 190	3 650	75
BSS1505-3E		5	2.778		12.6	3	6 410	10 100	193
BSS1510-3E	15	10	2.778	15.5	12.6	3	6 530	10 200	192
BSS1520-2E	15	20	3.175	15.5	12.2	2	5 660	8 700	132
BSS1530-2E		30	3.175		12.2	2	5 500	8 580	119
BSS2005-3E		5				3	10 400	18 500	284
BSS2010-3E		10				3	10 200	18 600	281
BSS2020-2E	20	20	3.175	20.5	17.2	2	6 790	11 800	175
BSS2030-2E	20	30	3.173	20.5	17.2	2	6 550	11 800	164
BSS2040-2E		40				2	6 380	11 600	151
BSS2060-2E		60				2	5 680	11 800	126
BSS2505-3E		5				3	11 500	23 500	343
BSS2510-4E		10				4	15 000	32 400	460
BSS2520-2E	25	20	0 3 175	25.5	22.2	2	7 650	14 800	214
BSS2525-2E	25	25		25.5	22.2	2	7 490	14 600	206
BSS2530-2E		30				2	7 490	14 600	203
BSS2550-2E		50				2	6 910	14 700	180

Note: 1) The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a). For ball screws with shaft diameters less than $\emptyset 25$, the standard Compact FA PSS type can be available.




Screw shaft diameter d = 25 mm

											Unit: mm	
Nut entire	Nut	Flange	Flange	Nut	Flange d	imension	Bolt hole	Bolt	hole dimer	nsion	Oil hole	
		diameter		length			PCD				distance	己
L	D	Α	В	F	Н	V	W	X	Y	Z	T	End deflector type
16				8								90
24		0.7		16	45 (40)		0.4	0.4				宣
20	14	27	4	12	15 (10)	_	21	3.4	_	_	_	₹
32				24								9
18				10								
28	18	31	4	20	19 (13)		25	3.4				
22	10	31	4	14	19 (13)		25	3.4	_	_	_	
37				29								_
29	23	43	11	18	26	21	33	4.5	8	4.5	14	
32	20	10		21	20		- 00	1.0		1.0		
30				19								
43	24	44	11	32	27	21.5	34	4.5	8	4.5	14.5	
50				39								
70 30	20	F1		59 19	31	٥٦	39				10	
43	28 28	51 51		32	31	25 25					18	
43 51	32	55	11	40	33	25	39 43	5.5	9.5	5.5	18 20	
71	32	55		60	33	27	43				20	
31	32	55		18	- 33	27	43				20	-
45				32								
54				41								
74	36	62	13	61	38	30.5	49	6.6	11	6.5	23.5	
92				79								
129				116								
32				20								-
56				44								
54		00	4.0	42							00.5	
63	40	62	12	51	48	30.5	51	6.6	_	_	23.5	
74				62								
114				102								

- 2) The axial play of ϕ 6mm and ϕ 8mm shaft diameter is only for T=0.005mm max.
- 3) Dimensions in parentheses are for flat nut configurations.

Screw shaft diameter d = 32 mm

				ı	ı				_
	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective		rating (N)	Axial rigidity
Model No.	Oriare ala.	Loud	Dair ala.	dia.	rioot dia.	turns of	Dynamic	Static	K
	d	l	$D_{\rm w}$	d _m	d,	balls	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle \mathrm{0a}}$	(N/µm)
BSS3205-4E		5	3.175	32.5	29.2	4	16 800	41 700	566
BSS3210-6E		10	5.556	33	27.2	6	50 900	110 000	907
BSS3212-5E		12	5.556	33	27.2	5	43 000	91 300	755
BSS3216-5E	32	16	5.556	33	27.2	5	44 300	90 800	756
BSS3220-5E		20	5.556	33	27.2	5	43 900	91 200	752
BSS3232-2E		32	5.556	33	27.2	2	17 700	32 900	274
BSS3264-2E		64	5.556	33	27.2	2	16 800	32 900	240
BSS3605-3E		5	3.175	36.5	33.2	3	13 500	34 100	459
BSS3610-6E		10	6.35	37	30.4	6	65 000	141 000	1 018
BSS3612-6E	36	12	6.35	37	30.4	6	64 800	141 000	1 014
BSS3616-6E		16	6.35	37	30.4	6	64 500	142 000	1 012
BSS3620-6E		20	6.35	37	30.4	6	64 000	141 000	1 001
BSS4010-5E		10				5	58 100	130 000	924
BSS4012-5E		12				5	58 000	130 000	922
BSS4016-5E		16				5	57 700	131 000	921
BSS4020-5E	40	20	6.35	41	34.4	5	57 400	130 000	913
BSS4025-4E	40	25	0.33	41	34.4	4	46 300	102 000	720
BSS4030-3E		30				3	36 100	74 800	533
BSS4040-2E		40				2	23 700	47 100	334
BSS4080-2E		80				2	22 200	46 600	289
BSS4510-5E		10				5	62 400	147 000	1 026
BSS4512-5E		12				5	62 300	147 000	1 023
BSS4516-5E	45	16	6.35	46	39.4	5	62 100	147 000	1 018
BSS4520-5E	40	20	0.55	40	39.4	5	61 800	146 000	1 011
BSS4525-5E		25				5	61 400	147 000	1 006
BSS4530-4E		30				4	49 600	115 000	790
BSS5010-4E		10				4	52 600	129 000	883
BSS5012-4E		12				4	52 500	129 000	881
BSS5016-4E		16				4	52 400	128 000	878
BSS5020-4E	50	20	6.35	51	44.4	4	52 200	129 000	879
BSS5025-4E	50	25	0.30	01	44.4	4	51 900	129 000	871
BSS5030-4E		30				4	51 500	128 000	861

Note: The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a).

Screw shaft diameter $d \ge 36$ mm

- 1	Init:	mm

Nut entire length	Nut diameter	Seal section diameter	Flange diameter	Flange width	Nut length	Notched flange	Bolt hole PCD	Bolt hole dimension
L	D	D_1	Α	В	F	G	W	Χ
55 104 103 122 141 94 153	56	(55)	86	12 18 18 18 18 18 18	32.5 75.5 74.5 93.5 112.5 65.5 124.5	34	71	9
50 109 120 143 166	65	(64)	95	12 22 22 22 22 22	27.5 76.5 87.5 110.5 133.5	36	80	9
99 108 127 146 145 134 110	70	(69)	100	22	66.5 75.5 94.5 113.5 112.5 101.5 77.5 151.5	38.5	85	9
99 108 127 146 170 164	75	(74)	110	22	66.5 75.5 94.5 113.5 137.5 131.5	43	93	11
89 96 111 126 145 164 130 224	82	(81)	118	22	56.5 63.5 78.5 93.5 112.5 131.5 97.5	46	100	11

BSS5050-2E

BSS50100-2E

50

100

394

343

26 100

24 100

58 300

58 900

NSK

B-3-2.2 Return Tube Type Ball Screws

1. Features

Return tube type is a standard way of ball recirculation system for ball screws. It has various combinations of shaft diameter and lead.

2. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

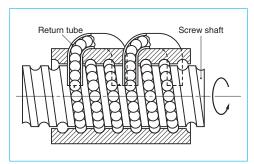


Fig.1 Structure of return tube recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	SFT, PFT, ZFT, DFT: C0, C1, C2, C3, C5, Ct7 LSFT, LPFT, LDFT: C1, C2, C3, C5, Ct7 (Ct7 is not included in DFT, LDFT)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measures must be taken for the high-speed ball screws respectively.

Allowable d·n value:

Standard specification ; 70 000 or less High-speed specification; 100 000 or less

Standard of rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Option

A type equipped with NSK K1 lubrication unit is also available.

(5) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are four different preloaded systems with several models. Since the leads are in the range from 1/2 to the same length of the shaft

Table 2 Return tube type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system	
SFT		Flanged d=16mm or under	Cirolo dio	Non-preload, Slight axial play	
PFT		Rectangle d=20mm or over Circular I, II	Circle dia.	P-preload (light preload) Spacer ball 1:1	
ZFT	1000	Flanged Circular I, II	Circle dia.	Z-preload (medium preload)	

Nut model	Shape	Flange shape	Nut shape	Preload system
DFT	uni OO : OO wada	Flanged Circular I, II	Circular	D-preload (medium preload) (heavy preload)
LSFT		Flanged d=20mm or under	d=20mm or under Circular	Non-preload, Slight axial play
LPFT		Rectangle d=25mm or over Circular II	d=25mm or over Tube- projecting type	P-preload (light preload) Spacer ball 1:1
LDFT		Flanged Circular II	Circular	D-preload (medium preload) (heavy preload)

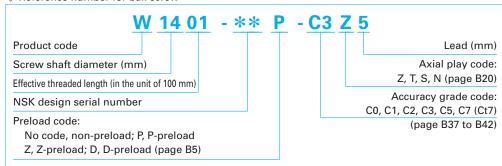
diameter (medium-high helix lead), LSFT, LPFT, LDFT Type ball screws are suitable for high-speed operation.

4. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

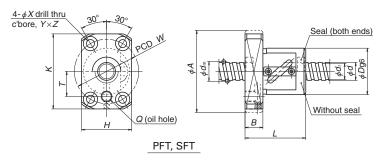
♦ Model number

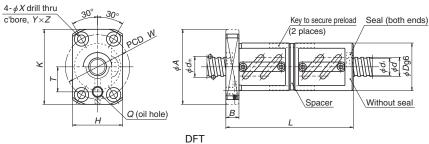
Nut model:
SFT, PFT, ZFT, DFT
LSFT, LPFT, LDFT
Screw shaft diameter (mm)

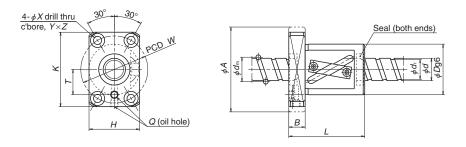

SFT 14 05 - 2.5

Effective turns of balls (Note)

Lead (mm)


Note: In case of Z-preload, the number here is twice as large as the effective turns of balls.


Reference number for ball screw


Unit: mm

	Мо	del No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns ×	Basic load Dynamic	rating (N) Static	Axial rigidity <i>K</i>		
			system	d	l	D_{w}	d _m	d,	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)		
*		1004-2.5	Р	10	4	2.000	10.3	8.2	2.5×1	2 020	2 210	79		
		1004-2.5	Clearance	. 0	· ·	2.000		0.2		3 210	4 420	94		
		1204-2.5	Р						2.5×1	2 780	3 140	93		
		1204-3	Р		4	2.381	12.3	9.8	1.5×2	3 250	3 770	111		
		1204-2.5	Clearance		-	2.501	12.0	3.0	2.5×1	4 410	6 280	111		
		1204-3	Clearance						1.5×2	5 160	7 540	132		
*	PFT	1205-2.5	Р	12					2.5×1	2 770	3 130	92		
	PFT	1205-3	Р	12	5	2.381	12.3	9.8	1.5×2	3 240	3 760	110		
	SFT	1205-2.5	Clearance		5	2.301	12.3	9.0	2.5×1	4 390	6 260	110		
	SFT	1205-3	Clearance						1.5×2	5 140	7 510	131		
*	LPFT	1210-2.5	Р		10	2.381	12.5	10.0	2 Ev.1	2 790	3 220	92		
	LSFT	1210-2.5	Clearance		10	2.381	12.5	10.0	2.5×1	4 430	6 430	110		
*	PFT	1405-2.5	Р				445		2.5×1	5 020	5 970	126		
	SFT	1405-2.5	Clearance		_	0 175		11.0	2.5×1	7 970	11 900	150		
	PFT	1405-5	Р		5	3.175	14.5	11.2	2.5×2	9 110	11 900	244		
	SFT	1405-5	Clearance	14					2.5×2	14 500	23 900	291		
*	LPFT	1408-2.5	Р				0	0.175	115	11.0		4 960	5 920	124
	LSFT	1408-2.5	Clearance		8	3.175	14.5	11.2	2.5×1	7 880	11 800	147		
*		1510-2.5	Р	1.5	10	0.175	1	10.0	0.51	5 130	6 420	129		
	LSFT	1510-2.5	Clearance	15	10	3.175	15.5	12.2	2.5×1	8 140	12 800	156		
	PFT	1604-3	Р						1.5×2	3 740	5 130	141		
	SFT	1604-2.5	Clearance						2.5×1	5 070	8 500	140		
	DFT		D	4.0		0.004	100	40.0	2.5×1	5 070	8 500	275		
	PFT	1604-5	P	16	4	2.381	16.3	13.8	2.5×2	5 800	8 500	226		
	SFT	1604-3	Clearance						1.5×2	5 930	10 300	168		
		1604-3	D						1.5×2	5 930	10 300	329		

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape.

LPFT, LSFT

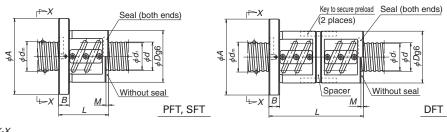
	Gine tim												
				Ва	ll nut dimens	ions							
Vut entire		Flanged	Flanged	Rectangle flar	nged diameter	Bolt h	ole dime	ension	Bolt hole	Oil hole	Oil hole		
length <i>L</i>	diameter <i>D</i>	diameter <i>A</i>	width <i>B</i>	Н	К	Χ	Y	Z	PCD W	length T	Q		
34	26	46	10	28	42	4.5	8	4.5	36	14	M6×1		
38 44 38 44	30	50	10	32	45	4.5	8	4.5	40	15	M6×1		
40 48 40 48	30	50	10	32	45	4.5	8	4.5	40	15	M6×1		
50	30	50	10	32	45	4.5	8	4.5	40	15	M6×1		
40 40 55 55	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1		
46	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1		
51	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1		
45 38 70 50	34 34 36 34	57	11	34 34 36 34	50	5.5	9.5	5.5	45	17	M6×1		
4.5	2/												

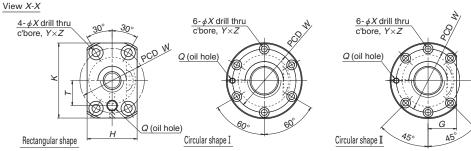
^{4.} The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

- 6. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)

36

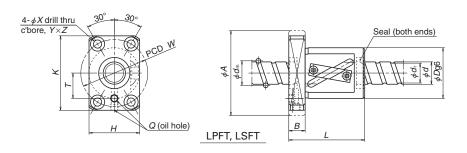
85


36


^{2.} Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

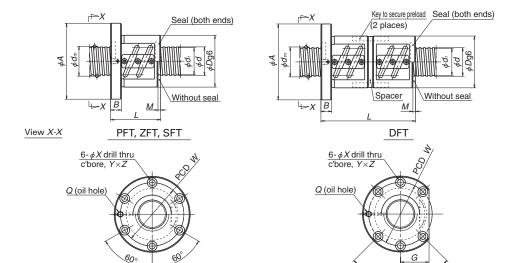
^{5.} For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.



			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload	Stiatt ula.	Leau	Dall Ula.	dia.	noot dia.	Turns	Dynamic	Static	K
		system	d	l	$D_{\scriptscriptstyle m w}$	d _m	d_{r}	× Circuits	C _a	$C_{\scriptscriptstyle 0a}$	(N/µm)
	PFT 1605-3	Р						1.5×2	6 350	8 070	166
	SFT 1605-2.5	Clearance						2.5×1	8 620	13 800	168
	DFT 1605-2.5	D						2.5×1	8 620	13 800	330
	PFT 1605-5	Р		5	3.175	16.5	13.2	2.5×2	9 850	13 800	270
	SFT 1605-3	Clearance		5	3.175	10.5	13.2	1.5×2	10 100	16 100	197
	DFT 1605-3	D						1.5×2	10 100	16 100	387
	SFT 1605-5	Clearance						2.5×2	15 600	27 600	326
	DFT 1605-5	D	16					2.5×2	15 600	27 600	639
	PFT 1606-2.5	Р						2.5×1	5 410	6 880	139
	SFT 1606-2.5	Clearance						2.5×1	8 590	13 800	168
	DFT 1606-2.5	D		6	3.175	16.5	13.2	2.5×1	8 590	13 800	329
	SFT 1606-3	Clearance					10.2	1.5×2	10 100	16 100	197
	DFT 1606-3	D						1.5×2	10 100	16 100	386
*	LPFT 1616-1.5			16	3.175	16.75	13.4	1.5×1	4 180	5 390	107
	LSFT 1616-1.5				0.170	10.70	10.1		5 480	8 080	98
	SFT 2004-2.5	Clearance						2.5×1	5 730	10 900	171
	DFT 2004-2.5	D						2.5×1	5 730	10 900	336
*	PFT 2004-5	Р		4	2.381	20.3	17.8	2.5×2	6 550	10 900	276
	SFT 2004-5	Clearance						2.5×2	10 400	21 800	332
	DFT 2004-5	D						2.5×2	10 400	21 800	651
	PFT 2005-3	Р						1.5×2	7 140	10 300	201
	SFT 2005-2.5	Clearance	20					2.5×1	9 690	17 100	201
	DFT 2005-2.5	D						2.5×1	9 690	17 100	393
*	PFT 2005-5	Р		5 3.175	3.175	20.5	17.2	2.5×2	11 100	17 100	327
	SFT 2005-3	Clearance						1.5×2	11 300	20 500	238
	DFT 2005-3	D						1.5×2	11 300	20 500	467
	SFT 2005-5	Clearance					2.5×2	17 600	34 200	388	
	DFT 2005-5	D						2.5×2	17 600	34 200	762

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

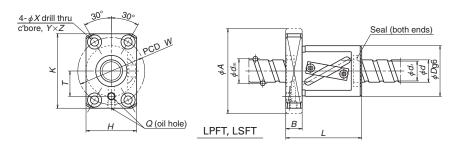

Ur	nit	:	m	n

					Ball	nut dime	nsions							
Nut entire length L	e Nut diameter <i>D</i>	Flanged diameter <i>A</i>	Flanged width B	Notched flange <i>G</i>	Rectangle flar	nged diameter K	Seal dimension <i>M</i>	Bolt ho	ole dim Y	ension Z	Bolt hole PCD W	Oil hole length	Oil hole	Retur
52 42 77 57 52 97 57 107	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1	Return tube type
44 44 86 56 110	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1	
56	40	63	12	_	40	55	_	5.5	9.5	5.5	51	17	M6×1	
37 69 49 49 93	40	63	11	24	_	_	3	5.5	9.5	5.5	51	_	M6×1	
52 41 76 56 52 97 56 106	44	67	11	26	_	_	3	5.5	9.5	5.5	55	_	M6×1	

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)

Circular shape I

			CI (: I:		D 11 11	Ball circle	D . I	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
		system	d	l	D_{w}	$d_{\rm m}$	d,	X Circuita	C _a	C_{0a}	(N1/
	DET 0000 0 5	-	u	ı	$\nu_{\scriptscriptstyle W}$	u _m	u _r	Circuits			(N/µm)
	PFT 2006-2.5	Р						2.5×1	8 120	10 500	172
	PFT 2006-3	Р						1.5×2	9 500	12 600	204
	SFT 2006-2.5	Clearance		6	3.969	20.5	16.4	2.5×1	12 900	21 000	204
	DFT 2006-2.5	D						2.5×1	12 900	21 000	401
	SFT 2006-3	Clearance						1.5×2	15 100	25 200	243
	DFT 2006-3	D P						1.5×2	15 100	25 200	477
	PFT 2008-2.5							2.5×1	8 080	10 500	170
	SFT 2008-2.5	Clearance	20	0	2.000	20.5	10.4	2.5×1	12 800	20 900	203
	DFT 2008-2.5	D	20	8	3.969	20.5	16.4	2.5×1	12 800	20 900	397
	SFT 2008-3 DFT 2008-3	Clearance						1.5×2	15 000 15 000	25 100 25 100	241 473
*	LPFT 2010-2.5	D P	-					1.5×2	8 350		177
~	LSFT 2010-2.5	Clearance		10	3.969	21.0	16.9	2.5×1		11 000 21 900	211
	LPFT 2016-2.5		-						13 300 8 170	10 800	171
	LSFT 2016-2.5	Clearance		16	3.969	21.0	16.9	2.5×1	13 000	21 600	203
*	LPFT 2020-1.5	P	1						6 250	8 760	132
-1-	LSFT 2020-1.5	Clearance		20	3.969	21.0	16.9	1.5×1	8 190	13 100	123
	SFT 2504-2.5	Clearance						2.5×1	6 220	13 600	203
	ZFT 2504-5	Z						2.5×1	6 220	13 600	399
*	PFT 2504-5	P		4	2.381	25.3	22.8	2.5×2	7 110	13 600	328
-,-	SFT 2504-5	Clearance		-	2.001	20.0	22.0	2.5×2	11 300	27 200	394
	ZFT 2504-10	Z						2.5×2	11 300	27 200	773
	PFT 2505-3	P	1 1					1.5×2	7 940	12 800	235
	SFT 2505-2.5	Clearance	1					2.5×1	10 800	21 800	243
	ZFT 2505-5	Z	25					2.5×1	10 800	21 800	477
*	PFT 2505-5	P						2.5×2	12 300	21 800	391
•	SFT 2505-3	Clearance	1	_	0.475			1.5×2	12 600	25 600	285
	DFT 2505-3	D		5	3.175	25.5	22.2	1.5×2	12 600	25 600	558
	PFT 2505-7.5	P	1					2.5×3	17 500	32 700	576
	SFT 2505-5	Clearance	1					2.5×2	19 600	43 600	470
	ZFT 2505-10	Z	1					2.5×2	19 600	43 600	923
	SFT 2505-7.5	Z Clearance						2.5×3	27 700	65 400	692

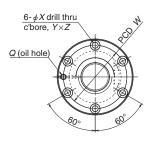

Circular shape I

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

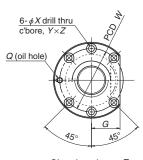
2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

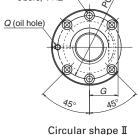
3. Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

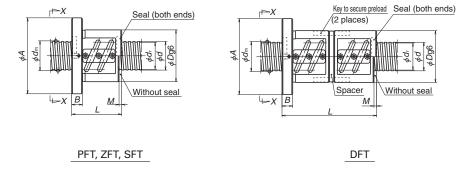
4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


	it٠		

Ball nut dimensions														
Nut entire length L		Flanged diameter <i>A</i>	Flanged width B	Notched flange <i>G</i>	Rectangle flar	nged diameter K	Seal dimension <i>M</i>	Bolt h	ole dim	ension Z	Bolt hole PCD W	Oil hole length T	Oil hole	Detu
44 56 44 86 56	48	71	11	27	_	_	3	5.5	9.5	5.5	59	_	M6×1	neturii tube type
54 54 102 64 120	48	75	13	28	_	_	5	6.6	11	6.5	61	_	M6×1	
54	46	74	13		46	66	_	6.6	11	6.5	59	24	M6×1	
72	46	74	13	-	46	66	_	6.6	11	6.5	59	24	M6×1	
63	46	74	13	-	46	66	_	6.6	11	6.5	59	24	M6×1	
36 48 48 48 72	46	69	11	26	_	_	3	5.5	9.5	5.5	57	_	M6×1	
52 40 55 55 52 102 70 55 85 70	50	73	11	28	_	_	3	5.5	9.5	5.5	61	_	M6×1	

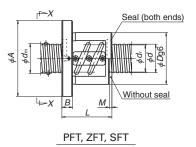

5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating ($C_{\rm s}$) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.


6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.

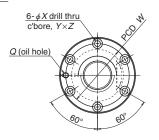

7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.

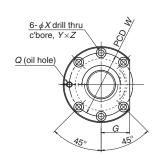
									1		
	N 4l - l N l -	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic load Dynamic	rating (N) Static	Axial rigidity
	Model No.	system				aia.		×	Dynamic	Static	l K
		,	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 2506-3	Р						1.5×2	10 700	16 000	247
	SFT 2506-2.5	Clearance						2.5×1	14 500	26 700	247
	ZFT 2506-5	Z						2.5×1	14 500	26 700	485
*	PFT 2506-5	Р		0	0.000	05.5	04.4	2.5×2	16 600	26 700	402
	SFT 2506-3	Clearance		6	3.969	25.5	21.4	1.5×2	17 000	32 000	294
	DFT 2506-3	D						1.5×2	17 000	32 000	577
	SFT 2506-5	Clearance						2.5×2	26 300	53 400	478
	ZFT 2506-10	Z						2.5×2	26 300	53 400	938
	PFT 2508-2.5	Р						2.5×1	11 700	15 900	213
	PFT 2508-3	Р						1.5×2	13 700	18 900	245
	SFT 2508-2.5	Clearance		8	4 760	25.5	20.5	2.5×1	18 500	31 800	253
	ZFT 2508-5	Z	25	Ö	4.762	25.5	20.5	2.5×1	18 500	31 800	495
	SFT 2508-3	Clearance						1.5×2	21 700	37 900	299
	DFT 2508-3	D						1.5×2	21 700	37 900	587
	PFT 2510-2.5	Р						2.5×1	11 600	15 900	211
	ZFT 2510-3	Z						1.5×1	11 900	18 900	301
	PFT 2510-3	P						1.5×2	13 600	18 900	243
	SFT 2510-2.5	Clearance						2.5×1	18 500	31 700	251
	DFT 2510-2.5	D		10	4.762	25.5	20.5	2.5×1	18 500	31 700	493
	SFT 2510-3	Clearance						1.5×2	21 600	37 800	297
	DFT 2510-3	D						1.5×2	21 600	37 800	583
	SFT 2510-3.5	Clearance						3.5×1	24 700	44 600	347
	SFT 2510-3.5 DFT 2510-3.5	D						3.5×1	24 700	44 600	681

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

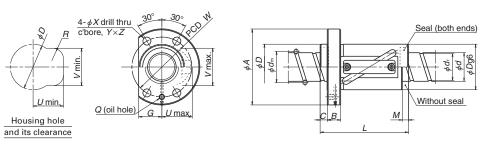

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

										Unit. min	
				Ball	nut dimens	sions					
Nut entire		Flanged	Flanged	Notched	Seal	Bolt	hole dimer	nsion	Bolt hole	Oil hole	ᇒ
length	diameter	diameter	width	flange	dimension				PCD		말
L	D	Α	В	G	М	Χ	Y	Z	W	Q	. Ē
56											Return tube type
44											be
62											₹
62	53	76	11	29	3	5.5	9.5	5.5	64	M6×1	9
56					_						
110											
62											
98 56											-
69											
56											
80	58	85	13	32	5	6.6	11	6.5	71	M6×1	
69											
133											
67											-
81											
81											
67											
127	58	85	15	32	8	6.6	11	6.5	71	M6×1	
81	1										
151											
77											
147											

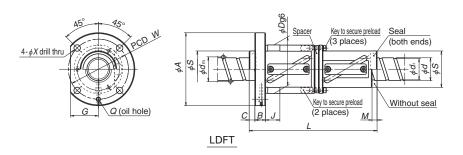

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)


Unit: mm

View X-X


Circular shape I

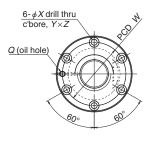
Circular shape I


								Eff. 2				
			Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial	
	Model No.	Preload	dia.	Loud	Dan ala.	circle	rioot ala.	Tullis	Dynamic	Static	rigidity	Nut entire
		system	d	l	D	dia.		X	· _		K	length
			d	ι	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)	L
	LPFT 2516-2.5	Р						2.5×1	11 400	16 500	213	84
	LPFT 2516-3	Р						1.5×2	13 400	19 500	251	100
	LSFT 2516-2.5	Clearance		16	4.762	26.25	21.3	2.5×1	18 100	33 000	253	84
	LDFT 2516-2.5	D		10	4.702	20.23	21.0	2.5×1	18 100	33 000	496	152
	LSFT 2516-3	Clearance						1.5×2	21 200	39 000	298	100
	LDFT 2516-3	D						1.5×2	21 200	39 000	584	181
*	LPFT 2520-2.5	Р						2.5×1	11 700	16 300	211	96
	LPFT 2520-2.5 LPFT 2520-3 LSFT 2520-2.5	Р	25					1.5×2	13 700	19 300	248	116
		Clearance		20	4.762	26.25	21.3	2.5×1	18 600	32 600	251	96
	LDFT 2520-2.5	D		20	4.702	20.23	21.5	2.5×1	18 600	32 600	492	177
	LSFT 2520-3	Clearance						1.5×2	21 800	38 600	296	116
	LDFT 2520-3	D						1.5×2	21 800	38 600	580	217
*	LPFT 2525-1.5	Р							7 400	9 860	124	90
	LDFT 2525-1.5	D		25	4.762	26.25	21.3	1.5×1	11 700	19 700	297	166
	LSFT 2525-1.5	Clearance							11 700	19 700	151	90
	SFT 2805-2.5	Clearance						2.5×1	11 300	24 400	265	41
	ZFT 2805-5	Z						2.5×1	11 300	24 400	519	56
	PFT 2805-5	Р	28	5	3.175	28.5	25.2	2.5×2	13 000	24 400	432	56
	SFT 2805-5	Clearance						2.5×2	20 600	48 700	514	56
*	ZFT 2805-10	Z						2.5×2	20 600	48 700	1 007	86

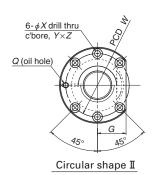
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

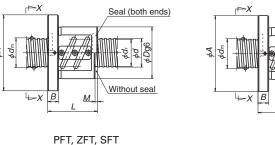
- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

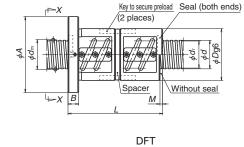
LPFT, LSFT


Unit: mm

						Ball	nut dir	nensic	ns						
Nut dia	meter	Flanged diameter	Flanged width	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole PCD	Oil hole
D	S	diarrieter A	B	flange <i>G</i>	U	V	R	М	С	g6 <i>J</i>	X	Y	Z	W	Q
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	6	8	_	6.6			57	M6×1
62	44	89	12	34	—	_	_	0	0	18	0.0	_	_	75	IVIOXI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	7	8	_	6.6			57	M6×1
62	44	89	12	34	_	_	_	/	8	18	0.0	_	_	75	IVIOXI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	32	34	12			_				57	
62	44	89	12	34	—	_	_	10	10	18	6.6	l —	l —	75	M6×1
44	_	71		23	32	34	12			_				57	
55	_	85	12	31	_	_	_	3	_	_	6.6	11	6.5	69	M6×1


- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)


NSK


View X-X

Circular shape I

Bolt hole dimension

			CL (t. II		D 11 1:	Ball circle	Б . Г	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		system	d	l	$D_{\scriptscriptstyle m w}$	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	PFT 2806-3	Р						1.5×2	8 350	14 600	265
	SFT 2806-2.5	Clearance						2.5×1	11 300	24 300	265
	ZFT 2806-5	Z						2.5×1	11 300	24 300	519
*	PFT 2806-5	Р		6	3.175	28.5	25.2	2.5×2	12 900	24 300	430
	SFT 2806-3	Clearance		U	3.175	20.5	25.2	1.5×2	13 200	29 200	315
	DFT 2806-3	D						1.5×2	13 200	29 200	617
	SFT 2806-5	Clearance						2.5×2	20 600	48 700	513
*	ZFT 2806-10	Z	28					2.5×2	20 600	48 700	1 006
	PFT 2810-2.5	Р						2.5×1	12 300	17 900	229
	ZFT 2810-3	Z						1.5×1	12 600	21 400	332
	PFT 2810-3	Р						1.5×2	14 400	21 400	275
	SFT 2810-2.5	Clearance		10	4.762	28.5	23.5	2.5×1	19 600	35 800	277
	DFT 2810-2.5	D						2.5×1	19 600	35 800	543
	SFT 2810-3	Clearance						1.5×2	22 900	42 700	328
	DFT 2810-3	D						1.5×2	22 900	42 700	643
	SFT 3204-2.5	Clearance						2.5×1	6 850	17 500	247
	ZFT 3204-5	Z						2.5×1	6 850	17 500	485
	PFT 3204-5	Р		4	2.381	32.3	29.8	2.5×2	7 840	17 500	403
	SFT 3204-5	Clearance						2.5×2	12 400	35 000	479
	ZFT 3204-10	Z P						2.5×2	12 400	35 000	939
	PFT 3205-3							1.5×2	8 850	16 800	296
	SFT 3205-2.5	Clearance						2.5×1	12 000	28 000	296
	ZFT 3205-5	Z	32					2.5×1	12 000	28 000	580
*	PFT 3205-5	Р						2.5×2	13 700	28 000	481
	SFT 3205-3 DFT 3205-3 PFT 3205-7.5 SFT 3205-5 \$ ZFT 3205-10	Clearance		_				1.5×2	14 000	33 600	351
		D		5	3.175	32.5	29.2	1.5×2	14 000	33 600	689
		Р						2.5×3	19 500	42 000	709
		Clearance						2.5×2	21 800	56 000	572
*		Z						2.5×2	21 800	56 000	1 123
	SFT 3205-7.5	Clearance						2.5×3	30 900	84 000	843
	DFT 3205-7.5	D						2.5×3	30 900	84 000	1 652

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

45											E
63											E
63	55	85	12	31	3	6.6	11	6.5	69	M6×1	Ę
57	55	00	12	31	3	0.0	''	0.5	09	IVIOXI	è
111											Ē
63											٦
99											
68											
82	60										
82											ī
68		94	15	36	7	9	14	8.5	76	M6×1	
128											
82											
152											
37											
49 49	54										
		81	12	31	3	6.6	11	6.5	67	M6×1	
49											
73											
53											

Ball nut dimensions

Seal

dimension

Μ

4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

3

6.6

11

6.5

71

5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.

32

- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

Oil hole

Q

Bolt hole

PCD

W

M6×1

Nut entire

length

57

58

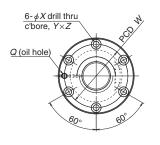
85

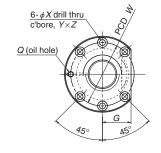
12

Nut

diameter

Flanged

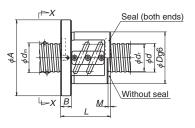

diameter

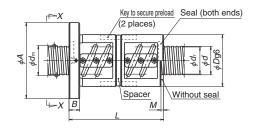

Flanged

width

Notched

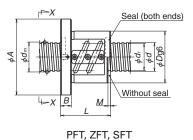
flange

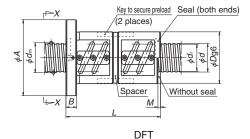

Circular shape I


Circular shape I

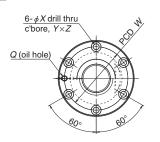
			01 (: 1:		D 11 11	Ball circle dia.		Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	system						×	'		K
			d	l	$D_{\rm w}$	d _m	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 3206-3	Р						1.5×2	11 800	20 600	300
	SFT 3206-2.5	Clearance						2.5×1	16 000	34 700	302
	ZFT 3206-5	Z						2.5×1	16 000	34 700	592
	PFT 3206-5	Р		6	3.969	32.5	28.4	2.5×2	18 300	34 700	491
	SFT 3206-3	Clearance		0	3.303	32.5	20.4	1.5×2	18 800	41 200	357
	DFT 3206-3	D						1.5×2	18 800	41 200	700
	SFT 3206-5	Clearance						2.5×2	29 100	69 300	585
*		Z						2.5×2	29 100	69 300	1 146
	PFT 3208-3	Р						1.5×2	15 100	24 700	308
	SFT 3208-2.5	Clearance						2.5×1	20 600	40 900	307
	ZFT 3208-5	Z P						2.5×1	20 600	40 900	602
	PFT 3208-5				4 700	20.5	07.5	2.5×2	23 500	40 900	493
	SFT 3208-3 ZFT 3208-6 SFT 3208-5 DFT 3208-5	Clearance		8	4.762	32.5	27.5	1.5×2	24 000	49 400	366
		Z						1.5×2 2.5×2	24 000 37 300	49 400 81 800	718 594
		D						2.5×2 2.5×2	37 300	81 800	1 164
	ZFT 3208-10	Z						2.5×2	37 300	81 800	1 164
	PFT 3210-2.5	P						2.5×1	18 900	27 600	266
	ZFT 3210-3	Z	32					1.5×1	19 300	32 300	381
	PFT 3210-3	P	02					1.5×2	22 100	32 300	316
	SFT 3210-2.5	Clearance						2.5×1	30 000	55 100	322
*	ZFT 3210-5	Z						2.5×1	30 000	55 100	631
	PFT 3210-5	Р						2.5×2	34 300	55 100	515
	SFT 3210-3	Clearance		10	6.35	33.0	26.4	1.5×2	35 100	64 500	376
	DFT 3210-3	D						1.5×2	35 100	64 500	738
	SFT 3210-3.5	Clearance						3.5×1	40 100	76 600	441
	DFT 3210-3.5	D						3.5×1	40 100	76 600	865
	SFT 3210-5	Clearance						2.5×2	54 500	110 000	623
*		D						2.5×2	54 500	110 000	1 222
	ZFT 3210-10	Z						2.5×2	54 500	110 000	1 222
	PFT 3212-2.5	P						2.5×1	18 800	27 500	265
	ZFT 3212-3	Z						1.5×1	19 300	32 200	380
	PFT 3212-3 SFT 3212-2.5	Р		4.0		000		1.5×2	22 000	32 200	315
		Clearance		12	6.35	33.0	26.4	2.5×1	29 900	55 000	320
	DFT 3212-2.5	D						2.5×1	29 900	55 000	628
	SFT 3212-3	Clearance						1.5×2	35 000	64 400	375
	DFT 3212-3	D						1.5×2	35 000	64 400	735

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


PFT, ZFT, SFT

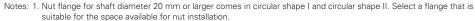

DFT

U	n	ιt	:	n	٦I	m	١

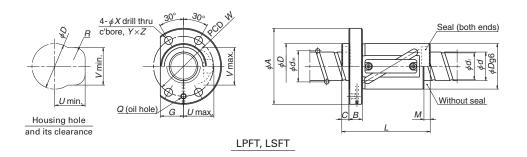

										Unit: mm	
				Ball	nut dimens	sions					
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange G	Seal dimension M		hole dimer	nsion Z	Bolt hole PCD W	Oil hole	
57 45 63 63 57 111 63 99	62	89	12	34	3	6.6	11	6.5	75	M6×1	Return tube type
71 58 82 82 71 111 82 154	66	100	15	38	5	9	14	8.5	82	M6×1	e type
70 87 87 70 100 100 87 167 80 150 100	74	108	15	41	7	9	14	8.5	90	M6×1	
81 97 97 81 153 97 181	74	108	18	41	9	9	14	8.5	90	M6×1	

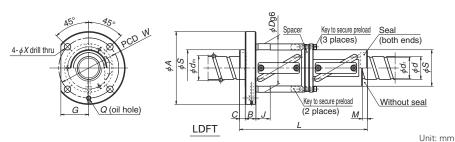
- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X

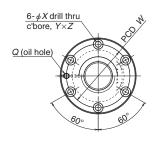


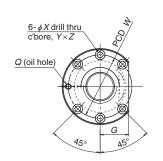
6- ϕX drill thru c'bore, $Y \times Z$


Circular shape I


Circular shape I

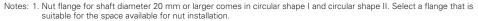
			Shaft	1 1	D-11-1:-	Ball	D + - :-	Effective turns of balls	Basic load	rating (N)	Axial	
	Model No.	Preload	dia.	Lead	Ball dia.	CITCIE	Root dia.	Turns	Dynamic	Static	rigidity	Nut entire
	Model No.	system	,			dia.	,	×	l '		K	length
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)	L
	LPFT 3220-2.5	Р						2.5×1	13 000	20 900	255	99
	LPFT 3220-3	Р						1.5×2	15 300	25 100	301	119
	LSFT 3220-2.5	Clearance		20	4.762	33.25	28.3	2.5×1	20 700	41 900	307	99
	LDFT 3220-2.5 LSFT 3220-3 LDFT 3220-3 LPFT 3225-2.5 LPFT 3225-3	D						2.5×1	20 700	41 900	603	179
		Clearance						1.5×2	24 200	50 200	366	119
		D						1.5×2	24 200	50 200	717	219
*		Р						2.5×1	12 900	21 100	256	117
		Р	32					1.5×2	15 100	24 900	295	142
	LSFT 3225-2.5 LDFT 3225-2.5	Clearance		25	4.762	33.25	28.3	2.5×1	20 400	42 200	304	117
		D						2.5×1	20 400	42 200	597	218
	LSFT 3225-3	Clearance						1.5×2	23 900	49 700	358	142
	LDFT 3225-3	D						1.5×2	23 900	49 700	702	268
*	LPFT 3232-1.5	Р							8 360	12 600	155	109
	LSFT 3232-1.5	Clearance		32	4.762	33.25	28.3	1.5×1	13 300	25 200	184	109
	LDFT 3232-1.5	D							13 300	25 200	361	205
	ZFT 3605-5	Z						2.5×1	12 600	31 600	637	59
	PFT 3605-5	Р						2.5×2	14 400	31 600	529	59
	PFT 3605-7.5	Р						2.5×3	20 400	47 500	779	74
	SFT 3605-5 ZFT 3605-10	Clearance	36	5	3.175	36.5	33.2	2.5×2	22 900	63 300	630	59
		Z						2.5×2	22 900	63 300	1 235	89
		Clearance						2.5×3	32 400	94 900	926	74
		D						2.5×3	32 400	94 900	1 817	139

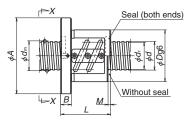

- 2. If there is no seal for PFT, ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

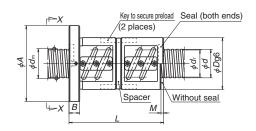


-						Ball	nut dir	nensic	ns						
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	g type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
		diameter		flange			_			g6	,,	١.,	_	PCD	
D	S	Α	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	7	8	_	9	_	l _	67	M6×1
68	51	102	13	39	_	_	_	,	O	20]			84	IVIOAI
51	_	85		26	34	42	12			_				67	
68	51	102		39	_	_	_			20				84	
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	10	10	_	9			67	M6×1
68	51	102	15	39	_	_	_	10	10	20	9	_	_	84	IVIOXI
51	_	85		26	34	42	12			_				67	
68	51	102		39			_			20				84	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	13	12	_	9	—	l —	67	M6×1
68	51	102		39	_	_	_			20				84	
65	_	100	15	38	_	_	_	3	_	_	9	14	8.5	82	M6×1

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 8. Preload system: P. Oversize ball preload; Z. Offset preload; D. Double nut preload (See page B5.)



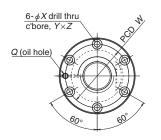

Circular shape I

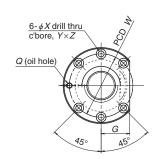

Circular shape I

			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Silait ula.	Leau	Dali ula.	dia.	1100t dia.	Turns	Dynamic	Static	rigidity <i>K</i>
		system	d	l	D _w	d _m	d _r	× Circuits	C_{a}	C_{0a}	Λ (N/μm)
	ZFT 3606-5	Z						2.5×1	17 200	39 200	656
	PFT 3606-5	Р						2.5×2	19 700	39 200	545
	PFT 3606-7.5	Р						2.5×3	27 900	58 800	802
	SFT 3606-5	Clearance		6	3.969	36.5	32.4	2.5×2	31 300	78 400	648
	ZFT 3606-10	Z						2.5×2	31 300	78 400	1 271
	SFT 3606-7.5	Clearance						2.5×3	44 400	118 000	954
	DFT 3606-7.5	D						2.5×3	44 400	118 000	1 872
	PFT 3610-2.5	Р						2.5×1	20 100	30 500	290
	ZFT 3610-3	Z						1.5×1	20 600	36 600	422
	PFT 3610-3	Р	36					1.5×2	23 600	36 600	342
	SFT 3610-2.5	Clearance	50					2.5×1	32 000	61 100	350
*	ZFT 3610-5	Z						2.5×1	32 000	61 100	687
	PFT 3610-5	Р		10	6.35	37.0	30.4	2.5×2	36 600	61 100	562
	SFT 3610-3	Clearance		10	0.00	07.0	00.4	1.5×2	37 400	73 300	417
	DFT 3610-3	D P Clearance						1.5×2	37 400	73 300	817
	PFT 3610-7.5							2.5×3	51 800	91 600	826
	SFT 3610-5							2.5×2	58 000	122 000	678
	DFT 3610-5	D						2.5×2	58 000	122 000	1 329
	ZFT 3610-10	Z						2.5×2	58 000	122 000	1 329
	SFT 3610-7.5	Clearance						2.5×3	82 200	183 000	998
	PFT 4005-3	P						1.5×2	9 700	21 200	354
	SFT 4005-2.5	Clearance						2.5×1	13 200	35 300	354
	ZFT 4005-5	Z P						2.5×1	13 200	35 300	695
	PFT 4005-5 SFT 4005-3							2.5×2 1.5×2	15 100 15 400	35 300 42 300	577 421
	DFT 4005-3	Clearance		5	3.175	40.5	37.2	1.5×2 1.5×2	15 400	42 300	826
	PFT 4005-7.5	P		5	3.175	40.5	37.2	2.5×3	21 300	52 900	848
	SFT 4005-7.5	Clearance						2.5×2	23 900	70 500	685
*		Z						2.5×2 2.5×2	23 900	70 500	1 344
-1-	SFT 4005-7.5	Clearance	40					2.5×3	33 900	106 000	1 009
	DFT 4005-7.5		40					2.5×3	33 900	106 000	1 979
	ZFT 4006-5	D Z						2.5×1	18 000	43 800	715
	PFT 4006-5							2.5×2	20 500	43 800	592
	SFT 4006-3	P Clearance D P Clearance						1.5×2	21 000	52 500	433
	DFT 4006-3							1.5×2	21 000	52 500	850
	PFT 4006-7.5			6	3.969	40.5	36.4	2.5×3	29 100	65 600	872
	SFT 4006-5				0.500	.5.0	55.1	2.5×2	32 600	87 500	705
	ZFT 4006-10							2.5×2	32 600	87 500	1 383
	SFT 4006-7.5	Clearance						2.5×3	46 200	131 000	1 038
	DFT 4006-7.5	D						2.5×3	46 200	131 000	2 036

- If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
 The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

PFT, ZFT, SFT

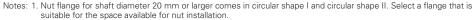

DFT

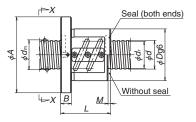

Unit: mm

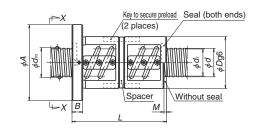
	_						_			Unit: mm	1
				Ball	nut dimens	sions					1
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notched flange	Seal dimension		hole dimer	nsion	Bolt hole PCD	Oil hole	
L	D	A	B	G	M	X	Y	Z	W	Q	
66 66 84 66 102 84 162	65	100	15	38	3	9	14	8.5	82	M6×1	
73 90 90 73 103 103 90 170 133 103 193 163 133	75	120	18	45	7	11	17.5	11	98	M6×1	Return tube type
56 44 59 59 56 106 74 59 89 74	67	101	15	39	3	9	14	8.5	83	Rc1/8	_
66 66 60 114 84 66 102 84 162	70	104	15	40	3	9	14	8.5	86	Rc1/8	

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.

6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
7. Preload system: P. Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)
Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com




Circular shape I


Circular shape I

				Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Mo	odel No.	Preload system	Silait ula.	Leau	Dali ula.	dia.	1100t dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
			,	d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d,	Circuits	$C_{\scriptscriptstyle 0}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	PFT 4		Р						1.5×2	16 700	31 200	370
		1008-2.5	Clearance						2.5×1	22 700	51 500	368
		1008-5	Z						2.5×1	22 700	51 500	721
		1008-5	Р		8	4.762	40.5	35.5	2.5×2	25 900	51 500	598
		1008-3	Clearance		O	4.702	40.5	35.5	1.5×2	26 500	62 500	440
		1008-3	D						1.5×2	26 500	62 500	863
		1008-5	Clearance						2.5×2	41 100	103 000	711
		1008-10	Z						2.5×2	41 100	103 000	1 394
		1010-2.5	Р						2.5×1	21 300	34 200	322
		1010-3	Р						1.5×2	24 900	41 000	383
		1010-2.5	Clearance						2.5×1	33 700	68 300	383
		1010-5	Z						2.5×1	33 700	68 300	751
		1010-5	-3 Clearance -6 Z						2.5×2	38 600	68 300	623
		1010-3							1.5×2	39 500	82 000	456
		1010-6			10	6.35	41	34.4	1.5×2	39 500	82 000	894
		1010-7	Z						3.5×1	45 100	97 100	1 045
		1010-3.5 1010-7	Clearance						3.5×1 3.5×2	45 100 51 500	97 100 97 100	533 859
		1010-7	Clearance	40					2.5×2	61 200	137 000	741
4	DFT 4		D						2.5×2	61 200	137 000	1 454
4		1010-5	Z						2.5×2	61 200	137 000	1 454
		1010-10	Clearance						3.5×2	81 800	194 000	1 032
		1012-2.5	P	-					2.5×1	24 900	38 600	323
		1012-2.5	Clearance						2.5×1	39 500	77 200	390
		1012-5	Z						2.5×1	39 500	77 200	766
		1012-5	P						2.5×2	45 200	77 200	626
		1012-7.5	P		12	7.144	41.5	34.1	2.5×3	64 000	116 000	921
		1012-5	Clearance						2.5×2	71 700	154 000	756
*	DFT 4	1012-5	D						2.5×2	71 700	154 000	1 482
	ZFT 4	1012-10	Z						2.5×2	71 700	154 000	1 482
	SFT 4	4012-10						2.5×3	102 000	232 000	1 114	
	ZFT 4	1016-3	Z						1.5×1	25 400	46 200	468
	SFT 4	4016-2.5 Clearance D						2.5×1	39 300	77 000	388	
	DFT 4			16	7.144	41.5	34.1	2.5×1	39 300	77 000	760	
		1016-3	Clearance						1.5×2	46 000	92 400	461
	DFT 4	1016-3	D						1.5×2	46 000	92 400	905

^{2.} If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

PFT, ZFT, SFT

DFT

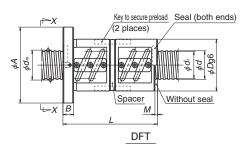
Unit: mm

Return tube type

										Unit. mm
				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal		hole dimer	nsion	Bolt hole	0:111
length	diameter	diameter	width	flange	dimension				PCD	Oil hole
Ĺ	D	Α	В	G	М	Χ	Y	Ζ	W	Q
71										
58										
82										
82	7,	100	1 -	4.1	5	0	1.4	0.5	00	D - 1 /O
71	74	108	15	41	5	9	14	8.5	90	Rc1/8
135										
82										
130										
73										
90										
73										
103										
103										
90										
140	82	82 124	18	47	7	11	17.5	11	102	Rc1/8
123 83										
123										
103										
193										
163										
123										
81										
81										
117										
117										
153	86	128	18	48	9	11	17.5	11	106	Rc1/8
117										
225										
189										
153										
118										
102										
182	86	128	22	48	14	11	17.5	11	106	Rc1/8
118										
214										
4.7	he evial rigi	dita Via the	table above	io o thooroti	ool voluo obt	ained from	the electic d	oformation l		0111 010 0110

^{4.} The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

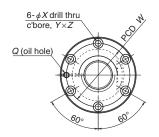

^{5.} For PFT, the basic load ratings differ from the other models as the spacer balls are installed.

^{6.} The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end. 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

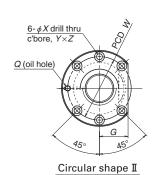
Seal (both ends)

Without seal

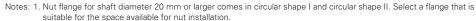
M


View X-X

SFT 4512-5


DFT 4512-5

B459


Clearance

Circular shape I

		Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial	
Model No.	Preload	dia.	Leau	Dall Ula.	circle dia.	1 toot dia.	Tullis	Dynamic	Static	rigidity	Nut entire
	system	d	l	D_{w}	$d_{\rm m}$	d _r	× Circuits	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	<i>Κ</i> (N/μm)	length L
LPFT 4025-2.5	Р						2.5×1	21 500	35 100	324	123
LPFT 4025-3	Р						1.5×2	25 100	41 800	375	148
LSFT 4025-2.5	Clearance		25	6.35	41.75	35.1	2.5×1	34 100	70 100	385	123
LDFT 4025-2.5	D		25	0.35	41.75	35.1	2.5×1	34 100	70 100	755	223
LSFT 4025-3	Clearance						1.5×2	39 900	83 600	456	148
LDFT 4025-3	D	40					1.5×2	39 900	83 600	894	273
LPFT 4032-2.5	Р	40						21 200	35 300	316	146
LSFT 4032-2.5	Clearance		32	6.35	41.75	35.1	2.5×1	33 600	70 700	381	146
LDFT 4032-2.5	D							33 600	70 700	747	274
LPFT 4040-1.5	Р							13 400	21 000	191	133
LSFT 4040-1.5	Clearance		40	6.35	41.75	35.1	1.5×1	21 200	42 000	227	133
LDFT 4040-1.5	D							21 200	42 000	446	253
ZFT 4510-5	Z						2.5×1	36 300	78 500	841	103
PFT 4510-7	Р						3.5×2	55 400	109 000	947	123
PFT 4510-7.5	P						2.5×3	58 800	118 000	1 015	133
SFT 4510-5	Clearance		10	6.35	46.0	39.4	2.5×2	65 800	157 000	830	103
DFT 4510-5	D		10	0.55	40.0	39.4	2.5×2	65 800	157 000	1 627	193
SFT 4510-7	Clearance	45					3.5×2		218 000	1 136	123
SFT 4510-7.5	Clearance						2.5×3	93 300	235 000	1 221	133
DFT 4510-7.5	D						2.5×3	93 300	235 000	2 395	253
SFT 4512-2.5	Clearance						2.5×1	41 600	88 200	432	83
ZFT 4512-5	Z		12	7 1 1 1	16.5	20.1	2.5×1	41 600	88 200	848	119

46.5

39.1

2.5×2

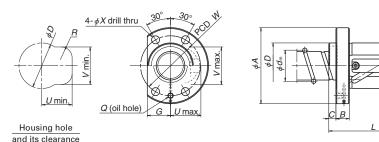
2.5×2

75 600 176 000

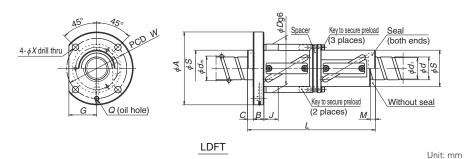
75 600 176 000

838

119


227

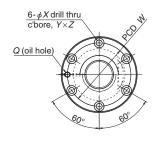
2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".

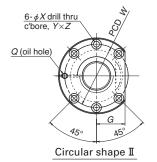

7.144

12

- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

LPFT, LSFT

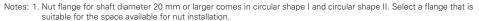



								nensic							
Nut dia	meter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal dir	nension		Bolt he	ole dim	ension	Bolt hole	Oil hole
0		diameter	width <i>B</i>	flange	١,,	.,	_		_	g6	\ _\	\ _\	_	PCD	
D	S	Α	В	G	U	V	R	М	С	J	X	Υ	Z	W	Q
64	_	106		33	42	52	15			_				84	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	10	10	_	11			84	Rc1/8
84	64	126	10	48	_	_	_	10	10	22				104	1101/0
64	_	106		33	42	52	15			_				84	
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	13	12	_	11	l —	l —	84	Rc1/8
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	16	14	_	11	l —	_	84	Rc1/8
84	64	126		48	_	_	_			22				104	
88	_	132	18	50			_	7		ı	11	17.5	11	110	Rc1/8
90	_	132	18	50	_	_	_	8	_	_	11	17.5	11	110	Rc1/8

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P. Oversize ball preload; Z. Offset preload; D. Double nut preload (See page B5.)

NSK

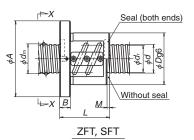
View X-X

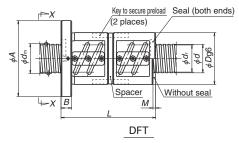


Effective turns of balls Basic load rating (N) Axial

Circular shape I

			Chaft dia	اممما	Dall dia	IRall circle	Doot die	FLIGHTING FILLIP OF DRIP	Dasic load	rating (IV)	Axiai
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	system						×	,		K
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	SFT 5005-3	Clearance						1.5×2	16 800	52 500	499
	ZFT 5005-6	Z		_	0.175		47.0	1.5×2	16 800	52 500	978
	SFT 5005-4.5	Clearance		5	3.175	50.5	47.2	1.5×3	23 900	78 800	735
	ZFT 5005-9	Z						1.5×3	23 900	78 800	1 442
	SFT 5006-3	Clearance						1.5×2	23 000	66 100	519
	DFT 5006-3	D						1.5×2	23 000	66 100	1 017
	PFT 5006-7.5	Р						2.5×3	31 900	82 700	1 045
	SFT 5006-5	Clearance		6	3.969	50.5	46.4	2.5×2	35 700	110 000	844
	ZFT 5006-10	Z						2.5×2	35 700	110 000	1 656
	SFT 5006-7.5	Clearance						2.5×3	50 700	165 000	1 243
	DFT 5006-7.5	D						2.5×3	50 700	165 000	2 438
	SFT 5008-3	Clearance						1.5×2	29 500	78 900	530
	DFT 5008-3	D						1.5×2	29 500	78 900	1 039
	SFT 5008-5	Clearance		8	4.762	50.5	45.5	2.5×2	45 700	131 000	859
	ZFT 5008-10	Z				00.0		2.5×2	45 700	131 000	1 685
	SFT 5008-7.5	Clearance						2.5×3	64 800	196 000	1 265
	DFT 5008-7.5	D						2.5×3	64 800	196 000	2 481
	SFT 5010-2.5	Clearance						2.5×1	37 500	87 200	464
	ZFT 5010-5	Z						2.5×1	37 500	87 200	909 544
	SFT 5010-3 DFT 5010-3	Clearance						1.5×2	43 900 43 900	102 000 102 000	1 067
	ZFT 5010-3	D Z	50					1.5×2 3.5×1	50 100	122 000	1 251
	PFT 5010-7	P	50	10	6.35	51.0	44.4	2.5×3	60 800	131 000	1 099
	SFT 5010-7.5	Clearance						2.5×2	68 100	174 000	898
*		Z						2.5×2	68 100	174 000	1 761
•-	SFT 5010-7.5	Clearance						2.5×3	96 500	262 000	1 321
	DFT 5010-7.5	D						2.5×3	96 500	262 000	2 592
	SFT 5012-2.5	Clearance						2.5×1	50 400	109 000	478
	ZFT 5012-5	Z						2.5×1	50 400	109 000	937
	SFT 5012-5	Clearance		12	7.938	51.5	43.2	2.5×2	91 500	218 000	926
	DFT 5012-5	D		_	/			2.5×2		218 000	1 815
	ZFT 5012-10	Z						2.5×2	91 500	218 000	1 815
	SFT 5016-2.5	Clearance	1					2.5×1	50 300	109 000	476
	ZFT 5016-5	Z						2.5×1	50 300	109 000	933
	PFT 5016-7.5	Р		16	7.938	51.5	43.2	2.5×3	81 400	163 000	1 125
	SFT 5016-5	Clearance		10	7.938	01.0	43.2	2.5×2	91 200	218 000	921
	DFT 5016-5	D						2.5×2	91 200	218 000	1 807
	SFT 5016-7.5	Clearance						2.5×3	129 000	326 000	1 355
	ZFT 5020-3	Z						1.5×1	32 300	63 800	563
	SFT 5020-2.5	Clearance						2.5×1	50 100	108 000	473
	DFT 5020-2.5	D		20	7.938	51.5	43.2	2.5×1	50 100	108 000	928
	SFT 5020-3	Clearance						1.5×2	58 600	128 000	556


Ball circle

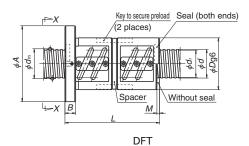


1.5×2

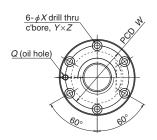
58 600 | 128 000 | 1 090

- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

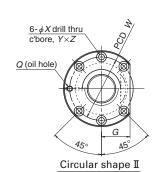
Unit: mm


				Ball	nut dimens	ions				
Nut entire		Flanged	Flanged width	Notched	Seal dimension	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole
length L	diameter D	diameter A	Wiath B	flange <i>G</i>	almension M	X	Y	Z	W PCD	Q
58		7.		Ü		7.	,			
83	80	114	15	43	3	9	14	8.5	96	Rc1/8
68 103										,-
62										
116 86										
68	84	118	15	45	3	9	14	8.5	100	Rc1/8
104						Ü		0.0		110170
86 164										
74										
138										
85 133	87	129	18	49	5	11	17.5	11	107	Rc1/8
109										
205 73										
103										
90										
170 123										
133	93	135	18	51	7	11	17.5	11	113	Rc1/8
103										
163 133										
253										
87 123										
123	100	146	22	55	8	14	20	13	122	Rc1/8
231 195										
104										
152										
200 152	100	146	22	55	14	14	20	13	122	Rc1/8
280										
200										
147 127										
227	100	146	28	55	17	14	20	13	122	Rc1/8
147 267										
207										

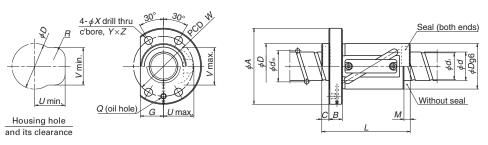
- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above,
- or when the deformation of the ball nut body must be considered.

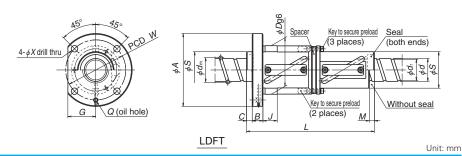

 5. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

DFT 5020-3


ZFT, SFT

View X-X

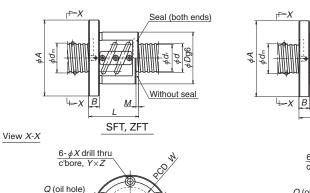

Circular shape I

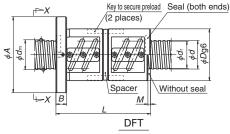

	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns		rating (N)	Axial rigidity	Nut entire
Model No.	system	uia.			dia.		×	Dynamic	Static	K	length
	System	d	l	$D_{\rm w}$	d _m	d _r	Circuits	C _a	C_{0a}	(N/µm)	L
LPFT 5025-2.5	Р						2.5×1	32 300	55 100	403	129
LPFT 5025-3	P						1.5×2	37 800	65 700	468	154
LSFT 5025-2.5	Clearance		٥٦	7 000	-0.05		2.5×1	51 300	110 000	480	129
LDFT 5025-2.5	D		25	7.938	52.25	44	2.5×1		110 000	941	229
LSFT 5025-3	Clearance						1.5×2	60 100	131 000	569	154
LDFT 5025-3	D						1.5×2	60 100	131 000	1 116	279
LPFT 5032-2.5	Р						2.5×1	32 000	54 700	397	151
LPFT 5032-3	Р						1.5×2	37 500	65 300	461	183
LSFT 5032-2.5	Clearance	ΕO	22	7 000	E0 0E	1.1	2.5×1	50 900	109 000	473	151
LDFT 5032-2.5	D	50	32	7.938	52.25	44	2.5×1	50 900	109 000	928	279
LSFT 5032-3	Clearance						1.5×2	59 500	131 000	560	183
LDFT 5032-3	D						1.5×2	59 500	131 000	1 099	343
LPFT 5040-2.5	Р							31 600	55 200	389	178
LSFT 5040-2.5	Clearance		40	7.938	52.25	44	2.5×1	50 200	110 000	469	178
LDFT 5040-2.5	D								110 000	920	338
LPFT 5050-1.5	Р							20 000	32 800	236	161
LSFT 5050-1.5	Clearance		50	7.938	52.25	44	1.5×1	31 700	65 700	280	161
LDFT 5050-1.5	D Z							31 700	65 700	549	312
ZFT 5510-5	Z						2.5×1	38 700	96 000	977	103
SFT 5510-5	Clearance						2.5×2		192 000	964	103
ZFT 5510-10	Z	55	10	6.35	56.0	49.4	2.5×2		192 000	1 891	163
DFT 5510-5	D	55	10	0.55	50.0	43.4	2.5×2		192 000	1 891	193
SFT 5510-7.5	Clearance						2.5×3	99 500	288 000	1 419	133
DFT 5510-7.5	D						2.5×3	99 500	288 000	2 783	253

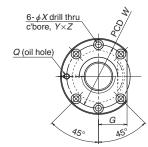
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

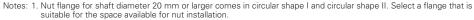
- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

LPFT, LSFT



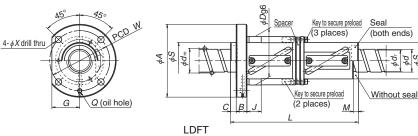

						Ball	nut dir	nensic	ns						
Nut dia	ameter				Tube p	rojectir	g type	Seal din	nension		Bolt h	ole dim	ension	Bolt hole	Oil hole
		diameter		flange						g6				PCD	
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	11	11	_	14			102	Rc1/8
106	80	152		56	_	_	_	' '	11	25	14	_	_	128	1101/0
80	—	126		41	52	64	19			_				102	
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	14	12	_	14			102	Rc1/8
106	80	152		56	_	_	_	14	12	25	14	_	_	128	1101/0
80	—	126		41	52	64	19			_				102	
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	17	14	_	14	—	—	102	Rc1/8
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	21	16	_	14	—	—	102	Rc1/8
106	80	152		56						25				128	
102	_	144	18	54	_	_	_	7	_	_	11	17.5	11	122	Rc1/8


- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)



Circular shape I

Circular shape I

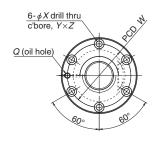

		Shaft		D	Ball		Effective turns of balls	Basic load	rating (N)	Axial	
Madal Na	Preload	dia.	Lead	Ball dia.	circle	Root dia.	Turns	Dynamic		rigidity	Nut entire
Model No.	system	G.G.			dia.		×	l '		K	length
	'	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	C _a	C_{0a}	(N/µm)	Ľ
SFT 6310-2.5	Clearance						2.5×1	41 100	111 000	557	77
ZFT 6310-5	Z						2.5×1	41 100	111 000	1 091	107
PFT 6310-7.5	P						2.5×3	66 600	166 000	1 322	137
SFT 6310-5	Clearance		10	6.35	64.0	57.4	2.5×2		221 000	1 078	107
ZFT 6310-10	Z						2.5×2		221 000	2 113	167
SFT 6310-7.5	Clearance						2.5×3	106 000		1 588	137
DFT 6310-7.5	D						2.5×3		332 000	3 113	257
ZFT 6312-5	Z						2.5×1		136 000	1 119	123
SFT 6312-2.5	Clearance		12	7.938	64.5	56.2	2.5×1		136 000	571	87
SFT 6312-5	Clearance		12	7.000	04.0	30.2	2.5×2	102 000	273 000	1 107	123
DFT 6312-5	D						2.5×2	102 000		2 171	231
SFT 6316-2.5	Clearance						2.5×1		227 000	746	110
DFT 6316-2.5	D		4.0		05.0		2.5×1		227 000	1 464	206
PFT 6316-5	Р		16	9.525	65.0	55.2	2.5×2	107 000		1 200	158
SFT 6316-5	Clearance						2.5×2		454 000	1 446	158
DFT 6316-5	D	00					2.5×2		454 000	2 835	302
SFT 6320-2.5	Clearance	63					2.5×1		227 000	744	127
DFT 6320-2.5	D		0.0	0.505	05.0		2.5×1		227 000	1 459	227
PFT 6320-5	Р		20	9.525	65.0	55.2	2.5×2	107 000		1 196	187
SFT 6320-5	Clearance						2.5×2	170 000		1 442	187
DFT 6320-5	D						2.5×2		453 000	2 827	347
LPFT 6340-2.5 LPFT 6340-3	P P						2.5×1	35 300 41 300	69 200 83 100	472 557	178 218
LSFT 6340-2.5							1.5×2 2.5×1		138 000	567	178
LDFT 6340-2.5	Clearance		40	7.938	65.25	57	2.5×1 2.5×1		138 000	1 112	339
LSFT 6340-2.5	Clearance						1.5×2		166 000	674	218
LDFT 6340-3	D						1.5×2		166 000	1 323	419
LPFT 6350-1.5	P						1.5x2 1.5x1	22 400	41 100	282	161
LPFT 6350-1.5	P						2.5×1	34 800	69 600	471	211
LSFT 6350-2.5	Clearance						1.5×1	35 600	82 200	341	161
LDFT 6350-1.5	D		50	7.938	65.25	57	1.5×1	35 600	82 200	669	311
LSFT 6350-2.5	Clearance						2.5×1		139 000	561	211
LDFT 6350-2.5	D						2.5×1		139 000	1 099	411

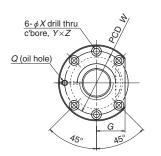
- 2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension

 $4 - \phi X$ drill thru Seal (both ends) _*U* min. Without seal Housing hole and its clearance

LPFT, LSFT

Unit: mm

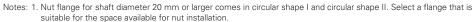

															Offic. Iffili
						Ball	nut dir	mensic	ns						
Nut dia	ameter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal dir	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
_	_	plameter	wiatn	nange						g6 J				PCD	
D	S	Α	В	G	U	V	R	М	С	J	X	Y	Z	W	Q
108	_	154	22	58	_	_	_	7	_	_	14	20	13	130	Rc1/8
115	_	161	22	61				8			14	20	13	137	Rc1/8
122	_	180	28	69	_	_	_	_	_	_	18	26	17.5	150	Rc1/8
122	_	180	28	69	_	_	_	17	_	_	18	26	17.5	150	Rc1/8
97 97 97 122 97 122	97 97	144 144 144 168 144 168	22	49 49 49 62 49 62	58 58 58 — 58	77 77 77 — 77	19 19 19 — 19	15	14		14	_	_	120 120 120 144 120 144	Rc1/8
97 97 97 122 97 122	97 97	144 144 144 168 144 168	22	49 49 49 62 49 62	58 58 58 — 58 —	77 77 77 — 77	19 19 19 — 19	19	16	29 29	14	_	_	120 120 120 120 144 120 144	Rc1/8

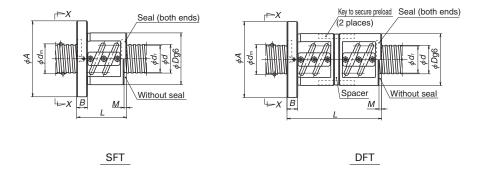

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

NSK

Unit: mm

View X-X




Circular shape I

Circular shape I

		01 (: 1:			Ball circle	D	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	system			_			×	· '		K
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
SFT 8010-5	Clearance						2.5×2	83 200	282 000	1 309
DFT 8010-5	D		10	6.35	81.0	74.4	2.5×2	83 200	282 000	2 567
SFT 8010-7.5	Clearance		10	0.33	01.0	/4.4	2.5×3	118 000	423 000	1 927
DFT 8010-7.5	D						2.5×3	118 000	423 000	3 779
SFT 8012-5	Clearance						2.5×2	113 000	350 000	1 345
DFT 8012-5	D		12	7.938	81.5	73.2	2.5×2	113 000	350 000	2 637
SFT 8012-7.5	Clearance		12	7.930	01.5	73.2	2.5×3	161 000	525 000	1 983
DFT 8012-7.5	D	80					2.5×3	161 000	525 000	3 889
SFT 8016-5	Clearance	00					2.5×2	192 000	581 000	1 764
DFT 8016-5	D		16	9.525	82.0	72.2	2.5×2	192 000	581 000	3 459
SFT 8016-7.5	Clearance		10	0.020	02.0	/ 2.2	2.5×3	271 000	872 000	2 593
DFT 8016-7.5	D						2.5×3	271 000	872 000	5 085
SFT 8020-5	Clearance						2.5×2	191 000	581 000	1 758
DFT 8020-5	D		20	9.525	82.0	72.2	2.5×2	191 000	581 000	3 447
SFT 8020-7.5	Clearance			0.020	02.0	,	2.5×3	271 000	871 000	2 588
DFT 8020-7.5	D						2.5×3	271 000	871 000	5 075
SFT 10012-5	Clearance						2.5×2	124 000	441 000	1 611
DFT 10012-5	D		12	7.938	101.5	93.2	2.5×2	124 000	441 000	3 159
SFT 10012-7.5	Clearance						2.5×3	176 000	661 000	2 372
DFT 10012-7.5	D						2.5×3	176 000	661 000	4 652
SFT 10016-5	Clearance						2.5×2	208 000	736 000	2 109
DFT 10016-5	D	100	16	9.525	102	92.2	2.5×2	208 000	736 000	4 136 3 105
SFT 10016-7.5	Clearance						2.5×3		1 100 000	6 089
DFT 10016-7.5 SFT 10020-5	Classanas	- I					2.5×3 2.5×2	295 000 208 000	1 100 000 735 000	2 106
DFT 10020-5	Clearance						2.5×2 2.5×2	208 000	735 000	4 131
SFT 10020-7.5	Clearance		20	9.525	102	92.2	2.5×3	294 000	1 100 000	3 098
DFT 10020-7.5	D						2.5×3		1 100 000	6 075
SFT 12516-5	Clearance						2.5×2	231 000	918 000	2 520
DFT 12516-5							2.5×2	231 000	918 000	4 942
SFT 12516-7.5	6-7.5 Clearance 6-7.5 D		16	9.525	127	117.2	2.5×3	327 000	1 380 000	3 708
DFT 12516-7.5							2.5×3	327 000	1 380 000	7 272
SFT 12520-5		125					2.5×2	230 000	917 000	2 515
DFT 12520-5	D	ance)	0.0	0.505	107	4476	2.5×2	230 000	917 000	4 931
SFT 12520-7.5	Clearance		20	9.525	127	117.2	2.5×3	327 000		3 705
DFT 12520-7.5						2.5×3	327 000		7 266	
	1									

- 2. If there is no seal for SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

										Offic. Triffi
				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal	<u>B</u> olt	hole dimer	nsion	Bolt hole	Oil hole
length	diameter	diameter	width	flange	dimension				PCD	
L	D	Α	В	G	M	Χ	Y	Z	W	Q
107										
197	130	176	22	66	7	14	20	13	152	Rc1/8
137	130	176	22	00	/	14	20	13	152	NC 1/8
257										
123										
231	100	100	00	00	_	1.4	20	10	150	D - 1 /O
159	136	182	22	68	8	14	20	13	158	Rc1/8
303										
158										
302	143	204	28	77	10	10	26	175	170	D = 1 /O
206	143	204	28	//	10	18	26	17.5	172	Rc1/8
398										
187										
347	140	204	20		17	10	26	17 5	170	D = 1 /O
247	143	204	28	77	17	18	26	17.5	172	Rc1/8
467										
129										
237	160	220	20	82	8	18	26	17 5	100	D = 1 /O
165	160	220	28	82	8	18	26	17.5	188	Rc1/8
309										
162										
306	170	243	32	91	10	22	32	21.5	205	Rc1/8
210	170	243	32	91	10	22	32	21.5	205	NC1/8
402										
191										
351	170	243	32	91	17	22	32	21.5	205	Rc1/8
251	170	243	32	91	17	22	32	21.5	205	NC1/6
471										
170										
314	200	290	36	109	10	26	39	25.5	243	Rc1/8
218	200	290	30	109	10	20	39	20.0	243	170 1/0
410										
199										
379	200	290	36	109	12	26	39	25.5	243	Rc1/8
259	200	230	30	109	12	20	39	25.5	243	1101/0
499										
		:: K: II								

^{4.} The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

^{5.} Preload system: D; Double nut preload (See page B5.)

B-3-2.3 Deflector(bridge) Type Ball Screws

1. Features

The deflector(bridge) type has the smallest ball nut compared to the other recirculation systems, and suitable for fine lead operation.

2. Specifications

(1) Ball recirculation system

It has a small ball nut outside diameter, and suits for small lead ball screws. Fig.1 shows the structure of the deflector(bridge) recirculation system.

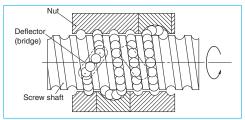


Fig. 1 Structure of deflector(bridge) recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade C0, C1, C2, C3, C5, Ct7 (Ct7 is not included in DFD) Z, 0 mm (preloaded); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less	Accuracy grade	C0, C1, C2, C3, C5, Ct7
Axial play Z, 0 mm (preloaded); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less	Accuracy grade	(Ct7 is not included in DFD)
S, 0.020 mm or less; N, 0.050 mm or less	Avial play	Z, 0 mm (preloaded); T, 0.005 mm or less
	Axiai piay	S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in Table 1. Please consult NSK for other grades.

(3) Allowable d.n value and the criterion of maximum rotational speed

The allowable d·n value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification : 84 000 or less High-speed specification; 100 000 or less Standard of rotational speed: 3 000 min⁻¹ Note: Please also review the critical speed. Refer to "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

Table 2 Deflector(bridge) type ball screw product categories

Nut model	Shape	Flange shape	Preload system
MSFD		Flanged	Non-preload, Slight axial play
MPFD		Circular I II	P-preload (light preload) no spacer ball
SFD		Screw shaft diameter of 16 mm or smaller: Flanged Screw shaft diameter of 20 mm or smaller: Rectangle CircularI, II	Non-preload, Slight axial play
ZFD		Flanged Circular I, II	Z-preload (medium preload)
DFD		Flanged Circular I, II	D-preload (medium preload) (heavy preload)

3. Product categories

There are four different preload systems (Table 2). Synthetic resin that shows superb characteristics against wear is used in the recirculation deflector (bridge) for MSFD, MPFD, and has enhanced the smooth recirculation of balls.

This product is being applied for a patent.

4. Design Precautions

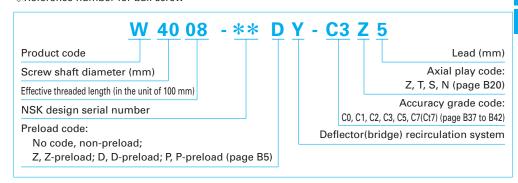
When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nuton the screw shaft.

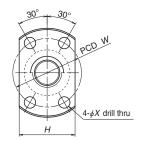
• Cut the ball groove through to the shaft end.

· The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

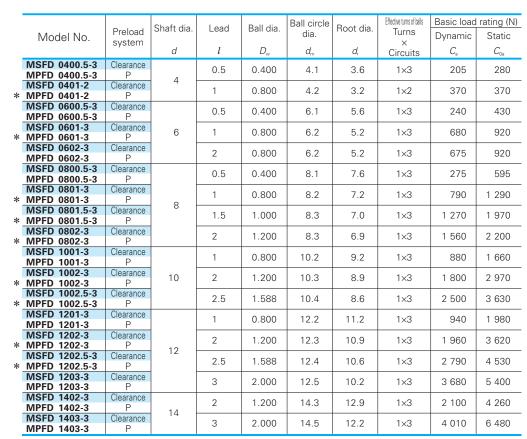
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

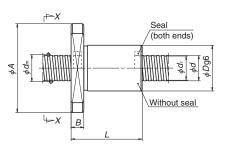
5. Structure of model number and reference number


The followings describe the structure of "Model number" and "Reference number for ball screw".



Note: In case of ZFD, the number here is twice as large as the effective turns of balls.

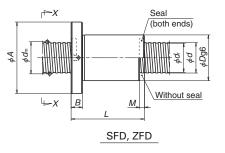

○Reference number for ball screw

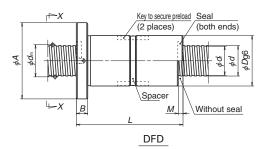

Lead l = 0.5 mm

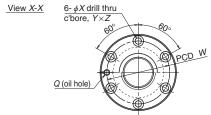
Lead l > 1 mm

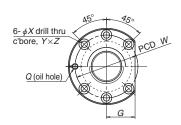
Notes: 1. If the shaft OD is less than 6 mm or the lead is less than 1 mm, a seal is not installed in the nut. (See page B68 for dust protection.)

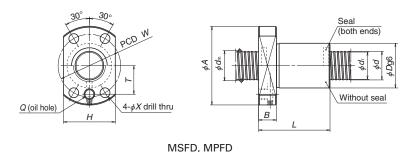
- 2. Ball nuts with shaft diameters under 14 mm do not have oil holes.
- 3. Right turn screw is standard. Please consult NSK for left turn screw.




		m	


							Unit: mm	1
Axial rigidity			Ва	all nut dimensio	ns			•
/ κ (N/μm)	Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Flanged dimension <i>H</i>	Bolt hole dimension X	Bolt hole PCD W	-
32 50	13	10	22	3	11	3.4	16	
23 36	12	10	20	3	14	2.9	15	
44 69	13	12	24	3	13	3.4	18	Dellector(bringe) type
51 80	15	12	24	3.5	16	3.4	18	GIOT
51 79	17	13	25	4	17	3.4	19	July July July July July July July July
57 89	13	14	27	3	15	3.4	21	F) Ly
67 104	16	14	27	4	18	3.4	21	ē
79 123	22	15	28	4	19	3.4	22	
76 119	26	16	29	4	20	3.4	23	
81 127	16	16	29	4	20	3.4	23	_
97 151	28	18	35	5	22	4.5	27	_
94 147	32	19	36	5	23	4.5	28	_
93 145	16	18	31	4	22	3.4	25	_
114 177	28	20	37	5	24	4.5	29	_
113 176	32	21	38	5	25	4.5	30	_
111 174	36	22	39	5	26	4.5	31	_
129 201	29	22	41	6	26	5.5	32	
129 201	37	24	43	6	28	5.5	34	_

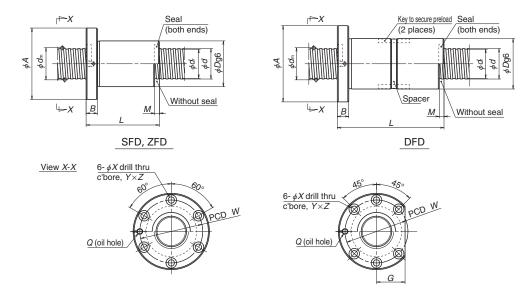

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 6. Preload system: P; Oversize ball preload (See page B5.)


Circular shape I

Circular shape II

			0. 6. 11			Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	system						×	,		K
		,	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle \mathrm{a}}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	MSFD 1602-4	Clearance		0	1 500	10.4	14.0	14	4 1 5 0	0.450	194
*	MPFD 1602-4	Р	10	2	1.588	16.4	14.6	1×4	4 150	8 450	302
	MSFD 1602.5-4	Clearance	16	2.5	1.588	16.4	14.6	1×4	4 150	8 440	194
*	MPFD 1602.5-4	Р		2.5	1.500	10.4	14.0	1.84	4 150	0 440	302
	MSFD 2002-4	Clearance		2	1.588	20.4	18.6	1×4	4 620	10 900	237
	MPFD 2002-4	Р		2	1.000	20.4	10.0	****			369
	SFD 2005-3	Clearance						1×3	10 100	17 400	206
	ZFD 2005-6	Z		5	3.175	20.75	17.4	1×3	10 100	17 400	404
	SFD 2005-4	Clearance	20	5	3.175	20.75	17.4	1×4	13 000	23 300	271
	DFD 2005-4	D						1×4	13 000	23 300	532
	SFD 2006-3	Clearance						1×3	13 100	20 500	202
	ZFD 2006-6	Z		6	3.969	21	16.9	1×3	13 100	20 500	396
	SFD 2006-4	Clearance		O	3.909	41	10.5	1×4	16 800	27 400	266
	DFD 2006-4	D						1×4	16 800	27 400	521
	MSFD 2502-4	Clearance		2	1.588	25.4	23.6	1×4	5 100	13 900	287
	MPFD 2502-4	P]		1.500	25.4	20.0				447
	SFD 2505-3	Clearance						1×3	11 600	22 900	257
*	ZFD 2505-6	Z		5	3.175	25.75	22.4	1×3	11 600	22 900	503
	SFD 2505-4	Clearance		3	3.173	25.75	22.4	1×4	14 800	30 500	337
	DFD 2505-4	D]					1×4	14 800	30 500	661
	SFD 2506-3	Clearance	25					1×3	15 200	27 300	254
	ZFD 2506-6	Z		6	3.969	26	21.9	1×3	15 200	27 300	499
	SFD 2506-4	Clearance		U	3.303	20	21.3	1×4	19 400	36 400	334
	DFD 2506-4	D]					1×4	19 400	36 400	656
	ZFD 2510-4	Z						1×2	13 300	21 200	337
	SFD 2510-3	Clearance		10	4.762	26.25	21.3	1×3	18 900	31 800	253
	DFD 2510-3	D						1×3	18 900	31 800	497

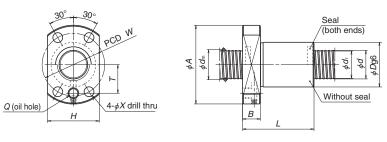
Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.


- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.

Unit: mm

												OTHE. THE	
					Ball nut dir	nensions							뭆
Nut entire length		Flanged diameter		Notch	ned flange	Seal dimension	Bolt h	ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	Deflector(bridge) type
Ľ	D	Α	В	G	Н	М	X	Y	Z	W	T	Q	. 呈
40	25	44	10	_	29	_	5.5	_	_	35	16	M6×1	brid
44	25	44	10	_	29	_	5.5	_	_	35	16	M6×1	je) t
40	30	49	10	_	34	_	5.5	_	_	40	18.5	M6×1	ype
46	35	58		22.5						46			
66	35	58	11	22.5		5	5.5	9.5	5.5	46		M6×1	
51	35	58	11	22.5	_	5	0.5	9.5	5.5	46	_	IVIOXI	
91	41	64		25						52			
52	35	58		22.5						46			
76	35	58	11	22.5	_	6	5.5	9.5	5.5	46	_	M6×1	
60	35	58		22.5		_				46			
108	42	65		25						53			-
40	36	55	10	_	40	_	5.5	_	_	46	21.5	M6×1	
46	40	63		24						51			
66	40	63	11	24		5	5.5	9.5	5.5	51		M6×1	
51	40	63	11	24	_	5	5.5	9.5	5.5	51	_	IVIOXI	
91	46	69		26						57			
52	40	63		24						51			
76	40	63	11	24	_	6	5.5	9.5	5.5	51		M6×1	
60	40	63	' '	24			0.5	0.5	0.0	51		1010/1	
108	47	70		27						58			_
88	42	69	4.5	26		4.0		l		55			
80	42	69	15	26	_	10	6.6	11	6.5	55	_	M6×1	
140	47	74		28						60			

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)

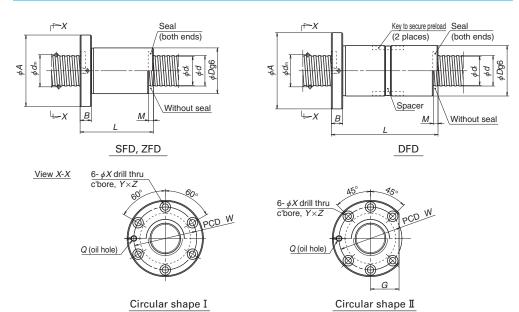


Circular shape II

Circular shape I

			Cl f+ -l:-	11	D-II-II-	Ball circle	D + - :-	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.		Dynamic	Static	rigidity
		system	d	l	$D_{\scriptscriptstyle\mathrm{w}}$	d _m	d,	× Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	<i>Κ</i> (N/μm)
	MSFD 3202-6	Clearance		2	1.588	32.4	30.6	1×6	8 030	27 100	521
	MPFD 3202-6	Р			1.500	32.4	30.0	170	0 030	27 100	811
	SFD 3205-3	Clearance						1×3	13 100	30 500	322
	ZFD 3205-6	Z						1×3	13 100	30 500	631
	SFD 3205-4	Clearance		5	3.175	32.75	29.4	1×4	16 800	40 600	424
*	ZFD 3205-8	Z		5	3.175	32.75	23.4	1×4	16 800	40 600	831
	SFD 3205-6	Clearance						1×6	23 800	60 900	623
	DFD 3205-6	D						1×6	23 800	60 900	1 222
	SFD 3206-3	Clearance						1×3	17 700	37 400	328
	ZFD 3206-6	Z						1×3	17 700	37 400	643
	SFD 3206-4	Clearance	32	6	3.969	33	28.9	1×4	22 600	49 900	431
	ZFD 3206-8	Z	32	O	3.303	33	20.9	1×4	22 600	49 900	846
	SFD 3206-6	Clearance						1×6	32 100	74 800	635
	DFD 3206-6	D						1×6	32 100	74 800	1 245
	SFD 3208-3	Clearance						1×3	21 600	41 700	316
	ZFD 3208-6	Z		8	4.762	33.25	28.3	1×3	21 600	41 700	619
	SFD 3208-4	Clearance		0	4.702	33.23	20.3	1×4	27 700	55 600	415
	ZFD 3208-8	Z						1×4	27 700	55 600	815
	SFD 3210-3	Clearance						1×3	30 500	52 500	313
*	ZFD 3210-6	Z		10	6.35	33.75	27.1	1×3	30 500	52 500	614
	SFD 3210-4	Clearance		10	0.35	33.75	27.1	1×4	39 000	70 000	411
	DFD 3210-4	D						1×4	39 000	70 000	807

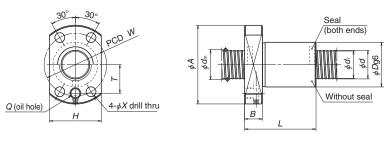
- Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
 - 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.



MSFD, MPFD

												Unit: mm	Dei
					Ball nut dir	nensions							<u> </u>
Nut entire	Nut	Flanged	Flanged	Notch	ned flange	Seal	Bolt h	ole dim	ension	Bolt hole	Oil hole	Oil hole	퓰
length	diameter <i>D</i>	diameter		G	,,	dimension	\ \ \	V	_	PCD W	dimension T		슬
L	D	Α	В	G	Н	M	X	Υ	Z	VV	I	Q	· 🚉
50	42	65	10	_	46	_	6.6	_	_	54	26.5	M6×1	Deflector(bridge) type
47	48	75		29						61			¥
67	48	75		29						61			
52	48	75	12	29		5	6.6	11	6.5	61		M6×1	
77	48	75	12	29	_	5	0.0	''	0.5	61	_	IVIOXI	
62	48	75		29						61			
112	53	80		30						66			
53	48	75		29						61			
77	48	75		29						61			
61	48	75	10	29		_		11	۰۰	61		N 4 C 1	
90	48	75	12	29	_	6	6.6	''	6.5	61	_	M6×1	
73	48	75		29						61			
133	54	81		31						67			
67													
99		0.4	1 -	20		_		1 1 1	۰۰	00		N 4 C 1	
76	50	84	15	32	_	8	9	14	8.5	66	_	M6×1	
116													
80													
120	E4	00	1.5	2.4		10		14	0.5	70		NAC-41	
90	54	88	15	34	_	10	9	14	8.5	70	_	M6×1	
160													

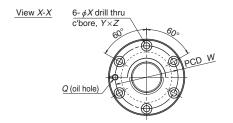
- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the SS type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)

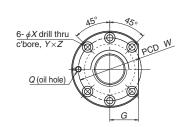


	1									
		Shaft dia.	Lood	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shart dia.	Lead	Dali dia.	dia.	noot dia.	Turns	Dynamic	Static	rigidity
WIOGCI IVO.	system		,		_,		_ ×	,		K
		d	l	D_w	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{oa}	(N/µm)
MSFD 4002-6	Clearance		2	1.588	40.4	38.6	1×6	8 720	33 900	620
MPFD 4002-6	Р			1.000	40.4	30.0	120		33 900	966
SFD 4005-4	Clearance						1×4	18 700	52 200	517
ZFD 4005-8	Z		5	3.175	40.75	37.4	1×4	18 700	52 200	1 013
SFD 4005-6	Clearance		5	3.175	40.75	37.4	1×6	26 500	78 300	761
ZFD 4005-12	Z						1×6	26 500	78 300	1 492
SFD 4006-4	Clearance						1×4	25 100	63 500	522
ZFD 4006-8	Z		6	3.969	41.0	36.9	1×4	25 100	63 500	1 023
SFD 4006-6	Clearance	40	0	3.909	41.0	30.3	1×6	35 600	95 200	768
ZFD 4006-12	Z	40					1×6	35 600	95 200	1 506
SFD 4008-4	Clearance						1×4	32 000	75 000	529
ZFD 4008-8	Z		8	4.762	41.25	36.3	1×4	32 000	75 000	1 038
SFD 4008-6	Clearance		0	4.702	41.23	30.3	1×6	45 400	113 000	779
DFD 4008-6	D						1×6	45 400	113 000	1 528
SFD 4010-3	Clearance						1×3	35 300	69 800	394
ZFD 4010-6	Z		10	6.35	41.75	35.1	1×3	35 300	69 800	773
SFD 4010-4	Clearance		10	0.33	41.75	35.1	1×4	45 200	93 100	518
ZFD 4010-8	Z						1×4	45 200	93 100	1 016
SFD 5005-4	Clearance						1×4	20 700	66 700	627
ZFD 5005-8	Z		5	3.175	50.75	47.4	1×4	20 700	66 700	1 230
SFD 5005-6	Clearance		5	3.175	50.75	47.4	1×6	29 300	100 000	923
ZFD 5005-12	Z	50					1×6	29 300	100 000	1 810
SFD 5006-4	Clearance	50					1×4	27 900	81 600	636
ZFD 5006-8	Z		6	3.969	51.0	46.9	1×4	27 900	81 600	1 248
SFD 5006-6	Clearance		0	3.909	51.0	40.9	1×6	39 600	122 000	937
ZFD 5006-12	Z						1×6	39 600	122 000	1 837

Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

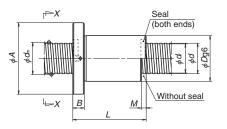
- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.

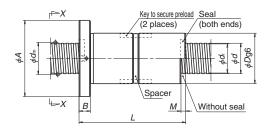

MSFD, MPFD


Unit: mm

	Unit: mm 👨												
					Ball nut dir	nensions							으
Nut entire length		Flanged diameter	Flanged width	Notch	ned flange	Seal dimension		ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	Deflector(bridge)
Ľ	D	Α	В	G	Н	М	X	Y	Z	W	T	Q	<u> </u>
50	51	74	10	_	55	_	6.6	_	_	63	31	M6×1	ridge
55 80 65 101	56	90	15	34	_	5	9	14	8.5	72	_	Rc1/8) type
64 93 76 118	56	90	15	34	_	6	9	14	8.5	72	_	Rc1/8	
76 116 93 168	60 60 60 62	94 94 94 96	15	36 36 36 37	_	8	9	14	8.5	76 76 76 78	_	Rc1/8	
83 123 93 143	62	104	18	40	_	10	11	17.5	11	82	_	Rc1/8	
55 80 65 101	66	100	15	38	_	5	9	14	8.5	82	_	Rc1/8	
64 93 76 118	66	100	15	38	_	6	9	14	8.5	82	_	Rc1/8	•

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)


Circular shape I


Circular shape II

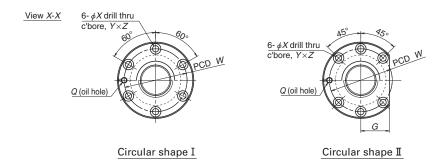
		Shaft dia.	اممط	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Snart dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Wiodol Wo.	system	d	l	$D_{\rm w}$	d _m	d,	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)
SFD 5008-4	Classanas	-		- w			1×4	35 300	94 700	635
ZFD 5008-4 ZFD 5008-8	Clearance						1×4 1×4	35 300	94 700	1 246
SFD 5008-8	Clearance		8	4.762	51.25	46.3	1×4	50 000	142 000	935
	D						-			
DFD 5008-6 SFD 5010-3	Clearance						1×6 1×3	50 000 40 200	142 000 91 500	1 833 489
ZFD 5010-5	Z						1×3	40 200	91 500	960
SFD 5010-4	Clearance						1x3	51 500	122 000	644
ZFD 5010-4 ZFD 5010-8	Z		10	6.35	51.75	45.1	1×4	51 500	122 000	1 263
SFD 5010-6	Clearance	50					1×4	72 900	183 000	947
DFD 5010-6	D						1×6	72 900	183 000	1 858
SFD 5012-3	Clearance						1×3	52 800	109 000	485
ZFD 5012-6	Z						1×3	52 800	109 000	952
SFD 5012-4	Clearance		12	7.938	52.25	44	1×4	67 600	145 000	639
DFD 5012-4	D						1×4	67 600	145 000	1 252
SFD 5020-3	Clearance						1.74	52 400	109 000	480
DFD 5020-3	D		20	7.938	52.25	44	1×3	52 400	109 000	942
SFD 6306-4	Clearance						1×4	30 800	104 000	772
ZFD 6306-8	Z						1×4	30 800	104 000	1 513
SFD 6306-6	Clearance		6	3.969	64.0	59.9	1×6	43 600	156 000	1 135
ZFD 6306-12	Z						1×6	43 600	156 000	2 226
SFD 6308-4	Clearance						1×4	39 600	124 000	787
ZFD 6308-8	Z						1×4	39 600	124 000	1 543
SFD 6308-6	Clearance		8	4.762	64.25	59.3	1×6	56 200	186 000	1 159
DFD 6308-6	D						1×6	56 200	186 000	2 272
SFD 6310-4	Clearance						1×4	58 700	162 000	810
ZFD 6310-8	Z	63					1×4	58 700	162 000	1 588
SFD 6310-6	Clearance	50	10	6.35	64.75	58.1	1×6	83 200	244 000	1 192
DFD 6310-6	D						1×6	83 200	244 000	2 337
ZFD 6312-6	Z	1					1×3	59 900	143 000	1 181
SFD 6312-4	Clearance						1×4	76 800	191 000	793
DFD 6312-4	D		12	7.938	65.25	57	1×4	76 800	191 000	1 555
SFD 6312-6	Clearance		_				1×6	109 000	286 000	1 167
DFD 6312-6	D						1×6	109 000	286 000	2 289
SFD 6320-3	Clearance	1		0.505	05.75					766
DFD 6320-3	D		20	9.525	65.75	56	1×3	98 400	231 000	1 503

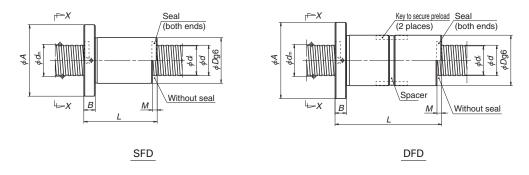
Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFD, ZFD

DFD


Unit: mr


Deflector(bridge) type

										Unit: mm
				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal		hole dimer	nsion	Bolt hole	0:111-
length	diameter	diameter	width	flange	dimension				PCD	Oil hole
L	D	Α	В	G	M	Χ	Y	Z	W	Q
79	70	112		43					90	
119	70	112	18	43	8	11	17.5	11	90	Rc1/8
96	70	112	18	43	8	11	17.5	''	90	NC1/8
171	72	114		44					92	
83										
123										
93	72	114	10	44	10	11	17.5	11	92	Rc1/8
143	/2	114	18	44	10	11	17.5	''	92	NC1/8
114										
205										
99										
147	75	121	22	47	12	1.4	20	13	0.7	Rc1/8
111	/5	121	22	47	12	14	20	13	97	RC1/8
195										
146	75	121	28	47	20	14	20	13	97	Rc1/8
253	/5	121	28	47	20	14	20	13	97	NC1/8
67										
96	00	122	10	47	6	11	17.5	11	100	D = 1 /O
79	80	122	18	47	6	1.1	17.5	''	100	Rc1/8
121										
79	82	124		47					102	
119	82	124	18	47	8	11	17.5	11	102	Rc1/8
96	82	124	18	47	8	11	17.5	''	102	NC1/8
175	85	127		48					105	
97										
147	85	131	22	50	10	14	20	13	107	Rc1/8
118	85	131	22	50	10	14	20	13	107	NC1/8
214										
147										
111										
195	90	136	22	52	12	14	20	13	112	Rc1/8
136										
248										
146	95	153	28	59	20	18	26	17.5	123	Rc1/8
253	95	103	28	59	20	18	20	17.5	123	nc1/8
4 T	he evial rigid	dity K in the	table above	io o thooroti	aal valua aht	ained from	the electic d	oformation l	activican car	out groove

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

		Shaft dia.	Lood	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	Axial	
Model No.	Preload	Shart dia.	Lead	Dali dia.	dia.	noot dia.	Tuitis	Dynamic	Static	rigidity
	system	d	l	D _w	d _m	d _r	X Circuits	C_{a}	C_{0a}	<i>Κ</i> (N/μm)
SFD 8010-4	Clearance						1×4	65 100	209 000	987
DFD 8010-4	D		10	6.35	81.75	75.1	1×4	65 100	209 000	1 935
SFD 8010-6	Clearance		10	0.35	81.75	/5.1	1×6	92 200	313 000	1 452
DFD 8010-6	D						1×6	92 200	313 000	2 848
SFD 8012-4	Clearance						1×4	87 400	254 000	996
DFD 8012-4	D	80	12	7.938	82.25	74	1×4	87 400	254 000	1 954
SFD 8012-6	Clearance	80	12	7.930	02.20	/4	1×6	124 000	381 000	1 467
DFD 8012-6	D						1×6	124 000	381 000	2 877
SFD 8020-3	Clearance						1×3	114 000	312 000	978
DFD 8020-3	D		20	9.525	82.75	73	1×3	114 000	312 000	1 918
SFD 8020-4	Clearance		20	9.020		/3	1×4	146 000	416 000	1 287
DFD 8020-4	D						1×4	146 000	416 000	2 524
SFD 10010-6	Clearance		10	6.35	101.75	95.1	1×6	102 000	400 000	1 762
DFD 10010-6	D		10	0.55	101.73	55.1	1/0	102 000	400 000	3 456
SFD 10012-6	Clearance	100	12	7.938	102.25	94	1×6	138 000	490 000	1 789
DFD 10012-6	D	100	12	7.330	102.25	34	1.00	130 000	430 000	3 509
SFD 10020-4	Clearance		20	0.525	102.75	93	1×4	161 000 525 000	1 546	
DFD 10020-4	D		20	9.525	102.75	93	1.74	101 000	525 000	3 031

Notes 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

Cinc. Hilli													
	Ball nut dimensions												
Nut entire length	Nut diameter	Flanged diameter	Flanged width	Notched flange	Seal dimension	Bolt	hole dimer	nsion	Bolt hole PCD	Oil hole Q Rc1/8			
L	D	A	B	G	M	X	Y	Z	W	Q			
97													
172	105	151	22	57	10	14	20	13	127	Rc1/8			
118	105	131		57	10	14	20	13	127	110170			
214													
111													
195	110	156	22	59	12	14	20	13	132	Rc1/8			
136	'''	130		33	12	14	20	10	102	110170			
248													
146													
253	115	173	28	66	20	18	26	17.5	143	Rc1/8			
168	113	175	20		20	10	20	17.0	145	110170			
297													
118	125	171	22	64	10	14	20	13	147	Rc1/8			
214	120	171	22	04	10	1-7	20	10	147	110170			
142	130	188	28	71	12	18	26	17.5	158	Rc1/8			
254	130	100	20	/ 1	12	10		17.0	130	1101/0			
172	135	205	32	79	20	22	32	21.5	169	Rc1/8			
301	.50			. 0	_0			_ ::0	. 50	, 0			

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B56) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: D; Double nut preload (See page B5.)

B-3-2.4 End Cap Type Ball Screws

1. Features

The end cap recirculation system is suitable for high-helix lead and multiple start threads.

Since the leads are 1 to 3 times larger than their screw shaft diameter, it makes them more suitable for high-speed operation.

2. Specifications

(1) Ball recirculation system

The structure of end cap recirculation system is shown in Fig. 1.

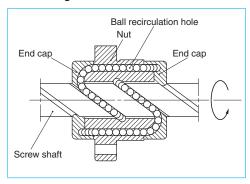


Fig. 1 Structure of end cap recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	LSFC, LPFC: C1, C2, C3, C5, Ct7 USFC, UPFC: C3, C5, Ct7 (Three times lead or over are C5, Ct7)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed.

The allowable d-n value and criterion of maximum rotational speed are shown below. Please consult NSK for high-speed specification. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification ; 80 000 or less High-speed specification; 100 000 or less Standard of rotational speed : 3 000 min⁻¹ %Please also review the critical speed. Refer to "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are two different preload systems with several models (**Table 2**).

Table 2 End cap type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
LSFC	Paranarani	Flanged	Circular	Non-preload, Slight axial play
LPFC	100001	Circular Ⅲ	Circular	P-preload (light preload) no spacer ball
USFC		Flanged	Circular	Non-preload, Slight axial play
UPFC		Rectangular	Circular	P-preload (light preload) no spacer ball

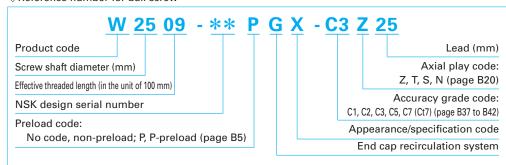
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

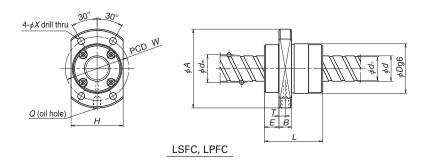
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

Special bearings which have higher-load carrying capacity are available.

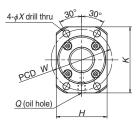
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

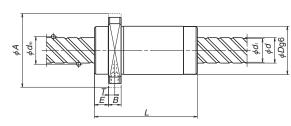

5. Example of model number in dimension tables

The followings describe the structure of "Model number" and "Reference number for ball screw".



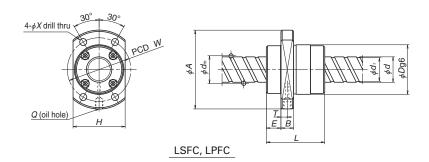
○Reference number for ball screw


End cap type



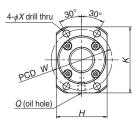
							Ball circle		Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Mod	del No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	K
	IVIO	aei ivo.	system	d	l	$D_{\scriptscriptstyle m w}$	$d_{\scriptscriptstyle m}$	d_{r}	× Circuits	C _a	C_{0a}	(N/µm)
		1220-1.5 1220-1.5	Clearance P	12	20	2.381	12.5	9.9	1.7×1	2 960	4 370	68 106
		1520-1.5 1520-1.5	Clearance P		20	3.175	15.5	12.2	1.7×1	5 660	8 700	101 156
	USFC	1540-1	Clearance	15					0.7×2	4 430	7 320	65
	UPFC	1540-1	Р	15	40	3.175	15.75	12.2	0.7×2	4 430	7 320	102
		1540-2	Clearance		40	3.175	15.75	12.2	0.7×4	8 040	14 600	134
		1540-2	Р						0.7×4	8 040	14 600	209
		1616-3	Clearance						1.7×2	7 910	13 700	185
		1616-3	Р		16	2.778	16.65	13.7	1.7×2	7 910	13 700	288
		1616-6	Clearance		10	2.770	10.00	10.7	1.7×4	14 400	27 400	359
	LPFC 1616-6 USFC 1632-1		Р						1.7×4	14 400	27 400	559
			Clearance						0.7×2	4 800	7 510	79
*	UPFC 1632-3 UPFC 1632-3 UPFC 1632-3 USFC 1632-6		Р		32	3.175	16.75		0.7×2	4 800	7 510	124
			Clearance	16				13.4	1.7×2	10 300	18 500	187
			Р						1.7×2	10 300	18 500	230
			Clearance						1.7×4	18 700	37 000	361
		1632-6	Р		50	3.175	16.75		1.7×4	18 700	37 000	562
		1650-1	Clearance					13.4	0.7×2	4 410	7 840	65
		1650-1 1650-2	Р						0.7×2	4 410	7 840	105
		1650-2	Clearance P						0.7×4	8 000	15 700	130
		2020-3							0.7×4 1.7×2	8 000 12 300	15 700 23 600	203 258
		2020-3	Clearance						1.7×2	12 300	23 600	402
		2020-6	Clearance		20	3.175	20.75	17.4	1.7×4	22 400	47 200	500
		2020-6	P						1.7×4	22 400	47 200	779
		2040-1	Clearance						0.7×2	5 410	9 360	94
*		2040-1	P						0.7×2	5 410	9 360	147
			Clearance	20					1.7×2	11 600	23 400	224
	USFC 2 UPFC 2 USFC 2 UPFC 2		Р		40	3.175	20.75	17.4	1.7×2	11 600	23 400	349
			Clearance						1.7×4	21 100	46 800	435
			Р						1.7×4	21 100	46 800	677
		2060-1	Clearance						0.7×2	4 950	9 590	81
		2060-1	Р		00	0 175	20.75	5 17.4	0.7×2	4 950	9 590	125
	USFC	2060-2	Clearance		60	3.175			0.7×4	8 990	19 200	156
	UPFC 2060	2060-2	Р						0.7×4	8 990	19 200	243

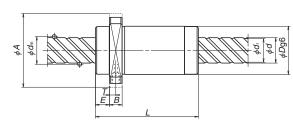
Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_s*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_s*) and an axial load is applied to it. Refer to the "Technical Description" (page B56) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.


USFC, UPFC

Unit: mm

Ball nut dimensions												
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Flanged o	dimension K	End cap	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position T		
44	26	44	10	28	40	9	4.5	35	M6×1	5		
45	34	55	10	36	50	11	5.5	45	M6×1	5		
40	32	53	10	33	48	12	5.5	43	M6×1	5	<u> </u>	
38	32	53	10	34	_	10	4.5	42	M6×1	5	End cap type	
34 34 66 66 66 66	34	55	10	36	50	10.5	5.5	45	M6×1	5		
50	34	55	10	36	50	12	5.5	45	M6×1	5		
46	39	62	10	41	_	11.5	5.5	50	M6×1	5		
41 41 81 81 81 81	38	58	10	40	52	11	5.5	48	M6×1	5.5		
58	38	58	10	40	52	12.3	5.5	48	M6×1	5		
0.7				DI	I NOK 6							


- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)



-		ı									
		Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns			Axial rigidity
	Model No.	system				dia.		X	Dynamic	Static	K
		o y o to i i i	d	l	$D_{\rm w}$	d _m	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	LSFC 2525-3	Clearance						1.7×2	18 400	36 900	318
	LPFC 2525-3	Р		٥٦	2.000	20.0	01.0	1.7×2	18 400	36 900	495
	LSFC 2525-6	Clearance		25	3.969	26.0	21.9	1.7×4	33 400	73 800	616
╝	LPFC 2525-6	Р						1.7×4	33 400	73 800	959
	USFC 2550-1	Clearance						0.7×2	8 090	14 600	112
<	UPFC 2550-1	Р						0.7×2	8 090	14 600	181
	USFC 2550-3	Clearance	25	50	3.969	26.0	21.9	1.7×2	17 300	37 500	281
	UPFC 2550-3	Р	25	50	3.909	20.0	21.9	1.7×2	17 300	37 500	437
	USFC 2550-6	Clearance						1.7×4	31 500	75 000	545
	UPFC 2550-6	Р						1.7×4	31 500	75 000	848
	USFC 2580-1	Clearance						0.7×2	7 290	15 300	97
	UPFC 2580-1	1 80	80	3.969	26.0	21.9	0.7×2	7 290	15 300	151	
	USFC 2580-2	Clearance		00	3.303	20.0	21.0	0.7×4	13 200	30 600	188
	UPFC 2580-2	Р		32				0.7×4	13 200	30 600	293
	LSFC 3232-3	Clearance			4.762	33.25		1.7×2	26 800	56 300	383
	LPFC 3232-3	Р					28.3	1.7×2	26 800	56 300	618
	LSFC 3232-6	Clearance		02				1.7×4	48 700	113 000	770
_	LPFC 3232-6	Р						1.7×4	48 700	113 000	1 198
	USFC 3264-1	Clearance	32					0.7×2	11 400	23 800	150
	UPFC 3264-1	Р	02					0.7×2	11 400	23 800	234
	USFC 3264-3	Clearance		64	4.762	33.25	28.3	1.7×2	24 400	56 800	346
	UPFC 3264-3	Р			1., 02	00.20	20.0	1.7×2	24 400	56 800	571
	USFC 3264-6	Clearance						1.7×4	44 400	114 000	670
	UPFC 3264-6	Р						1.7×4	44 400	114 000	1 043
	LSFC 4040-3	Clearance						1.7×2	42 900	94 500	494
	LPFC 4040-3	C 4040-3 P 40 Clearance	40	6.350	41.75	35.2	1.7×2	42 900	94 500	769	
	LSFC 4040-6		10	0.000	11.75	00.2	1.7×4	77 800	189 000	956	
	LPFC 4040-6	Р	P arance					1.7×4	77 800	189 000	1 488
	LSFC 5050-3	Clearance						1.7×2	64 100	148 000	608
	LPFC 5050-3			50	7.938	52.25	44.1	1.7×2	64 100	148 000	1 004
	LSFC 5050-6	50-6 Clearance 50	50 7.938	52.25	9 44.1		116 000	295 000	1 176		
	LPFC 5050-6						1.7×4	116 000	295 000	1 831	

Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_a*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_a*) and an axial load is applied to it. Refer to the "Technical Description" (page B56) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

USFC, UPFC

Unit: mm

	Ball nut dimensions											
Nut entire length	Nut diameter	Flanged diameter A	Flanged width B		dimension K	End cap	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position		
55	47	74	12	49	_	13	6.6	60	M6×1	6		
50 50 100 100 100	46	70	12	48	63	13	6.6	58	M6×1	7	End cap type	
75	46	70	12	48	63	14.5	6.6	58	M6×1	6	<u></u> — —	
70	58	92	12	60	_	16	9	74	M6×1	5.5		
62 62 126 126 126 126	58	92	12	60	82	15.5	9	74	M6×1	7.5	_	
85	73	114	15	75	_	19.5	11	93	M6×1	6.5		
107	90	135	20	92	_	21.5	14	112	M6×1	7		
				D.	1: 1:01/ 6						1	

- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)

NSK

1.	HMD Type for High-Speed Machine Tools	B493
	HMS Type for High-Speed Machine Tools	B497
	HMC Type for High-Speed Machine Tools	B501
	BSL [™] Type for Miniature Lathes	B507
	For High-Load Drives	
	5.1 HTF-SRC Type	B511
	5.2 HTF-SRD Type	B515
	5.3 HTF Type	B519
6.	For Contaminated Environments	
	6.1 VSS Type	B535
	6.2 Ball Screw with X1 Seals for Contaminated	B539
	Environments and Grease Retention	
7.	TW Series for Twin-Drive Systems	B545
	For High Precision Machine Tools	
	8.1 Hollow Shaft Ball Screws	B546
	8.2 Nut Cooling Ball Screws	B551
9.	ND Series for Nut-Rotatable Drives	B 555
١0.	Σ Series for Robots	B 563
11.	Ball Screw with L1 Seal designed for	B 575
	Minimal Grease Splatter	
12.	Equipped with "NSK K1™" Lubrication Unit	B579
	Special Ball Screws	B585

B-3-3 Dimension Table and Reference Number of Application-Oriented Ball Screws

Application-oriented ball screws

♦ Features and application examples of application-oriented ball screws

Applications		Shape	Features	Applications	Page
	HMD Type		High-speed operation: 64 to 120 m/min Rigidity: 5% greater than the HMC series. High-load carrying capacity: 7% greater than the HMC type New recirculation system reduces the noise level by 5 dB(A) or more compared with the HMC type	High-speed machining centers High-speed combined machine tools Die mold processing machine	B493
High-Speed Machine Tools	HMS Type	This.	Fine lead: 5 to 12 mm High-speed operation: 25 to 50 m/min Easy replacement: Dimensional interchangeability with tube type ball screws New recirculation system reduces the noise level by 5 dB(A) or more compared with the Tube type.	Machining centers Die mold processing machine NC lathes Combined machine tools	B497
	НМС Туре	annu dannan	High-speed: 40 to 120 m/min Rigidity: 30% greater than existing tube type ball screws High-Load carrying capacity: 14% greater than existing tube type ball screws Noise reduced by small-diameter balls	High-speed machining centers High-speed combined machine tools Die mold processing machines	B501
Small Lathes	BSL Type		Compact nut: 50% less ball nut volume than NSK existing products. High-dust protection by thin plastic seal Special high-load capacity ball screw support bearings are available.	Small lathes Multi-axis lathes Small machining centers	B507
High-Load Drives	HTF-SRC Type		High-load capacity High-speed operation by high-speed rotation: 930 mm/sec Even load distribution to balls in the ball nut for high-load drive Improved durability by NSK S1	Injection axis of injection molding machines Servo press machines Press brake Bending machines	B511
	HTF-SRD Type	1, miles	High-load capacity High-speed operation by large screw lead: 1 600 mm/sec Improved durability by NSK S1	Clamping axis of injection molding machines Die cast machines Punch presses Lifting and lowering devices	B515
	НТГ Туре	E Superiore Handadada	High-load capacity Even load distribution to the balls in a ball nut for high-load drive Improved durability by NSK S1 Provide a wide range of screw diameter and lead combinations.	Injection molding machines Press machines Press fitting machines Lifting and lowering machines	B519
Contaminated Environments	VSS Type		High dust-resistant performance: Reduces particle penetration rate to less than 1/15 (compared with standard seal). More than four times longer service life than standard seal under contaminated environments.	Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines Transfer equipment	B535

Applications		Shape	Features	Applications	Page
Contaminated Environments and Grease Retention	Ball Screw with X1 Seals		Highly dustproof: Particle penetration ratio reduced to less than 1/30 of existing standard seals. Superior grease retention: Can reduce lubricant consumption, also effective at suppressing grease splattering.	Machining centers Combined machine tools NC lathes Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines	B539
Twin-Drive Systems	TW Series		Controlled screw lead accuracy and variation of preload torque for twin drive. Improved axial rigidity, expected life and controllability by the paired up two ball-screw driving systems	Machining centers Combined machine tools Large-size machine tools	B545
High- Precision	Hollow Shaft Ball Screws		Suppress thermal deformation by cooling the shaft center Prevent the machine base from deforming due to thermal expansion. NSK special support units and seal units are available.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes	B546
Machine Tools	Nut Cooling Ball Screws	Tour vo	Due to the simple nut cooling setup, cooling is achieved simply by attaching piping to the thermal displacement control nut. Cooling just as effective as core cooling Insulation to prevent heat from affecting the table.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes Large machine tools	B551
Nut- Rotatable Ball Screws	NDT and NDD Type	12-13-7		Woodworking machines Laser cutting machines Electronic component mounting devices Liquid crystal display transfer equipment Transfer equipment	B555
Robots	bots Σ Series		A ball screw and a ball spline are made in one shaft, combining a drive and guide system. A ball screw nut, a ball spline nut and support bearings are combined to the unit. Hollow shaft has an effect for weight saving. The hollow can be used for wiring and piping.	SCALA type robots Electronic- component mounting systems	B563
Ball Screw with L1 Seal designed for Minimal Grease Splatter		100 pt	Amount of splattered grease: 1/10 or less (compared with standard seal) Reduced grease-splattering helps maintaining machines and working environment clean. It can be fitted to Compact FA Series and High Speed SS Series later.	Electronic component mounting devices Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment Transfer equipment	B575
Equipped with "NSK K1" Lubrication Unit		NSK KI	Long-term, maintenance-free operation Maintains lubrication efficiency for a prolonged time in contaminated environments Does not pollute the environment Made of compatible material with the FDA regulations is also available.	Automotive manufacturing machines Laser cutting machines Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment	B579

B-3-3.1 HMD Type for High-Speed Machine Tools

This product is being applied for a patent. The newly developed ball recirculation components. the end-deflector and middle-deflector. have greatly contributed for the substantial improvements in the maximum rotational speed and noise level compared to the HMC type.

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 135 000 of the HMC type.

Low noise

Noise reduced by 5 dB(A) or more compared with the HMC type ball screws for high-speed machine tools.

Nut mounting dimensions

The ball nut diameters are the same as those of the HMC type.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the middle-deflector recirculation system of the HMD type.

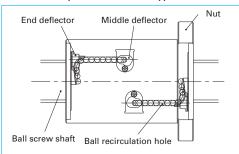


Fig. 1 Structure of middle-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable d.n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 4 000 min

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B545.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

- Hollow shaft ball screw (See page B546.)
- Nut cooling ball screw (See page B551.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMD type.

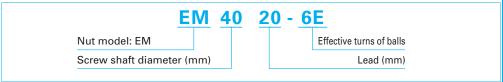
(5) Seal

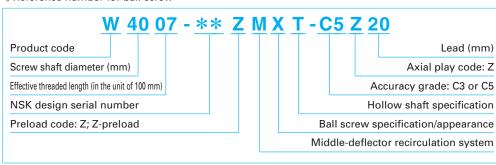
Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

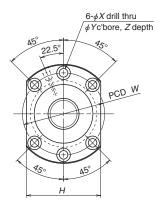

The HMD type has a model as follows.

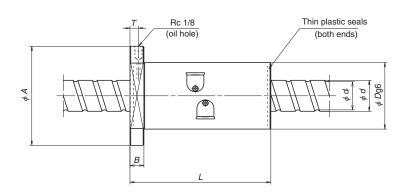

Table 2 HMD type product categories

Nut model	Shape	Flange shape	Nut shape	Preload system	
EM		Flanged Circular II	Circular	Z-Preload (medium preload)	

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".




6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

Unit: mm

		Lead		Basic load rating (N)		Axial rigidity
Model No.	Shaft dia.		Root dia.	Dynamic	Static	K
	d	l	d _r	C_{a}	C_{0a}	(N/μm)
EM4016-4E		16	34.1	66 900	131 000	1 023
EM4020-6E	40	20	34.4	77 900	166 000	1 415
EM4025-6E	40	25	34.1	91 300	191 000	1 442
EM4030-6E		30	34.1	90 400	190 000	1 419
EM4516-4E	45	16	39.1	69 900	146 000	1 121
EM4520-6E		20	39.4	83 200	187 000	1 573
EM4525-6E		25	39.1	95 700	214 000	1 589
EM5016-4E		16	44.1	72 700	161 000	1 216
EM5020-6E	50	20	44.4	85 700	205 000	1 695
EM5025-6E		25	44.1	103 000	232 000	1 731
EM5030-6E		30	44.1	102 000	235 000	1 730
EM6316-4E	63	16	55.2	131 000	338 000	1 696

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screws.

2. Rigidity listed under the column K is the value when a 5% of basic dynamic load rating is applied as the preload.

Ball nut dimensions								Bolt hole	Oil hole	Max. feeding	
Nut length	Nut dia.	Flange dia.	Flange width	Flange size	Bolt hole size			PCD	position	speed	
L	D	Α	В	Н	X	Y	Z	W	T	(m/min)	
160										64	Į
150	86	128	18	96	11	17.5	11	106	11	80	Ē
182	80	00 120	10	90	11	17.5	''	100	''	100	
213										120	
160										56	
150	92	134	18	102	11	17.5	11	112	11	70	
182										88	
160										51	
150	98	140	18	107	11	17.5	11	118	11	64	
182	_ 90	140	18	107	11	17.5	17.5	118	11	80	
213										96	
170	122	180	28	138	18	26	17.5	150	14	40	

B-3-3.2 HMS Type for High-Speed Machine Tools

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 100 000 for tube type screws.

Low noise

By adopting SRC recirculation system, noise reduced by 5 dB(A) or more compared with tube type screws.

Nut mounting dimensions

The ball nut diameters are the same as those of tube type screws.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the SRC recirculation system of the HMS type.

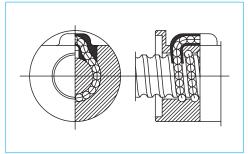


Fig. 1 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable d.n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 5 000 min

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B545.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

- Hollow shaft ball screw (See page B546.)
- Nut cooling ball screw (See page B551.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMS type.

3. Design precautions

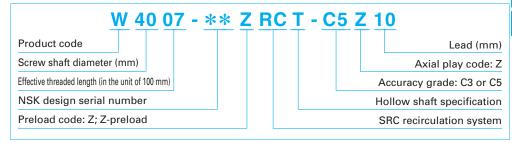
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories


The HMS type has a model as follows.

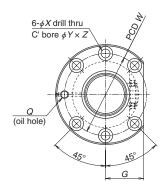
Table 2 HMS type product categories

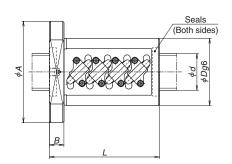
Nut model	Shape	Flange shape	Nut shape	Preload system
ZFRC	and the second	Flanged Circular II	Circular	Z-Preload (medium preload)


5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

^{*} In the case of Z-preload, the amount shown is twice the effective turn of balls.


○Reference number for ball screw



6. Handling Precautions

Maximum operating temperature: 60°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

	Shaft dia.	Lood	Root dia.	Effective turns	Basic load	rating (N)	Axial rigidity
Model No.	Snart dia.	Lead	noot dia.	Turns	Dynamic	Static	
	d	l	d,	rows	$C_{\scriptscriptstyle \rm a}$	C_{0a}	<i>Κ</i> (N/μm)
ZFRC3205-10	32	5	29.2	2.5×2	21 800	56 000	891
ZFRC3210-10	32	10	26.4	2.5×2	54 500	110 000	970
ZFRC4005-10	40	5	37.2	2.5×2	23 900	70 500	1 067
ZFRC4010-10	40	10	34.4	2.5×2	61 200	137 000	1 154
ZFRC4012-10	40	12	34.1	2.5×2	71 700	154 000	1 177
ZFRC4508-10	45	8	40.5	2.5×2	44 000	118 000	1 234
ZFRC4510-10	45	10	39.4	2.5×2	65 800	157 000	1 291
ZFRC4512-10	45	12	39.1	2.5×2	75 600	176 000	1 304
ZFRC5010-10	50	10	44.4	2.5×2	68 100	174 000	1 397
ZFRC5012-10	50	12	43.2	2.5×2	91 500	218 000	1 441
ZFRC6312-14	63	12	56.2	3.5×2	136 000	385 000	2 388

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screws.

		Ba	all nut dimer	nsions				Bolt hole	Oil hole	Max. feeding	
Nut length	Nut dia.	Flange dia.	Flange width	Groove size	Во	olt hole si	ze	PCD	position	speed	
L	D	A	В	G	X	Y	<i>Z</i>	W	Q	(m/min)	
89	58	85	12	32	6.6	11	6.5	71	M6×1	25	SMH
160	74	108	15	41	9	14	8.5	90	M6×1	50	S
92	67	101	15	39	9	14	8.5	83	M6×1	25	
166	82	124	18	47	11	17.5	11	102	Rc1/8	40	
192	86	128	18	48	11	17.5	11	106	Rc1/8	48	
136	82	124	18	47	11	17.5	11	102	Rc1/8	28	
166	88	132	18	50	11	17.5	11	110	Rc1/8	35	
192	90	132	18	50	11	17.5	11	110	Rc1/8	42	
166	93	135	18	51	11	17.5	11	113	Rc1/8	32	
198	100	146	22	55	14	20	13	122	Rc1/8	38	
244	115	161	22	61	14	20	13	137	Rc1/8	30	

^{2.} Rigidity listed under the column K is the value when a 5% of basic dynamic load rating is applied as the preload.

B-3-3.3 HMC Type for High-Speed Machine Tools

This product is being applied for a patent.

1. Features

High-speed traveling

High helix leads of 16 mm to 36 mm are used. Furthermore, the ball recirculation return tube is reinforced to make a high-speed traveling of 40 to 120 m/min. possible.

 High rigidity, high load carrying capacity Double start thread increases the number of effective turns of balls, and a smaller ball size increases the number of the balls. Together they contribute to have high rigidity and high load carrying capacity, despite the high helix lead.

Compact nut

The size of nut diameter and length were reduced.

2. Specifications

(1) Ball recirculation system

The ball recirculation circuits and grooves are suited for high-speed operation. Structure of recirculation system is shown in Fig. 1.



Fig. 1 Structure of return tube recirculation system

(2) Accuracy grades and axial play

Standard accuracy grades and axial play are shown in Table 1. Please consult NSK for other grade.

Table 1 Accuracy grades and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Options

 Equipped with NSK K1 lubrication unit Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, is available. Please consult NSK when using NSK K1.

For twin-drive systems (See page B545.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

 Hollow shaft ball screw specifications (See page B546.)

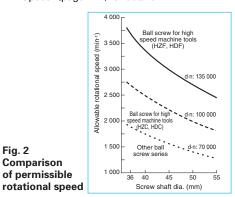
The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for high-speed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

For a vertical axis ball screw

For a vertical axis ball screw, which constantly supports the load of vertical axis system, a high load capacity ball screw is required. A high load capacity type with compact design is available for the nut models I and II in the dimension tables. For details, please consult NSK.

(4) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.


Allowable den value: HZC, HDC: 100 000 or less HZF, HDF; 135 000 or less

Criterion of maximum rotational speed: 3 750 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

Fig. 2

Comparison

of permissible

(5) Other specifications

For other specifications not listed in the dimension tables such as high-speed, high-load capacity, and NSK K1 installed type, please consult NSK.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

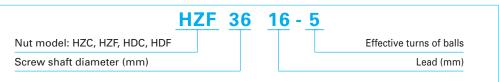
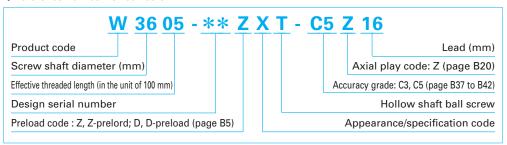
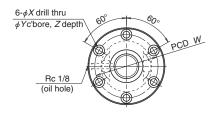

HMC type has two different preload systems with several models (Table 2).

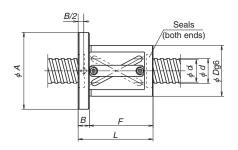
Table 2 HMC type product categories

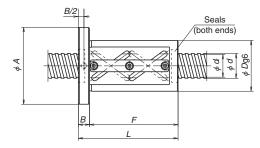

Nut model	Shape	Flange shape	Preload system
HZC		Flanged	Z-preload
HZF		Circular I	(medium preload)
HDC		Flanged	D-preload
HDF		Circular I	(medium preload)

5. Structure of model number and reference number


The followings describe the structure of "Model number" and "Reference number for ball screw".

○Reference number for ball screw.

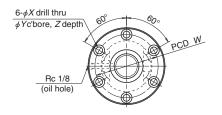


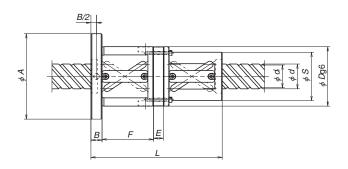


Model No.	Shaft dia.	Lead	Root dia.	Effective turns of	Nut	Basic load	rating (N) Static		igidity /µm)
Wiodel IVO.	d	l	d,	balls	model	C _a	C_{0a}	5% <i>C</i> 。	10% <i>C</i> _a
HZF3616-5		16	31.5	5	I	47 000	102 000	1 156	1 456
HZC3616-5	36								
HZF3620-3.5 HZC3620-3.5		20	30.4	3.5	I	51 100	98 600	862	1 086
HZF4016-5		16	35.5	5	п	49 500	113 000	1 269	1 599
HZC4016-5		10	30.0	5	"	49 500	113 000	1 200	1 555
HZF4020-3.5	40			3.5	I	53 600	107 000	933	1 176
HZC4020-3.5 HZF4020-5		20	34.4						
HZC4020-5				5	I	72 900	154 000	1 316	1 659
HZF4516-5		16	40.5	5	п	51 400	126 000	1 390	1 751
HZF4516-7.5				7.5		72 800	189 000	2 045	2 576
HZF4520-3.5 HZC4520-3.5	45			3.5	I	57 300	121 000	1 037	1 307
HZF4520-5		20	39.4	5	п	77 900	170.000	1 455	1.004
HZC4520-5				5	ш ш	77 900	172 000	1 455	1 834
HZF4525-3.5		25	39.1	3.5	I	65 900	137 000	1 045	1 317
HZC4525-3.5									
HZF5020-3.5 HZC5020-3.5				3.5	I	59 000	132 000	1 119	1 410
HZF5020-5		20	44.4	_		00.000	400.000	4 575	1.005
HZC5020-5				5	I	80 200	189 000	1 575	1 985
HZF5025-3.5	50			3.5	I	70 700	152 000	1 153	1 452
HZC5025-3.5 HZF5025-5		25	44.1						
HZF5025-5 HZC5025-5				5	I	96 100	217 000	1 617	2 037
HZF5030-3.5	1	30	44.1	3.5	I	70 200	152 000	1 140	1 437
HZC5030-3.5		30	44.1						
HZF5520-3.5		20	49.4	3.5	I	62 100	146 000	1 218	1 534
HZF5520-5	55			5	I	84 300	207 000	1 706	2 149
HZF5525-3.5 HZF5525-5		25	49.1	3.5 5	Ι π	73 100 99 300	165 000 236 000	1 237 1 735	1 558 2 186
HZF5530-3.5		30	49.1	3.5	I	72 700	167 000	1 235	1 556
0000 0.0				0.0	-		. 0. 000	. 200	. 555

11204020-0.0									
HZF5020-3.5				3.5	ī	59 000	132 000	1 119	1 410
HZC5020-3.5		20	44.4		_				
HZF5020-5		20		5	I	80 200	189 000	1 575	1 985
HZC5020-5				5		00 200	100 000	1 3/3	1 303
HZF5025-3.5	50		44.1	3.5	I	70 700	152 000	1 153	1 452
HZC5025-3.5	50	25		3.5	1	70 700	132 000	1 100	1 402
HZF5025-5		25		5	I	96 100	217 000	1 617	2 037
HZC5025-5				5		30 100	217 000	1017	2 037
HZF5030-3.5		30	44.1	3.5	I	70 200	152 000	1 140	1 437
HZC5030-3.5		30	44.1	3.0	1	70 200	152 000	1 140	1 437
HZF5520-3.5		20	49.4	3.5	I	62 100	146 000	1 218	1 534
HZF5520-5		20	49.4	5	I	84 300	207 000	1 706	2 149
HZF5525-3.5	55	25	40.1	3.5	I	73 100	165 000	1 237	1 558
HZF5525-5		25	49.1	5	I	99 300	236 000	1 735	2 186
HZF5530-3.5		30	49.1	3.5	I	72 700	167 000	1 235	1 556

Notes: 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.


Nut model I (offset preload)


Nut model I (offset preload)

									Unit: mm				
				nut dimensi	ons				Max. feeding				
Nut entire length	Nut dia.	Flange dia.	Flange width	Nut length	Bolt	hole demen	sions	Bolt hole PCD	speed				
L	D	A	В	F	X	l Y		W	(m/min)				
134	78	120	18	116	11	17.5	11	98	60				
134	71	113	10	110	11	17.5	11	91	44				
121	94	136	18	103	11	17.5	11	114	75				
121	78	120	10	103	11	17.5	11	98	56				
134	79	121	18	116	11	17.5	11	99	54				
104	76	118	10	110	11	17.5	11	96	40				
121	96	138		103				116	67				
121	82	124	18	100	11	17.5	11	102	50				
161	96	138	10	143		17.5		116	67				
	82	124						102	50				
134	82	124	18	116	11	17.5	11	102	48				
187		128	22	165	14	20	13	104					
122	98	140	18			104				118	60		
122	88	130		104	11	17.5	11	108	44				
162	98	140		144		17.5		118	60				
102	88	130						108	44				
141	101	143	18	123	11	17.5	11	121	75				
	92	134		120		17.0		112	56				
122	101	143	104					104				121	54
	95	137			11	17.5	11	115	40				
162	101	143		144	• • •	17.0		121	54				
102	95	137						115	40				
141	103	145		123				123	67				
	98	140	18		11	17.5	11	118	50				
191	103	145		173				123	67				
	98	140		1,0				118	50				
159	103	145	18	141	11	17.5	11	123	81				
	98	140				17.0		118	60				
122 162	103	145	18	104 144	11	17.5	11	123	49				
141 191	105	147	18	123 173	11	17.5	11	125	61				
159	105	147	18	141	11	17.5	11	125	73				

^{2.} Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.

Nut model II (double nut spacer, preload)
(the figure indicates use of double start threads)

- 1	In	11.	m	m

Model No.	Shaft dia.	Lead	Root dia.	Effective turns of	Nut	Basic load	rating (N) Static		rigidity /µm)
Wiodel IVe.	d	l	d _r	balls	model	C _a	C_{0a}	5% C _a	10% <i>C</i> _a
HDF3620-5	00	00	00.4	_		00.400	400.000	4.004	4.540
HDC3620-5	36	20	30.4	5	Ш	69 400	139 000	1 204	1 516
HDF4025-5		25	24.1	5	П	85 500	176 000	1 334	1 681
HDC4025-5		25	34.1	5	ш	85 500	176 000	1 334	1 681
HDF4030-5	40	30	34.1	5	π	84 600	175 000	1 313	1 654
HDC4030-5		30	34.1	5	ш	04 000	175 000	1 313	1 004
HDF4032-7.5		32	34.4	7.5	Ш	104 000	232 000	1 909	2 405
HDC4032-7.5		52	54.4	7.5	ш	104 000	232 000	1 303	2 403
HDF4036-4.5		36	34.4	4.5	${\rm I\hspace{1em}I}$	66 500	137 000	1 214	1 530
HDF4525-5		25	39.1	5	Ш	89 600	195 000	1 460	1 840
HDC4525-5		20	00.1	J		00 000	100 000	1 400	1 040
HDF4530-5		30	39.1	5	Ш	91 800	197 000	1 476	1 860
HDC4530-5	45		00.1	Ŭ		01 000	107 000	1 170	1 000
HDF4532-7.5		32	39.4	7.5	Ш	108 000	259 000	2 100	2 646
HDC4532-7.5									
HDF4536-4.5		36	39.4	4.5	Ⅲ	69 200	15 500	1 280	1 612
HDF5030-5		30	44.1	5	Ш	95 500	216 000	1 600	2 016
HDC5030-5	50			Ŭ					
HDF5032-7.5	30	32	44.4	7.5	Ш	112 000	285 000	2 286	2 881
HDC5032-7.5		-							
HDF5530-5	55	30	49.1	5	Ш	98 700	235 000	1 719	2 166
HDF5532-7.5		32	49.4	7.5	Ш	118 000	312 000	2 483	3 128

Notes: 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.

Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.

`													
				Ball ı	nut dimen:	sions					Max.		
Nut entire length <i>L</i>	Nut D	dia. S	Flange dia. <i>A</i>	Flange width <i>B</i>	Nut length <i>F</i>	Spacer dimensions <i>E</i>	В <i>Х</i>	olt hole siz	ze <i>Z</i>	Bolt hele PCD W	feeding speed (m/min)		
191	94	76	136	18	77	5	11	17.5	11	114	75		
191	78	60	120	10	''	5	11	17.5	11	98	56		
228.5	98	80	140	18	91	13.5	11	17.5	11	118	84		
220.0	86	68	128	10	91	13.5	11	17.5	11	106	63		
248	98	80	140	18	104	8	11	17.5	11	118	101		
248	86	68	128	18	104	8	11	17.5	11	106	75		
265	96	78	142	22	109	11	14	20	13	118	108		
205	82	64	128	22	109	11	14	20	13	106	80		
200	96	78	138	18	83	4	11	17.5	11	116	120		
228.5	101	83	143	18	91	13.5	11	17.5	11	121	75		
220.0	92	74	134	10	91	13.5	11	17.5	11	112	56		
248	101	83	143	18	104	8	11	17.5	11	121	90		
240	92	74	134	10	104	0	11	17.5	11	112	67		
266	98	80	144	22	109	11	14	20	13	120	96		
200	88	70	134	22	109	''	14	20	13	110	71		
200	98	80	140	18	83	4	11	17.5	11	118	108		
249	103	85	145	18	104	8	11	17.5	11	123	81		
249	98	80	140	10	104	0	11	17.5	11	118	60		
266	101	83	147	22	100	11	14	20	13	123	86		
200	95	77	141	22	22	22	22 109	11	14	20	13	117	64
249	105	87	147	18	104	8	11	17.5	11	125	73		
266	103	85	149	22	109	11	14	20	13	125	78		

B-3-3.4 BSL™ Type for Miniature Lathes

1. Features

Prompt delivery

Screw shaft configuration and ball nut shape are standardized for prompt delivery.

High speed and low noise

Adoption of end-deflector recirculation system realized high-speed operation with low noise.

Excellent dust resistance

Thin plastic seal and specially designed ball grooves prevent the entry of foreign matters.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation and compact ball nut. The structure of recirculation system is shown in **Fig.1**.

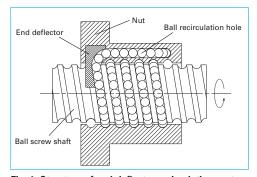


Fig. 1 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 180 000 or less Criterion of maximum rotational speed

: 4 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surface, ensuring long-term, maintenance-free operation. Please consult NSK when using NSK K1.

3. Design Precautions

When designing the screw shaft end, one end of the shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

Special bearings which have higher-load carrying capacity are available.

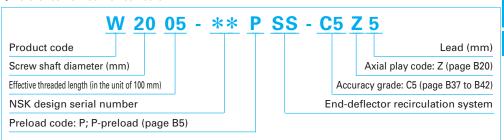
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

NSK

4. Product categories

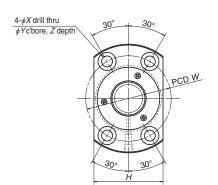
The BSL type has a model as follows.

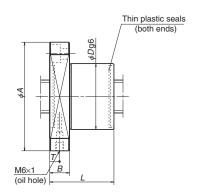
Table 2 BSL type product categories


Nut model	Shape	Flange shape	Preload system
BSL		Circular II	P-Preload (Slight preload)

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".


○Reference number for ball screw



6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B83).

				Basic load	rating (N)					Ball r	nut di	mensi	ons				
	Shaft	Lead	Root	Dynamic	Static	Ex	terna	l dim	ensic	ns	Bolt	hole c	limer	sions	Oil hole		
Model No.	dia.		dia.														
	d	l	d,	C_{a}	C_{0a}	D	Α	Н	В	L	W	X	Y	Z	T	d ₁	
BSL2005	20	5	17.2	10 500	16 200	36	63	38	12	37	49	6.6	11	6.5	6.5	15	
BSL2006	7 20	6	16.4	14 000	20 000	40	65	42	12	45	51	0.0		0.5	6.7	13	
BSL2505		5	22.2	11 700	20 400	40	65	42		38	51				7.1		
BSL2506	25	6	21.4	15 700	25 400	43	69	45	12	44	55	6.6	11	6.5	6.3]	
BSL2508	7 25	8	20.5	20 100	29 900	46	72	48	'2	55	58	6.6		0.5	6.5	20	
BSL2510		10	20.5	20 000	29 800	46	72	48		65	58				6]	
BSL3210	22	10	26.4	32 500	51 800	61	02	60	10	68	76	0	1.1	0.5	10	O.E.	
DCI 2212	- 32	12	26.4	22 400	E1 600	61	93	63	18	77	76	9	14	8.5	10	25	

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screw. 2. Shaft dimensions are for reference.

12

BSL3212

M	K D D D D D D D D D D D D D D D D D D D	<i>P 9</i>	ν φ Δο γου Α γου
(L ₃) (L ₂)	Min. L ₅	Max. L ₁	(L ₈)
=	Max. L		

Unit: mm

	Shaft configuration and dimensions (reference)																		
						Sh	aft d	imer	nsio	n						Exclusive bear	Exclusive bearing N		Permissible
d_2	d ₃	$d_{\scriptscriptstyle 4}$	L (max.)	L₁ (max.)	L ₂	L ₃	<i>L</i> ₄ (min.)	L₅ (min.)	L ₆	L,	L _s	L ₉	L ₁₀	К	M	Bearing reference number	F	dynamic load rating $C_{\scriptscriptstyle a}$	axial load (N)
12	15	14.3 0.11	500	500	66	20	3	20	8	9	14	10.15	1.15	17	M15×1 0	15TAC47C	47	21 900	26 600
12	13	2.	500	300	00	20	4	21	U	J	<u>†</u>	10.15	1.	17	10113×1.0	131A0470	47	21 300	20 000
							3	27											
15	20	19 0.21	700	700	71	27	4	28	10	14	19	15.35	1 35	22	M20×1 0	20TAC62C	62	28 500	40 500
13	20	15	700	700	′ ′	21	5	29		14	13	10.00	1.00	22	10120 × 1.0	201AC02C	02	20 300	40 300
							5	29											
20	25	23.9 0.21	1 000	800	71	33	6	33	12	15	20	16.35	1 35	27	M25×1 5	25TAC62C	62	28 500	40 500
20	20	20.0	1 000	500	/ 1	55	7	34	12	15	20	10.55	1.33	21	1012371.5	201/10020	02	20 000	40 300

3. Shaft length L_1 and shaft entire length L are the maximum length. When L becomes the same length as the L_1 , the thread is all screw specification.

NON

B-3-3.5.1 HTF-SRC Type for High-Load Drives

1. Features

High-speed operation and low noise

The SRC recirculation system contributes to more than twice the feed speed (d-n value: 140 000 and 160 000) and the noise level of less than 8 to 10dB(A) (half to 1/3 of noise) compared with the HTF type.

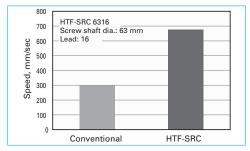


Fig. 1 Feed speed comparison

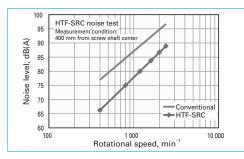


Fig. 2 Noise level comparison

2. Specifications

(1) Ball recirculation system

The SRC recirculation system picks up balls in the direction they are moving, and thus contributed to high-speed, low-noise operation. Structure of the recirculation system is as follows.

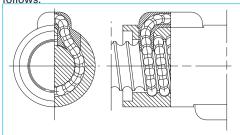


Fig. 3 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S,0.020 mm or less; N,0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d⋅n value and the criterion of maximum rotational speed

Lead	14, 16 mm	20, 25 mm [☆]					
	160 000 or less	140 000 or less					
Criterion of maximum rotational speed							

d·n value: shaft dia. d [mm] × rotational speed n [min⁻¹]

☆ Allowable d · n value for HTF-SRC5020: 160 000

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design Precautions

The HTF-SRC type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

In addition, we will make full analysis when you use the HTF-SRC type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B533).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

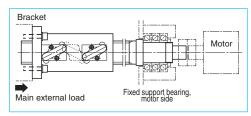


Fig. 4 Recommended installing direction of high-load drive ball screw

4. Product categories

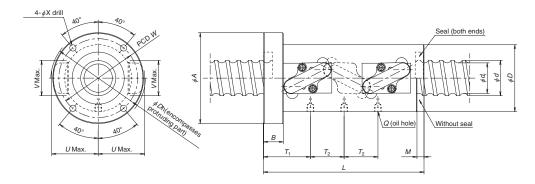
The HTF-SRC type has a model as follows.

Table 3 HTF-SRC type product categories

Nut model	Shape	Flange shape	Preload system
HTF-SRC		Flanged Circular I	Non-preload Slight axial play

5. Structure of model number and reference number

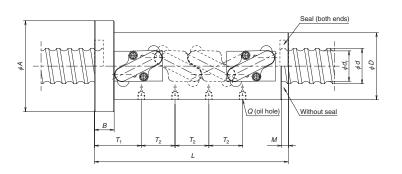
The followings describe the structure of "Model number" and "Reference number for ball screw".


6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)
The lubricant deteriorates, operating temperature

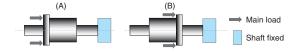
is recommended 60°C and under.

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.



Nut model I

	1	1	i							
	Lead	Shaft	Root	Effective ball		Basic load	rating (kN)			
Model No.	2000	dia.	dia.	turns	Nut	Dynamic	Static			
	I	d	d _r	Turns × Circuits	model	C _a	C_{0a}	D	Α	В
HTF-SRC5014-7.5	14	50	41.6	2.5×3	Ι	264	623	80	114	28
HTF-SRC5016-7.5	16	50	39	2.5×3	I	383	818	95	129	28
HTF-SRC6316-7.5	16	63	52	2.5×3	I	429	1 050	105	139	28
HTF-SRC6316-10	16	63	52	2.5×4	П	549	1 410	105	139	28
HTF-SRC6316-10.5	16	63	52	3.5×3	I	562	1 450	105	139	28
HTF-SRC6316-14	16	63	52	3.5×4	П	720	1 930	105	139	28
HTF-SRC8016-10.5	16	80	69	3.5×3	I	627	1 870	120	154	32
HTF-SRC8016-14	16	80	69	3.5×4	П	802	2 490	120	154	32
HTF-SRC5020-7.5	20	50	39	2.5×3	I	383	818	95	129	28
HTF-SRC6320-7.5	20	63	49	2.5×3	I	572	1 280	117	157	32
HTF-SRC6320-10	20	63	49	2.5×4	П	732	1 710	117	157	32
HTF-SRC8020-10.5	20	80	66	3.5×3	I	838	2 300	130	170	32
HTF-SRC10020-10.5	20	100	86	3.5×3	I	936	2 910	145	185	32
HTF-SRC10020-14	20	100	86	3.5×4	П	1 200	3 890	145	185	32
HTF-SRC12020-7.5	20	120	106	2.5×3	I	776	2 550	173	213	40
HTF-SRC12020-10	20	120	106	2.5×4	П	994	3 400	173	213	40
HTF-SRC6325-10.5	25	63	49	3.5×3	I	750	1 770	117	157	32
HTF-SRC8025-7.5	25	80	63	2.5×3	I	790	1 960	145	185	40
HTF-SRC10025-10.5	25	100	83	3.5×3	I	1 200	3 430	159	199	40
HTF-SRC10025-14	25	100	83	3.5×4	П	1 540	4 580	159	199	40
HTF-SRC12025-10.5	25	120	103	3.5×3	I	1 300	4 200	173	213	40
HTF-SRC12025-14	25	120	103	3.5×4	П	1 660	5 600	173	213	40


Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

- 2. Please consult NSK if load exceeds the allowable axial load (Fa max.).
- 3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
- 4. The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.

Nut model I

											Unit: mm	
				Ball nut	dimono	ono				Allowable axial load (kN)		
		Mounting	*See below									
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> ₁	<i>T</i> ₂	[A] Recommended	[B]	
202	10	97	9	54.5	46	111	M6×1	69	42	98.5	75.7	
228	10	112	9	66	50	134	Rc1/8	74.5	48	124.8	106.2	
228	10	122	9	72.5	50	148	Rc1/8	74.5	48	174.2	139.9 152.4	
276	10	122	9	72.5	50	148	Rc1/8	74.5	48	202.3	152.4	
276	10	122	9	72.5	50	148	Rc1/8	74.5	64	210.6	157.9	
340	10	122	9	72.5	50	148	Rc1/8	74.5	64	233.8	165.5	
278	10	137	9	80	60	165	Rc1/8	78.5	64	305.7	209.4	
342	10	137	9	80	60	165	Rc1/8	78.5	64	351.2	220.9	
268	10	112	9	66	50	135	Rc1/8	83.5	60	117.7	98.5	
279	12	137	11	80	62	163	Rc1/8	90	60	202.2	170	
339	12	137	11	80	62	163	Rc1/8	90	60	227.7	183.2	
339	12	150	11	88	64	180	Rc1/8	90	80	350	255.5	
339	12	165	11	97	78	199	Rc1/8	90	80	497.1	325.6	
419	12	165	11	97	78	199	Rc1/8	90	80	572.1	341.8	
287	12	193	11	109.5	88	229	Rc1/8	98	60	481.6	365	
347	12	193	11	109.5	88	229	Rc1/8	98	60	589.3	404.8	
405	12	137	11	81.5	61	167	Rc1/8	101.75	100	220.4	174.1	
347	17	165	11	99.5	73	202	Rc1/8	111.75	75	319.3	268.3	
422	17	179	11	108	79	220	Rc1/8	111.75	100	539.8	384.5	
522	17	179	11	108	79	220	Rc1/8	111.75	100	603.3	402.2	
421	17	193	11	116	92	238	Rc1/8	111.25	100	713.4	466.6	
521	17	193	11	116	92	238	Rc1/8	111.25	100	815.4	488.3	

B-3-3.5.2 HTF-SRD Type for High-Load Drives

This product is being applied for a patent.

1. Features

• High-speed operation and low noise Used with end deflectors, HTF-SRD type ball screws achieve the maximum feed speed of 1 600 mm/s. The ball nut body surface is completely round, thus enabling well balanced ball nut rotation.

Double start thread structure which has more recirculation circuits, and large diameter balls contribute to have high load carrying capacity.

Low noise and compact design

End deflector system using a ball scooping mechanism in the direction of screw spiral offers smoother ball recirculation system, thus contributing to less than half the noise level compared with existing ball screws equipped with a return tube.

Compact, high-performance seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

Also, compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation, and compact ball nut. The structure of recirculation parts are as follows.

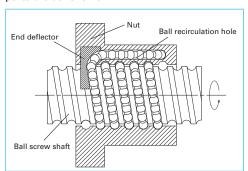


Fig. 1 Structure of End-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable d∙n value	120 000 or less
Criterion of maximum rotational speed	2 400 min ⁻¹

d-n value: shaft dia. d [mm] x rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

3. Design Precautions

The HTF-SRD type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

Fig. 2 Recommended installing direction of high-load drives ball screw

In addition, we will make full analysis when you use the HTF-SRD type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (see page B533).

When designing the screw shaft end, one end

NSK

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

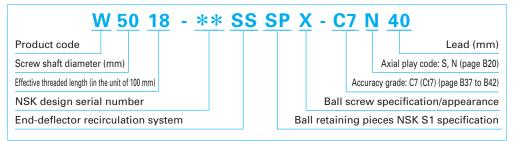
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and

"Handling Precautions" (page B103).

4. Product categories

The HTF-SRD type has a model as follows.

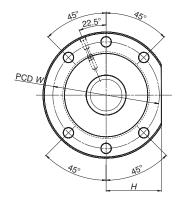
Table 3 HTF-SRD type product categories

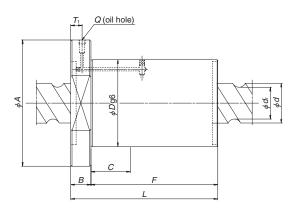

Nut model	Shape	Flange shape	Preload system
HTF-SRD		Circular I I	Non-preload Slight axial play

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

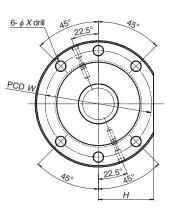
♦ Reference number for ball screw

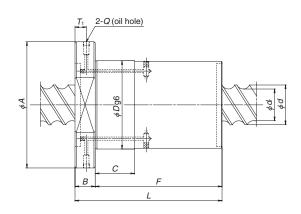

6. Handling Precautions


Maximum operating temperature: 70°C (at outside diameter of ball nut)
The lubricant deteriorates, operating temperature

is recommended 60°C and under.

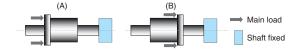
Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.




Nut model I

	Lead	Shaft dia.	Root dia.		Basic load	rating (kN)			
Model No	Leau	Silait ula.	1100t dia.	Nut	Dynamic	Static			
Wieder No.	1	d	d r	model	C _a	C_{0a}	D	А	В
HTF-SRD6332-4E	32	63	49	I	292	590	140	190	32
HTF-SRD5040-6E	40	50	39	П	243	491	115	165	28
HTF-SRD5040-8E	40	50	39	П	319	679	115	165	28
HTF-SRD6340-6E	40	63	49	Π	363	768	140	200	32
HTF-SRD6340-8E	40	63	49	П	476	1 060	140	200	32
HTF-SRD5050-6E	50	50	39	П	243	491	115	165	28
HTF-SRD5050-8E	50	50	39	П	319	679	115	165	28
HTF-SRD8050-6E	50	80	63	Π	502	1 180	175	250	40
HTF-SRD8050-8E	50	80	63	П	658	1 630	175	250	40
HTF-SRD6360-6E	60	63	49	П	363	768	140	200	32
HTF-SRD6360-8E	60	63	49	П	476	1 060	140	200	32
HTF-SRD10060-6E	60	100	83	Π	583	1 490	195	270	40
HTF-SRD10060-8E	60	100	83	П	765	2 060	195	270	40
HTF-SRD12070-6E	70	120	103	П	630	1 810	210	285	50
HTF-SRD12070-8E	70	120	103	П	826	2 520	210	285	50
HTF-SRD8080-6E	80	80	63	Π	502	1 180	175	250	40
HTF-SRD8080-8E	80	80	63	П	658	1 630	175	250	40
HTF-SRD100100-6E	100	100	83	П	583	1 490	195	270	40
HTF-SRD100100-8E	100	100	83	П	765	2 060	195	270	40
HTF-SRD80120-4E	120	80	63	П	337	751	175	250	40
HTF-SRD120120-6E	120	120	103	П	630	1 810	210	285	50
HTF-SRD120120-8E	120	120	103	Π	826	2 520	210	285	50

Remarks: 1. Please consult NSK if load exceeds the allowable axial load (Fa max.).


- 2. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
- The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.

Nut model ${\mathbb I}$

									Unit: mm
		Allowable ax	kial load (kN)						
			Ball nut dim	iensions				Mounting	*See below
F	С	L	<i>T</i> ₁	[A] Recommended	[B]				
144	_	176	85	165	14	Rc1/8	22	109.7	105.9
131	131	159	72.5	140	14	Rc1/8	18	101	94.9
171	171	199	72.5	140	14	Rc1/8	18	119.7	109.6
131	131	163	90	170	18	Rc1/8	22	170	160.3
171	171	203	90	170	18	Rc1/8	22	205.2	188.2
159	159	187	72.5	140	14	Rc1/8	18	98.1	91.5
209	209	237	72.5	140	14	Rc1/8	18	113.6	103.1
154	154	194	110	210	22	Rc1/8	30	265.3	249.7
204	204	244	110	210	22	Rc1/8	30	322.3	294.5
188	188	220	90	170	18	Rc1/8	22	159.9	148.3
248	248	280	90	170	18	Rc1/8	22	186	167.5
185	185	225	122	235	22	Rc1/8	30	339.7	313.2
245	245	285	122	235	22	Rc1/8	30	415.8	368.3
210	210	260	130	250	22	Rc1/8	40	416.5	373
280	280	330	130	250	22	Rc1/8	40	519.4	440
244	244	284	110	210	22	Rc1/8	30	245.6	226.6
324	100	364	110	210	22	Rc1/8	30	286.5	256.1
301	100	341	122	235	22	Rc1/8	30	318.2	284.5
401	100	441	122	235	22	Rc1/8	30	371.8	318.4
243	243	290	110	210	22	Rc1/8	30	171.7	162.5
356	100	406	130	250	22	Rc1/8	40	389	333.4
476	100	526	130	250	22	Rc1/8	40	463.4	373.9

B-3-3.5.3 HTF Type for High-Load Drives

This product is being applied for a patent.

1. Features

High load carrying capacity

Has an ideal design to bear heavy load. It significantly enhances load rating as well as maximum permissible load.

Respond to various shaft end configuration
 Additional ball screw shaft machining is not required. HTF type responds to various shaft ends that convey high torque.

HTF type can be used with: involute spline (JIS B 1603), straight sided spline (JIS B 1601), key seat, etc.

2. Specifications

(1) Ball recirculation system

Structure of recirculation system is shown in Fig. 1.

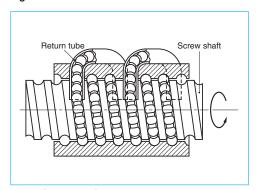


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The allowable standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or under; N, 0.050 mm or under

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. For higher-speed operation, HTF-SRC type is recommend (See page B511).

Table 2 Allowable d•n value and the criterion of maximum rotational speed

Lead			25 mm	
Allowable	Standard specification	70 000 or less	70 000 or less	50 000 or less
	High-speed specification	10 0000 or less		-
Criterion of maximum	rotational speed		3 125 min ⁻¹	

d•n value: shaft dia. d [mm] × rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design precautions

For designing shaft end configuration, you should take into account that the HTF type ball screws are dedicated to high-load drives.

The HTF type is designed to distribute the load uniformly to the load balls for high load drive mechanism.

We recommend installing the ball screws in the way shown in **Fig. 2** for the full use of this characteristic. In addition, we will make full analysis when you use the HTF type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B533).

When designing the screw shaft end, the one end shall be cut-through and shaft end dimension must be less than the root diameter

of ball groove. If not, the nut cannot be assembled.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Product categories

The HTF type has a model as follows.

Table 3 HTF type product categories

Nut model	Shape	Flange shape	Preload system
HTF		Flanged Circular I	Non-preloaded Slight axial play

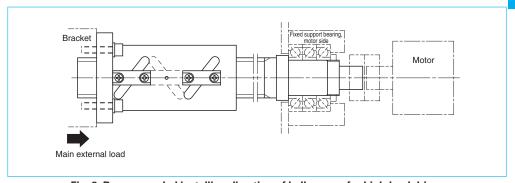


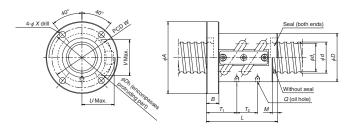
Fig. 2 Recommended installing direction of ball screws for high-load drives

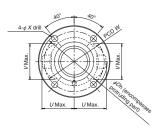
5. Structure of model number and reference number

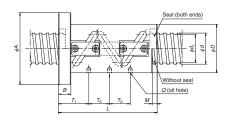
A structure of "Model number" and "Reference number for ball screw" are as follows.

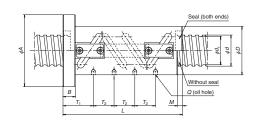
♦ Model number

♦ Reference number for ball screw




6. Handling precautions


Maximum operating temperature: 70°C (at outside diameter of all nut)
The lubricant deteriorates, operating temperature is recommended 60°C and under.
Please consult NSK in the case of a short stroke


operation less than or equal to four times the length of the ball screw lead.

Nut model I

	Laad	Shaft	Root	Effective ball		Basic load	rating (kN)				
Model No.	Lead	dia.	dia.	turns	Nut	Dynamic	Static				
Model No.	l	d	d _r	Turns × Circuits	model	C _a	C _{0a}	D	А	В	
HTF3210-5	10	32	25.6	2.5×2	I	88.7	169	58	92	18	
HTF3610-5	10	36	29.6	2.5×2	I	96.1	191	62	96	18	
HTF4010-7.5	10	40	33.6	2.5×3	П	149	344	66	100	18	
HTF4510-7.5	10	45	38.6	2.5×3	П	158	386	70	104	18	
HTF4510-10	10	45	38.6	2.5×4	Ш	203	514	70	104	18	
HTF5010-7.5	10	50	43.6	2.5×3	П	166	435	75	109	18	
HTF5010-10	10	50	43.6	2.5×4	Ш	213	580	75	109	18	
HTF5510-7.5	10	55	48.6	2.5×3	П	173	477	80	114	18	
HTF5510-10	10	55	48.6	2.5×4	Ш	222	636	80	114	18	
HTF3612-5	12	36	29	2.5×2	I	112	228	66	100	22	
HTF4012-7.5	12	40	33	2.5×3	П	184	422	70	104	22	
HTF4512-7.5	12	45	38	2.5×3	Π	195	473	72	106	22	

 2.5×3

2.5×4

2.5×3

2.5×4

 2.5×3

2.5×4

Nut model I

Nut model II

Unit: mm

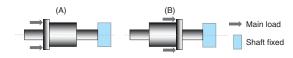
											Unit: mm
		Allowable axial load (kN)									
		Mounting	*See below								
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> ₁	<i>T</i> ₂	[A] Recommended	[B]
103	7	75	9	40.5	42	82	M6×1	36.5	30	30.9	28.3
103	7	79	9	43	45	87	M6×1	36.5	30	34.9	31.8
143	7	83	9	45	48	91	M6×1	46.5	30	56.2	45.3
143	7	87	9	47	52	95	M6×1	46.5	30	65.7	51.3
173	7	87	9	47	52	95	M6×1	46.5	30	78.2	56.4
143	7	92	9	49	57	99	M6×1	46.5	30	76.2	58.4
173	7	92	9	49	57	99	M6×1	46.5	30	91.9	64.4
143	7	97	9	51.5	62	104	M6×1	46.5	30	85.7	64.7
173	7	97	9	51.5	62	104	M6×1	46.5	30	104.7	71.6
123	8	83	9	46.5	46	94	M6×1	44	36	40.1	36.7
171	8	87	9	47.5	50	96	M6×1	56	36	58.9	49.1
171	8	89	9	49.5	54	100	M6×1	56	36	71.7	55.7
171	8	94	9	52	59	105	M6×1	56	36	82.9	63.2
207	8	94	9	52	59	105	M6×1	56	36	98.3	68.9
171	8	99	9	54.5	63	110	M6×1	56	36	94.4	70.6
207	8	99	9	54.5	63	110	M6×1	56	36	113.3	77.3
171	8	109	9	58.5	70	118	M6×1	56	36	111.5	83.9
207	8	109	9	58.5	70	118	M6×1	56	36	135.8	92.6

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

4. The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.


Π

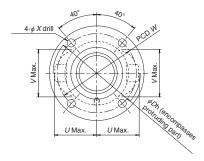
 \blacksquare

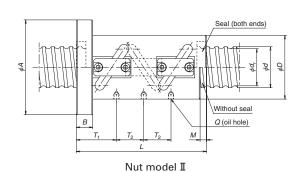
 \prod

 \blacksquare

Π

HTF5012-7.5

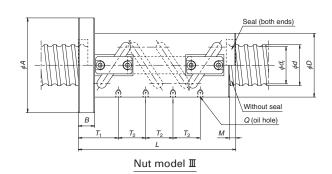

HTF5012-10


HTF5512-7.5

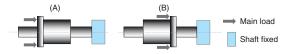
HTF5512-10

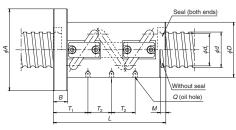
HTF6312-7.5

HTF6312-10



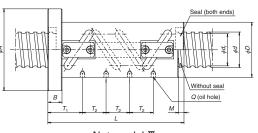
	Lead	Shaft dia.	Root dia.	Effective ball		Basic load				
Model No.		uia.	uia.	turns Turns ×	Nut model	Dynamic	Static			
	1	d	d _r	Circuits	model	C _a	C_{0a}	D	A	В
HTF5014-7.5	14	50	41.7	2.5×3	П	264	623	80	114	28
HTF5514-7.5	14	55	46.7	2.5×3	П	270	696	85	119	28
HTF6314-7.5	14	63	54.7	2.5×3	П	291	800	94	128	28
HTF6314-10	14	63	54.7	2.5×4	Ш	373	1 070	94	128	28
HTF8014-7.5	14	80	71.7	2.5×3	П	327	1 020	116	150	28
HTF8014-10	14	80	71.7	2.5×4	Ш	418	1 360	116	150	28
HTF5016-7.5	16	50	39	2.5×3	П	383	818	95	129	28
HTF5516-7.5	16	55	44	2.5×3	П	399	922	99	133	28
HTF6316-7.5	16	63	52	2.5×3	П	429	1 050	105	139	28
HTF6316-10	16	63	52	2.5×4	Ш	549	1 410	105	139	28
HTF6316-10.5	16	63	52	3.5×3	П	562	1 450	105	139	28
HTF6316-14	16	63	52	3.5×4	Ш	720	1 930	105	139	28
HTF8016-7.5	16	80	69	2.5×3	П	478	1 340	120	154	32
HTF8016-10	16	80	69	2.5×4	Ш	612	1 790	120	154	32
HTF8016-10.5	16	80	69	3.5×3	П	627	1 870	120	154	32
HTF8016-14	16	80	69	3.5×4	Ш	802	2 490	120	154	32
HTF10016-7.5	16	100	89	2.5×3	П	529	1 710	145	185	32
HTF10016-10	16	100	89	2.5×4	Ш	677	2 280	145	185	32
HTF12016-7.5	16	120	109	2.5×3	П	572	2 050	173	213	32
HTF12016-10	16	120	109	2.5×4	Ш	732	2 730	173	213	32




- 2. Please consult NSK if load exceeds the allowable axial load (Fa max.).
- 3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
- 4. The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.

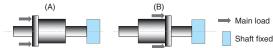
		m	

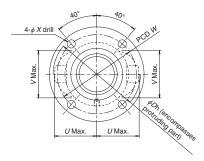
	Unit: mm										
		Allowable a:	Allowable axial load (kN)								
			Mounting	*See below							
L	. M W X U V Dh Q T ₁									[A] Recommended	[B]
200	10	97	9	55.5	61	112	M6×1	66.5	42	98.6	75.8
200	10	102	9	57.5	65	116	M6×1	66.5	42	112.4	847
200	10	111	9	61.5	72	124	M6×1	66.5	42	135.3	100.5
242	10	111	9	61.5	72	124	M6×1	66.5	42	162	109.7
200	10	133	9	72	87	146	M6×1	66.5	42	180	136.2
242	10	133	9	72	87	146	M6×1	66.5	42	220.6	151.1
223	10	112	9	68	66	137	Rc1/8	73	48	124.8	106.2
223	10	116	9	70	70	141	Rc1/8	73	48	143.1	119.2
223	10	122	9	72.5	76	146	Rc1/8	73	48	174.2	139.9
271	10	122	9	72.5	76	146	Rc1/8	73	48	202.3	152.4
271	10	122	9	72.5	76	146	Rc1/8	73	64	210.6	157.9
335	10	122	9	72.5	76	146	Rc1/8	73	64	233.8	165.5
227	10	137	9	80	92	161	Rc1/8	77	48	240.6	182.3
275	10	137	9	80	92	161	Rc1/8	77	48	289.6	200.3
275	10	137	9	80	92	161	Rc1/8	77	64	305.7	209.4
339	10	137	9	80	92	161	Rc1/8	77	64	351.2	220.9
227	10	165	11	91	109	184	Rc1/8	77	48	318.1	242.8
275	10	165	11	91	109	184	Rc1/8	77	48	391.3	270.5
227	10	193	11	104	126	210	Rc1/8	77	48	387.4	305.8
275	10	193	11	104	126	210	Rc1/8	77	48	482.6	346.1

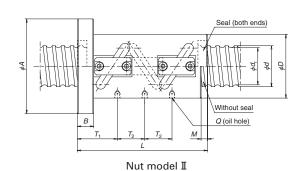


Nut	model]

	Load Shaft Root Effective ball Basic load rating									
N 4I - I N I -	Lead	dia.	dia.	turns	Nut	Dynamic	Static			
Model No.	1	d	d _r	Turns × Circuits	model	C _a	C_{0a}	D	А	В
HTF6320-7.5	20	63	49	2.5×3	П	572	1 320	117	157	32
HTF6320-10	20	63	49	2.5×4	\blacksquare	732	1 760	117	157	32
HTF6320-10.5	20	63	49	3.5×3	П	749	1 810	117	157	32
HTF8020-7.5	20	80	66	2.5×3	П	639	1 690	130	170	32
HTF8020-10	20	80	66	2.5×4	${\mathbb H}$	818	2 250	130	170	32
HTF8020-10.5	20	80	66	3.5×3	Π	838	2 300	130	170	32
HTF10020-7.5	20	100	86	2.5×3	П	713	2 140	145	185	32
HTF10020-10	20	100	86	2.5×4	Ш	914	2 850	145	185	32
HTF10020-10.5	20	100	86	3.5×3	П	935	2 920	145	185	32
HTF10020-14	20	100	86	3.5×4	Ш	1 200	3 890	145	185	32
HTF12020-7.5	20	120	106	2.5×3	П	775	2 550	173	213	40
HTF12020-10	20	120	106	2.5×4	Ш	993	3 400	173	213	40
HTF12020-10.5	20	120	106	3.5×3	Π	1 020	3 530	173	213	40
HTF12020-14	20	120	106	3.5×4	Ш	1 300	4 710	173	213	40
HTF14020-7.5	20	140	126	2.5×3	I	829	3 000	204	250	40
HTF14020-10	20	140	126	2.5×4	Ш	1 060	4 000	204	250	40
HTF6325-10.5	25	63	49	3.5×3	П	749	1 810	117	157	32
HTF8025-7.5	25	80	64	2.5×3	Π	829	2 020	145	185	40
HTF10025-7.5	25	100	84	2.5×3	П	917	2 550	159	199	40
HTF10025-10	25	100	84	2.5×4	Ш	1 170	3 400	159	199	40
HTF10025-10.5	25	100	84	3.5×3	П	1 200	3 490	159	199	40
HTF10025-14	25	100	84	3.5×4	Ш	1 540	4 650	159	199	40
HTF12025-7.5	25	120	104	2.5×3	П	990	3 080	173	213	40
HTF12025-10	25	120	104	2.5×4	Ш	1 270	4 110	173	213	40
HTF12025-10.5	25	120	104	3.5×3	П	1 300	4 200	173	213	40
HTF12025-14	25	120	104	3.5×4	Ш	1 660	5 600	173	213	40
HTF14025-7.5	25	140	124	2.5×3	П	1 050	3 610	204	250	40
HTF14025-10	25	140	124	2.5×4	В П 4 Ш В П	1 350	4 810	204	250	40
HTF14025-10.5	25	140	124	3.5×3		1 380	4 910	204	250	40
HTF14025-14	25	140	124	3.5×4		1 770	6 540	204	250	40
HTF16025-7.5	25	160	144	2.5×3		1 140	4 140	234	280	40
HTF16025-10	25	160	144	2.5×4	Ш	1 450	5 520	234	280	40

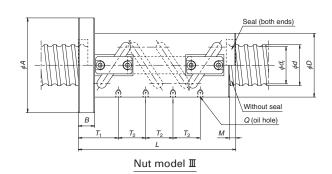

Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.


- 2. Please consult NSK if load exceeds the allowable axial load (Fa max.).
- 3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.
- 4. The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.



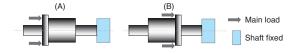
Nut model **I**I

					Allowable a:	xial load (kN)					
				Ball nut	dimensi	ons				Mounting	*See below
L	М	W	Χ	U	V	<i>D</i> h	Q	<i>T</i> 1	<i>T</i> ₂	[A] Recommended	[B]
273	12	137	11	83.5	81	168	Rc1/8	88	60	203.6	170.6
333	12	137	11	83.5	81	168	Rc1/8	88	60	229.6	184
333	12	137	11	83.5	81	168	Rc1/8	88	80	239.4	191.1
273	12	150	11	89.5	96	181	Rc1/8	88	60	291.6	228.2
333	12	150	11	89.5	96	181	Rc1/8	88	60	340.2	248.1
333	12	150	11	89.5	96	181	Rc1/8	88	80	352.5	255.9
273	12	165	11	97.5	114	196	Rc1/8	88	60	394.9	289
333	12	165	11	97.5	114	196	Rc1/8	88	60	474.9	315.3
333	12	165	11	97.5	114	196	Rc1/8	90	80	493.5	325.4
413	12	165	11	97.5	114	196	Rc1/8	90	80	566.8	341.6
281	12	193	11	111	130	223	Rc1/8	96	60	479.9	364.9
341	12	193	11	111	130	223	Rc1/8	96	60	586.3	404.7
341	12	193	11	111	131	223	Rc1/8	96	80	618.5	422.6
421	12	193	11	111	131	223	Rc1/8	96	80	722.4	448.8
281	12	226	14	122.5	148	248	Rc1/8	96	60	575	451
341	12	226	14	122.5	148	248	Rc1/8	96	60	712.4	508
398	12	137	11	83.5	83	169	Rc1/8	98.75	100	225.7	177.1
338	17	165	11	102	100	206	Rc1/8	109.25	75	322.7	266.4
338	17	179	11	108.5	118	219	Rc1/8	109.25	75	454.4	347.2
413	17	179	11	108.5	118	219	Rc1/8	109.25	75	532.4	376.6
413	17	179	11	108.5	118	219	Rc1/8	109.25	100	553.2	389.3
513	17	179	11	108.5	118	219	Rc1/8	109.25	100	619.4	406.9
338	17	193	11	116	135	223	Rc1/8	109.25	75	568.3	415.7
413	17	193	11	116	135	223	Rc1/8	109.25	75	678.1	451.5
413	17	193	11	116	134	233	Rc1/8	109.25	100	704.2	465.9
513	17	193	11	116	134	233	Rc1/8	109.25	100	802.1	487.6
338	17	226	14	127.5	153	258	Rc1/8	109.25	75	690.7	516.4
413	17	226	14	127.5	153	258	Rc1/8	109.25	75	842.6	570
413	17	226	14	127.5	153	258	Rc1/8	109.25	100	883.6	592.4
513	17	226	14	127.5	153	258	Rc1/8	109.25	100	1 030.5	627.2
338	17	256	14	138	173	279	Rc1/8	109.25	75	798.7	616.6
413	17	256	14	138	173	279	Rc1/8	109.25	75	984	689.4


	Lead	Shaft	Root	Effective ball		Basic load	rating (kN)			
Model No.	Leau	dia.	dia.	turns	Nut	Dynamic	Static			
Weder ve.	1	d	d _r	Turns × Circuits	model	C _a	C_{0a}	D	Α	В
HTF14030-7.5	30	140	121	2.5×3	П	1 310	4 110	222	282	50
HTF14030-10	30	140	121	2.5×4	Ш	1 670	5 490	222	282	50
HTF14030-10.5	30	140	121	3.5×3	П	1 710	5 710	222	282	50
HTF16030-7.5	30	160	141	2.5×3	П	1 400	4 760	234	294	50
HTF16030-10	30	160	141	2.5×4	Ш	1 790	6 340	234	294	50
HTF16030-10.5	30	160	141	3.5×3	П	1 830	6 520	234	294	50
HTF20030-7.5	30	200	181	2.5×3	П	1 550	5 960	290	350	50
HTF20030-10	30	200	181	2.5×4	Ш	1 980	7 950	290	350	50
HTF14032-7.5	32	140	118	2.5×3	П	1 590	4 740	222	296	70
HTF14032-10	32	140	118	2.5×4	Ш	2 040	6 320	222	296	70
HTF14032-10.5	32	140	118	3.5×3	П	2 080	6 420	222	296	70
HTF16032-7.5	32	160	138	2.5×3	П	1 660	5 370	234	308	70
HTF16032-10	32	160	138	2.5×4	Ш	2 130	7 160	234	308	70
HTF16032-10.5	32	160	138	3.5×3	П	2 180	7 460	234	308	70
HTF20032-7.5	32	200	178	2.5×3	П	1 840	6 840	290	364	70
HTF20032-10	32	200	178	2.5×4	Ш	2 360	9 120	290	364	70

- Remarks: 1. The ball nut length with no seals is shorter by M than that of a ball nut with seals.

 2. Please consult NSK if load exceeds the allowable axial load (Fa max.).

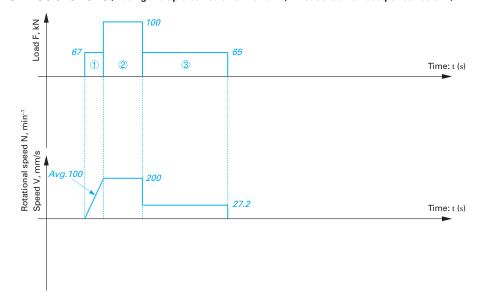

 3. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

 4. The allowable axial load is a value in the case of S clearance. If the clearance amount and mounting conditions differ, please note that the allowable axial load is also different.

Jn		

											Offic. Hilli
				Poll put	dimensi	000				Allowable ax	kial load (kN)
				Dali Hut	aimensi	ONS				Mounting	*See below
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> ₁	T ₂	[A] Recommended	[B]
411	22	252	18	139	160	281	Rc1/8	134.5	90	753.5	596.1
501	22	252	18	139	160	281	Rc1/8	134.5	90	894.7	656.4
501	22	252	18	139	160	281	Rc1/8	134.5	120	942.8	686.3
411	22	264	18	148	177	299	Rc1/8	134.5	90	928.4	689.5
501	22	264	18	148	177	299	Rc1/8	134.5	90	1 128.2	758.4
501	22	264	18	148	177	299	Rc1/8	134.5	120	1 175.8	784.5
411	22	320	18	178	212	359	Rc1/8	134.5	90	1 190.1	920.7
501	22	320	18	178	212	359	Rc1/8	134.5	90	1 470.4	1 031.7
465	22	259	22	148	163	299	Rc1/8	166.5	96	856.9	669.1
561	22	259	22	148	163	299	Rc1/8	166.5	96	1 009.6	731.3
561	22	259	22	148	163	299	Rc1/8	166.5	128	1 057.3	760.7
465	22	271	22	152	181	307	Rc1/8	166.5	96	1 043.7	762.9
561	22	271	22	152	181	307	Rc1/8	166.5	96	1 261.7	834.1
561	22	271	22	152	181	307	Rc1/8	166.5	128	1 332.3	871.7
465	22	327	22	182	215	367	Rc1/8	166.5	96	1 359.2	1 034.9
561	22	327	22	182	215	367	Rc1/8	166.5	96	1 670.5	1 151.7

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws


Custom-made ball screw

_	aotom maat	5 5411 551544									
	Company nam	ne:	Dat	e:				NSK sal	es office		
:	Section:		Per	son in charge:				_)			
,	Address:							[7]			
	Name of mac	hine*1 : <i>Electri</i>	c injection m	nolding machine	; 200-ton c	apacity Applic	cation*	2 :	n axis		
	Drawing/roug	h sketch attac	hed?: ☑Y	∕es □ No							
	*1 Please specif *2 If the applicat	y capacity of the r	nachine in ca olding machi	se of injection mo	olding machi e the axis. (E	ne or press. Examples: injection	on axis a	and clamping a	xis)		
1	. Use co	-	-								
		✓ Shaft rotation		nut Norma	al operation			☐ Smooth o	peration v	vithor	ut impact
	Operating conditions	☐ Shaft rotation ☐ Nut rotation			Degree of vibration/im	nact	✓ Normal operation				
	Contaitions	☐ Nut rotation			lation	puot	Operation as	ssociated with	impac	t or vibration	
	Direction of load*3	✓ C-C □ T-	_		Other	Mounting orientation					
	or load**		Brand name	See attachmer High-load grease wit				☐ Vertical (Inc	dicate the dir	ection	of gravity.)
	Lubricant		Maker:	pressure additive)	How to reple	enish	☐ Grease o	un N	1 Aut	omatic
	Request	✓ NSK recon	nmended	☐ Your reque	et	lubricant			,		
	for oil hole Necessity	- NOIC TOOON	IIIIciiaca					,	cm³/		cycles)
	of seals	✓ Yes		☐ No		NSK S1 neces	ssary?	✓ NSK recon	nmended [☐ Not	necessary
	Environment	Temperature (40 deg) P	articles / ☐ Yes ☑No	(Size of par	ticle : a) -0.1, b) ov	er 0.1-0.	3, c) over 0.3- ,	d) Ingredier	nt:)
	Surface treatment	✓Not require	temperature ch	rome platii	ng 🗌 Fluorid	le low-te	emperature chr	ome platin	g	Other	
	Quantity in mass-production	/Mon	th	/Year	/Lot	Quantity used per machine 1 pcs			pcs./	machine	
		cify loading direc	tion code on t	the figures below.	(Shaft five						
			tion code on	ine rigures below.	(Silait lixe	u. □, Maiii loai	u.		—		
		==		_		= =	_		┱	-	
	a) C-C (NSK recommended)		b) T-T		c) T-C			d) C-T		
							-	←	- I	_	
	a') C-C				c') T-C		·	d') C-T			
2. Specifications											
	Shaft diameter \$\phi\$ 63 mm Lead 16 mm Accura grade				Accurac grade	Ct7	Axia	l play	0.050 or less mm max		ım max.
Nut model No. $\begin{array}{c cccc} HTF\text{-}SRC & Effective \\ \hline 6316\text{-}7.5\text{-}S1 & turns of balls \\ \end{array}$ $\begin{array}{c cccc} 2.5\times3 & \text{Directic} \\ \text{of turn} \\ \end{array}$				Direction of turn	right		d length/ Il shaft length	800	/	1200	
	Special note /	Requests									

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart (If using multiple ball screws in an axis, fill out the axial load per ball screw.)

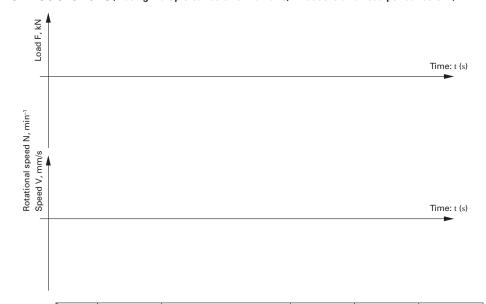
	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	Heiliaiks
1	<i>67</i>		100	0.1	10	
2	100		200	0.5	100	
3	<i>65</i>		27.2	7	190	
4	0		0	10.4	0	
(5)				Total: 18	Total: 300	
6			1			
7						
8						
9						
10						
Dynamic	axial load (Max	c.)*: 100	(kN)	Static axial load	(Max.)*(at 0 mm	n/s): (kN)
Stroke in	Stroke in normal use:		(mm)	Maximum stroke: 500 (mm)		m)
Cycle time:		18	(s)	Required life:	h or \square cycles)	

4. Plan to conduct the endurance test of the ball screw?

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws


Custom-made ball screw

Company nam	e:	Date	e:				L	NSK sal	es office	
Section:		Pers	son in ch	arge:			П	\rangle		
Address:								'		
Name of mach	nine*1 :					Applic	ation*2			
Drawing/roug										
*1 Please specify *2 If the applicat	capacity of the notion is injection m	nachine in cas olding machir	se of injectione, please in	on mo	lding machi e the axis. (E	ne or press. xamples: injectio	n axis and	d clamping a	xis)	
1. Use co	nditions	5								
Operating	Shaft rotation			Norma	al operation	Degree of	[Smooth o	peration wit	hout impact
conditions	☐ Shaft rotation☐ Nut rotation		ut 🗀 '		ive operation	vibration/imp	Jact	Normal (
	☐ Nut rotation		nuit —		lation					pact or vibration
Direction of load*3	☐ C-C ☐ T- (Refer to figur	_	☐ C-1	Γ L	Other	Mounting orient	tation I			tion of gravity.)
Lubricant		Brand name	e:		1					
	□ Oil \	Maker:				How to reple	nish [Grease g	gun 🗆 A	Automatic
Request for oil hole	☐ NSK recom	nmended	☐ Your r	eque	st	Tublicant	(cm³/	cycles)
Necessity of seals	☐ Yes			No		NSK S1 neces	sary?	NSK recon	nmended \square	Not necessary
Environment	Temperature (deg) Pa			(Size of part	icle : a) -0.1, b) ove	er 0.1-0.3,	c) over 0.3- ,	d) Ingredient:)
Surface treatment Not required Low-temperature chrome plating Fluoride low-temperature chrome plating								☐ Other		
Quantity in mass-production	/Mont	h	/Year		/Lot	Quantity use per machine			p	cs./machine
*3 Please spe	cify loading direc	tion code on t	he figures b	oelow.	(Shaft fixed	d: , Main load	l: 🔷)			
a) C-C (I	NSK recommended)		b) T-T			c) T-C			d) C-T	
a') C-C			b') T-T			c') T-C			d') C-T	
2. Specifi	cations									
Shaft diameter	φ mm	Lead	1	mm	Accuracy grade	<i>'</i>	Axial p	olay		mm max.
Nut model No.		Effective turns of balls			Direction of turn	1	Thread I Overall	ength/ shaft length		/
Special note /	Requests									

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart (If using multiple ball screws in an axis, fill out the axial load per ball screw.)

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	Heiliaiks
1			1			
2						
3						
4			1			
(5)						
6			! !			
7						
8						
9			1			
10						
Dynamic	ynamic axial load (Max.)*:		(kN) 5	Static axial load	(Max.)*(at 0 mn	n/s): (kN)
Stroke in	Stroke in normal use:		(mm)	/laximum stroke	e: (m	m)

4. Plan to conduct the endurance test of the ball screw?

*If using multiple ball screws in an axis, fill out the axial load per ball screw.

Required life:

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

(h or cycles)

Cycle time:

B-3-3.6.1 VSS Type for Contaminated Environments

1. Features

High dust-resistance

Specially profiled screw shaft grooves and high performance seals prevent the entry of fine contaminants. Reduces particle penetration rate to less than 1/15 of existing standard products.

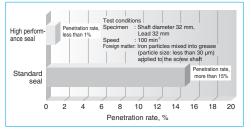


Fig. 1 Particle penetration rate

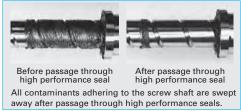


Fig. 2 Contamination before and after particle penetration test

Long life

High performance seals extend ball screw durability under severely contaminated environments with iron powder.

Extreme durability tests under contaminated environments show the durability of the VSS type extends more than four times longer than our existing type with a standard seal.

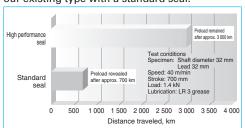


Fig. 3 Extreme durability test results using iron particles

High speed

For ultimate smoothness of ball recirculation, the internal ball recirculation system enables high-speed operation at a maximum of d·n **B535**

150 000. Large lead specifications allow highspeeds of 150 m/min.

Low-noise

Reduces noise level by more than 6 dB(A) compared with our conventional tube-type ball screws, thereby providing low-noise and good noise tone features.

Compact size

Ball nut external diameter is up to 25% smaller than our conventional models.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in **Fig. 4**.

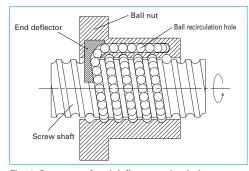


Fig. 4 Structure of end deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Avial play	Z, 0 mm (preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 150 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹ Note: Please also review critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) High performance seal

High performance seal (Japanese patents: 3646452, 3692203) with special lip that contacts screw shaft cross-section and prevents entry of fine contaminants.

(5) Lubrication unit

Incorporates NSK K1 Iubrication unit to sufficiently lubricate the high performance seal lip, reduce friction, and improve durability.

(6) optional

Non-contact metal protector that traces the ball screw grooves and safeguards the seal against high-temperature foreign matter.

conditions. If not, we cannot install the ball nut on the screw shaft.

the screw must meet either one of the following

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

High performance seals may increase torque, which may in turn increase temperature. Please inform NSK about your service conditions using the technical data sheet on page B544.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

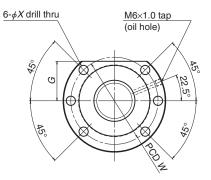
3. Design precaution

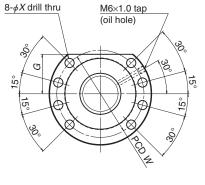
When designing the screw shaft end, one end of

4. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

♦ Reference number for ball screw


5. Handling Precautions


Maximum operating temperature: 50°C Maximum momentary operating temperature: 80°C

Chemical precautions: Never expose the ball screw to grease-removing organic solvents such as hexane or thinner. Never immerse the ball screw in kerosene or rust preventive oils which contain kerosene. The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

VSS

View X-X

Screw shaft diameter d = 32 mm

Screw shaft diameter $d \ge 40 \text{ mm}$

	Shaft dia.	Lead	Root dia.	Effective	Basic load	l rating (N)	A . I II.
Model No.				turns of	Dynamic	Static	Axial rigidity
Model No.				balls			(NI/www)
	d	l	d _r		C_{a}	C_{0a}	(N/µm)
VSS3210-6E		10		6	50 900	110 000	720
VSS3216-5E	32	16	27.2	5	44 300	90 800	600
VSS3220-5E	32	20	27.2	5	43 900	91 200	596
VSS3232-4E		32		4	32 100	65 800	421
VSS4040-4E	40	40	34.4	4	42 900	94 300	513
VSS5050-4E	50	50	44.4	4	47 400	117 000	606

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

- 2. Rigidity in the table is theoretical value obtained from the elastic deformation between screw groove and ball when the preload is 1.5% of the basic dynamic load rating, and axial load is applied to it. Refer to "Technical Description" (page B37) if axial load and preload differs from the conditions above, or when considering change in the deformation of the ball nut itself.
- Products with axial play may have a partially negative play (preloaded condition) depending on screw length. Refer to "Manufacturing range of effective screw length in combination of accuracy grade and axial play" (page B20).

ĻΣ	<u>B/2</u>	B/2	High perfo (both end		+ K1 + (protector)
d d d	•	-	96 <i>Q</i> \$		Po
└ ─X	VC_B		L	F	<u>vc</u>

			Ball	nut dimens	ions				
Nut entire	Nut outside	Flange outside	Flange	Nut	Notch size	Seal installation	Bolt hole	Bolt hole	Maximum
length	diameter	diameter	width	length		dimensions	PCD	dimensions	shaft length
L	D	Α	В	F	G	VC	W	X	
132				89.5					
150	F0	00	40	107.5	0.4	0.4.5	74		0.000
169	56	86	18	126.5	34	24.5	71	9	2 800
122				79.5					
144	70	100	22	94	38.5	27.5	85	9	3 800
164	82	118	22	114.5	46	27.5	100	11	5 000

1. Features

Highly dustproof

Particle penetration ratio reduced to less than 1/30 of existing standard seals, thus contributing to longer service life for machine tools.

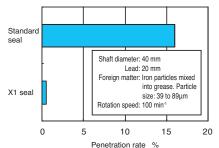


Fig. 1 Results of particle penetration rate test

Superior grease retention

Automatically adding grease makes it possible to reduce the amount used and keep it from spattering.

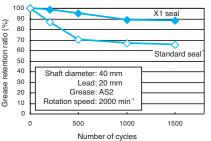


Fig. 2 Results of grease leakage test

Contact seal with low torque

Optimizing the seal shape reduces torque and enhances seal performance.

2. Specifications

(1) Structure

The ball screw with X1 seals has a double seal structure combining a dustproof seal and a grease-retaining seal.

Fig. 3 Seal structure

(2) Scope of application in NSK Ball Screw series This series is standard for the following four

B-3-3.6.2 Ball Screw with X1 Seals for Contaminated Environments and Grease Retention

Ball screws	HMS type	Nut model: ZFRC
for high-speed machine tools	HMD type	Nut model: EM
	BSS type	Nut model: BSS
	Deflector (bridge) type	Nut model: ZFD

For specifications other than the above, please consult NSK. Table 1 shows the minimum nut outer diameter on which X1 seals can be mounted.

Table 1 The minimum nut outer diameter on which X1 seals can be mounted

Shaft diameter: 32 mm	56 mm
Shaft diameter: 40 mm	70 mm (68 mm)
Shaft diameter: 45 mm	75 mm (73 mm)
Shaft diameter: 50 mm	82 mm (78 mm)

Values in parentheses are applicable to the deflector (bridge) type

(3) Accuracy grade / axial play

Table 2 shows standard tolerance classes and axial clearances. Please consult NSK for tolerance classes other than those in the table.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(4) Design-related precautions

When designing the screw shaft end, assume that the end of the screw shaft is cut.

The temperature will increase somewhat when torque is applied if an X1 seal is attached. Please inform NSK about your service conditions using the technical data sheet on page B544.

Maximum overall shaft length is 2900 mm.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

The right hand screw is the standard. For specifications on left hand screws, contact NSK.

Fig. 4 External appearance

3. Example of reference number

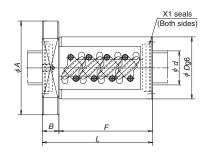
A structure of "Reference number for ball screw" is as follows.

Note: "X1" is added at the end of "nut model code" and "Specifications number".

W4010-**ZMX1-C5Z16

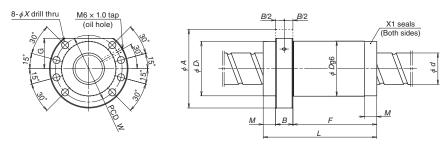
X1 seal equipped type ball screw code

4. Precautions for use

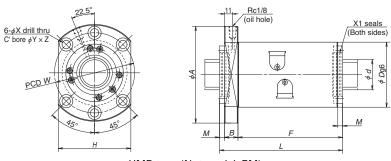

Temperature range for use: Maximum

temperature: 60°C

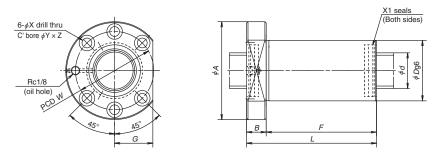
(at outside diameter of ball nut)


Chemicals that should not come to contact:
Do not leave ball screw in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.


HMS type (Nut model: ZFRC)

Applicable dimensions for HMS type Unit: mm Shaft dia. Lead Basic load rating (N) Nut dimensions Model No. Dynamic Static Bolt holes В D Α G W d ZFRC3205-10 32 107 6.5 5 21 800 56 000 87 20 58 85 32 6.6 11 71 ZFRC4010-10 10 61 200 137 000 173 151 82 124 47 102 22 40 11 17.5 11 ZFRC4012-10 12 71 700 154 000 197 175 86 128 48 106 ZFRC4508-10 8 44 000 118 000 146 124 22 82 124 47 11 17.5 11 102 ZFRC5010-10 10 68 100 174 000 174 151 93 135 51 11 17.5 11 113 23 ZFRC5012-10 177 100 55 12 91 500 218 000 200 146 14 13 122


End deflector type (Nut model: BSS)

Applicable din	nension	s for En	d deflect	or type									Ur	nit: mm
	Shaft dia.	Lead	Basic load	d rating (N)				Ν	lut din	nensio	ns			
Model No.			Dynamic	Static	,	F	М	В	D	D,	A	G	Bolt I	noles
	d	l	C _a	C_{0a}		F	IVI	Б	D	D_1	A	G	X	W
BSS3205-4E	32	5	16 800	41 700	77	46	19	12	56	55	86	34	9	71
BSS3210-6E	32	10	50 900	110 000	114	80.5	15.5	18	50	55.5	00	34	9	/ 1
BSS4010-5E	40	10	58 100	130 000	112	73	17	22	70	69	100	38.5	9	85
BSS4020-5E] 40	20	57 400	130 000	159	120	17	~~	22 70	09	100	38.5	9	00
BSS5010-4E	50	10	52 600	129 000	159	120	17	22	82	81	118	46	11	100

HMD type (Nut model: EM)

Applicable din	nension	s for HI	/ID type											Un	it: mm
	Shaft dia.	Lead	Basic load	l rating (N)				N	ut dim	ensio	ns				
Model No.			Dynamic	Static	,	F	М	В	D	A			Bolt	holes	
	d	l	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	L	Г	IVI	D	D	A	Н	X	Y	Z	W
EM4016-4E	40	16	66 900	131 000	172	148	6	18	86	128	96	11	17.5	11	106
EM4020-6E	7 40	20	77 900	166 000	164	139	7	10	00	120	30	' '	17.5	''	100
EM4516-4E	45	16	69 900	146 000	173	148.5	6.5	18	92	134	102	11	17.5	11	112
EM4520-6E	7 45	20	83 200	187 000	164	139	7	10	32	134	102	' '	17.5	' '	112
EM5016-4E		16	72 700	161 000	173	148.5	6.5								
EM5020-6E	50	20	85 700	205 000	164	139	7	18	98	140	107	11	17.5	11	118
EM5030-6E		30	102 000	235 000	227	202	7								

Deflector (bridge) type (Nut model: ZFD)

Applicable dim	ensions	for Def	lector (brid	dge) type									Un	it: mm
	Shaft dia.	Lead	Basic load	I rating (N)				Nut	dimens	sions				
Model No.			Dynamic	Static	,	F	В	D	Α	G		Bolt	holes	
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	L	F	D	D	А	G	Χ	Y	Z	W
ZFD4005-12		5	26 500	78 300	119	97								
ZFD4006-12	1 40	6	35 600	95 200	135	113	22	2 68	102	40	9	14	8.5	84
ZFD4008-8	40	8	32 000	75 000	131	109								
ZFD4010-8		10	45 200	93 100	153	131	22	68	110	43	11	17.5	11	88
ZFD5010-8	50	10	51 500	122 000	154	131	22	78	120	47	11	17.5	11	00
ZFD5020-6	50	20	52 400	109 000	199	176	23	/8	120	4/	11	17.5	11	98

NSK Data Sheet for Ball Screws in Contaminated Environment

(Please copy) 1/1

Washing machine Location: Workpiece transfer axis

1. Operating Conditions

[Example]

	a) Shaft rotation – nut moving	Stroke in Normal Use	400	[mm]	
Operating Conditions	b) Shaft rotation – shaft moving		(Please indicate operating pattern)		
	c) Nut rotation – nut moving d) Nut rotation – shaft moving	Mounting Orientation	a) Vertical	b) Horizontal	
Lubricant	a) Grease (Brand: AS2 b) Oil (Brand:) Lubricating Method	a) Automatic (cm ³ /	b) Grease gun min)	
Operating Duration	years 6 months A	kial play: 0.1 mm	Seal: standard /		

2. Ball Screw Environment (Accessories & Contamination)

Contaminant	Iron particles and washing solution	Contaminant Size	Particle size 30 µm max							
Cause of Contamination	Does not fall directly on it, but to (Please reference with photographs)	pes not fall directly on it, but there is a possibility that it could happen. ease reference with photographs)								
Countermeasures	a) Telescopic cover —b) Bellow—	-c) Dust colle	ector- -d) Dust-resistant lubricant							
(For already assembled parts,	e) Other ()								
complete after inspection)	(Please supply drawings to demonstra									

3. Ball Screw Dimensions

Screw Shaft Diameter	Ф 32	Lead	5 mm	Accuracy Grade	C5	Axial Play	Z
Nut Model	ZFRC	Effective Turns of Balls	2.5×2	Direction of Turn	Right	Screw/Overall Length	510 / 750

Remarks Request X1 seal

4. Durability Test

Scheduled Scheduled to perform functional evaluation for about 2 months. Durability test Not scheduled (Reason:

> **Ball Screw Use in Contaminated Environments**

- ☐ An evaluation test result of the special dust-resistant seal which NSK carried out is one case by a particular examination condition (alien substance environment and operating conditions). I accept that the special dust-resistant seal is unable to completely prevent contamination in such an environment and that life may be affected.
- ☐ In order to improve wear life in contaminated environments, NSK require dust-proof accessories (covers, lubricating oil, dust collectors, etc) in addition to the recommended seal exchange.
- ☐ Ball screw wear life is greatly impacted by contamination entering the nut, offset load from misalignment, as well as lubricating condition. The final durability comes to need the evaluation confirmation with the actual machine.

Company Name:	Date:		NSK Ltd. Sales Representative	NSK Ltd. Sales Manager
Department:	Name:			
Address:	Tel:	Fax:	Sign	Sign

NSK Ltd.

(Please copy) 1/1

NSK Data Sheet for Ball Screws in Contaminated Environments

Model:	Location:	

1. Operating Condition	ing Conditions	1. Operating
------------------------	----------------	--------------

Operating Conditions	a) Shaft rotation – nut moving b) Shaft rotation – shaft moving		Stroke in Normal Use	[mm] (Please indicate operating pattern)		
operating contained	c) Nut rotation – nut moving d) Nut rotation – shaft moving		Mounting Orientation	a) Vertical	b) Horizontal	
Lubricant	a) Grease (Brand: b) Oil (Brand:)	Lubricating Method	a) Automatic (cm³/	b) Grease gun min)	
Operating Duration	years months	Axial	play: mm	Seal: standard /	·	

2. Ball Screw Environment (Accessories & Contamination)

Contaminant		Contaminant Size	Particle size -				
Cause of Contamination	(Please reference with photograph	s)					
Countermeasures	a) Telescopic cover b) Bellov	c) Dust colle	ector d) Dust-resistant lubricant				
(For already assembled parts, complete after inspection)	e) Other ()					
complete after inspection)	(Please supply drawings to demonstrate dust countermeasures)						

3. Ball Screw Dimensions

Screw Shaft Diameter	φ	Lead	mm	Accuracy Grade	Axial Play	
Nut Model		Effective Turns of Balls		Direction of Turn	Screw/Overall Length	1

Remarks	

4. Durability Test

Durability test	Scheduled
	Not scheduled (Reason:

Ball Screw Use in Contaminated Environments

- ☐ An evaluation test result of the special dust-resistant seal which NSK carried out is one case by a particular examination condition (alien substance environment and operating conditions). I accept that the special dust-resistant seal is unable to completely prevent contamination in such an environment and that life may be affected.
- ☐ In order to improve wear life in contaminated environments, NSK require dust-proof accessories (covers, lubricating oil, dust **collectors**, **etc**) in addition to the recommended seal exchange.
- ☐ Ball screw wear life is greatly impacted by contamination entering the nut, offset load from misalignment, as well as lubricating condition. The final durability comes to need the evaluation confirmation with the actual machine.

Company Name:	Date:		NSK Ltd. Sales Representative Sign Sign Sign	
Company Name.	Date.		Sales Representative	Sales Manager
Department:	Name:			
Address:	Tel:	Fax:	Sign	Sign

B-3-3.7 TW Series for Twin-Drive Systems

(1) Features

Variations in the lead accuracy and preload torque between two ball screws, which consist of a unit of TW Series, are controlled, resulting improved travel accuracy and ball screw operating lifetime.

Fig. 1 shows measured variation in lead accuracy while Fig. 2 displays an example of variation in thermal expansion between the two ball screws. Fig. 3 is a schematic diagram comparing the travel accuracy between the TW Series and conventional model.

High rigidity and long lifetime

Twin-drive systems are superior to single-drive systems in system rigidity, supporting the design of long-life feeding mechanism even if they make the shaft diameter one size smaller.

- High responsiveness to positioning commands Twin-drive systems permit the use of screw shaft diameters that are one size smaller, thereby reducing screw shaft inertia by up to 50%. offering high responsiveness to positioning commands.
- Improved high-speed capability and noise level Twin-drive systems allow the use of smaller screw diameters, resulting in no increase in the level of noise. The end-deflector recirculation system significantly improves high-speed capability and noise level compared with the existing return tube recirculation system, offering high-speed feeding of up to 1 200 mm/min (shaft dia. 40 mm, lead 30 mm, rotational speed 4 000 min⁻¹).

(2) Specifications

Table 1 Specifications of twin-drive systems

Recirculation	End-deflector recirculation system,
systems	Return tube system, Deflector(bridge type) system
Shaft dia.	32 – 63 mm
Lead	10 – 30 mm
Accuracy grade	C5
Screw shaft length	3 m or less

(3) Optional specifications

- · Hollow shaft ball screw and nut cooling ball screw
- · Provides high accuracy through the use of forced cooling. Please refer to ball screws for high precision machine tools (page B546 to B554) for more details.

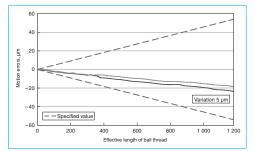


Fig. 1 Example of measured variation in lead accuracy

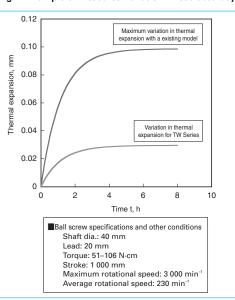


Fig. 2 Calculation example of the variation of thermal expansion

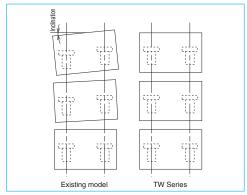


Fig. 3 Schematic diagram of travel accuracy

B-3-3.8.1 Hollow Shaft Ball Screw for High Precision Machine Tools

The increase in speed of the feeding mechanism for highly accurate positioning may require some measures against thermal expansion of the ball screw (forced cooling using hollow ball screw). NSK standardized hollowed screw shafts and shaft ends configuration (sealing section and support bearing seat). NSK recommends this as the most effective measure against thermal expansion.

1. Features

Stable positioning accuracy

Suppresses expansion of the ball screw shaft by rising temperature, and provides stable, precise positioning.

 Prevents displacement of various sections Minimizes deformation of the ball screw support bearings as well as of the machine base which is caused by thermal expansion of ball screw. Forced cooling keeps the heat from spreading to other sections, and prevents the processing table from deforming due to heat.

Reduces warm-up time

Temperature does not rise high, therefore cuts machine warm-up period.

Maintains lubricant's effect

Removes heat from the ball screw, deterring lubricant deterioration.

Easy designing for installation

Use support bearing unit exclusive for NSK ball screws (high speed and high load capacity for machine tools, see page B405) and seal unit (page B549) to standardized shaft end. This makes designing of mounting ball screw easy. NSK also provides nut cooling ball screws. The level of temperature rise for nut cooling ball

3. Model example of dimension table

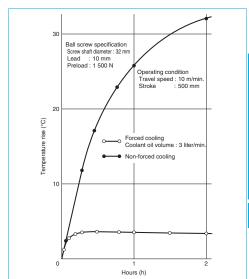
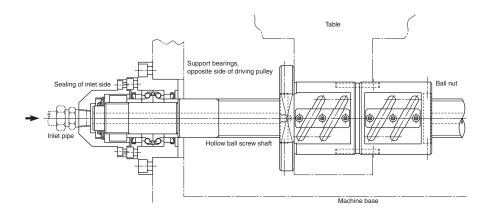
A model number that indicates specification factors is structured as shown below.

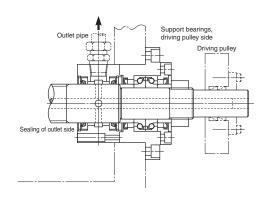
screw is equal to the hollow shaft ball screw thanks to the optimized nut internal design for cooling. Please refer to nut cooling ball screws (page B551) for more details.

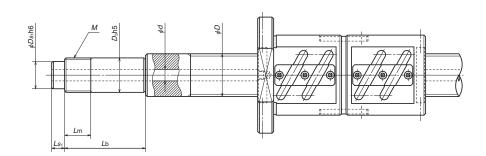
NSK

2. Design precautions

Refer to HMC type, end-deflector recirculation system, return tube recirculation system, and deflector(bridge type) recirculation system for ball screw specifications. If the overall ball screw length exceeds 3 000 mm, contact NSK. For general precautions regarding ball screw, refer to "Design Precautions" (page B83) and "Handling precautions" (page B103).


Fig. 1 Effect of forced cooling by hollow shaft ball screw



Hollow Shaft Ball Screw

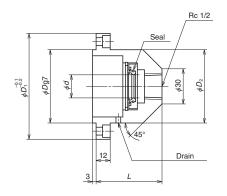
4. Installation example and standard dimensions

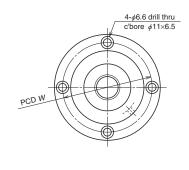
_	φDs₂h6	4-φds	D _b h5	M	Dch6	
()						Plug
	<u>Ls</u>	La	L	Lm b	Lc	Le

- 1	nı	+٠	m	m	
 $\overline{}$		ι.			

	Screw shaft		Bearing seat			Sealing						
Model No.	Diameter	Hollow	Diameter	Lo	ock nut		Inlet			Ou	tlet	
	D	d	<i>D</i> b	М	Lm	<i>L</i> b	Ds₁	Ls ₁	Ds ₂	Ls ₂	La	ds
H32-10	32	10	25	M25×1.5	26	89 104 119	20	15	32	60	25	6
H40-12	40	12	30	M30×1.5	26	89 104 119	25	15	40	60	25	7
H50-15	50	15	40	M40×1.5	30	92 107 122	32	15	50	65	27	8

Votes:	1.	Plea	se	С	or	nsult	NSK	for	other	models.	

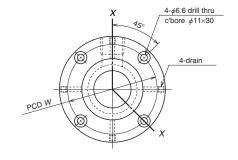

^{2.} See B416 for bearing combination symbols.

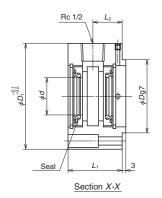

Drive	Orive side Spanner flats		Applicable		Equipped	l seal unit	
DIIVE	side	эрапп	ei iiats	support	Used bearing	Shaft end	Shaft outer
Dc	Lc	W	Le	unit		Shart end	surface
				WBK25DF-31H	25TAC62CSUHPN7C DF combination		
20	40	17	8	WBK25DFD-31H	25TAC62CSUHPN7C DFD combination	WSK20A-01	WSK32B-01
				(25TAC62CSUHPN7C DFF combination)			
				WBK30DF-31H	30TAC62CSUHPN7C DF combination		
25	50	22	10	WBK30DFD-31H	30TAC62CSUHPN7C DFD combination	WSK25A-01	WSK40B-01
					(30TAC62CSUHPN7C DFF combination)		
				WBK40DF-31H	40TAC72CSUHPN7C DF combination		
35	70	30	13	WBK40DFD-31H	40TAC72CSUHPN7C DFD combination	WSK32A-01	WSK50B-01
				WBK40DFF-31H	40TAC72CSUHPN7C DFF combination		

5. Seal units for hollow ball screw shaft (available by order)

This is an exclusive joint for coolant of the hollow ball screw shaft.

A Type (for shaft end)





Unit: mm

Reference No.	d	D	D_1	D_2	L	W	Fixing bolt
WSK20A-01	20	57	85	57	56	70	M6
WSK25A-01	25	57	85	57	56	70	M6
WSK32A-01	32	69	95	67	61	80	M6

B Type (for shaft outer surface)

		Seal \(\bigcap \limits_1 \\ \sigma^3 \\ \sigma \text{Section } \(X - X \) \(\sigma \text{Shape of the position } \)						
							Unit: mm	
Reference No.	d	D	D_1	L ₁	L_2	W	Fixing bolt	Screw
WSK32B-01	32	57	85	46	25	70	M6	ew
WSK40B-01	40	57	85	46	25	70	M6	
WSK50B-01	50	69	95	49	27	80	M6	

♦ Handling precautions

- Use NSK support unit (high speed and high load capacity for machine tools on page B405) for installation in order to maintain the eccentricity between screw shaft and seal unit.
- Apply grease to the lip section for protection at the time of installation to the ball screw.
- · Make certain that the drain holes (one for A Type, four for B Type) of the seal unit directly face downward when the unit is installed.

B-3-3.8.2 Nut Cooling Ball Screws for High Precision Machine Tools

Nut cooling ball screws are easily cooled with a ball nut cooling system and are ideal for use in high-speed and high-precision machine tools that have nut cooling systems.

Using nut cooling ball screws makes it possible to cool long ball screws that are difficult to cool with hollow-core cooling, and they accommodate the broad high-precision needs of machine tools both small and large.

1. Features

Cooling effects

By optimizing the cooling structure inside the nut, cooling capacity equivalent to hollow shaft cooling has been achieved. The nut in contact with the table is cooled, so that heat conduction from the table to the ball screw is blocked. Moreover, by cooling hollow shaft in parallel, the screw shaft and ball nut can be cooled at the same time for even more precise temperature control.

Internal design in consideration of preload torque change

The nut cooling ball screw has double contactpoint preload in the tensile direction. This prevents an increase in preload torque when the nut is cooled, enabling effective cooling of the ball screw.

Cooling structure

The cooling fluid goes in a balanced way through the nut. Double nuts have separate coolant routes for each nut for efficient cooling. Cooling fluid does not go through the inside of spacers, so coolant fluid does not leak even when preload drops and airtightness is maintained.

Improved handling

Ball screws can be cooled by simply attaching piping to the exterior flange part.* Sliding seals and rotary joints that are required for hollow shaft cooling are not needed. Dimensions for mounting area (without nut cooling) are the same as conventional products, so the nut cooling can be implemented without changing machine designs. *When cooling double nuts, piping is required on the nut end face on the other side of the flange.

 Long ball screws can be cooled at a low cost Since these products are suitable for long ball screws for which hollow hole processing is difficult, improved precision of large machine tools can be achieved at a low cost.

2. Cautions regarding design

If heat impact from the bearing is too great, separate cooling for bearing and surrounding areas is recommended. For details, please contact NSK.

♦ Reference number for nut cooling ball screw

W4012-**ZMNC-C5Z20

Nut cooling ball screw code

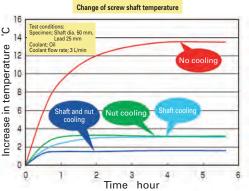
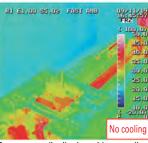



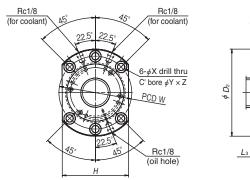
Fig. 1 Effect of forced cooling by nut cooling ball screw

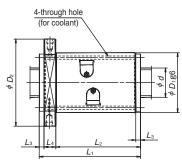
RI E1.00 95.09 FAST ANS 25. Nut cooling Temperature distribution with nut cooling

Temperature distribution without cooling

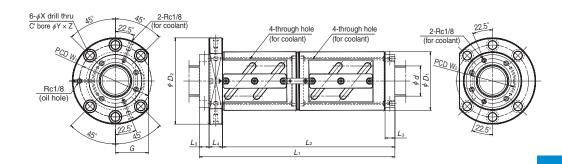
Fig. 2 Effect of forced cooling by nut cooling ball screw

Cooling structure




Single nut

Double nut


Fig. 3 Cooling structure of a nut cooling ball screw

Single nut cooling ball screws (for HMD type, nut type: EM)

Double nut cooling ball screws (tube-type, nut type: DFT)

Applicable dimensions for HMD type

Applicable di	mensio	ns for l	HMD ty	/pe								L	Jnit: mm
Model No.	Shaft dia.	Lead					Nut dim	ensions					
wiodei No.	d	l	D_1	D_2	Н	L,	L_2	L ₃	L ₄	W	X	Y	Z
EM4016-4E		16				166	140.5						
EM4020-6E	40	20	86	128	96	156	130.5	7.5	18	106	11	17.5	11
EM4025-6E	1 40	25	00	120	90	188	162.5	7.5		100	11	17.5	
EM4030-6E		30				219	193.5						
EM4516-4E		16				166	140.5						
EM4520-6E	45	20	92	134	102	156	130.5	7.5	18	112	11	17.5	11
EM4525-6E		25				188	162.5						
EM5016-4E		16				166	140.5						
EM5020-6E	50	20	98	140	107	156	130.5	7.5	10	118	11	17.5	11
EM5025-6E	- 50	25	90	140	107	188	162.5	7.5	18	110	11	17.5	
EM5030-6E		30				219	193.5						
EM6316-4E	63	16	122	180	138	176	139	9	28	150	18	26	17.5

Dimensions for tube type

Dimensions to	or tub	е туре											U	nit: mm
Model No.	Shaft dia.	Lead				1	Nut dim	ensions	S					
iviouei ivo.	d	l	D_1	D_2	L,	L ₂	L ₃	L ₄	G	W ₁	X	Y	Ζ	W ₂
DFT5010-7.5		10	93	135	303	275	10	18	51	113	11	17.5	11	73
DFT5012-5	50	12	100	146	279	245	12	22					13	
DFT5016-5	30	16	100	146	344	306	16	22	55	122	14	20		78
DFT5020-3		20	100	146	327	279	20	28						
DFT5510-5	55	10	102	144	243	215	10	18	54	122	11	17.5	11	80
DFT6310-7.5		10	108	154	307	275	10	22	58	130	14	20	13	88
DFT6312-5	63	12	115	161	279	245	12	22	61	137	14	20	13	91
DFT6316-5	03	16	122	180	350	306	16	28	69	150	18	26	17.5	93
DFT6320-5		20	122	180	407	359	20	28	09	150	18	20	17.5	93
DFT8010-5		10	130	176	247	215	10	22	66	152	14	20	13	108
DFT8012-5	80	12	136	182	279	245	12	22	68	158	14	20	13	110
DFT8016-5	00	16	143	204	350	306	16	28	77	172	18	26	17.5	112
DFT8020-5		20	143	204	407	359	20	28] ′′	1/2	10	20	17.5	112
DFT10012-5		12	160	220	285	245	12	28	82	188	18	26	17.5	134
DFT10016-5	100	16	170	243	354	306	16	32	91	205	22	32	21.5	136
DFT10020-5		20	170	243	411	359	20	32))	200	22	32	21.5	130

B-3-3.9 ND Series for Nut-Rotatable Drives

This product is patented by NSK.

A nut rotatable ball screw is developed as a unit into which angular contact support ball bearings are integrated. It is best suited for an application that requires rotation of the ball nut while the screw shaft is fixed.

NDT model

1. Structure

Balls are installed between the assembly housing and the ball nut. The outer bearing rings are integrated into the assembly housing and thus, compact design are attained.

A timing pulley (prepared by the user) is directly secured to the end face of the nut.

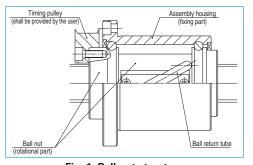


Fig. 1 Ball nut structure

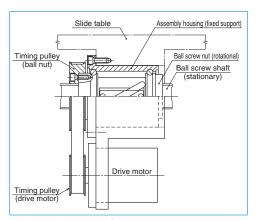


Fig. 2 Example of installation to the table

2. Features

Multi-nut drive

Two or more nut units can be installed in a single ball screw shaft. They can be operated by respective motors.

High operation speed

High feeding speed operation, but yet low rotational speed, is feasible by means of medium to high-helix lead ball screws.

Easy installation

Merely install a mount housing to the table of the machine to take advantage of this multi-nut rotation system.

Simple shaft end configuration

Shaft end configuration is simple because this unit does not need support bearings.

Shaft diameter/lead combination

There are 10 types of "shaft diameter/lead" combinations.

Selections are: Shaft diameters -- 32, 40, 50 mm; Leads -- 20, 25, 32, 40, 50 mm.

Low inertia

Compared to the NSK current product (end cap ball recirculation system), rotational inertia was reduced by 16% at most.

3. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

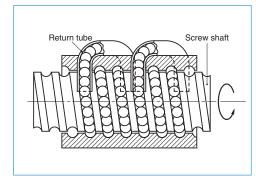


Fig. 3 Structure of ball return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Axial play

Axial play code	Z	Т	S
Axial play	0	0.005 mm or less	0.020 mm or less

Table 2 Combination of accuracy grades and axial play

Accuracy grade	C3	C5	Ct7
Axial play code	Z, T, S	Z, T, S	S

Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Note: The basic concept is the same as that of general ball screws. Refer to "Technical Description: Permissible Rotational Speed" (page B47).

Table 3 Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value	Standard specification High-speed specification	70 000 or less 100 000 or less
Criterion of maximum rotational speed		00 min ⁻¹

d·n value: shaft dia. d [mm] x rotational speed n [min-1]

Critical speed n_c

As shown **Fig. 4**, calculate unsupported length (mm) of L_1 , L_2 , and L_3 (assumed that the nut section is a fixed support.) **Table 4** shows the coefficients "f" of each shaft end mounting condition.

$$n_{\rm c} = f \cdot \frac{d_{\rm r}}{L^2} \times 10^7 \,({\rm min}^{-1})$$
 (III-1)

d_r: Screw shaft root diameter (See the dimension table.)

Li: Unsupported length (mm) (See Fig. 4)

f: Factor determined by the ball screw shaft end mounting condition

Table 4

Shaft end mounting condition	f
Fixed - Fixed support	21.9
Fixed Simple support	15.1
Fixed – Free support	3.4

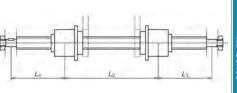


Fig. 4 Installation example

5. Design precautions

One end of the screw thread should be cutthrough to the end. Also, if the nut must be removed from the screw shaft, the user should have an arbor to prevent the balls from falling out during this process. (NSK manufactures arbors on request.)

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

NSK

NDD Type: (Incorporating vibration damper)

An increase in stroke length may restrict required rotational speed of a ball screw due to the issue of critical speed even if there is no problem on $d \cdot n$ limitation.

In such a case, we recommend using NDD Type nut rotatable ball screws equipped with vibration damper.

It will make it possible to operate a ball screw exceeding the critical speed, which is conventionally considered being impossible.

- Notes: 1) However, NDD Type cannot be used exceeding the d·n limitation. Please consult with NSK in such a case.
 - 2) You cannot rotate the screw shaft of NDD Series.

1. Structure

Hollow ball screw shaft has a mechanism to absorb vibration energy (vibration damper). This increases dynamic rigidity of the screw shaft and lowers vibration when exceeding the critical speed.

Construction of the ball nuts are the same as those of NDT Type.

2. Features

- No need for measures against critical speed. Conventionally, an increase in screw shaft diameter or use of intermediate support is the measure against the issue of critical speed. NDD Type ball screw will make these measures needless.
- Dimensional interchageability with NDT Type ball screws

The vibration damper is set inside a ball screw shaft, and therefore, there is no difference with existing series in regards to external dimensions. The ball nuts of NDD Type are interchangeable with those of NDT Type.

Others

Benefits in multiple ball nut on a screw shaft, high feeding speed for long stroke, easy in installation, and low inertia of the ball nuts are the same as NDT Type.

3. Specification

Recirculation system, accuracy grade, axial play and preload system are the same as NDT Type.

4. Design precautions

They are the same as NDT Type.

5. Permissible rotational speed

The d•n value is the same as NDT Type. You don't need to consider the critical speed.

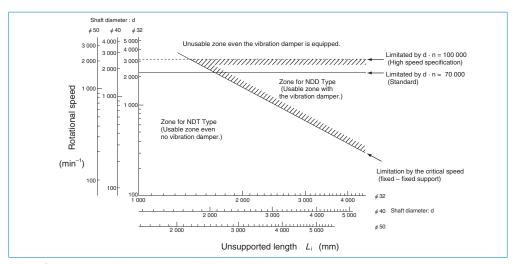
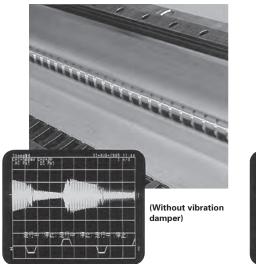



Fig. 5 Compartmentalization between NDT and NDD types to rotational speed and unsupported length

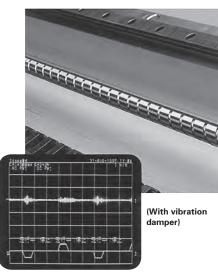


Fig. 6 Vibration of screw shaft when nut is rotating

(Without vibration damper)

(With vibration damper)

Fig. 7 Effect of vibration damper (results of endurance test)

Calculation example of permissible rotational speed

[Calculation example]

Assume a system which moves two nuts on a shaft as shown below.

Does this system operate appropriately if: both ends of the ball screw (shaft diameter 40 mm/ lead 40 mm) are fixed, and the travel speed is at 60 m/min?

[Answer]

The rotational speed n (min⁻¹) when the lead of the ball screw is 40 mm, and the travel speed is at 60 m/min is:

$$n = \frac{60 \times 10^3}{40} = 1500 \text{ (min}^{-1}\text{)}$$

Calculate d • n value

As the d • n value of standard specification is 7 000, therefore, the permissible rotational speed is;

$$n \le \frac{70\ 000}{40} = 1\ 750\ (min^{-1})$$

Calculate critical speed

The maximum unsupported length comes between Nut A and B.

$$L_2 = 3 300 \text{ (mm)}$$

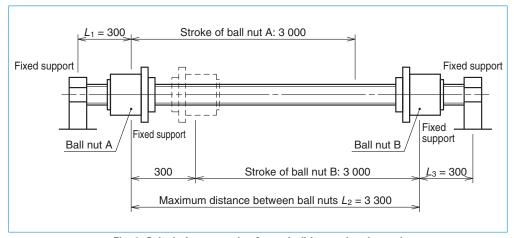
f = 21.9 (Fixed-Fixed)

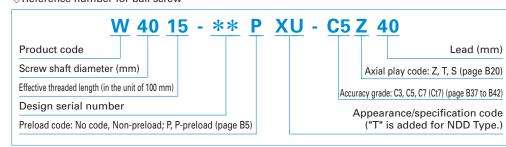
Root diameter: $d_r = 35.1 \text{ (mm)}$

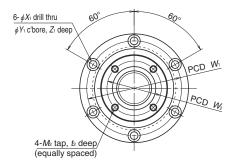
Therefore, the permissible rotational speed is;

$$n \le \frac{21.9 \times 35.1}{3300^2} \times 10^7 = 706 \text{ (min}^{-1}\text{)}$$

The calculation indicates that the d • n value is at the safe level. But the critical speed exceeds the limitation. However, with a vibration damper, the system can be operated at 1 500 min⁻¹.




Fig. 8 Calculation example of permissible rotational speed


Structure of reference number

The followings describe the structure of "Reference number for ball screw".

♦ Reference number for ball screw

Model No.	Shaft dia.	Lead <i>l</i>	Ball dia. <i>D</i> w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective tums of balls Turns × Circuits	Basic load Dynamic C _a	l	Moment of inertia, ball nut J (kg·cm²)	Ball nut mass W (kg)	
NDT NDD 3220-2.5		20	4.762	33.25	28.3	2.5×1	20 700	41 900	6.2	2.9	
NDT NDD 3225-2.5	32	25	4.762	33.25	28.3	2.5×1	20 400	42 200	6.7	3.2	
NDT NDD 3232-1.5 NDT	32	32	4.762	33.25	28.3	1.5×1	13 300	25 200	6.2	2.9	
NDD 3232-3						1.5×2	21 700	45 300			
NDT NDD 4025-2.5		25	6.35	41.75	35.1	2.5×1	34 100	70 100	19.3	6.0	
NDT NDD ^{4032-1.5} NDT	40		32	6.35	41.75	35.1	1.5×1	21 600	41 300	18.0	5.5
NDD 4032-3						1.5×2	35 400	74 400			
NDT NDD 4040-1.5		40	6.35	41.75	35.1	1.5×1	21 200	42 000	19.2	6.0	
NDT NDD 4040-3						1.5×2	34 700	75 600			
NDT NDD 5025-2.5		25	7.938	52.25	44.0	2.5×1	51 300	110 000	45.7	8.5	
NDT NDD 5032-2.5		32	7.938	52.25	44.0	2.5×1	50 900	109 000	48.9	9.4	
NDT NDD 5040-1.5	E0	40	7 020	E2 2E	44.0	1.5×1	32 300	64 600	45.5	0.5	
NDT NDD ⁵⁰⁴⁰⁻³	50	40	7.938	52.25	44.0	1.5×2	52 800	116 000	45.5	8.5	
NDT NDD 5050-1.5	50 700	7 029	7.000		1.5×1	31 700	65 700	10.7	0.4		
NDT NDD 5050-3		50	7.938	52.25	44.0	1.5×2	51 800	118 000	48.7	9.4	

<u>†</u>	Seal (both sides)
AA Ophy	Du de de de de de de de de de de de de de
<u> </u>	T B F

	ni		

					Ball	nut dime	ensions						Tap hole	1	
Nut entire length	Nut outside diameter	Flange outside diameter	Flange width	Nut length	Projection tub	e dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Tap hole o	limensions	PCD		
Ľ	D	Α	В	Ě	D _r	T	X_1	Y_1	Z_1	W_1	M_2	t ₂	W_2		
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50		
120	78	105	12	96	60	12	6.6	11	6.5	91	M6	12	50		
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50	ND Series	
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62	62	
122	100	133	15	92	76	15	9	14	8.5	116	M8	16	62		
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62		
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78		
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78		
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78		
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78		

Notes: 1. The right hand screw is the standard. Consult NSK for the left hand screws.

2. Seals are standard equipment.

B-3-3.10 ∑ Series for Robots

1. Features

 Σ Series (NSK's Robotte) is a ball screw with a high-performance spline. It is ideal for various actuators such as the vertical axis of SCALA type robot.

A ball screw groove and a ball spline groove are made in one shaft, combining the ball screw and the ball spline.

Mount housing, nuts, and support bearings are combined into a single unit.

Timing pulley (prepared by the user) is directly secured at the end face of the nut.

High functions

A single shaft has both feeding mechanism and guide functions. This allows the shaft ends to move back and forth (linear motion), as well as to rotate.

Compact and lightweight

A ball screw nut and a spline nut are placed on one shaft, and a support bearings are also combined to the unit. This allows compact and high-precision design. Hollow shaft is standard to reduce weight. The hollow can be used for wiring and piping. Other components are also designed to be light in weight.

Low inertia

Because of return tube type ball nut of which outside diameter is decreased, low inertia design is enabled.

It reduces the inertia by 19% of conventional products.

2. Functions

As shown in Fig. 1, the ball screw nut and a spline nut are rotated independently to control rotation value. Thereby the shaft can move in any direction -- linear and rotational. Table 1 shows the relationship between power input and output.

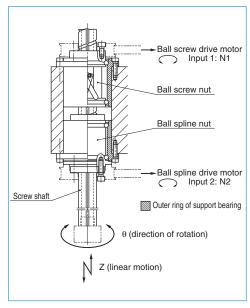


Fig. 1 Example structure of Z axis plus θ axis actuator

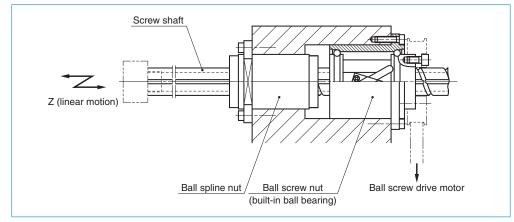


Fig. 2 Example structure of single Z axis unit

Table 1 Power input and output of Σ Series

Shaft movem	nent (output)		Input									
Z (up-down movement) (mm/min)			screw	② Spline (min ⁻¹)	Notes							
Up, down N1× <i>l</i>	Stop 0		Rotate N1	Stop 0	_							
Stop 0	Rotate N2		Rotate N1	Rotate N2	N1 = N2							
Up, down N2× <i>l</i>	Rotate N2		Stop 0	Rotate N2	_							
Up, down	Rotate N2		Rotate N1	Rotate N2	N1≠N2							

3. Specifications

(1) Ball recirculation system

A structure of return tube recirculation system is shown below.



Fig. 3 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play for ball screw are as follows. The axial play for spline is 0 mm (preloaded product). Please consult NSK for other grades.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5, Ct7
Axial play	Z, 0 mm (preloaded)
Axiai piay	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable don value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Permissible den value: 70 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed.

For details, see "Technical Description: Permissible Rotational Speed" (page B47).

(4) Application

SCALA type and Cartesian type industrial robots, semiconductor manufacturing machines, machines for automobile production facilities, material handling systems, other Z (vertical) axis and Z axis plus θ (rotation) axis actuators.

4. Design precautions

The overall length L can be extended to 25 times of the shaft diameter.

To remove the spline nut from the shaft for \checkmark assembling, use an arbor as shown in Fig. 4. (page B545). Avoid removing ball screw nut as much as possible. Refer to root diameter in the dimension table for arbor diameter. (NSK manufactures the arbors on request.)

For general precautions regarding ball screws, refer to "Precautions in Designing" (page B83) and "Precautions in Handling" (page B103).

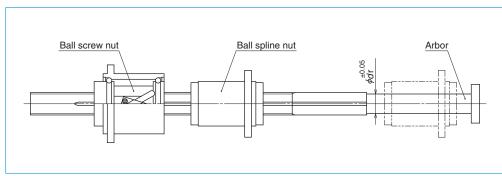


Fig. 4 Removing spline nut

5. Product categories

 Σ Series (NSK's Robotte) is four models with different moving functions and performances are available. Select a standard model if rigidity is important. A compact system is recommended for reducing the weight of machine.

Table 3 Σ Series product categories

Mo	odel	Appearance	Size	Structure (Movement)
	Σ		Standard	Z+θ Unit
Σ	ΣZ		Standard	Z Unit
Σ	ΣC		Compact	Z+θ Unit
Σ	CZ		Compact	Z Unit

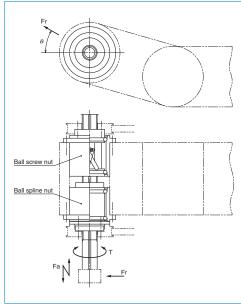
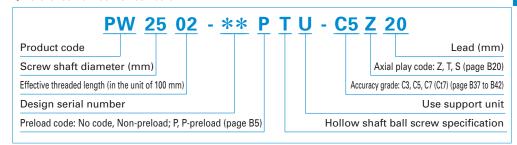
NSK

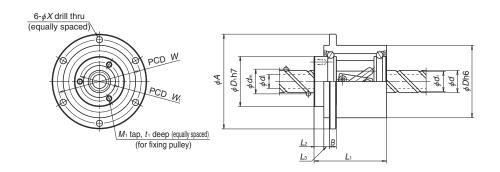
6. Load rating and life

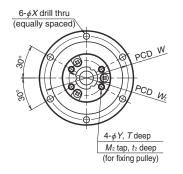
The relationship between load rating of the ball spline section and life is the same as in other NSK liner motion products. However, various loads that apply to Robotte must be taken into account. For example, the following factors must be considered in calculating life when the product is used as shown in Fig. 5.

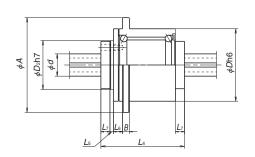
- Fa: Load that is generated when the shaft moves in up-down direction. (Load is applied to the ball screw nut.)
- T : Torque that is generated to the shaft by Fa.
- Fr: Load that is generated by moment of inertia of the shaft and the work attached to Robotte as well as by centrifugal force when the arm rotates.
- $\boldsymbol{\theta}$: Direction of Fr load that changes by shaft rotation.

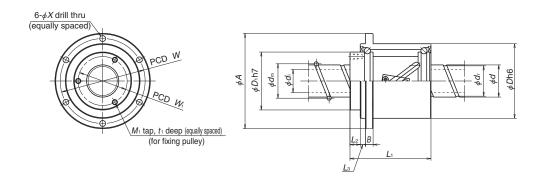
NSK has life calculation programs which take these factors into account. Please ask NSK for more details.

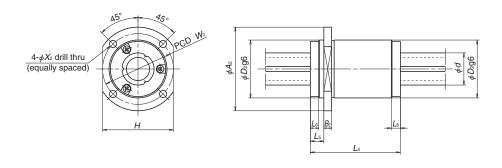




Fig. 5 Example structure of Z axis plus θ axis actuator


7. Structure of reference number

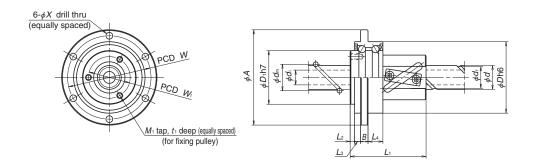

The following describes the structure of "Reference number for ball screw".

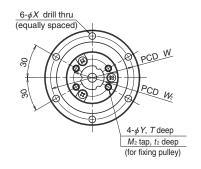


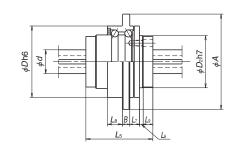


	Shaft	Lead	Ball	Ball	Root	Screw	Ball screw nut															
Model	dia.		dia.	circle	dia.	shaft	Basic load rating (N)			(N) Dimensions M												
No.				dia.		hollow	Dynamic	Static													of inertia	
	d	l	D_{w}	$d_{\scriptscriptstyle m}$	d,	d_{i}	Ca	$C_{\scriptscriptstyle 0a}$	D	Α	В	L_1	L ₂	L ₃	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)	
∑ 1610	16	10	0 175	10.75	10.4	(0)	5 610	8 300	40	C4	5	47	7	1	0.144	_	20	٥٦	F.C	4 -	0.41	
∑ 1632	16	32	3.175	16.75	13.4	(8)	3 240	4 680	48	64	5	52	/	4	3-M4	б	28	35	56	4.5	0.44	
∑ 2010		10					9 560	17 300				57									0.64	
∑ 2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	8	4	3-M4	6	32	40	62	4.5	0.65	
∑ 2040		40					3 640	6 310				57									0.64	
∑ 2510		10					10 700	22 000				57									1.10	
∑ 2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	1581	74	6	63	8 4	1	4 3-M4	6	38	45	66	4.5	1.18	
∑ 2525	20	25	3.175				6 720	13 300				72	0	4					00	4.5	1.30	
∑ 2550		50					4 040	7 440				64									1.20	
∑ 3220	32	20	3.175	32.75	29.4	/OE/	7 710	16 900	70	95	8	70	10	6	3-M5	10	44	EO	00	6.6	2.60	
∑ 3232	32	32	3.175	32.75	29.4	(25)	7 590	16 700	70	95	Ö	91	10	О	3-1015	10	44	53	82	0.0	3.15	
∑ 4020	10	20	2 060	41.0	26.0	(20)	11 600	26 500	O.E.	110	0	73	10	6	4 1 4 5	10	EO	67	06	6.6	5.96	
∑ 4040	40	40	3.969	41.0	36.9	(30)	11 300	26 200	85	110	8	107	10	6	4-M5	10	58	0/	90	6.6	7.85	
∑ 4520	4.5	20	2 060	46.0	410	/DE/	12 000	30 000		115	0	73	10	_	4 1 4 5	10	62	70	101	6.6	7.73	
∑ 4540	45	40	3.969	46.0	41.9	(35)	11 800	29 700	90	115	8	107	10	6	4-M5	10	03	72	101	0.0	10.3	

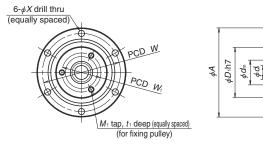
									Ва	all spl	line r	nut										
Mass	Basic load	d rating (N)	Basic tord	que (N·m)		Dimensions											Moment	Mass				
	Dynamic	Static	Dynamic	Static														of inertia				
(kg)	C_{r}	C_{0r}	C_{t}	C_{0t}	D	Α	В	L ₄	L ₅	L_6	L ₇	Y	T	M_2	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	<u> </u>
0.50	5 530	7 270	61.5	91.3	48	64	5	60	2.5	6.5	6.5	4.5	6.5	M4	7	25	35	56	4.5	0.74	0.63	Sallac
0.55	5 890	8 000	65.5	100	40	04	5	00	2.5	0.5	0.5					20	30	50	4.5	0.71	0.03	8
0.74	6 260	8 720	86.3	135							6.5	5.5	6.5	M5	8					1.15		
0.81	6 610	9 450	91.1	145	54	70	6	6 65	2.5	6.5						30.5	40	62	4.5		0.87	
0.74	6 610	9 450	91.1	145																		
0.81	6 630	9 450	115	185			6	70	2.5	6.5									4.5	1.88		Н
0.88	7 290	10 900	125	210	58	74					6.5	5.5	6.5	M5	8	35.5	45	66			1.03	
1.00	7 290	10 900	125	210	50	/4	0				0.0	5.5	0.5 1015	IVIO		00.0 40	40				1.03	_
0.91	7 290	10 900	125	210																		
1.46	7 630	11 600	165	285	70	95	8	75	2.5	7.5	6.5	5.5	6.5	M5	8	42	50	82	6.6	3.80	1.62	
1.83	7 950	12 400	175	305	70	90	0	75	2.5	7.5	0.5	5.5	0.5	IVIO	0	42	50	02	0.0	3.60	1.02	
2.02	10 600	14 800	290	455	85	110	8	00	4	7.5	8	5.5	8	M5	8	55	٥٦	06	6.6	9.74	2.20	
2.85	11 200	15 900	305	490	85	110	Ö	80	4	7.5	Ö	5.5	Ö	CIVI	Ö	55	65	96	0.0	9.74	2.38	
2.17	11 200	15 900	340	550	00	115	8	٥٦	,	7.5	8			N 4 E	8	60	70	101	66	10 5	0.50	
3.06	11 700	17 000	360	590	90	115	O	85	4	7.5	0	5.5	8	M5	0	00	70	101	0.6	12.5	2.56	

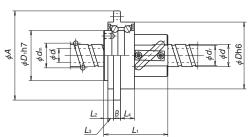


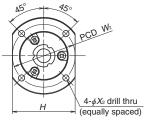

nıt		

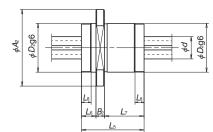

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scre	w nı	ut					
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)						Dime	ensions					
No.				dia.		hollow	Dynamic	Static												
	d	l	$D_{\rm w}$	d _m	d,	d_{i}	$C_{\scriptscriptstyle a}$	C_{0a}	D	Α	В	L ₁	L_2	L ₃	M_1	t_1	W_1	D_1	W	Χ
∑ Z1610	16	10	3.175	16.75	13.4	(8)	5 610	8 300	48	64	5	47	7	4	3-M4	6	28	35	56	4.5
∑ Z1632	10	32	3.175	10.75	13.4	(0)	3 240	4 680	40	04	5	52	/	4	3-1014	O	20	30	50	4.5
∑ Z2010		10					9 560	17 300				57								
∑ Z2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	8	4	3-M4	6	32	40	62	4.5
∑ Z2040		40					3 640	6 310				57								
∑ Z2510		10					10 700	22 000				57								
∑ Z2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	58	74	6	63	8	4	3-M4	6	38	45	66	4.5
∑ Z2525	25	25	3.175	20.75	22.4	(10)	6 720	13 300		/4	0	72	0	4	3-1014	0	30	45	00	4.5
∑ Z2550		50					4 040	7 440				64								
∑ Z3220	32	20	3.175	32.75	29.4	(25)	7 710	16 900	70	95	8	70	10	6	3-M5	10	44	53	02	6.6
∑ Z3232	32	32	3.175	32.73	23.4	(23)	7 590	16 700	70	33	0	91	10	U	3-1010	10	44	55	02	0.0
∑ Z4020	40	20	3.969	41.0	36.9	(30)	11 600	26 500	85	110	8	73	10	6	4-M5	10	58	67	96	6.6
∑ Z4040	40	40	3.309	41.0	30.9	(30)	11 300	26 200	00	110	0	107	10	U	4-1010	10	00	07	90	0.0
∑ Z4520	45	20	3.969	46.0	41.9	(35)	12 000	30 000	90	115	8	73	10	6	4-M5	10	63	72	101	6.6
∑ Z4540	40	40	5.909	40.0	41.9	(33)	11 800	29 700	90	115	O	107	10	U	4-1010	10	US	12	101	0.0

								Ball spl	line nut						
Moment	Mass	Basic load	rating (N)	Basic tord	que (N·m)				Di	mensio	ns				Mass
of inertia (kg·cm²)	(kg)	Dynamic <i>C</i> _r	Static <i>C</i> or	Dynamic $C_{\rm t}$	Static $C_{ ext{ot}}$	D_2	$A_{\scriptscriptstyle 2}$	B_2	L ₄	L ₅	L_6	Н	W_2	Χ	(kg)
0.41	0.50	5 530	7 270	61.5	91.3	35	55	6	60	10.5	6.5	45	4.5	4.5	0.35
0.44	0.55	5 890	8 000	65.5	100	30	55	0	00	10.5	0.5	40	4.5	4.5	0.33
0.64	0.74	6 260	8 720	86.5	135										
0.65	0.81	6 610	9 450	91.1	145	40	60	6	65	10.5	6.5	50	50	5.5	0.46
0.64	0.74	6 610	9 450	91.1	145										
1.10	0.81	6 630	9 450	115	185										
1.18	0.88	7 290	10 900	125	210	45	65	6	70	10.5	6.5	55	55	5.5	0.57
1.30	1.00	7 290	10 900	125	210	40	00		/ / /	10.5	0.5	33	33	5.5	0.57
1.20	0.91	7 290	10 900	125	210										
2.60	1.46	7 630	11 600	165	285	50	70	6	75	10.5	6.5	60	60	5.5	0.64
3.15	1.83	7 950	12 400	175	305	30	70	0	7.5	10.5	0.5	00	00	5.5	0.04
5.96	2.02	10 600	14 800	290	455	65	88	8	80	12	8	76	76	6.6	1.20
7.85	2.85	11 200	15 900	305	490	00	00	0	00	12	O	70	70	0.0	1.20
7.73	2.17	11 200	15 900	340	550	70	93	8	85	12	8	81	81	6.6	1.39
10.3	3.06	11 700	17 000	360	590	70	93	٥	00	12	O	01	01	0.0	1.39




Unit: mm


	Shaft	Lead	Ball	Ball	Root	Screw							Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	d rating(N)						Di	mer	nsions						Moment
No.				dia.		hollow	Dynamic	Static														of inertia
	d	l	$D_{\rm w}$	d _m	d,	d_{i}	C _a	$C_{\scriptscriptstyle 0a}$	D	Α	В	L	L_2	L ₃	L_4	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑C1610	16	10	3.175	16.75	13.4	(8)	5 670	8 300	10	64	5	46	3	4	10	3-M4	6	28	35	56	15	0.40
∑C1632	10	32	3.175	10.75	13.4	(0)	3 240	4 680	40	04	5	51	3	4	10	3-1014	U	20	33	50	4.5	0.43
∑C2010		10					9 560	17 300				56										0.63
∑ C2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5	0.65
∑ C2040		40					3 640	6 310				56										0.63
∑C2510		10					10 700	22 000				56										1.04
∑ C2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	58	74	6	63	4	4	10	3-M4	6	38	15	66	15	1.13
∑ C2525	20	25	3.173	20.70	22.4	(10)	6 720	13 300		74	J	71	4	4	10	J-1V14	U	50	40	00	4.5	1.24
∑ C2550		50					4 040	7 440				63										1.13


									E	Ball s	pline	e nut											
Mass	Basic load	d rating(N)	Basic tor	que(N·m)							С	imei	nsior	าร							Moment	Mass	
	Dynamic	Static	Dynamic	Static																	of inertia		
(kg)	C _r	C_{or}	C _t	C_{ot}	D	Α	В	L ₅	L ₆	L,	L ₈	L ₉	Y	T	M ₂	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	\sim
0.41	4.000	5 000	47.0	00.0			_		٥.5	٥.5	4.0	0.5		٥.5		_	0.5	0.5			0.50	0.40	Seri
0.43	4 300	5 090	47.9	63.9	48	64	5	45	2.5	6.5	10	6.5	4.5	6.5	IVI4	7	25	35	56	4.5	0.52	0.42	Tes
0.53	4 730	5 820	65.1	90.5																			
0.56	5 110	6 540	70.5	100	54	70	6	50	2.5	6.5	10	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	0.86	0.56	
0.53	5 110	6 540	70.5	100																			
0.60	5 130	6 540	87.8	125																			
0.64	5 870	8 000	100	155		7.1	_		٦	٦	10	٥٦		٦			25.5	45		, _	1 44	0.07	
0.69	5 870	8 000	100	155	58	74	6	55	2.5	6.5	10	0.5	0.5	6.5	CIVI	8	35.5	45	66	4.5	1.44	0.67	
0.64	5 870	8 000	100	155																			

Unit: mm

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating(N)						Di	mer	nsions					
No.				dia.		hollow	Dynamic	Static													
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	d_{i}	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L1	L_2	L ₃	L ₄	M_1	t ₁	W_1	D_1	W	X
∑CZ1610	16	10	3.175	16.75	13.4	(8)	5 670	8 300	40	64	5	46	3	4	10	3-M4	6	20	O.E.	EG	4.5
∑ CZ1632	10	32	3.175	10.75	13.4	(8)	3 240	4 680	48	04	5	51	3	4	10	3-1014	О	28	35	90	4.5
∑ CZ2010		10					9 560	17 300				56									
Σ CZ2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5
Σ CZ2040		40					3 640	6 310				56									
∑ CZ2510		10					10 700	22 000				56									
∑ CZ2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	E0	74	6	63	4	4	10	3-M4	6	38	15	66	4.5
∑ CZ2525	25	25	3.175	25.75	22.4	(18)	6 720	13 300	58	/4	O	71	4	4	10	3-1014	0	38	45	00	4.5
∑ CZ2550		50					4 040	7 440				63									

								Ball	spline	nut							
Moment	Mass	Basic load	d rating(N)	Basic tor	que(N·m)					Dimer	nsions					Mass	
of inertia		Dynamic	Static	Dynamic	Static												
(kg·cm²)	(kg)	C _r	C_{or}	$C_{\rm t}$	C_{ot}	D_2	A_2	B_2	L_{5}	L ₆	L ₇	L ₈	Н	W_2	X_2	(kg)	M
0.40	0.41	4.000	E 000	47.0	00.0	0.5			45	40.5	00.5	0.5	45	45	4.5	0.00	Series
0.43	0.43	4 300	5 090	47.9	63.9	35	55	6	45	10.5	28.5	6.5	45	45	4.5	0.26	Sej
0.63	0.53	4 730	5 820	65.1	90.5												
0.65	0.56	5 110	6 540	70.5	100	40	60	6	50	10.5	33.5	6.5	50	50	5.5	0.35	
0.63	0.53	5 110	6 540	70.5	100												
1.04	0.60	5 130	6 540	87.8	125												
1.13	0.64	5 870	8 000	100	155	4.5	GE.	6	EE	10 5	20 5	e E	EE	EE		0.44	
1.24	0.69	5 870	8 000	100	155	45	65	0	55	10.5	38.5	6.5	55	55	5.5	0.44	
1.13	0.64	5 870	8 000	100	155												

B-3-3.11 Ball Screw with L1 Seal designed for Minimal Grease Splatter [Patent application submitted]

1. Features

Substantial reduction in grease splatter The amount of grease splatter for the L1 seal is reduced to 1/10 compared to NSK standard seal to contribute to maintain equipment and working environment clean.

• Adoption of non-contact type seal Seal torque is avoided by optimizing the seal shape. The current seals with relatively small splatter are all contact type seals, but the L1 seal is the first non-contact type seal to achieve low grease spatter.

Seal cover is equipped as standard.
 To prevent grease from dripping, a seal cover is equipped as standard.

 Later fitting to NSK standard ball screws is available.

NSK ensures quick delivery because later fitting to "Compact FA Series" and "High Speed SS Series" is possible.

2. Specifications

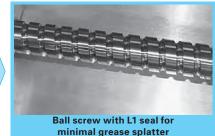
(1) Applicable ball screw

Shaft diameter: 15 to 23 mm Lead: 5 mm min.

Lubricant : NSK standard grease, NSK

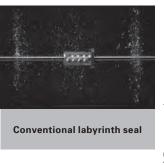
clean grease, grease for general

food


Environment : Ambient temperature

Short lead time: Can be fitted to NSK standard

stock ball screws.


Compact FA series (dia.15 to 25 mm) High speed SS series (dia.32 mm)

BSS2010-3E AS2 grease 3 000min⁻¹

Fig. 1 Comparison of grease splatter from the shaft

minimal grease splatter

Fig. 2 Results of grease splattering test

(2) Design-related precautions

When designing the screw shaft end, the one end shall be cut-through. For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

Table 1 Combinations of shaft diameter and lead

	Lead Shaft dia.	5	10	20	25	Applicable series
	15	0	0	0		
İ	20	0	0	0		Compact FA
İ	25	0	0	0	0	
ı	32	0	0			High speed SS

Please contact NSK except for the above types.

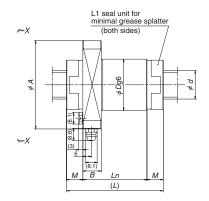
Fig. 3 Appearance

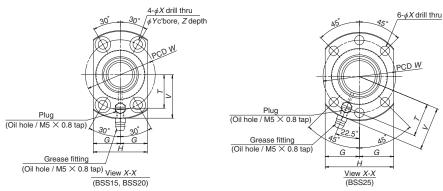
3. Example of reference number

A structure of "Reference number for ball screw" is as follows.

*"L1" is added at the end of "nut model code" and "Specifications number".

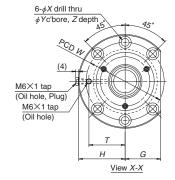
W2005 -****L1 - C5Z10

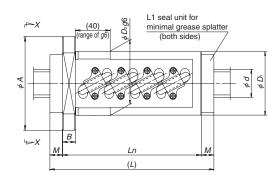

NSK L1 equipped type ball screw code


4. Precautions for use

- Maximum temperatures are as follows.
 Compact FA series with L1 seal: 80 °C (at outside diameter of ball nut)
 High Speed SS series with L1 seal: 60 °C (at outside diameter of ball nut)
- Do not use the product in environments where foreign matter is present.
- Please note that L1 seal reduces grease splatter but cannot reduce it to zero.

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery.


The amount of grease splatter is affected by usage conditions (rotational speed, temperature, greases, grease filling amount). Dust covers and other measures to keep machinery free of dust are recommended.



	Shaft		Basic load	I rating (N)					Ва	all nut	dir	men	sions					Total length	Internal	Standard
Model No.	dia.	Lead	Dynamic	Static	Dia.		Flan	ge		Nut length		Bolt	holes	S	Oil I pos		Seal dimensions	with nut & seal	spatial volume of nut	volume of grease replenishing
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	D	Α	G	Н	В	L_n	W	X	Y	Z	T	V	М	L	(cm³)	(cm³)
BSS1505-3E		5	6 410	10 100	20	E 1	15.5	21		30	39				18	25	10	50	2.0	1.0
BSS1510-3E	15	10	6 530	10 200	20	51	15.5	01	11	43	39	5.5	9.5	5.5	10	25	10	63	2.0	1.0
BSS1520-2E		20	5 660	8 700	32	55	16.5	33		51	43				20	27	15	81	2.8	1.4
BSS2005-3E		5	10 400	18 500						31							12	55	3.4	1.7
BSS2010-3E	20	10	10 200	18 600	36	62	19	38	13	45	49	6.6	11	6.5	23.5	30.5	12	69	3.2	1.6
BSS2020-2E		20	6 790	11 800						54							18	90	3.2	1.0
BSS2505-3E		5	11 500	23 500						32							12	56	4.4	2.2
BSS2510-4E	25	10	15 000	32 400	40	62	24	10	12	56	E1	6.6			23.5	20 E	12	80	4.7	2.4
BSS2520-2E	20	20	7 650	14 800	40	02	24	40	12	54	01	0.0		_	23.5	30.5	20	94	3.9	2.0
BSS2525-2E		25	7 490	14 600						63							20	103	4.3	2.2

Notes: 1. Maximum operating temperature: 80°C (at outside diameter of ball nut)

Model No. dia. Lead Dynamic Static Dia. Flance Nut Bolt holes			01 (Basic load	rating (N)					Ball	nut	dimer	nsio	ns					Total length	Internal	Standard
HSS3205 32 5 21 800 56 000 57 58 85 32 42 13 89 71 6.6 11 6.5 33 9.5 108 10 5	Ν	Model No.	Shaft dia.	Lead	Dynamic	Static	Di	a.		Fla	inge			ı	Bolt	hole	s		Seal dimensions			volume of grease replenishing
			d	l	C _a	$C_{\scriptscriptstyle 0a}$	D_1	D_2	Α	G	Н	В	Ln	W	X	Y	Z	T	М	L	(cm³)	(cm³)
HSS3210 32 10 54 500 110 000 73 74 108 41 53.5 15 160 90 9 14 8.5 45 14.5 189 43 22	Н	ISS3205	32	5	21 800	56 000	57	58	85	32	42	13	89	71	6.6	11	6.5	33	9.5	108	10	5
	Н	ISS3210	32	10	54 500	110 000	73	74	108	41	53.5	15	160	90	9	14	8.5	45	14.5	189	43	22

Notes: 1. Maximum operating temperature: 60°C (at outside diameter of ball nut)

^{2.} Grease fitting attachment is done only on the outer side of the flange (see diagram).

B-3-3.12 Equipped with "NSK K1™" Lubrication Unit

This product is being applied for a patent.

1. Features

NSK K1 is a new, efficient lubrication unit. Equipped with NSK K1, the ball screws demonstrate a superb performance as shown below.

Long-term, maintenance-free usage

In mechanical environments where lubrication is difficult to apply, long-term running efficiency is maintained by using the NSK K1 in combination with grease.

[ex.] For automotive component processing lines, etc.

Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

[ex.] Food processing equipment, medical equipment, liquid crystal display/ semiconductor manufacturing equipment, etc.

 Good for environments where lubricant is washed away

When used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

[ex.] Food processing equipment, housing/ construction machines, etc.

• Maintains efficiency in dusty environment In environment where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions are maintained by using the NSK K1 in combination with grease.

[ex.] Woodworking machines, etc.

 Comparative duration test of samples with and without NSK K1

Sample, testing conditions and test result are shown in Table 1 and Fig. 1.

Without lubricant, operation became impossible after running 8.6 km. With NSK K1 alone, it was possible to continue running exceeding 10 000 km

NSK conducts various tests under different conditions. Please consult NSK.

Table 1 Sample and testing conditions

Ball screw	Shaft dia. 20 mm, lead 20 mm
Lubrication	Comparison with only NSK K1 against no lubrication
Speed	4 000 min ⁻¹ (80 m/min)
Stroke	600 mm

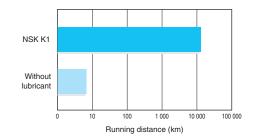


Fig. 1 Duration test results on ball screws without lubricant

2. Specifications

(1) Structure

The structure makes it possible to have a stable contact between the NSK K1 and outside of a ball screw with moderate force by a garter spring which fits onto outside of the NSK K1.

NSK K1 is installed between the ball screw nut and the labyrinth seal. The overall nut length is slightly longer than that of the standard ball screw.

Combination of NSK standard grease (factorypacked in the nut) and NSK K1 are standard specifications.

Fig. 2 NSK K1

(2) Accuracy grade and axial play

Accuracy grades, clearance and preload specifications remain unchanged from the existing products. There is a slight increase in torque due to the equipped NSK K1.

(3) Overall nut length after equipped with NSK K1™

The nut length becomes longer than that of standard ball screws after equipped with NSK K1. The nut length after equipped with K1 is shown in pages B581 to B584 for each type of ball recirculation. NSK K1 can be installed on other types not listed in the dimension table. Please consult with NSK if you require the K1 for a special ball nut.

(4) Application examples

machines

Ball screws equipped with NSK K1 are maintenance-free for a long period of time. Its application is expanding in various industries.

Semiconductor/liquid crystal
display manufacturing equipment

Wood working

Automobile manufacturing machines

3. Precautions for use

Temperature range for use: Maximum temperature: 50°C

Momentary maximum
temperature: 80°C

Chemicals that should not come to contact with K1:

Do not leave NSK K1 in organic solvent,
white kerosene such as hexane, thinner
which removes oil, and rust preventive oil
which contains white kerosene.

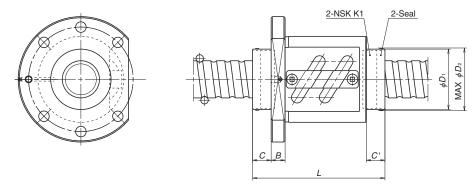
Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1 Seal.

Note: NSK K1 is not applicable to the Compact FA series.

4. Example of reference number

A structure of "Reference number for ball screw" is as follows.

Note: "K1" is added at the end of "nut model code" and "Specifications number".


♦ Reference number for ball screw equipped with NSK K1

Machine tools

W1401 -** P K1 - C3 Z10

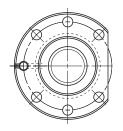
NSK K1 equipped type ball screw code

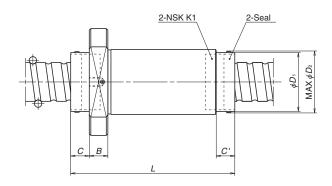
(1) Tube type

Tube type

Model No.	Screw shaft dia.	Lead		talling nsion	Frange width	Overall length when equipped K1	K1 cap	dimension
Model No.	d	l l	C	C'	B	L	Cap dia. ϕD_1	Protruding dimension ϕD_2
PFT1004-2.5	10	4	14	15	10	61.5	φ 22	MAX φ 24
PFT1205-2.5		5		15		66	<i>'</i>	,
LPFT1210-2.5	12	10	14	17	10	79	φ 26.5	MAX φ 29
PFT1405-2.5	14	5	14	15	10	65	ø 30	MAX # 32
LPFT1510-2.5	15	10	14	15	10	76	φ30	MAX φ 32
PFT1605-2.5	16	5	14	15	10	67	φ32	MAX ø 34
PFT2005-5		5				81	•	
LPFT2010-2.5	20	10	14	14	10	78	φ38	MAX φ 40
LPFT2020-1.5		20				84	·	-
ZFT2505-10		5	16	17	10	115	φ 44	MAX ø 46
PFT2506-5		6	16	17	12	93	φ 44	MAX ø 46
PFT2510-2.5	25	10	16	17	12	89	φ 44	MAX φ 46
ZFT2510-3		10				103	φ 44	Ινιλίλ φ 40
LPFT2520-2.5		20	12	12	12	109	φ 38	MAX φ 40
LPFT2525-1.5		25	12	12	12	98	φ38	MAX φ 40
DFT2805-5		5				137		
PFT2810-2.5	28	10	16	17	12	90	φ 48	MAX φ 50
DFT2810-3		10				174		
PFT3206-5		6	16	17		93	φ 52	MAX φ 54
ZFT3206-10			10			129	Ψ 02	1411 01 4 0 7
PFT3210-5				17		122		
ZFT3210-5		10	16	17		122	φ 52	MAX φ 54
DFT3210-5	32			16	12	212		
PFT3212-3		12	16	17		114	φ 52	MAX φ 54
DFT3212-3				16		198	,	,
LPFT3225-2.5		25	12	12		122	φ 46	MAX φ 48
LPFT3232-1.5		32	12	12		109	φ 46	MAX φ 48

Notes:	1 NSK K1	can be installed in	other types no	nt listed in the table	Please consult NSK.

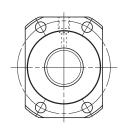

^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

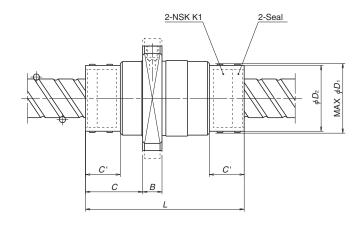

	Screw	Lead	K1 ins	talling	Frange	Overall length	K1 cap	dimension	耍
Model No.	shaft dia.	LCdd	dime	nsion	width	when equipped K1	Condia	Destruding	틍
	d	l	С	C'	B		Cap dia. <i>φ D</i> ₁	Protruding dimension ϕD_2	be
PFT3610-5	u	ь	C	20	D	131	ΨΒη	difficusion φD_2	5
DFT3610-5		10		19		221			∰
HZF3616-5	36	16	19	19	15	163	φ 56	MAX ø 58	忌
HZF3620-3.5	1	20		19		146			Equipped with NSK K1 TM
PFT4008-5		0	4.0	0.0		117		1441/ 404	3
ZFT4008-10		8	19	20		165 \$\phi\$ 62	φ 62	MAX φ 64	
ZFT4010-7		10	10	20		152	φ 62	MAY 164	
DFT4010-5		10	19	19		222	φ 61	MAX φ 64	
PFT4012-5	40	12	19	20	16	144	φ 62	MAX φ 64	
DFT4012-5	40	12	19	19] '0	252	φ 61	Ινίλιχ φ 04	
HZF4016-5		16	19	19		164	φ 61	MAX φ 64	-
HZF4020-5		20 19 19		189	φ 61	MAX φ 64			
LPFT4032-2.5		32	14	14		151	φ 54	MAX φ 56	
LPFT4040-1.5		40	14	14		133	φ 54	MAX ø 56	
DFT4510-5	_	10			16	222			
DFT4512-5	45	45 12 19	19	16	254	φ 72	MAX ø 75		
HZF4520-5		20			18	190			
ZFT5010-10	_	10		20		194			
DFT5012-5	_	12		19	-	256			
ZFT5016-5	50	16	19	20	18	172	φ 73	MAX φ 76	
DFT5016-5	-			19	-	300	7		
HZF5020-5	-	20		19	-	192			
HZF5025-5		25		19		221			
DFT5516-5		16				178		MAX φ 87	
HZF5520-5	55	20	22	22	18	198	φ 81	MAX \$\phi 81	
HZF5525-5		25				227		MAX φ 81	l
DFT6316-5	63	16	22	22	18	322	φ89	MAX φ 95	
DFT6320-5	1	20				362	7		

Equipped with NSK K1TM

NSK

(2) Deflector(bridge) type




Deflector(bridge) type

	Screw shaft dia.	Lead		talling	Frange width	Overall length when equipped K1	K1 cap o	dimension
Model No.	d d	l	dime C	nsion C'	B	L When equipped Ki	Cap dia. <i>∲</i> D₁	Protruding dimension ϕD_2
ZFD2005-6	20	5	9	9	12	87	φ32	MAX φ 34
ZFD2506-6	25	6	10	_	10	102	4.20	MAX φ 40
ZFD2510-4	25	10	12	12	12	106	φ 38	
ZFD3208-8		8				136		
ZFD3210-6	32	10	12	12	12	138	φ 46	MAX φ 48
ZFD3212-6		12				153		
ZFD4010-8	40	10	1.4	1.4	16	167	, 54	MAY 157
ZFD4012-8	40	12	14	14	16	189	φ 54	MAX φ 57
ZFD5010-8	F0	10	1.4		10	169	1.04	NAAV 107
ZFD5012-6	50	12	14	14	18	167	φ 64	MAX φ 67

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

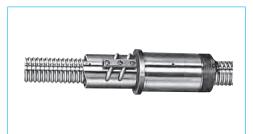
End cap type

	Screw shaft dia.	Lead		talling	Frange width	Overall length when equipped K1	K1 cap o	dimension
Model No.	d	l	alme C	nsion <i>C'</i>	В	L	Cap dia. ∳ D₁	Protruding dimension ϕD_2
UPFC1520-1.5	15	20	29	18	10	81	φ30	MAX φ 32
LPFC1616-3	16	16	28	18	10	74	φ 28	MAX φ 30
LPFC2020-3	00	20	29.5	4.0	10	82	φ 34	MAX φ 36
UPFC2040-1	20	40	29	18	10	77	φ32	MAX φ 34
LPFC2525-3	0.5	25	0.4	0.4	10	97		NAN/ 440
UPFC2550-1	25	50	34	21	12	92	φ 44	MAX φ 46
LPFC3232-3	20	32	37	0.1	10	112	, 50	NANY / EA
UPFC3264-1	32	64	36.5	21	12	104	φ 52	MAX φ 54
LPFC4040-3	40	40	43.5	24	15	133	φ 62	MAX φ 65
LPFC5050-3	50	50	45.5	24	20	155	φ74	MAX φ 77

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

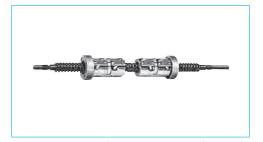
^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.



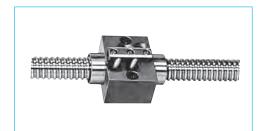
B-3-3.13 Special Ball Screws

In addition to the standard ball screws, NSK manufactures various types of ball screws in special shapes as shown below.


Nut with gear

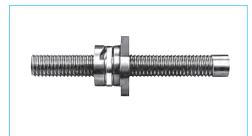
Lightly preloaded single nut with bearing seat

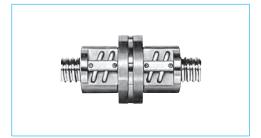
Nut with trunion



Double nut with right and left turn thread on each side of screw shaft

Thoroughly discuss with NSK the specifications before determining specifications and ordering ball screws in special shapes.


Double nut with flat mounting surface


Lightly preloaded single nut with flat mounting surface

Hollow shaft, lightly preloaded single nut, with large shaft diameter and fine lead

Ceramic ball screw

Flanged to flanged ball nut


Cylindrical double nut


Spring preloaded ball screw

Ball screw for aircraft

Ball screw for nuclear power plant

Right and left hand thread on each side of screw

C-1 Monocarrier™

2. 3.	Features Classification and Series Accessories Selection of Monocarrier 4.1. Procedures for Selecting Monocarrier 4.2. Rigidity 4.3. Maximum Speed 4.4. Accuracy Grade 4.5. Stroke and Ball Screw Lead 4.6. Basic Load Rating 4.7. Estimation of Life Expectancy 4.8. Expectancy	C7 C9 C10 C10 C11 C15 C15 C17
5.	4.8. Example of Life Estimation MCM Series	C25
	5.1. MCM Series Reference Number Coding5.2. MCM Series Dimension Table of Standard Products	le C28
6.	 5.3. MCM Series Accessories MCH Series 6.1 MCH Series Reference Number Coding 6.2 MCH Series Dimension Tabl Standard Products 6.3 MCH Series Accessories 	C73 C75 e of C76

C-2 Toughcarrier[™]

	_	
2. 3.	Features	C95 C97 C98 C98 C99
	Accuracy Grade	C100
	4.4 Maximum Speed	C101
	4.5 Rigidity	C103
	4.6 Basic Load Rating	
	4.7 Estimation of Life Expectancy	C105
	4.8 Example of Life Estimation	
5.	TCH Series Dimension Table for	
	Standard Products	
	5.1 TCH06 Series	
	5.2 TCH09 Series	C113
	5.3 TCH10 Series	C115
6.	Accessories ······	C117
	6.1 Sensor Unit ·····	
	6.2 Cover Unit ·····	C118
	6.3 Motor Bracket ·····	
7.	Motor Bracket Compatibility Table · ·	
	Songer Rail and Ton Cover Unit	

Combination Table C131

C-3 Technical Materials

1.	Sensor Specification	
	1.2 Photo Sensor······	
2.	Characteristics and Evaluation	
	Method ·····	C139
	2.1 Positioning Accuracy	C139
	2.2 Repeatability	C139
	2.3 Running Parallelism	C139
3.	Special Specifications	C140
4.	Maintenance ······	C141
	4.1 Maintenance Method	C141
	4.2 NSK K1™ Lubricant Unit ····	C141
5.	NSK Clean Grease LG2 Specification	

BLOCK

9. Toughcarrier High-Thrust Series ·· C134 Monocarrier TM

Toughcarrier™

C3-C92

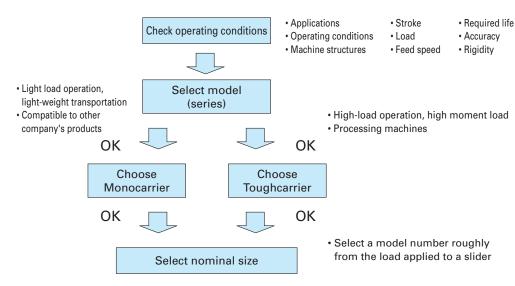
C93 -C134

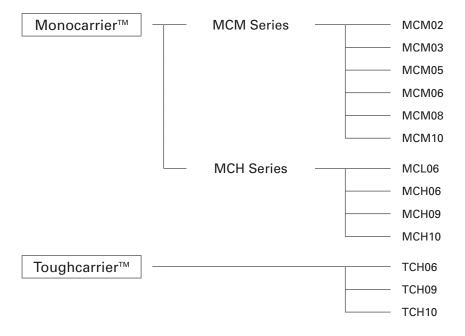
C135 -C142

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Monocarrier[™], Toughcarrier[™]

All-in-one structure (ball screw, linear guide and base integrated) results in a light and compact actuator without extra work for design or adjustment when installing. Design and assembly loads can be reduced by unit type. Also, the many variations make it possible to deal with many different uses.


Monocarrier™ and Toughcarrier™ Classifications


■Toughcarrier™: High load capacity

Procedure for Selecting Monocarrier™ and Toughcarrier™ models

Monocarrier™ and Toughcarrier™ Composition

C-1 Monocarrier™

1 Features	C 5
2 Classification and Series	C 7
3 Accessories	C9
4 Selection of Monocarrier	C10
4.1 Procedures for Selecting Monocarrier	C10
4.2 Rigidity	C10
4.3 Maximum Speed	C11
4.4 Accuracy Grade	C15
4.5 Stroke and Ball Screw Lead	C15
4.6 Basic Load Rating	C17
4.7 Estimation of Life Expectancy	C19
4.8 Example of Life Estimation	C21
5 MCM Series	C25
5.1 MCM Series Reference Number	
Coding	C27
5.2 MCM Series Dimension Table of	
Standard Products	C28
5.3 MCM Series Accessories	C 49
6 MCH Series	C 73
6.1 MCH Series Reference Number Coding	C 75
6.2 MCH Series Dimension Table of	
Standard Products	C 76
6.3 MCH Series Accessories	C83

C-1 Monocarrier[™]

C-1 Monocarrier™

C-1-1 Features

NSK's Monocarrier is the culmination of technology and innovation in linear motion. This lightweight, compact single axis linear actuator integrates quality NSK ball screw, linear guide and support bearings into one unit.

Light weight, compact design

Available in two different shapes of cross-section, depending on application.

Light weight type: MCM Series Rigid type: MCH Series

All -in-one structure

- The all-in-one structure integrates a ball screw, a linear guide and support bearings into a single unit to significantly reduce design and installation time.
- OMultiple datum planes, the bottom and a lateral side of the rail, facilitate highly accurate installation.
- Olmmediate operation after installation and run-in is possible.
- OA wide selection of fine to high helix leads are available.

Ball screw

A wide variety of leads, from fine leads to high helix leads, is available.

A ball nut and a slider are integrated into one component.

5 Quick Delivery

Built in support bearings

4 Long term maintenance free

- Ouse of NSK K1 Lubrication Units and grease maintains a smooth lubricating performance for long periods in mechanical environments where lubrication is difficult to apply, where use of oil is not permitted because of hygienic issues, or where the mechanical equipment is subjected to frequent wash downs.
- NSK K1 lubrication unit is available for food processing machines and medical equipment.
- Grease for clean environments and for general machinery is available.

3 Superb antirust capability

OLow temperature chrome plating is a standard feature for the bodies and sliders to control rusting in normal operating and storing environments. Fluoride low temperature chrome plating is optionally available for much higher rust prevention.

Built in support bearings

Linear guide (Ball groove)

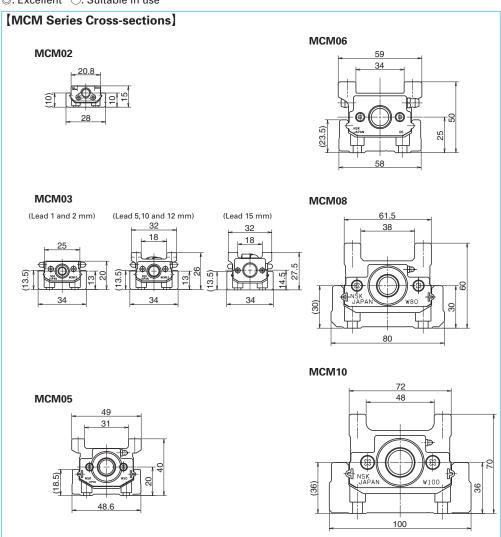

C-1-2 Classification and Series

Table 2.1

	Light Weight	Beam Rigidity	Moment Rigidity
MCM Series	0	0	0
MCH Series	0	0	0

Long Stroke Size Variation Accuracy \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

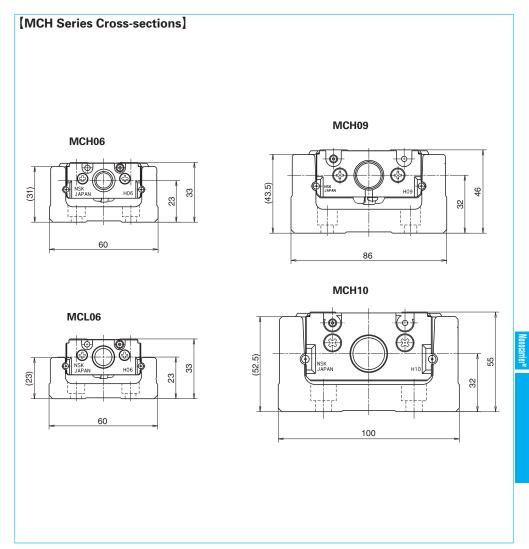


Fig. 2.1

Fig. 2.2

C-1-3 Accessories

MCM Series

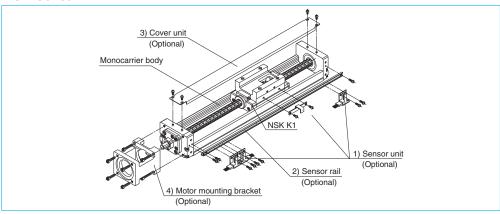


Fig. 3.1 Assembly: Accessories for MCM10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
 - * When a sensor unit is used, the full cover unit cannot be used.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover or full cover (included top cover and side cover) is available.
- 4) Motor bracket for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

MCH Series

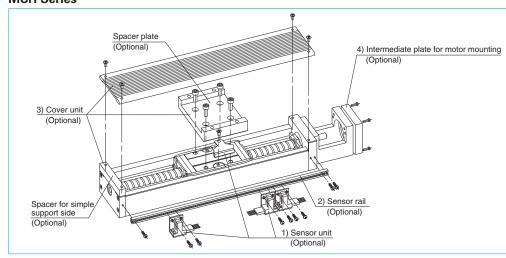


Fig. 3.2 Assembly: Accessories for MCH10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover (included spacer plate and spacer for simple support side) is available.
- 4) Intermediate plate for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

C-1-4 Selection of Monocarrier C-1-4. 1 Procedures for Selecting Monocarrier

Select a model number of Monocarrier based on stroke and rigidity (refer to **Figs. 4.2**, and **4.3**).

Select a ball screw lead referring to "C-1-4.3 Maximum Speed" so that the rotational speed does not exceed the limit.

Study the loads to be applied to the linear guide and obtain the equivalent load (*F*e) substituting them for equation 1) or 2) on page C19. Obtain the mean effective load (*F*m) substituting them for equation 3) on page C20, then calculate the life.

Study the loads to be applied to the ball screw and support unit. Obtain the mean effective load (Fm) substituting them for equation 3) on page C20, then calculate the life.

C-1-4. 2 Rigidity

Rigidity of rail

Selection

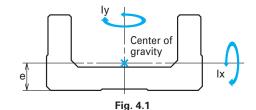


Table 4.1 Rigidity of rail

Model	Geometrical mo	oment of inertia	Center of gravity	Mass
No.	×10 ⁴	(mm ⁴)	(mm)	(kg/
INO.				100 mm)
	lx	ly	е	W
MCM02	0.097	1.32	3.3	0.11
MCM03	0.30	3.3	4.5	0.18
MCM05	0.78	11.4	6.0	0.31
MCM06	2.14	26.1	7.0	0.57
MCM08	5.90	81.0	9.2	0.88
MCM10	15.6	219	12.2	1.52
MCL06	2.58	29.6	7.8	0.56
MCH06	6.5	38.2	10.8	0.67
MCH09	28.7	172	15.5	1.48
MCH10	54.0	307	18	1.93

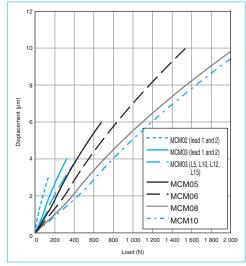


Fig. 4.2 MCM Series rigidity in radial direction

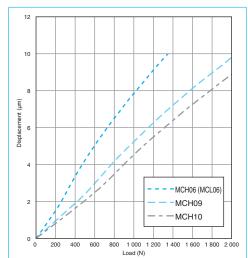


Fig. 4.3 MCH Series rigidity in radial direction

C-1-4. 3 Maximum Speed

(1) Maximum Speed of MCM Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds on the table below.

Table 4.2

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50	100	
	1	100	150	50
MCM02		150	200	1
Single slider		50	100	
silder	2	100	150	100
	-	150	200	
		50	115	
	1	100	190	50
	·	150	240	- 30
		50	115	
	2	100	190	100
MCM03		150	240	
Single	5	50 to	140 to	410
slider		250	340	
	10	50 to	140 to	830 1 000
	10	250	340	
	12	50 to	140 to	
	12	250	340	1 000
	15	50	140	1 250
	15	to 250	to 340	1 2 3 3
	5	50	180	410
		to 250	to 530	410
		500	630	370
		600	730	270
		50	180	200
		to 250	to 530	830
	10	500	630	750
MCM05		600	730	540
Single		50	180	
slider		to	to	1 660
	20	250 500	530 630	1 470
	-			
		600 50	730 180	1 070
		to	to	2 500
	30	250	530	
	30	500	630	2 160
		600	730	1 570
		60	280	000
	10	to 410	to 630	830
MCM05		510	730	710
Double		60	280	
slider	20	to 410	to 630	1 660
	20			

50 19 to to 500 64 5 600 74 700 84	0 410 0 330 0 250
5	0 250
700 84	
	0 190
800 94	0 130
50 19 to to 500 64	830
Single 10 600 74	0 650
slider 700 84	0 500
800 94	0 390
50 19 to to 500 64	1 660
20 600 74	0 1 300
700 84	0 990
800 94	0 780
5 to to 410 64	410
110 19 to to 510 64	830
MCM06 10 610 74	0 660
Double 710 84	
210 44 to to	1 660
20 610 74	0 1 310
710 94	0 1 000

Notes: 1) Please consult NSK before operating Monocarrier near maximum speed.

- 2) Maximum rotational speed is (5000 min-1). (For lead 5,10,12,15,20,30)
- 3) Refer to the above table for maximum speed for each stroke.

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50 to 500	220 to 670	410
	5	600	770	320
		700	870	250
		800	970	190
		50 to 500	220 to 670	830
	10	600	770	640
MCM08		700	870	490
Single		800	970	380
slider		50 to 500	220 to 670	1 660
	20	600	770	1 280
		700	870	980
		800	970	770
		400	570	2 500
	30	500	670	2 480
	30	600	770	1 830
		700	870	1 400
		80 to 380	370 to 670	830
	10	480	770	810
		580	870	630
MCM08 Double		680	970	500
slider		180 to 380	470 to 670	1 660
	20	480	770	1 640
		580	870	1 270
		680	970	1 010

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50 to 600	280 to 780	830
		700	880	660
	10	800	980	520
		900	1 080	420
		1 000	1 180	340
MCM10		50 to 600	280 to 780	1 660
Single slider		700	880	1 310
Siluei	20	800	980	1 030
		900	1 080	840
		1 000	1 180	690
		500	680	2 500
		800	780	2 430
	30	900	880	1 870
		1 000	980	1 480
	10	70 to 570	380 to 880	830
	10	670	980	660
MCM10		870	1 180	450
Double slider	20	170 to 570	480 to 880	1 660
	20	670	980	1 340
		870	1 180	910
Notes: 1) PI	ease consult	NSK before	e operating	Monocarrier

Notes: 1) Please consult NSK before operating Monocarrier near maximum speed.

- 2) Maximum rotational speed is (5000 min⁻¹). (For lead 5,10,12,15,20,30)
- 3) Refer to the above table for maximum speed for each stroke.

locarner^w

(2) Maximum Speed of MCH Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds on the table below.

Table 4.3

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
	5	50 to 500	150 to 600	410
MCH06 MCL06 Single	10	50 to 500	150 to 600	830
slider	20	50 to 400	150 to 500	1 660
		500	600	1 610
MCH06	5	100 to 300	300 to 500	410
Double slider	10	100 to 400	300 to 600	830
	20	400	600	1 660
		100 to 500	240 to 640	410
	5	600	740	360
		700	840	270
		800	940	210
MCLIOO		100 to 500	240 to 640	830
MCH09 Single	10	600	740	710
slider		700	840	530
		800	940	410
		100 to 500	240 to 640	1 660
	20	600	740	1 410
		700	840	1 060
		800	940	830
	5	150 to 350	440 to 640	410
MCH09 Double	10	150 to 450	440 to 740	830
slider		650	940	530
	20	450	740	1 660
	20	650	940	1 080

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50 to 600	280 to 780	830
		700	880	670
		800	980	530
	10	900	1 080	420
		1 000	1 180	350
		1 100	1 280	290
MCH10		1 200	1 380	250
Single slider		50 to 600	280 to 780	1 660
		700	880	1 330
		800	980	1 050
	20	900	1 080	840
		1 000	1 180	700
		1 100	1 280	580
		1 200	1 380	490
	10	250 to 550	580 to 880	830
		650	980	660
MCH10		250 to 550	580 to 880	1 660
Double slider		650	980	1 340
Siluci	20	750	1 080	1 100
		850	1 180	910
		950	1 280	760
		1 050	1 380	630

Notes: 1) Please consult NSK before operating Monocarrier near maximum speed.

- 2) Maximum rotational speed is (5000 min⁻¹). (For lead 5,10,12,15,20,30)
- 3) Refer to the above table for maximum speed for each stroke.

The accuracy grade of Monocarrier standard series is high grade (H), except for lead 1 and 2 mm of MCM02, and MCM03.

When you require strokes longer than 1 200 mm, please consult NSK about the accuracy grade.

Table 4.4							Unit : µm
Accuracy		High grade (H)			Precis	ion (P)	
Stroke (mm)	Repeatability	Running Parallelism (vertical)	Backlash	Repeatability	Positioning accuracy	Running Parallelism (vertical)	Backlash
to 200		14			20	8	
to 400		16			25	10	
to 600	±10	20	20 or less	±3	30	12	3 or less
to 700		23			30	15	
to 1 000		23			35	15	
to 1 200		30			40	20	

C-1-4. 5 Stroke and Ball Screw Lead

(1) MCM Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.5 Single slider

																				Ur	it:	mm
Model No.	MC	V102			MCI	M03				MC	M05	,	M	CM	06		MCI	M08	3	М	CM	10
Lead Stroke	1	2	1	2	5	10	12	15	5	10	20	30	5	10	20	5	10	20	30	10	20	30
50	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1					
100	1	✓	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
150	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
200					1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
250					1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
300									1	1	1	1	1	1	1	1	1	1		1	1	
400									1	1	1	1	1	1	1	1	1	1	1	1	1	
500									1	1	1	1	1	1	1	1	1	1	1	1	1	1
600									1	1	1	1	1	1	1	1	1	1	1	1	1	1
700													1	1	1	1	1	1	1	1	1	1
800													1	1	1	1	1	1		1	1	1
900																				1	1	
1 000																				1	1	

Table 4.6 Double slider

lable			ous	,,,	SIIC		U	nit :	mm
Model No.	MCI	V105	MCM06 M				M08	MC	M10
Lead	10	20	5	10	20	10	20	10	20
60	1								
70								1	
80						1			
110	1		1	/					
160	1								
_170								1	1
180						1	1		
210	1	/	/	/	/				
270								1	1
280						/	/		
310	1	1	1	1	1				
370								1	1
380						1	1		
410	1	/	1	/	/				
470								1	1
480						1	1		
510	1	1		1	1				
570								1	1
580						1	1		
610				1	1				
670								1	1
_680						1	1		
710				1	1				
870								1	1

Note: Please consult NSK about double slider of MCM02 and MCM03.

(2) MCH Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.7 Single slider

							Uni	t:mm
Model No.	N	исное	ĵ	1	VICH0	MCH10		
Lead Stroke	5	10	20	5	10	20	10	20
50	1	1	1					
100	/	1	1	1	1	1	1	1
200	1	1	1	1	1	1	1	1
300	1	1	1	1	1	1	1	1
400	1	1	1	1	1	1	1	1
500	/	1	1	1	1	1	1	1
600				1	1	1	1	1
700				1	1	1	1	1
800				1	1	1	1	1
900							1	1
1 000							1	1
1 100							1	1
1 200							1	1

Table 4.8 Double slider

						ı	Jnit :	mm	
Model No.	١	ИСН()6	MCH09			MCH10		
Lead Stroke	5	10	20	5	10	20	10	20	
100	1	1							
150				1	1				
200	1	1							
250				1	1		1	1	
300	1	1							
350				1	1		1	1	
400		1	1						
450					1	1	1	1	
550							1	1	
650					1	1	1	1	
750								1	
850								1	
950								1	
1 050								1	

Table 4.9 Limitations

	Model No.	Lead	Slider	Stroke
	woder No.	(mm)		(mm)
	MCM02	1,2	Single	150
	MCM03	1,2	Single	150
	IVICIVIUS	5,10,12,15	Single	350
	MCM05	5,10,20,30*	Single	900
	IVICIVIUS	3,10,20,30"	Double	810
MCM series	MCM06	5,10,20	Single	1 000
	IVICIVIOO	5,10,20	Double	910
	NACNAGO	E 10 20 20*	Single	1 000
	MCM08	5,10,20,30*	Double	880
	MCM10	10,20,30*	Single	1 750
	IVICIVITO	10,20,30"	Double	1 600
	MCH06	E 10 20	Single	600
	IVICHUO	5,10,20	Double	500
	MCH09	E 10 20	Single	1 000
MCH series	IVICHU9	5,10,20	Double	850
	MCH10	10.20	Single	1 750
	IVICH IU	10,20	Double	1 600
	MCL06	5,10,20	Single	500

^{*)} Applicable only to single slider

C-1-4. 6 Basic Load Rating

(1) MCM Series Basic Load Rating

Table 4.10 Basic Load Rating

	Lead	Shaft dia	Basi	ic dynamic l	oad rating (N	۷)	Basic static loa	ad rating (N)	Support unit
Model No.	ℓ (mm)	<i>d</i> (mm)	Ball screw C_a	$\mathop{\rm Linear\ guide}_{C}$	Support unit C_a	Rated running distance $L_{ m a}({ m km})$	Ball screw C_{0a}	Linear guide C_0	Limit load (N)
MCM02	1	16	405(High grade) 480(Precision)	4 910	615	1	555(High grade) 615(Precision)	2 120	490
IVICIVIUZ	2	φ6	400(High grade) 475(Precision)	3 900	015	2 6		2 120	490
	1	16	870	10 900		1	1 230	4 900	
	2	<i>φ</i> 6	865	8 650		2	1 220	4 900	
MCM03	5		2 090	7 850	2 670	5	2 830		1 040
IVICIVIUS	10	φ8	1 310	6 250	2 070	10	1 710	6 620	1 040
	12		1 320	5 880		12	1 730	0 020	
	15	φ 10	2 000	5 440		15	2 740		
	5		4 390	15 600		5	6 260		
MCM05	10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450
IVICIVIUS	20	φ 12	2 660	9 850		20	3 800	10 900	
	30		3 300	8 600	6 550	30	5 390		2 730
	5		8 300	25 200		5	12 700		
MCM06	10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
	20		5 080	15 900		20	7 460		
	5		8 300	30 800		5	12 700		
MCM08	10	φ 15	8 140	24 400	7 100	10	12 800	22 800	3 040
IVICIVIOO	20	φισ	5 080	19 400	7 100	20	7 460	22 800	3 040
	30		5 500	16 930		30	8 580		
	10		12 800	33 500		10	21 400		
MCM10	20	ϕ 20	8 190	26 600	7 600	20	12 600	29 400	3 380
	30		13 200	23 200		30	22 900		

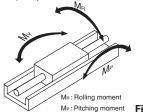
Notes:

Basic dynamic and static load ratings indicate values for one slider.

Basic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue.

Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load rating is load that results in combined permanent deformations at contact points of balls and ball grooves of respective parts at a diameter of 0.01%.

Table 4.11 Basic static moment load of linear guide


Model No.	Lead	Slider	Basic static moment (N · m)						
wiodei No.	(mm)	Silder	Rolling Mro	Pitching M _{PO}	Yawing Myo				
MCM02	1, 2		24	8	8				
MCM03	1, 2	Single	68	28	28				
IVICIVIOS	5, 10, 12 ,15		92	51	51				
MCM05	5, 10, 20, 30*	Single	229	89	89				
IVICIVIOS	3, 10, 20, 30	Double	455	765	765				
MCM06	5, 10, 20	Single	415	174	174				
IVICIVIOO	5, 10, 20	Double	825	1 220	1 220				
MCM08	5, 10, 20, 30*	Single	770	300	300				
IVICIVIOO	3, 10, 20, 30	Double	1 540	2 050	2 050				
MCM10	10, 20, 30*	Single	1 170	425	425				
IVICIVITO	10, 20, 30	Double	2 340	2 940	2 940				

Notes:

Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

If extremely heavy load is required, please consult NSK for estimation of fatigue life.

My: Yawing moment

Fv: Vertical direction load

(2) MCH Series Basic Load Rating

Table 4.12 Basic Load Rating

	Lead	Shaft dia	Ва	sic dynamic	load rating	Basic static load rating (N)		Support unit Limit load	
Model No.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support unit C_a	Rated running distance $L_{ m a}({ m km})$	Ball screw C_{0a}	Linear guide C_0	Limit load (N)
MCH06	5	φ 12	4 390	22 800		5	6 260		1 450
(MCL06)	10		2 740	18 100	4 400	10	3 820	16 300	
(IVICEOD)	20		2 660	14 400		20	3 800		
	5		8 300	40 600	7 100	5	12 700	30 500	3 040
MCH09	10	φ 15	8 140	32 200		10	12 800		
	20]	5 080	25 500		20	7 460		
MCH10	10	<i>φ</i> 20	12 800	44 600	7 600	10	21 400	42 000	3 380
IVICHIU	20	φ 20	8 190	35 400	7 600	20	12 600	42 000	3 380

Notes: Basic dynamic and static load ratings indicate values for one slider. Basic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue.

Basic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load rating is load that results in combined permanent deformations at contact points of balls and ball grooves of respective parts at a diameter of 0.01%.

Table 4.13 Basic static moment load of linear guide

Model No.	Slider	Basic static moment (N · m)					
wiodei ivo.	Silder	Rolling Mro	Pitching MPO	Yawing Myo			
MCH06	Single	335	133	133			
(MCL06)	Double	770	730	730			
MCH09	Single	890	385	385			
WICHUS	Double	1 780	2 070	2 070			
MCH10	Single	1 460	610	610			
WICHTO	Double	2 920	3 430	3 430			

Notes: Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

• If extremely heavy load is required, please consult NSK for estimation of fatigue life.

*) Applicable only to single slider

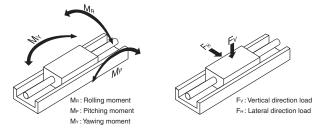


Fig. 4.5

C-1-4. 7 Estimation of Life Expectancy

(1) Life of Linear Guide

Study the load to be applied to the linear guide of Monocarrier (**Fig. 4.6**). The equivalent load ($F_{\rm e}$) is determined by substituting the load for equation 1) (Eq. 2): in case of the tightly coupled double slider type).

In case of the single slider

In case of the double slider

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

F_v: Vertical direction load acting on the slider (N)

 $M_{\rm R}$: Rolling moment acting on the slider (N · m)

 M_P : Pitching moment acting on the slider (N · m)

 $M_{\rm v}$: Yawing moment acting on the slider (N · m)

ε_R, ε_{Rd}

: Dynamic equivalent coefficient to rolling moment

E P, E Pd

: Dynamic equivalent coefficient to pitching moment

 $\epsilon_{\scriptscriptstyle Y}$, $\epsilon_{\scriptscriptstyle Yd}$

: Dynamic equivalent coefficient to yawing moment Refer to **Table 4.14** about Dynamic equivalent coefficient.

 Y_{H} , Y_{V} , Y_{R} , Y_{P} , Y_{Y}

: 1.0 or 0.5

At equations 1) and 2) for obtaining equivalent load $F_{\rm e}$, among $F_{\rm H}$, $F_{\rm v}$, $\mathcal{E}_{\rm P} M_{\rm P}$, $\mathcal{E}_{\rm R} M_{\rm R}$, $\mathcal{E}_{\rm v} M_{\rm Y}$, the maximum load is assumed to be 1.0, and others are to be 0.5.

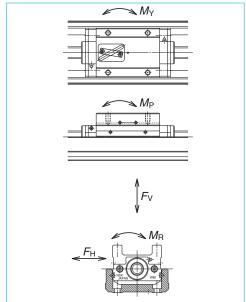


Fig. 4.6 Direction of load

Model No.	MCM02	MC Lead 1, 2	MO3 Lead 5, 10, 12, 15	MCM05	MCM06	MCM08	MCM10	MCH06 MCL06	MCH09	MCH10
εR	95.2	79.4	79.4	52.6	45.5	32.5	27.8	48.3	34.5	28.6
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\text{Rd}}}$	1	_	_	26.3	22.7	16.3	13.9	24.2	17.2	14.3
$\epsilon_{_{Pd}}$	1	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)
$\epsilon_{_{\text{Yd}}}$	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)

Note: Parenthesized figures are dynamic equivalent coefficient in case of the Monocarrier without NSK K1.

In case when the load acting on the slider may fluctuate (In general, $M_{\rm Pr}$, $M_{\rm Y}$ may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

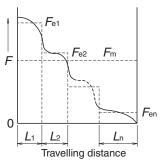


Fig. 4.7 Stepwise Fluctuating Load

Travelling distance under the equivalent load $F_{\rm e1}$: L_1 Travelling distance under the equivalent load $F_{\rm e2}$: L_2

Travelling distance under the equivalent load F_{en} : L_n

$$F_{\rm m} = \sqrt[3]{\frac{1}{L} \left(F_{\rm e1}^{3} L_{1} + F_{\rm e2}^{3} L_{2} + \cdots F_{\rm en}^{3} L_{\rm n} \right)} \cdots 3 \right)$$

 $F_{\rm m}$: Mean effective load of fluctuating loads

L: Total travelling distance

The life of linear guide is calculated by Eq. 4).

$$L = L_{a} \times \left[\frac{C}{f_{W} \cdot F_{m}}\right]^{3} \dots 4$$

L: Life of linear guide (km)

 $F_{\rm m}$: Mean effective load acting on the linear guide (N)

C: Basic dynamic load rating of the linear guide (N)

L_a: Travelling distance (km)

 f_{w} : Load factor (refer to **Table 4.15**)

When the estimated life does not clear the required life, the life of the linear guide is to be calculated again after the following measures are taken:

- Change from the single slider type to double slider type.
- 2. Use a larger size Monocarrier.

(2) Life of Ball Screw (Support unit)

The mean effective load is determined from the axial loads.

For calculation of the mean effective load, use Eq. 3.

The life of ball screw is calculated by Eq. 5).

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 \dots 5)$$

ℓ : Lead of ball screw (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of the ball screw (N)

 F_m : Mean effective load acting on the ball screw (N)

 $f_{\rm w}$: Load factor (refer to **Table 4.15**)

The life of a support unit is calculated by Eq. 5). If the life of ball screw/support unit does not clear the required life, use a larger size Monocarrier.

After applying the calculations mentioned above, selection of the Monocarrier is completed.

Table 4.15 Values of load factor f

Operating conditions	Load factor f _w
At smooth operation with no mechanical shock	1.0 – 1.2
At normal operation	1.2 – 1.5
At operation with mechanical shock and vibrations	1.5 – 3.0

C-1-4. 8 Example of Life Estimation

This section offers an example how to estimate the life of Monocarrier based on the life of each component.

<<Example of calculation-1>>

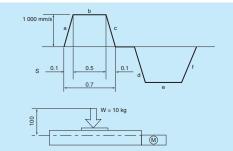


Fig. 4.8

1. Use condition

Stroke : 600 mm Maximum speed: 1000 mm/s Load mass : W = 10 kg $: a = 9.80 \text{ m/s}^2$ Acceleration Setting position: Horizontal Operating profile: See above figure

- 2. Selection of Model number (Interim Selection) Firstly, select a greater ball screw lead as the maximum speed is 1000 mm/s. The interim selection is MCM06060H20K00, a single slider specification MCM06 that has 600 mm stroke, as the stroke is 600 mm.
- 3. Calculation
- 3-1. Linear quide
- 3-1-1. Fatique life:

Multiply the result of the Eq. 1) by the dynamic equivalent coefficient (Table 4.14 single slider) to convert the load volume. From above operation profile.

- i) Constant speed $F_{e1} = Y_{v} \cdot F_{v} = Y_{v} \cdot W \cdot g$ $= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$
- ii) Accelerating $F_{e2} = Y_{V} \cdot F_{V} + Y_{P} \cdot \varepsilon_{P} \cdot M_{P}$ $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$
 - = 700 N
- $F_{P3} = Y_V \cdot F_V + Y_P \cdot \mathcal{E}_P \cdot M_P$ iii) Decelerating $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$ = 700 N

Mean effective load F...

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(98^{3} \cdot 500 + 700^{3} \cdot 50 + 700^{3} \cdot 50 \right)}$$

$$= 387 \text{ N}$$

$$L = \left(\frac{C}{f_{w} \cdot F_{m}} \right)^{3} \times L_{a}$$

$$= \left(\frac{15900}{1.2 \cdot 387} \right)^{3} \times 20$$

$$= 8.02 \times 10^{5} \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_0}{F_{\rm c}} = \frac{C_0}{F_{\rm co}} = \frac{17\ 000}{700} = 24.2$$

- 3-2. Ball screw
- 3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.
- By the process above.
- i) Constant speed

 $F_{e1} = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98$

ii) Accelerating

$$F_{e2} = F_{e1} + W \cdot \alpha = 101 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} - W \cdot \alpha = 99 \text{ N}$$

Axial mean effective load F...

$$\begin{split} F_{m} &= \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3}\right)} \\ &= \sqrt[3]{\frac{1}{600} \left(0.98^{3} \cdot 500 + 101^{3} \cdot 50 + 99^{3} \cdot 50\right)} \\ &= 55 \text{ N} \\ L &= \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times \ell \times 10^{6} \\ &= \left(\frac{5.080}{1.2 \cdot 55}\right)^{3} \times 20 \times 10^{6} \text{ (mm)} \\ &= 9.1 \times 10^{6} \text{ km} \end{split}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{7460}{101} = 73.8$$

3-2-3. Maximum rotational speed: According to the table of maximum speed on page C11, MCM06 with 20 mm lead and 600 mm stroke, is possible to operate under the maximum speed

of 1 300 mm/s.

3-3. Support unit

3-3-1. Fatigue life: Use the axial load $F_m = 55 \text{ N}$, that is the result of above calculation 3-2-1.

$$L = \left(\frac{C_{\text{a}}}{f_{\text{w}} \cdot F_{\text{m}}}\right)^{3} \times \ell \times 10^{6} = \left(\frac{6550}{1.2 \times 55}\right)^{3} \times 20 \times 10^{6} \text{ (mm)}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{2730}{101} = 27.0$$

3-4. Result

MCM06060H20K00	Linear guide	Ball screw	Support unit	
F - 12 PF	8.02×	9.1×	1.95×	
Fatigue life	10⁵ km	10 ⁶ km	10 ⁷ km	
Static safety factor	24.2	73.8	27.0	

In this case, the linear guide has the shortest fatique life of the components. Therefore, the linear guide fatigue life is used as the life of the Monocarrier. The interim selection of MCM06060H20K00, that is chosen based on the use conditions, satisfies the required life.

<<Example of calculation-2>>

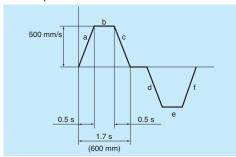


Fig. 4.9

1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s Load mass Acceleration : 9.8 m/s² Setting position: Honizontal

: W = 20 kgOperating profile: See above figure

Fig. 4.10 2. Selection of Model number (Interim Selection) Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is MCM08068H10D00 as a double slider specification of MCM08 has 680 mm stroke, and the setting position is vertical.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of the Eq. 2) by the dynamic equivalent coefficient (Table 4.14. double slider) to convert the load volume. From operation profile (Fig. 4.9), the acceleration is 1 m/s².

- i) Constant speed $F_{e1} = Y_P \cdot \mathcal{E}_{Pd} \cdot M_P + Y_V \cdot \mathcal{E}_{Vd} \cdot M_V$ $= 1 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.15$ $+ 0.5 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.1$ = 298 N
- ii) Accelerating $F_{e^2} = Y_P \cdot \mathcal{E}_{Pd} \cdot M_P + Y_V \cdot \mathcal{E}_{Vd} \cdot M_V$ $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 + 1.0)$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ $+ 1.0) \cdot 0.1 = 329 \text{ N}$
- $F_{e3} = Y_P \cdot \varepsilon_{Pd} \cdot M_P + Y_V \cdot \varepsilon_{Vd} \cdot M_V$ iii) Decelerating $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 - 1.0)$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ -1.0) $\cdot 0.1 = 268$ N

Mean effective load F...

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(298^{3} \cdot 350 + 329^{3} \cdot 125 + 268^{3} \cdot 125 \right)}$$

$$= 300 \text{ N}$$

$$L = L \times \left(C \right)^{3}$$

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m}\right)^3$$
$$= 10 \times \left(\frac{24400}{1.2 \cdot 300}\right)^3$$
$$= 3.11 \times 10^6 \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_0}{F_{\rm e}} = \frac{C_0}{F_{\rm e2}} = \frac{22\,800}{329} = 69.3$$

3-2. Ball screw

3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

i) Constant speed

$$F_{c1} = W \cdot q = 20 \cdot 9.8 = 196 \text{ N}$$

ii) Accelerating

$$F_{e2} = F_{e1} + W \cdot \alpha = 196 + 20 \cdot 1 = 216 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} - W \cdot \alpha = 196 - 20 \cdot 1 = 176 \text{ N}$$

Axial mean effective load $F_{\rm m}$

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3}\right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(196^{3} \cdot 350 + 216^{3} \cdot 125 + 176^{3} \cdot 125\right)}$$

$$= 197 \text{ N}$$

$$L = \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times 10^{6}$$

$$= 10 \times \left(\frac{8 \cdot 140}{1 \cdot 2 \cdot 197}\right)^{3} \times 10^{6} \text{ (mm)}$$

$$= 4.08 \times 10^{5} \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{12\,800}{216} = 59.2$$

3-3. Support unit

3-3-1. Fatigue life: Use the axial load F_m = 197 N, that is the result of above calculation 3-2-1.

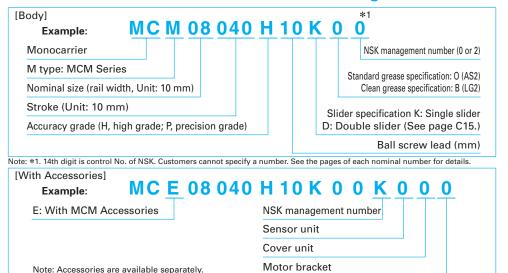
$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 = 10 \times \left(\frac{7 \cdot 100}{1.2 \times 197}\right)^3 \times 10^6 \text{ (mm)}$$
$$= 2.70 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{3\,040}{216} = 14.0$$

3-4. Result

MCM08068H10D00	Linear guide	Ball screw	Support unit	
Fatimes life	3.11 ×		2.70 ×	
Fatigue life	10 ⁶ km	10⁵ km	10⁵ km	
Static safety factor	69.3	59.2	14.0	



C-1-5 MCM Series	
I MCM Series Reference Number	C27
Coding	
2 MCM Series Dimension Table of	
Standard Products	
MCM02	C28
MCM03	C29
MCM05	C33
MCM06	C37
MCM08	C41
MCM10	C45
MCM Series Accessories	
3. 1 Sensor Unit	C49
3. 2 Cover Unit	C53
3. 3 Motor Bracket	C 55

MCM Series

C-1-5 MCM Series

C-1-5.1 MCM Series Reference Number Coding

Table 1 Sensor unit (See page C49.)

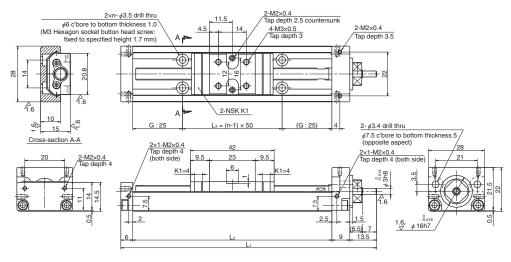
Reference No. code	Specification	Reference No.
0	N/A	_
1 Proximity switch (normally close contact 3 pieces)		MC – SRxx – 10
2	Proximity switch (normally open contact 3 pieces)	MC – SRxx – 11
3 Proximity switch (normally open contact 1 piece, normally close contact 2 pieces)		MC – SRxx – 12
4	Photo sensor 3 pieces	MC – SRxx – 13

2) Sensor rail is not included in sensor unit. If you require the rail, please request separately. (See page C50 to C52.)

Table 2 Cover unit (See pages C53 to C54.)

Reference No. code	Specification	Reference No.	
0	N/A	_	
1	With top cover	MC - CVxxxxx - 01 (02) *	
_	Full cover	MC – CVxxxxx – 00	

Note 1) xxxxx: Reference number and stroke number 2)*: "-02" is only used for Monocarrier MCM03. 3) When a sensor unit is used, full cover unit cannot be used.


Table 3 Motor bracket (See pages C55 to C71.)

Reference	Reference No.									
No. code	MCM03	MCM05	MCM06	MCM08	MCM10					
0	N/A	N/A	N/A	N/A	N/A					
1	MC-BK03-146-00 MC-BK05-145-00		MC-BK06-145-00	MC-BK08-145-00	MC-BK10-170-00					
2	MC-BK03-148-01	MC-BK05-146-00	MC-BK06-146-00	MC-BK08-146-00	MC-BK10-170-01					
3	MC-BK03-231-00	MC-BK05-148-00	MC-BK06-148-00	MC-BK08-160-00	MC-BK10-190-00					
4	_	MC-BK05-160-00	MC-BK06-160-00	MC-BK08-170-00	MC-BK10-270-00					
5	_	MC-BK05-250-00	MC-BK06-170-00	MC-BK08-170-01	_					
6	_	_	MC-BK06-170-01	MC-BK08-190-00	_					
7	_	_	MC-BK06-250-00	MC-BK08-250-00	_					
8	_	_	_	MC-BK08-270-00	_					
C27					N/A: Not applicab					

C-1-5.2 MCM Series Dimension Table of Standard Products

MCM02

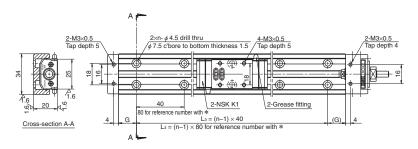
MCM02

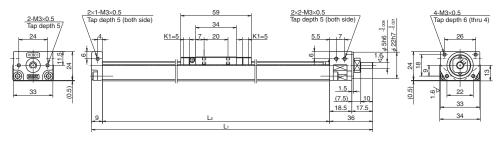
Dimension of MCM02 (Single slider)

Reference No.	Nominal stroke	Stroke limit	Ball screw lead	Body length (mm)			No. of mounting hole	Inertia	Mass
Mererence No.	(mm)	(mm)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁷ (kg · m ²)	(kg)
MCM02005H01K			1	100 E	128.5 100	50		0.93	
MCM02005P01K	50	58	!				2		0.26
MCM02005H02K	50	56	2	120.5					0.20
MCM02005P02K									
MCM02010H01K	100		1 1	178.5	150	100	3	1.36	0.32
MCM02010P01K		108	'						
MCM02010H02K	100	100	2	170.5					
MCM02010P02K		2							
MCM02015H01K			1						0.39
MCM02015P01K	150	150 158	1	228.5	200	150	4	1.81	
MCM02015H02K			2	220.5	200	150		1.01	
MCM02015P02K			2						

IVIOITOCATTICE GYTTATTIC	toru	dae abecilication (i.v. c		
		High grade	Precision	
Ball screw lead	1	0.1 – 1.3	00 10	
(22.22)	2	0.1 - 1.3	0.2 - 1.6	

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. There is no LG2 specification for MCM02.


Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d Ball screw Linear gr		Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	ioau iirilt (N)
1		405 (High grade)	4 910		1	555 (High grade)	2 120	490
		480 (Precision)	4 910			615 (Precision)		
0	φ6	400 (High grade)	0.000	615		555 (High grade)		
2		475 (Precision)	3 900		2	610 (Precision)		

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	24	8	8					

MCM03

Ball screw lead 1 and 2

Dimension of MCM03 (Single slider)

Reference No.	Nominal stroke	,	Ball screw lead	В	ody len	gth (mn	٦)	No. of mounting hole	Inertia	Mass
11010101100 110.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	$\times 10^{-5} (kg \cdot m^2)$	(kg)
*MCM03005P01K00	FO	56	1	160	115	17.5	80	2	0.015	0.6
*MCM03005P02K00	50	(66)	2	160	115	17.5	00		0.016	0.0
MCM03010P01K00	100	131	1	005	190	15	160	-	0.021	0.7
MCM03010P02K00	100	(141)	2	235				5	0.022	
MCM03015P01K00	150	181	1	285	240	20	200	6	0.025	0.8
MCM03015P02K00	150	(191)	2	200	240	20	200	0	0.026	7 0.8

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

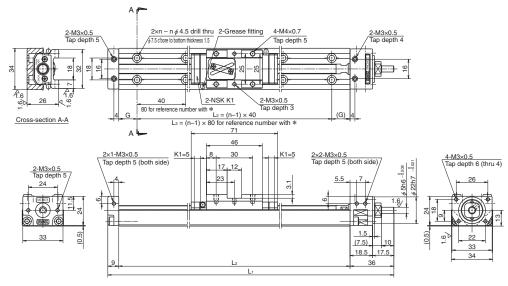
Monocarrier dynamic tor	que specifi	cation (N · cm)
Ball screw lead	1	

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (See page C53.)

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo				
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load limit (N)	
1		870	10 900	0.070	1	1 230			
φ6	865	8 650	2 670	2	1 220	4 900	1 040		


Basic static moment load of linear guide

05-1	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	68	28	28

MCM03

Accuracy grade: High grade (H)

Ball screw lead 5, 10 and 12

Dimension of MCM03 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	В	ody len	gth (mn	۱)	No. of mounting hole	Inertia	Mass
nererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	$\times 10^{-5}$ (kg · m ²)	(kg)
*MCM03005H05K00		69	5						0.057	
*MCM03005H10K00	50	(79)	10	185	140	30	80	2	0.080	0.6
*MCM03005H12K00		(79)	12						0.097	
MCM03010H05K00		119	5						0.073	
MCM03010H10K00	100	(129)	10	235	190	15	160	5	0.092	0.7
MCM03010H12K00		(129)	12						0.109	
MCM03015H05K00		169 (179)	5	285	240	20	200	6	0.089	
MCM03015H10K00	150		10						0.105	0.8
MCM03015H12K00			12						0.122	
MCM03020H05K00		219	5						0.104	
MCM03020H10K00	200	(229)	10	335	290	25	240	7	0.118	0.9
MCM03020H12K00		(229)	12						0.135	
MCM03025H05K00		260	5						0.120	
MCM03025H10K00	250	269	10	385	340	30	280	8	0.131	1.0
MCM03025H12K00		(279)	12						0.147	

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

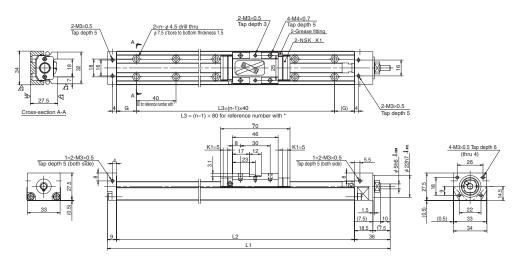
0.7 - 4.9

Monocarrier dynamic torque specification (N · cm) Ball screw Accuracy grade lead(mm) High grade Precision 0.2 - 2.50.6 - 4.4 10

0.3 - 3.0

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
 - 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic l	oad rating (N)	Basic static lo				
l	d	Ball screw	Linear guides	Support unit Rated running distance		Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
5		2 090	7 850		5	2 830			
10	φ8	1 310	6 250	2 670	10	1 710	6 620	1 040	
12		1 320	5 880		12	1 730			

	•							
Clinter	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	92	51	51					

MCM03

Accuracy grade: High grade (H)

Ball screw lead 15

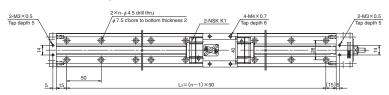
Dimension of MCM03 (Single slider)

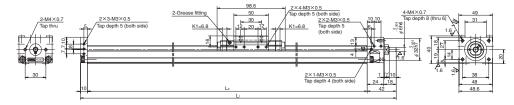
	Reference No.	Nominal stroke (mm)	Stroke limit (without K1)	Ball screw lead (mm)	Ball screw diameter (mm)	£1	Body len	gth (mm G	n) 	No. of mounting hole	Inertia ×10 ⁻⁴ (kg·m²)	Mass (kg)
	★ MCM03005H15K00	50	70 (80)		∮ 10	185	140	30	80	2	0.183	0.67
	MCM03010H15K00	100	120(130)	1		235	190	15	160	5	0.222	0.77
	MCM03015H15K00	150	170(180)	15		285	240	20	200	6	0.260	0.87
_	MCM03020H15K00	200	220(230)]		335	290	25	240	7	0.298	0.97
	MCM03025H15K00	250	270(280)]		385	340	30	280	8	0.336	1.07

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque	e specification (N · cm				
Ball screw lead (mm)	15	0.3 - 5.6			

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- 4. When a cover unit is added, an optional spacer plate is required. (See page C53.)
- 5. There is no P grade (precision grade) for Lead 15.


Basic load rating


Lead	Shaft dia	Basic dynamic load rating (N)				Basic static l	Support unit	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guide	load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	L_a (km)	C_{0a}	C_0	ioau iirriit (iv)
15	<i>ф</i> 10	2 000	5 440	2 670	15	2 740	6 620	1 040

Basic static load of linear guide

Slider	Basic static moment load (N · m)										
Siluei	Rolling M _{RQ}	Pitching M _{PO}	Yawing M _{YO}								
Single	92	51	51								

C32

Dimension of MCM05 (Single slider)

Reference No.	Nominal stroke (mm)			Bod L ₁	y length (r L ₂	nm) <i>L</i> ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM05005H05K00	(contra)	81	5		-2	-5		0.025	V-9/
MCM05005H10K00	50	(95)	10	232	180	150	4	0.035	1.4
MCM05005H20K00		(90)	20					0.073	
MCM05010H05K00		131	5					0.031	
MCM05010H10K00	100	(145)	10	282	230	200	5	0.040	1.6
MCM05010H20K00			20					0.078	
MCM05015H05K00		181	5	332		250	6	0.036	
MCM05015H10K00	150	(195)	10		280			0.046	1.8
MCM05015H20K00			20					0.084	
MCM05020H05K00		231	5					0.042	
MCM05020H10K00	200	(245)	10	382	330	300	7	0.051	2.0
MCM05020H20K00		(2.0)	20					0.089	
MCM05025H05K00		281	5					0.047	
MCM05025H10K00	250	(295)	10	432	380	350	8	0.057	2.2
MCM05025H20K00		(200)	20					0.095	

V	lonocarrier	dyr	namic	torqu	ie sp	oecifi	cation	(N	cn

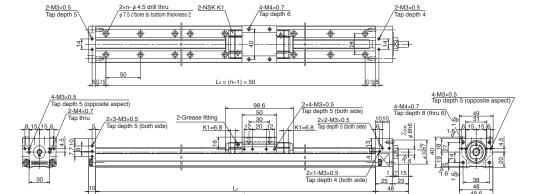
Ball screw	Accurac	cy grade		
lead(mm)	High grade	Precision		
5	1.0 - 4.8	1.9 - 7.7		
10	1.1 - 5.8	2.1 - 8.7		
20	1.6 - 7.9	2.5 – 10.7		
30	18-131			

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic lo	oad rating (N)		Basic static loa			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	ioad iimit (N)	
5		4 390	15 600		5	6 260	10 900	1 450	
10	/ 10	2 740	12 400	4 400	10	3 820			
20	φ12	2 660	9 850		20	3 800	10 900		
30		3 300	8 600	6 550	30	5 390		2 730	


Basic static moment load of linear guide

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	229	89	89					

MCM05

Accuracy grade: High grade (H)

Ball screw lead 30

Dimension of MCM05 (Single slider)

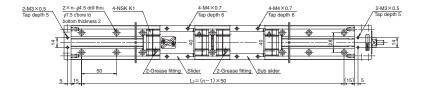
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Body length (mm)		No. of mounting hole	Inertia	Mass	
	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05030H05K00			5					0.053	
MCM05030H10K00	300	331	10	482	430	400	9	0.063	2.3
MCM05030H20K00	000	(345)	20		400	400		0.101	7 2.3
MCM05030H30K00			30	488				0.164	
MCM05040H05K00	400		5					0.064	
MCM05040H10K00		431	10	582	530	500	11	0.074	2.7
MCM05040H20K00		(445)	20		000	500		0.112	
MCM05040H30K00		30	588				0.175	2.8	
MCM05050H05K00			5	682	630	600	13	0.076	
MCM05050H10K00	500	531	10					0.085	3.1
MCM05050H20K00	300	(545)	20		030	000	15	0.123	1
MCM05050H30K00			30	688				0.186	3.2
MCM05060H05K00			5					0.087	
MCM05060H10K00	600	631	10	782	730	700	15	0.096	3.5
MCM05060H20K00		(645)	20		730	700	15	0.134	1
MCM05060H30K00			30	788				0.198	3.6

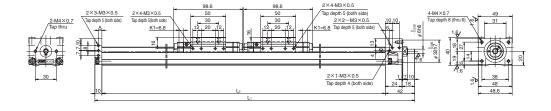
1.8 - 13.1

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic le	oad rating (N)		Basic static loa	ad rating (N)	Support unit	
L (mm)	d (mm)	Ball screw C_{a}	Linear guides C	Support unit $C_{\rm a}$	Rated running distance $L_{ m a}$ (km)	Ball screw C_{0a}	Linear guides C ₀	load limit (N)	
5		4 390	15 600		5	6 260			
10	, 10	2 740	12 400	4 400	10	3 820	10.000	1 450	
20	φ 12	2 660	9 850		20	3 800	10 900		
30		3 300	8 600	6 550	30	5 390]	2 730	


Clister	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	229	89	89						

Accuracy grade: High grade (H)

MCM05 (Double slider)

Accuracy grade: High grade (H)

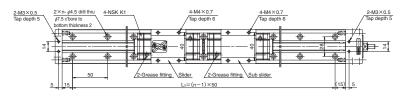
Dimension of MCM05 (Double slider)

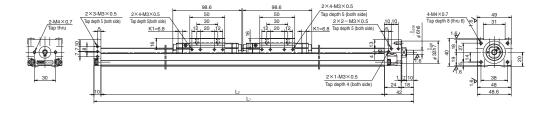
D.f. N	Nominal stroke Stroke limit (mm		Ball screw lead	Body length (mm)			No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes 10^{-4}$ (kg \cdot m ²)	(kg)
MCM05006H10D00	60	82 (110)	10	332	280	250	6	0.058	2.3
MCM05011H10D00	110	132 (160)	10	382	330	300	7	0.064	2.5
MCM05016H10D00	160	182 (210)	10	432	380	350	8	0.070	2.7
MCM05021H10D00	210	232	10	482	430	400	0	0.075	2.8
MCM05021H20D00	210	(260)	20	402	430	400	9	0.151	2.0

Monocarrier dyn	amic torque spe	amic torque specification (N · cm)					
Ball screw	Accuracy grade						
lead(mm)	High grade	Precision					
10	1.5 - 7.6	2.4 – 10.6					
20	2.3 – 11.8	3.2 – 14.8					

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


	Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa		
	L (mm)	d (mm)	Ball screw	Linear guides	Support unit C_a	Rated running distance L_a (km)	Ball screw C_{0a}	Linear guides	Support unit load limit (N)
1	5		4 390	15 600		5	6 260	-	
	10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450
	20		2 660	9 850		20	3 800		

Basic static moment load of linear guide

Clister	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	455	765	765			

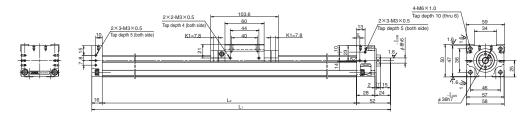
MCM05 (Double slider)

Dimension of MCM05 (Double slider)

D.f. N	Nominal stroke	Stroke limit (mm)	Ball screw lead	Boo	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05031H10D00	310	332	10	582	530	500	11	0.086	3.2
MCM05031H20D00	310	(360)	20	502	550	300	''	0.162	5.2
MCM05041H10D00	410	432	10	682	630	600	13	0.098	2.0
MCM05041H20D00	410	(460)	20	002	030	600	13	0.174	3.6
MCM05051H10D00	510	532	10	782	730	700	15	0.109	4.2
MCM05051H20D00	510	(560)	20	/02	/30	700	15	0.185	4.2

Monocarrier dynamic torque specification (N · cm)

Ball screw	Accuracy grade					
lead(mm)	High grade	Precision				
10	1.5 - 7.6	2.4 - 10.6				
20	2.3 - 11.8	3.2 - 14.8				


Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Shaft dia		Basic dynamic load rating (N)				Basic static load rating (N)		
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
ľ	5		4 390	15 600		5	6 260			
	10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450	
	20		2 660	9 850		20	3 800			

CII-		Basic st	Basic static moment load (N · m)						
Slid	ier	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Dou	ble	455	765	765					

Dimension of MCM06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
◇MCM06005H05K02		86	5					0.066	
◇MCM06005H10K00	50	(102)	10	258	190	100	2	0.077	2.7
		(102)	20					0.122	
MCM06010H05K02		136	5					0.080	
MCM06010H10K00	100	(152)	10	308	240	200	3	0.092	3.0
MCM06010H20K00		(102)	20					0.137	
		186	5					0.095	
	150	(202)	10	358	290	200	3	0.106	3.5
		(202)	20					0.152	
MCM06020H05K02		236	5					0.110	
MCM06020H10K00	200	(252)	10	408	340	300	4	0.121	3.8
MCM06020H20K00		(202)	20					0.167	
		286	5					0.125	
	250	(302)	10	458	390	300	4	0.136	4.2
		(552)	20					0.181	
MCM06030H05K02		336	5					0.139	
MCM06030H10K00	300	(352)	10	508	440	400	5	0.150	4.5
MCM06030H20K00		(002)	20					0.196	

Notes: 1. Dimension G is 45 for items marked with \diamondsuit .

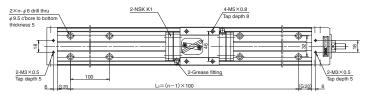
2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

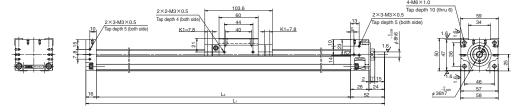
Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Standard	10, 20	00
LG2	5	B2
LGZ	10, 20	B0

Monocarrier dyn	amic torque spec	cification (N · cm			
Ball screw	Accuracy grade				
lead(mm)	High grade	Precision			
5	1.9 - 7.4	3.4 - 12.3			
10	2.2 - 8.6	3.6 - 14.0			
20	28 - 110	42-165			

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic I	oad rating (N)	Basic static loa	ad rating (N)	6	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)
5		8 300	25 200		5	12 700		
10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
20		5 080	15 900		20	7 460		

Basic static moment load of linear guide

Clister.	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	415	174	174

MCM06

Dimension of MCM06 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L2	mm) 	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM06040H05K02		436	5					0.169	
MCM06040H10K00	400	(452)	10	608	540	500	6	0.180	5.2
MCM06040H20K00		(402)	20					0.225	
MCM06050H05K02		536	5					0.198	
MCM06050H10K00	500	(552)	10	708	640	600	7	0.209	6.0
MCM06050H20K00		(002)	20					0.255	
MCM06060H05K02		636	5					0.228	
MCM06060H10K00	600	(652)	10	808	740	700	8	0.239	6.7
MCM06060H20K00		(002)	20					0.284	
MCM06070H05K02		736	5					0.257	
MCM06070H10K00	700	(752)	10	908	840	800	9	0.268	7.4
MCM06070H20K00		(752)	20					0.314	
MCM06080H05K02		836	5					0.286	
MCM06080H10K00	800	(852)	10	1 008	940	900	10	0.298	8.1
MCM06080H20K00		(002)	20					0.343	

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

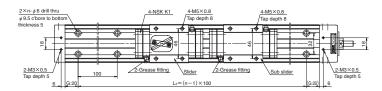
Grease	Lead	High-grade, precision-gra
Standard	5	02
Stariuaru	10, 20	00
LG2	5	B2
LGZ	10, 20	B0

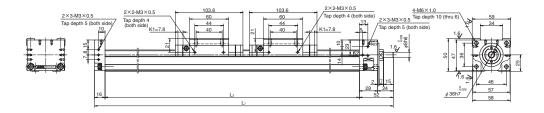
Monocarrier dynamic torque specification (N -							
Ball screw	Accurac	Accuracy grade					
lead(mm)	High grade	Precision					
5	1.9 - 7.4	3.4 – 12.3					
10	2.2 - 8.6	3.6 - 14.0					
20	2.8 - 11.0	4.2 - 16.5					

1. Frictional resistance of NSK K1 is

- included in dynamic torque in table. 2. Grease is packed into ball screw, linear
- guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


	Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa	ad rating (N)	
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}(km)$	C_{0a}	C_0	load limit (N)
	5		8 300	25 200		5	12 700		
	10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
_	20		5 080	15 900		20	7 460]	


Slider	Basic st	atic moment load	d (N · m)
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	415	174	174

Accuracy grade: High grade (H)

MCM06 (Double slider)

Accuracy grade: High grade (H)

Dimension of MCM06 (Double slider)

Deference No	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass				
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes 10^{-4}$ (kg \cdot m ²)	(kg)				
MCM06011H05D02	110	132	5	408	408 340	340 300	4	0.114	4.4				
MCM06011H10D00	110	(164)	10	400				0.136	4.4				
MCM06021H05D02		222	222	232 (264)	222	222	222	5				0.143	
MCM06021H10D00	210	210	210		10	508	440	400	5	0.166	5.1		
MCM06021H20D00		(204)	20					0.257					
MCM06031H05D02	310			332	5					0.173			
MCM06031H10D00		310 (364)	10	608	608 540	540 500	500 6	0.195	5.8				
MCM06031H20D00		(304)	20					0.286					

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

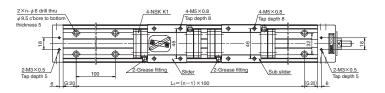
Coding for columns 13 and 14

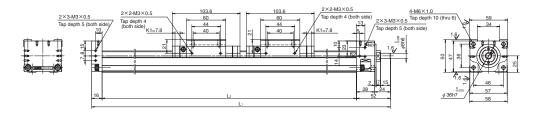
Grease	Lead	High-grade, precision-grade
Standard	5	02
Standard	10, 20	00
LG2	5	B2
LUZ	10, 20	B0

Monocarrier dynamic torque specification (N · cm)								
Ball screw	Accurac	y grade						
lead(mm)	High grade	Precision						
5	2.3 - 8.5	3.7 - 13.5						
10	2.7 - 10.9	4.2 - 16.4						
20	4.0 - 15.9	5.5 – 21.3						

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


	Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa	ad rating (N)	
	L (mm)	d (mm)	Ball screw	Linear guides	C	Rated running distance L_a (km)		Linear guides	Support unit load limit (N)
٠.	(111111)	(111111)	C _a	Ü	C _a	Da (KIII)	C _{0a}	C ₀	
	5		8 300	25 200		5	12 700		
	10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
-	20		5 080	15 900		20	7 460		

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	825	1 220	1 220

MCM06 (Double slider)

Dimension of MCM06 (Double slider)

Reference No.	Nominal stroke		Ball screw lead	Bod	y length (r	nm)	No. of mounting hole		Mass
TICICICIICO IVO.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM06041H05D02		400	5					0.202	
MCM06041H10D00	410	432 (464)	10	708	640	600	7	0.224	6.6
MCM06041H20D00		(464)	20					0.316	
MCM06051H10D02	510	532	10	808	740	700	8	0.254	7.3
MCM06051H20D00	310	(564)	20	000	000 740	740 700	0	0.345	7.3
MCM06061H10D02	610	632	10	908	840	800	9	0.283	8.0
MCM06061H20D00	610	(664) 20	20	906	040	000	9	0.375	0.0
MCM06071H10D02	710	732	10	1 008	940	900	10	0.313	8.7
MCM06071H20D00	710	(764)	20	1 000	940 900	300	50 10	0.404	8.7

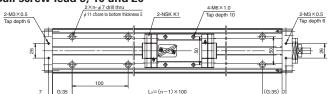
Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

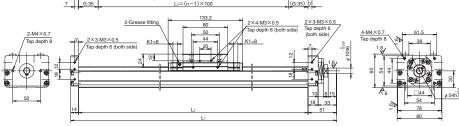
Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Stariuaru	10, 20	00
1.62	5	B2
LUZ	10, 20	В0

ivionocarrier dyr	iamic torque spec	cification (iv - cn
Ball screw	Accurac	y grade
lead(mm)	High grade	Precision
5	2.3 - 8.5	3.7 - 13.5
10	2.7 - 10.9	4.2 - 16.4
20	4.0 1E.0	E E 212

Notes:


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

	Lead	Shaft dia		Basic dynamic le	oad rating (N)		Basic static loa	ad rating (N)	Comment
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)
	5		8 300	25 200		5	12 700		
	10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
_	20		5 080	15 900		20	7 460		

Oli-l	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Double	825	1 220	1 220					

Accuracy grade: High grade (H)

Dimension of MCM08 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass		
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)		
◇MCM08005H05K02	50	86	5	285	220	100	2	0.082	4.1		
◇MCM08005H10K00	30	(102)	10	200	220	100		0.100	4.1		
MCM08010H05K02		136	5					0.097			
MCM08010H10K00	100	(152)	10	335	270	200	3	0.114	4.6		
MCM08010H20K00		(102)	20					0.190			
		186	5				0.111				
◇MCM08015H10K00	150	150	150	(202)	10	385	320 200	200	3	0.129	5.1
		(202)	20					0.205			
MCM08020H05K02	23	236	5					0.126			
MCM08020H10K00	200	(252)	10	435	370	300	4	0.144	5.5		
MCM08020H20K00		(202)	20					0.220			
		286	5					0.141			
	250	(302)	10	485	420	300	4	0.159	6.0		
		(002)	20					0.235			
MCM08030H05K02		336	5					0.156			
MCM08030H10K00	300	(352)	10	535	470	400	5	0.173	6.5		
MCM08030H20K00		(= 32/	20					0.249			

Notes: 1. Dimension G is 60 for items marked with \diamondsuit .

2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Stanuaru	10, 20	00
1 G2	5	B2
LUZ	10, 20	B0

Monocarrier dynamic torque specification (N · cm)										
Ball screw	Accuracy grade									
lead(mm)	High grade	Precision								
5	1.0 - 5.9	3.1 – 11.5	2							
10	2.0 - 7.8	3.2 - 13.3								
20	2.5 - 10.8	4.0 - 16.4	3							
30	2.8 - 12.0	_								

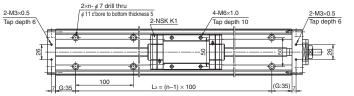
Notes:

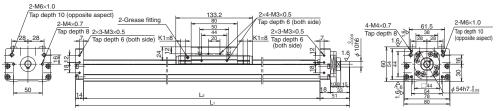
- Frictional resistance of NSK K1 is included in dynamic torque in table.

 Grease is packed into ball screw, linear guide
- Grease is packed into ball screw, linear gui
 parts and support unit.
- Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic I	Basic static loa				
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)
5		8 300	30 800		5	12 700		
10	ø 15	8 140	24 400	7 100	10	12 800	22 800	3 040
20	φ15	5 080	19 400	7 100	20	7 460	22 800	3 040
30		5 500	16 930		30	8 580		


Basic static moment load of linear guide


Cli-l	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	770	300	300

MCM08

MCM08

Ball screw lead 30

Dimension of MCM08 (Single slider)

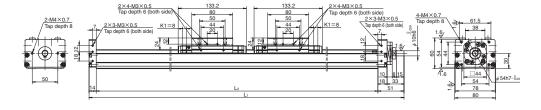
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass				
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes$ 10 ⁻⁴ (kg \cdot m ²)	(kg)				
MCM08040H05K02			5					0.185					
MCM08040H10K00	400	436	10	635	570	500	6	0.203	7.4				
MCM08040H20K00	400	(452)	20	033	370		0	0.279	7.4				
MCM08040H30K00			30					0.405					
MCM08050H05K02			5					0.214					
MCM08050H10K00	500	536	10	735	670	600	7	0.232	8.4				
MCM08050H20K00	300	(552)	20	/35	070	0 000	000 /	0.308	0.4				
MCM08050H30K00			30					0.435					
MCM08060H05K02	600		5					0.244					
MCM08060H10K00		636	10	835 770	700	8	0.262	9.3					
MCM08060H20K00		000	000	000	000	000	(652)	20	000	//0	700		0.338
MCM08060H30K00			30					0.464					
MCM08070H05K02			5					0.273					
MCM08070H10K00	700	736	10	935	870	800	9	0.291	10.5				
MCM08070H20K00	700	(752)	20	333	070	800	9	0.367	10.5				
MCM08070H30K00			30					0.494					
MCM08080H05K02		836	5					0.303					
MCM08080H10K00	800	(852)	10	1 035	970	900	10	0.320	11.2				
MCM08080H20K00		(032)	20					0.396					
Makes The second and accorde	and the Alexander and	Antologia Bassial			-41	41	- £ - 41 £		- f-lli.				

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Basic load rating

Lead	High-grade, precision-grad
5	02
10, 20	00
5	B2
10, 20	B0
	5 10, 20 5


ivionocarrier dynamic torque specification (N · cm									
Accurac	Accuracy grade								
High grade	Precision								
1.0 - 5.9	3.1 – 11.5								
2.0 - 7.8	3.2 - 13.3								
2.5 - 10.8	4.0 - 16.4								
2.8 - 12.0	_								
	Accurace High grade 1.0 - 5.9 2.0 - 7.8 2.5 - 10.8								

Votes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

•	Lead	Shaft dia		Basic dynamic load rating (N)				Basic static load rating (N)		
	l	d Ball screw Li		Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}(km)$	C_{0a}	C_0	load limit (N)	
	5		8 300	30 800		5	12 700			
	10	, 15	8 140	24 400	7 100	10	12 800	22 800	3 040	
	20	φ 15	5 080	19 400	7 100	20	7 460	22 800	3 040	
	30		5 500	16 930		30	8 580			

Clister	Basic st	atic moment load	d (N·m)		
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Single	770	300	300		

Dimension of MCM08 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	ly length (r	nm)	No. of mounting hole	Inertia	Mass
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
*MCM08008H10D00	80	103 (135)	10	435	370	300	3	0.169	6.5
MCM08018H10D00	180	203	10	535	470 4	400	5	0.199	7.5
MCM08018H20D00	100	(235)	20	555		400		0.351	
MCM08028H10D00	280	303	10	635	570	500	6	0.228	8.4
MCM08028H20D00	200	(335)	20	033	570 500	0	0.380	0.4	
MCM08038H10D00	380	403	10	735	670	600	7	0.257	9.4
MCM08038H20D00	360	(435)	20	733	670	000	/	0.409	3.4

Notes: 1. Bolt hole pitch L3 on item marked with * is 150 mm.

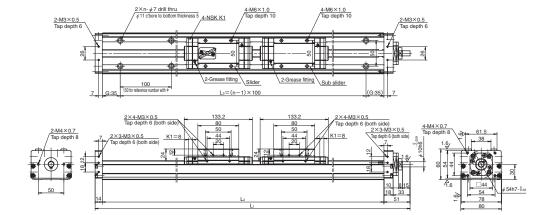
The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	10, 20	00
LG2	10, 20	В0

ivionocarrier dyn	iamic torque spec	cification (IN - cm)					
Ball screw	Accuracy grade						
lead(mm)	High grade	Precision					
10	2.5 – 10.8	3.9 – 16.2					
00	4.0 47.0	F 4 00 0					

Notes:


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic I	oad rating (N)		Basic static loa			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	Ca	$L_{a}\left(km\right)$	C_{0a}	C ₀	load limit (N)	
10	ø 15	8 140	24 400	7 100	10	12 800	22 800	3 040	
20	φιο	5 080	19 400	7 100	20	7 460	22 000	3 040	

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	1 540	2 050	2 050

Dimension of MCM08 (Double slider)

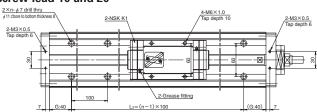
Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod <i>L</i> ₁	y length (r L2	nm) <i>L</i> 3	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM08048H10D00	480	503	10	835	770	700	8	0.287	10.3
MCM08048H20D00	400	(535)	20	033	,,,	700		0.439	
MCM08058H10D00	580	603	10	935	870	800	0	0.316	11.5
MCM08058H20D00	560	(635)	20	333	670	800	9	0.468	11.5
MCM08068H10D00	680	703	10	1 035	970	900	10	0.346	12.2
MCM08068H20D00	000	(735)	20	1 035	970	900	50 10	0.498	12.2

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

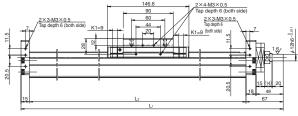
Coding for columns 13 and 14

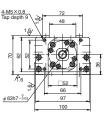
Grease	Lead	High-grade, precision-grade
Standard	10, 20	00
LG2	10, 20	В0

Monocarrier dynamic torque specification (N -							
Ball screw	Accurac	y grade					
lead(mm)	High grade	Precision					
10	2.5 – 10.8	3.9 – 16.2					
20	4.0 - 17.2	5.4 - 22.6					


Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.


Basic load rating


	Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa	0	
	l	d	Ball screw	Ball screw Linear guides S		Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	Ca	L_{a} (km)	C_{0a}	C_0	load limit (N)
	10	ø 15	8 140	24 400	24 400 7 100 10 12 800 22 800		22 800	3 040	
_	20	φ 15	5 080	19 400	/ 100	20	7 460	22 800	3 040

OI: I	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	1 540	2 050	2 050

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r	nm) <i>L</i> 3	No. of mounting hole	Inertia × 10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM10010H10K00	. ,	133	10			_	0.1	0.332	
MCM10010H20K00	100	(151)	20	362	280	200	2*	0.446	7.8
◇MCM10015H10K00	150	183	10	412	330	300	4	0.378	8.7
	150	(201)	20	412	330	300	4	0.492	0.7
MCM10020H10K00	200	233	10	462	380	300	4	0.425	9.5
MCM10020H20K00	200	(251)	20	402	300	300	4	0.539	5.5
	250	283	10	512	430	400	5	0.472	10.4
	250	(301)	20	512	430	400	5	0.586	10.4
MCM10030H10K00	300	333	10	562	480	400	400 5	0.519	11.2
MCM10030H20K00	300	(351)	20	302	400	400	3	0.633	11.2
MCM10040H10K00	400	433	10	662	580	500	6	0.612	13.0
MCM10040H20K00	400	(451)	20	002	300	300	o o	0.726	15.0
MCM10050H10K00		533	10					0.706	
MCM10050H20K00	500	(551)	20	762	680	600	7	0.820	14.6
MCM10050H30K00		(551)	30					1.010	

Notes: 1) Dimension G is 15 for items marked with \diamondsuit .

2) *: Use mounting holes on each end of the rail.

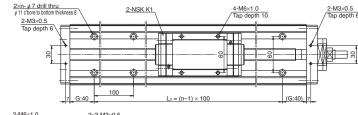
Monocarrier dynamic torque specification (N · cm									
Ball screw	Accuracy grade								
lead(mm)	High grade	Precision							
10	2.7 - 10.8	4.7 – 19.7							
20	3.1 – 12.7	5.2 - 21.6							
30	51 - 180								

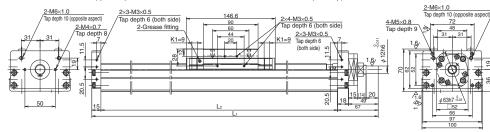
lotes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Lead Shaft dia Basic dynamic load rating (N)						Basic static load rating (N)		
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
	10		12 800	33 500		10	21 400			
-	20	φ20	8 190	26 600	7 600	20	12 600	29 400	3 380	
	30		13 200	23 200		30	22 900			


Basic static moment load of linear guide


Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	1 170	425	425

MCM10

MCM10

Ball screw lead 30

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM10060H10K00 MCM10060H20K00 MCM10060H30K00	600	633 (651)	10 20 30	862	780	700	8	0.800 0.914 1.104	16.3
MCM10070H10K00 MCM10070H20K00 MCM10070H30K00	700	733 (751)	10 20 30	962	880	800	9	0.893 1.007 1.197	18.0
MCM10080H10K00 MCM10080H20K00 MCM10080H30K00	800	833 (851)	10 20 30	1 062	980	900	10	0.987 1.101 1.291	19.7
MCM10090H10K00 MCM10090H20K00	900	933 (951)	10 20	1 162	1 080	1 000	11	1.081 1.195	21.4
	1 000	1 033 (1 051)	10 20	1 262	1 180	1 000	11	1.174 1.288	23.1

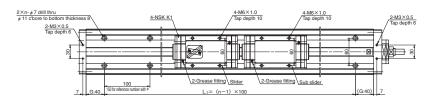
Note: Dimension G is 90 for items marked with ♦.

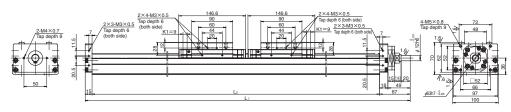
Monocarrier dyn	cification (N · ci					
Ball screw	Accuracy grade					
lead(mm)	High grade	Precision				
10	2.7 - 10.8	4.7 – 19.7				
20	3.1 – 12.7	5.2 - 21.6				
30	5.1 – 18.0	_				

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

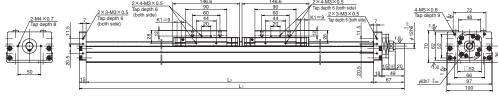

Lead	Shaft dia		Basic dynamic load rating (N)			Basic static loa	Cit	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C ₀	load limit (N)
10		12 800	33 500		10	21 400		
20	φ 20	8 190	26 600	7 600	20	12 600	29 400	3 380
30]	13 200	23 200		30	22 900]	


Slider	Basic static moment load (N · m)					
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Single	1 170	425	425			

MCM10 (Double slider)

Accuracy grade: High grade (H)

MCM10 (Double slider)



Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead	Bod L ₁	y length (r	mm) <i>L</i> ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
	, ,			_		-			
*MCM10007H10D00	70	86 (122)	10	462	380	300	3	0.463	11.0
MCM10017H10D00	170	186	10	562	480	400	5	0.557	12.7
MCM10017H20D00	170	(222)	20	302	460 400	J 3	0.785	12.7	
MCM10027H10D00	270	286	10	662	580	500	6	0.650	13.4
MCM10027H20D00	2/0	(322)	20	002	000	500	٥	0.878	13.4
MCM10037H10D00	370	386	10	762	680	600	7	0.744	15.1
MCM10037H20D00	370	(422)	20	702	000	600	l ′ [0.972	15.1
MCM10047H10D00	470	486	10	060	862 780	700	8	0.838	17.8
MCM10047H20D00		(522)	20	002		700	0	1.066	17.8

Note: Bolt hole pitch L_3 on item marked with * is 150 mm.

2×n- φ 7 drill thru φ 11 c'bore to bottom thickness 8 2-M3×0.5	4-NSK K1	4-M6×1.0 Tap depth 10	4-M6×1. Tap depth		2-M3×0.5 Tap depth 6
Tap depth 6		8 1 1	8	8 - 10	/
7 G:40	100 150 for reference number with *	2-Grease fitting Slider L ₃ = (n-1) ×100	2-Grease fitting Sub slider	-	<u>.</u>
2-M4×0.7 7 Ti	×3-M3×0.5 ×3-M3×0.5 ap depth 6 (both side) k1=9	146.6 90 60 44		I-M3×0.5 lepth 6 (both side) 2×3-M3×0.5 Tap depth 6 (both side) 7	4-M5×0.8 Tap depth 9

Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting hole	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM10057H10D00 MCM10057H20D00	570	586 (622)	10 20	962	880	800	9	0.931 1.159	19.5
MCM10067H10D00 MCM10067H20D00	670	686 (722)	10 20	1 062	980	900	10	1.025 1.253	21.2
	870	886 (922)	10 20	1 262	1 180	1 000	11	1.212 1.440	23.6

Note: Dimension G is 90 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)						
Ball screw	Accurac	y grade				
lead(mm)	High grade	Precision				
10	4.2 - 15.6	6.1 – 24.5				
20	5.0 - 19.6	7.0 – 28.5				

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.

3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia	Basic dynamic load rating (N)			Basic static loa	6		
L (mm)	d (mm)	Ball screw C _a	Linear guides C	Support unit	Rated running distance $L_{\rm a}$ (km)	Ball screw C_{0a}	Linear guides	Support unit load limit (N)
10	ø 20	12 800	33 500	7 600	10	21 400	29 400	3 380
20	φ 20	8 190	26 600	7 600	20	12 600	29 400	3 300

Basic static moment load of linear guide

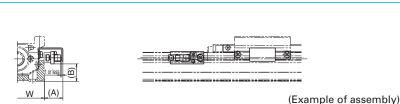
Slider	Basic st	atic moment load	noment load (N · m)			
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	2 340	2 940	2 940			

Monocarrier dynamic torque specification (N · cm) Ball screw Accuracy grade

Ball screw	Accuracy grade				
lead(mm)	High grade	Precision			
10	4.2 – 15.6	6.1 – 24.5			
20	5.0 - 19.6	7.0 – 28.5			

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

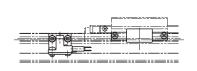
Lead	Shaft dia	Basic dynamic load rating (N)			Basic static load rating (N)			
l	d	Ball screw	Linear guides Support unit Rated running			Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	Ca	L_{a} (km)	C_{0a}	C_0	load limit (N)
10	ø 20	12 800	33 500	7 600	10	21 400	29 400	3 380
20	φ 20	8 190	26 600	/ 600	20	12 600	29 400	J 3 380

Clister	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	2 340	2 940	2 940		

C-1-5. 3. 1 Sensor Unit

Proximity switch

	Model No.	F	A (mm)	B (mm)	Body width W (mm)		
MCM02		MC-SR02-00	MC-SR02-01	MC-SR02-02	17	2	28
MCM03		MC-SR03-10	MC-SR03-11	MC-SR03-12	17	3	34
MCM05		MC-SR05-10	MC-SR05-11	MC-SR05-12	17	15	48.6
MCM06		MC-SR06-10	MC-SR06-11	MC-SR06-12	17	19	58
MCM08		MC-SR08-10	MC-SR08-11	MC-SR08-12	16	27	80
MCM10		MC-SR10-10	MC-SR10-11	MC-SR10-12	16	35	100
Quantity	Proximity switch (normally open contact)	_	3	1	E2S-W1	3 (OMRO	N Corp.)
'	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

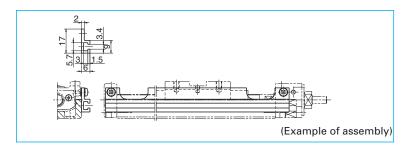

Notes: 1. See page C137 for proximity switch specification.

A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
 Sensor unit for MCM02 contains two sensor dogs.

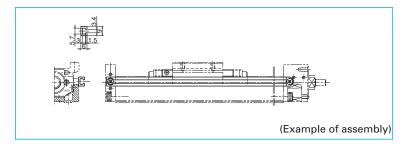
4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C53.)

Photo sensor

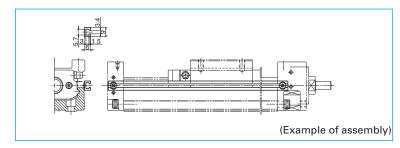
(Example of assembly)


Model No.	Reference No.	C (mm)	D (mm)	Body width W (mm)	Remarks
MCM03	MC-SR03-13	24	0.5	34	
MCM05	MC-SR05-13	24	5	48.6	EE-SX674 (OMRON Corp.)
MCM06	MC-SR06-13	24	9	58	3 sets
MCM08	MC-SR08-13	23	17	80	(EE-1001 connector attachment)
MCM10	MC-SR10-13	22	24	100	

Notes: 1. See page C138 for photo sensor specification.
2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
3. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C53.)


(1) Sensor Rail

Accessories


Sensor rail for MCM03: MC-SRL3- * * * *

Sensor rail for MCM05: MC-SRL5- * * * *

Sensor rail for MCM02: MC-SRL2- * * * * Sensor rail for MCM06: MC-SRL6- * * * * Sensor rail for MCM08: MC-SRL8- * * * * Sensor rail for MCM10: MC-SRL1- * * * *

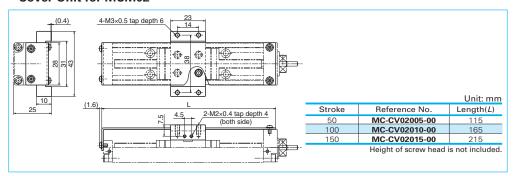
Notes: 1. * * * * is the same as rail dimension L_2 .

- 2. Please assemble the attached seat between the sensor rail and the support unit for MCM03, MCM05, MCM06 and MCM08.
- 3. For combinations of sensors and rails, see pages C51 to C52.

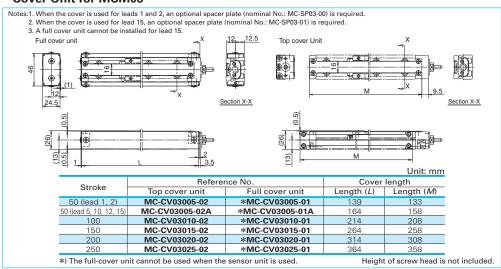
MCM Series and Sensor Rail Combination Table

Table 4	ļ.		
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No
	100	MCM02005H01K MCM02005P01K MCM02005H02K MCM02005P02K	MC-SRL2-0100 ^{**}
MCM02	150	MCM02010H01K MCM02010P01K MCM02010H02K MCM02010P02K	MC-SRL2-0150
	200	MCM02015H01K MCM02015P01K MCM02015H02K MCM02015P02K	MC-SRL2-0200
	115	MCM03005P01K00 MCM03005P02K00	MC-SRL3-0115
	140	MCM03005H05K00 MCM03005H10K00 MCM03005H12K00 MCM03005H15K00	MC-SRL3-0140
	190	MCM03010P01K00 MCM03010P02K00 MCM03010H05K00 MCM03010H10K00 MCM03010H12K00 MCM03010H15K00	MC-SRL3-0190
MCM03	240	MCM03015P01K00 MCM03015P02K00 MCM03015H05K00 MCM03015H10K00 MCM03015H12K00 MCM03015H15K00	MC-SRL3-0240
	290	MCM03020H05K00 MCM03020H10K00 MCM03020H12K00 MCM03020H15K00	MC-SRL3-0290
	340	MCM03025H05K00 MCM03025H10K00 MCM03025H12K00 MCM03025H15K00	MC-SRL3-0340
	180	MCM05005H05K00 MCM05005H10K00 MCM05005H20K00	MC-SRL5-0180
	230	MCM05010H05K00 MCM05010H10K00 MCM05010H20K00	MC-SRL5-0230
	280	MCM05015H05K00 MCM05015H10K00 MCM05015H20K00 MCM05006H10D00	MC-SRL5-0280
	330	MCM05020H05K00 MCM05020H10K00 MCM05020H20K00 MCM05011H10D00	MC-SRL5-0330
MCM05	380	MCM05025H05K00 MCM05025H10K00 MCM05025H20K00 MCM05016H10D00	MC-SRL5-0380
	430	MCM05030H05K00 MCM05030H10K00 MCM05030H20K00 MCM05030H30K00 MCM05021H10D00 MCM05021H20D00	MC-SRL5-0430
CE1	530	MCM05040H05K00 MCM05040H10K00 MCM05040H20K00 MCM05040H30K00 MCM05031H10D00	MC-SRL5-0530

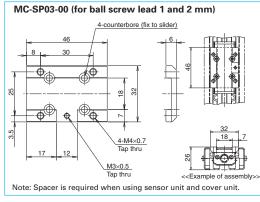
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	530	MCM05031H20D00	MC-SRL5-0530
NACNAGE	630	MCM05050H05K00 MCM05050H10K00 MCM05050H20K00 MCM05050H30K00 MCM05041H10D00 MCM05041H20D00	MC-SRL5-0630
MCM05	730	MCM05060H05K00 MCM05060H10K00 MCM05060H20K00 MCM05060H30K00 MCM05051H10D00 MCM05051H20D00	MC-SRL5-0730
	190	MCM06005H05K02 MCM06005H10K00 MCM06005H20K00	MC-SRL6-0190
	240	MCM06010H05K02 MCM06010H10K00 MCM06010H20K00	MC-SRL6-0240
	290	MCM06015H05K02 MCM06015H10K00 MCM06015H20K00	MC-SRL6-0290
	340	MCM06020H05K02 MCM06020H10K00 MCM06020H20K00 MCM06011H05D02 MCM06011H10D00	MC-SRL6-0340
	390	MCM06025H05K02 MCM06025H10K00 MCM06025H20K00	MC-SRL6-0390
	440	MCM06030H05K02 MCM06030H10K00 MCM06030H20K00 MCM06021H05D02 MCM06021H10D00 MCM06021H20D00	MC-SRL6-0440
MCM06	540	MCM06040H05K02 MCM06040H10K00 MCM06040H20K00 MCM06031H05D02 MCM06031H10D00 MCM06031H20D00	MC-SRL6-0540
	640	MCM06050H05K02 MCM06050H10K00 MCM06050H20K00 MCM06041H05D02 MCM06041H10D00 MCM06041H20D00	MC-SRL6-0640
	740	MCM06060H05K02 MCM06060H10K00 MCM06060H20K00 MCM06051H10D00 MCM06051H20D00	MC-SRL6-0740
	840	MCM06070H05K02 MCM06070H10K00 MCM06070H20K00 MCM06061H10D00 MCM06061H20D00	MC-SRL6-0840
	940	MCM06080H05K02 MCM06080H10K00 MCM06080H20K00 MCM06071H10D00 MCM06071H20D00	MC-SRL6-0940

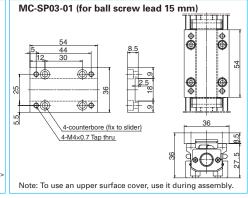

^{*)} When using NSK standard sensors, prepare two sensor rails. Two sensor rails will also be required for another Monocarriers depending on signal points of sensors. Contact NSK for details.

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	220	MCM08005H05K02 MCM08005H10K00	MC-SRL8-0220
	270	MCM08010H05K02 MCM08010H10K00 MCM08010H20K00	MC-SRL8-0270
	320	MCM08015H05K02 MCM08015H10K00 MCM08015H20K00	MC-SRL8-0320
	370	MCM08020H05K02 MCM08020H10K00 MCM08020H20K00 MCM08008H10D00	MC-SRL8-0370
	420	MCM08025H05K02 MCM08025H10K00 MCM08025H20K00	MC-SRL8-0420
	470	MCM08030H05K02 MCM08030H10K00 MCM08030H20K00 MCM08018H10D00 MCM08018H20D00	MC-SRL8-0470
MCM08	570	MCM08040H05K02 MCM08040H10K00 MCM08040H20K00 MCM08040H30K00 MCM08028H10D00 MCM08028H20D00	MC-SRL8-0570
	670	MCM08050H05K02 MCM08050H10K00 MCM08050H20K00 MCM08050H30K00 MCM08038H10D00 MCM08038H20D00	MC-SRL8-0670
	770	MCM08060H05K02 MCM08060H10K00 MCM08060H20K00 MCM08060H30K00 MCM08048H10D00 MCM08048H20D00	MC-SRL8-0770
	870	MCM08070H05K02 MCM08070H10K00 MCM08070H20K00 MCM08070H30K00 MCM08058H10D00 MCM08058H20D00	MC-SRL8-0870
	970	MCM08080H05K02 MCM08080H10K00 MCM08080H20K00 MCM08080H30K00 MCM08068H10D00 MCM08068H20D00	MC-SRL8-0970

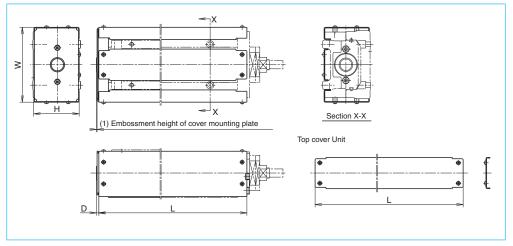

280 MCM10010H10K00 MC-SRL1-0280 MCM10010H20K00 MC-SRL1-0380 MCM10015H10K00 MC-SRL1-0330 MCM10015H20K00 MC-SRL1-0330 MCM10020H10K00 MC-SRL1-0380 MCM10020H10K00 MC-SRL1-0380 MCM10025H10K00 MC-SRL1-0430 MCM10025H20K00 MC-SRL1-0430 MCM10030H20K00 MCM10017H10K00 MCM10017H10K00 MCM10017H10K00 MCM10027H10K00 MC-SRL1-0480 MC-SRL1-0480 MC-SRL1-0480 MCM10027H10K00 MCM10027H10K00 MCM10027H10K00 MCM10027H10K00 MCM10037H20K00 MCM10037H20K00 MCM10037H20K00 MCM10037H20K00 MCM10037H20K00 MCM10037H20K00 MCM10060H20K00 MCM10037H20K00 MCM10067H20K00 MCM10047H20K00 MCM10047H20K00 MCM10047H20K00 MCM10047H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MC-SRL1-1080 MCM10100H20K00 MCM1000H20K00 Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.	
MCM10015H20K00		280	MCM10010H20K00	MC-SRL1-0280
380 MCM10020H20K00 MC-SRL1-0380 MCM10007H10K00 MC-SRL1-0430 MCM10025H20K00 MC-SRL1-0430 MC-SRL1-0430 MC-SRL1-0430 MC-SRL1-0430 MC-SRL1-0430 MC-SRL1-0430 MC-SRL1-0480 MCM1003H20K00 MC-SRL1-0480 MCM10017H20K00 MCM10040H10K00 MCM10027H10K00 MCM10027H10K00 MCM10050H30K00 MC-SRL1-0580 MCM10050H30K00 MC-SRL1-0680 MCM10037H20K00 MC-SRL1-0680 MCM10037H20K00 MC-SRL1-0680 MCM10060H30K00 MC-SRL1-0780 MCM10060H30K00 MC-SRL1-0780 MCM10060H30K00 MC-SRL1-0780 MCM10067H20K00 MCM10070H30K00 MCM10070H30K00 MCM10070H30K00 MCM10070H30K00 MCM10070H30K00 MCM10070H30K00 MCM10070H30K00 MCM10057H20K00 MCM10057H20K00 MCM10080H30K00 MCM10067H30K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10090H20K00 MC-SRL1-1180 MC		330	MCM10015H20K00	MC-SRL1-0330
## A30 MCM10025H20K00 MC-SRL1-0430 ## MCM10030H10K00 MCM10030H10K00 MCM10017H10K00 MCM10017H10K00 MCM10017H10K00 MCM10047H10K00 MCM10027H10K00 MCM10027H20K00 ## MCM10050H10K00 MCM10050H30K00 MCM10050H20K00 MCM10037H20K00 MCM10037H20K00 MCM10037H20K00 MCM10030H20K00 MCM10047H10K00 MCM10047H10K00 MCM10047H10K00 MCM10047H10K00 MCM10047H10K00 MCM10047H10K00 MCM10057H20K00 MC-SRL1-0780 MCM10057H20K00 MC-SRL1-0780 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10090H20K00 MC-SRL1-1080 MC-SRL1-1080 MCM10100H20K00 MC-SRL1-1180 MC-SRL1-11		380	MCM10020H20K00	MC-SRL1-0380
## A80 MCM10030H20K00 MC-SRL1-0480 ## MCM10017H10K00 MCM10017H10K00 MCM10017H10K00 MCM10040H10K00 MCM10040H10K00 MCM10027H10K00 MCM10050H10K00 MCM10050H20K00 MCM10050H30K00 MC-SRL1-0680 ## MCM100 MCM10050H30K00 MC-SRL1-0680 MCM10037H20K00 MCM10060H20K00 MCM10060H20K00 MCM10060H20K00 MCM10047H10K00 MCM10047H20K00 MCM10047H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10057H20K00 MCM10060H30K00 MC-SRL1-0880 MCM10060H30K00 MC-SRL1-0980 MCM10060H30K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MCM10067H20K00 MC-SRL1-1080 MCM10067H20K00 MC-SRL1-1080 MCM10090H20K00 MC-SRL1-1080 MCM10100H20K00 MC-SRL1-1080 MCM10100H20K00 MC-SRL1-1180 MCM10100H20K00 MC-SRL1-1180 MC-SRL1-1		430		MC-SRL1-0430
S80 MCM10040H20K00 MC-SRL1-0580 MCM10027H10K00 MCM10027H10K00 MCM10050H10K00 MCM10050H10K00 MCM10050H20K00 MCM10050H20K00 MCM10050H30K00 MC-SRL1-0680 MCM10037H20K00 MCM10060H20K00 MCM10060H20K00 MCM10060H30K00 MCM10047H10K00 MCM10047H20K00 MCM10047H20K00 MCM10070H20K00 MCM10057H10K00 MCM10057H20K00 MCM10057H20K00 MCM10067H20K00 MC-SRL1-0980 MCM10067H20K00 MC-SRL1-1080 MCM10090H20K00 MC-SRL1-1080 MCM10090H20K00 MC-SRL1-1080 MCM10100H20K00 MC-SRL1-1180 MCM10100H20K00 MC-SRL1-1180 MC-		480	MCM10030H20K00 MCM10017H10K00	MC-SRL1-0480
MCM10050H20K00 MCM10050H30K00 MCM10037H10K00 MCM10037H20K00 MCM10060H20K00 MCM10060H20K00 MCM10047H10K00 MCM10047H10K00 MCM10047H20K00 MCM10047H20K00 MCM10047H20K00 MCM10057H10K00 MCM10057H20K00 MCM10057H10K00 MCM10057H20K00 MCM10067H20K00 MCM10090H10K00 MCM10090H10K00 MCM10090H20K00 MCM10090H20K00 MCM10100H10K00 MCM10100H20K00 MCMSRL1-1180		580	MCM10040H20K00 MCM10027H10K00	MC-SRL1-0580
MCM10060H20K00	MCM10	680	MCM10050H20K00 MCM10050H30K00 MCM10037H10K00	MC-SRL1-0680
MCM10070H20K00 MC-SRL1-0880 MCM10070H30K00 MC-SRL1-0880 MC-SRL1-0880 MC-SRL1-0880 MC-SRL1-0880 MCM100657H20K00 MCM10080H20K00 MCM10080H20K00 MCM10067H10K00 MCM10067H10K00 MCM10067H20K00 MCM10067H20K00 MCM10090H20K00 MC-SRL1-1080 MCM10100H10K00 MCM10100H10K00 MCM10100H20K00 MC-SRL1-1180 MCM10100H20K00 MC-SRL1-1180 MCM10100H20K00 MC-SRL1-1180 MC-SRL1-1180 MC-SRL1-1180 MCM10100H20K00 MC-SRL1-1180 M		780	MCM10060H20K00 MCM10060H30K00 MCM10047H10K00	MC-SRL1-0780
980 MCM10080H20K00 MC-SRL1-0980 MC-SRL1-0980 MCM00067H10K00 MCM10067H20K00 1 080 MCM10090H10K00 MC-SRL1-1080 MCM10090H20K00 MCM10100H10K00 MCM10100H10K00 MCM10100H10K00 MCM10100H20K00 MC-SRL1-1180		880	MCM10070H20K00 MCM10070H30K00 MCM10057H10K00	MC-SRL1-0880
1 080 MCM10090H20K00 MC-SHL1-1080 MC-SHL1-1080 MCM10100H10K00 MCM10100H20K00 MC-SRL1-1180		980	MCM10080H20K00 MCM10080H30K00 MCM10067H10K00	MC-SRL1-0980
1 180 MCM10100H20K00 MC-SRI 1-1180		1 080		MC-SRL1-1080
MCM10087H20K00		1 180	MCM10100H20K00 MCM10087H10K00	MC-SRL1-1180

C-1-5. 3. 2 Cover Unit


Cover Unit for MCM02



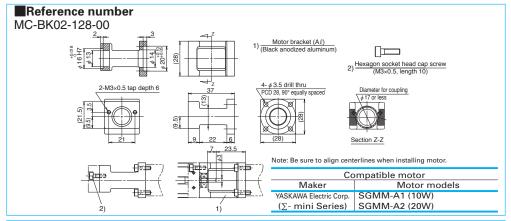
Cover Unit for MCM03

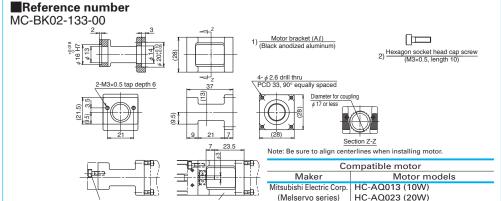


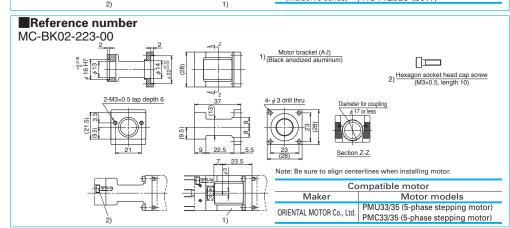
Spacer for MCM03 (Optional)

Cover unit for MCM05, 06, 08, and 10

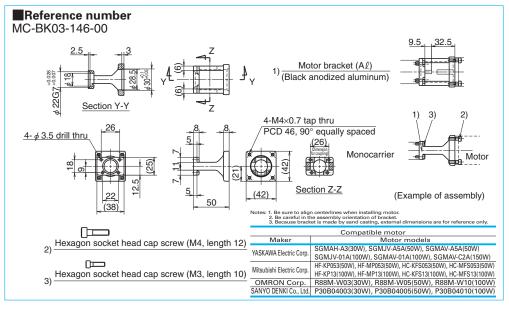
Unit: mm

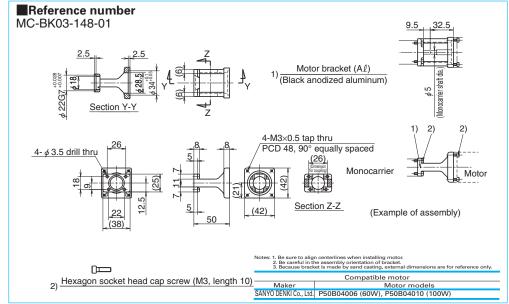

	Ch	oke	Cit	-f N-		C		Unit: mm
Model No.				eference No.		Cover		= 1(5)
	Single slider	Double slider	Top cover Unit	Full cover Unit*1		Height (H)	Width (W)	End part (D)
	50	_	MC-CV05005-01	MC-CV05005-00	200			
	100	_	MC-CV05010-01	MC-CV05010-00	250			
	150	60	MC-CV05015-01	MC-CV05015-00	300			
	200	110	MC-CV05020-01	MC-CV05020-00	350			
MCM05	250	160	MC-CV05025-01	MC-CV05025-00	400	38.5	65	2.6
	300	210	MC-CV05030-01	MC-CV05030-00	450			
	400	310	MC-CV05040-01	MC-CV05040-00	550			
	500	410	MC-CV05050-01	MC-CV05050-00	650			
	600	510	MC-CV05060-01	MC-CV05060-00	750			
_	50	_	MC-CV06005-01	MC-CV06005-00	225			
_	100	_	MC-CV06010-01	MC-CV06010-00	275			
_	150	_	MC-CV06015-01	MC-CV06015-00	325			
_	200	110	MC-CV06020-01	MC-CV06020-00	375			
	250	_	MC-CV06025-01	MC-CV06025-00	425			*2
MCM06	300	210	MC-CV06030-01	MC-CV06030-00	475	48.5	75	_
_	400	310	MC-CV06040-01	MC-CV06040-00	575			
L	500	410	MC-CV06050-01	MC-CV06050-00	675			
L	600	510	MC-CV06060-01	MC-CV06060-00	775			
L	700	610	MC-CV06070-01	MC-CV06070-00	875			
	800	710	MC-CV06080-01	MC-CV06080-00	975			
	50	_	MC-CV08005-01	MC-CV08005-00	248			
	100	_	MC-CV08010-01	MC-CV08010-00	298			
	150	_	MC-CV08015-01	MC-CV08015-00	348			
	200	80	MC-CV08020-01	MC-CV08020-00	398			
	250	_	MC-CV08025-01	MC-CV08025-00	448			
MCM08	300	180	MC-CV08030-01	MC-CV08030-00	498	56.5	90	2.6
	400	280	MC-CV08040-01	MC-CV08040-00	598			
	500	380	MC-CV08050-01	MC-CV08050-00	698			
	600	480	MC-CV08060-01	MC-CV08060-00	798			
	700	580	MC-CV08070-01	MC-CV08070-00	898			
	800	680	MC-CV08080-01	MC-CV08080-00	998			
L	100	_	MC-CV10010-01	MC-CV10010-00	308			
L	150	_	MC-CV10015-01	MC-CV10015-00	358			
L	200	70	MC-CV10020-01	MC-CV10020-00	408			
	250	_	MC-CV10025-01	MC-CV10025-00	458			
	300	170	MC-CV10030-01	MC-CV10030-00	508			
мсм10	400	270	MC-CV10040-01	MC-CV10040-00	608	66.5	110	3.6
IVICIVITU	500	370	MC-CV10050-01	MC-CV10050-00	708	00.5	110	3.0
Γ	600	470	MC-CV10060-01	MC-CV10060-00	808]		
Г	700	570	MC-CV10070-01	MC-CV10070-00	908]		
Γ	800	670	MC-CV10080-01	MC-CV10080-00	1008]		
Γ	900	_	MC-CV10090-01	MC-CV10090-00	1108]		
Г	1000	870	MC-CV10100-01	MC-CV10100-00	1208	1		

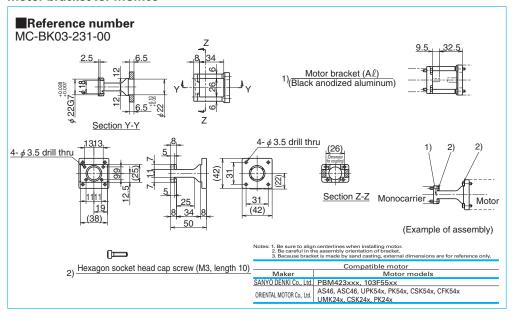

Note: The dimensions of cover shown above do not include the head height of fixing machine screws. Add the head of machine screws of approximately 2.5 mm to the outer measurement of a cover unit. Set a margin for mechanical interference with surrounding components.

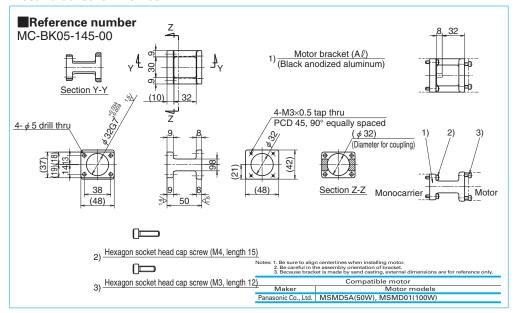

- *1) When using sensor unit, full-cover unit cannot be used.
- *2) A cover mounting plate is not used to MCM06.

Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

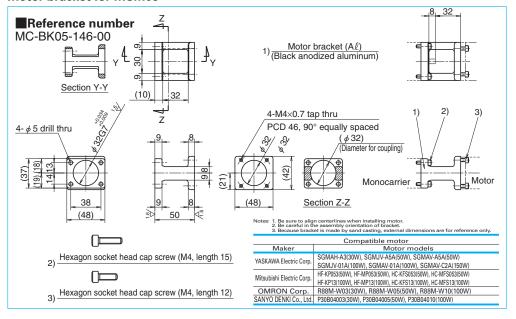

Motor bracket for MCM02

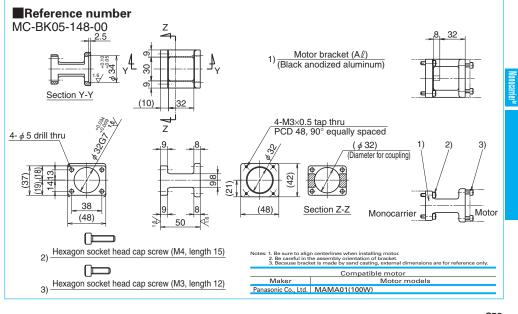


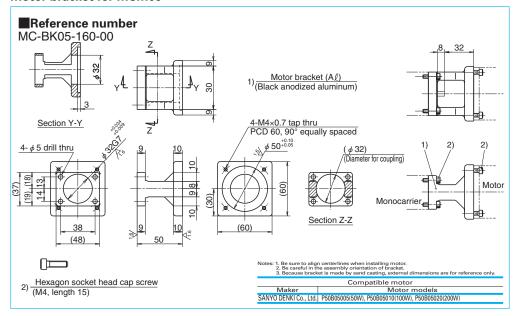


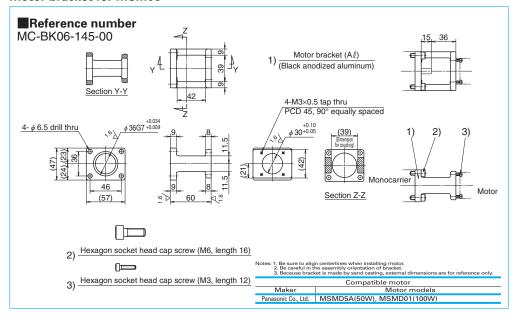


Motor bracket for MCM03

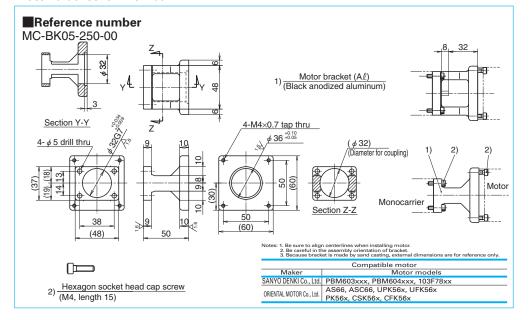


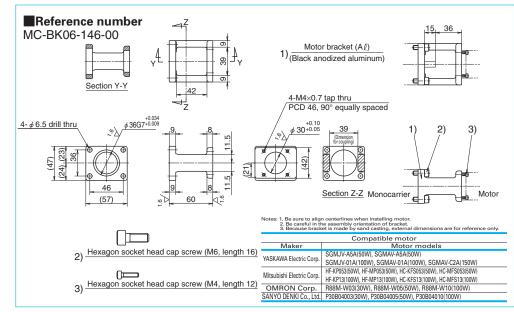


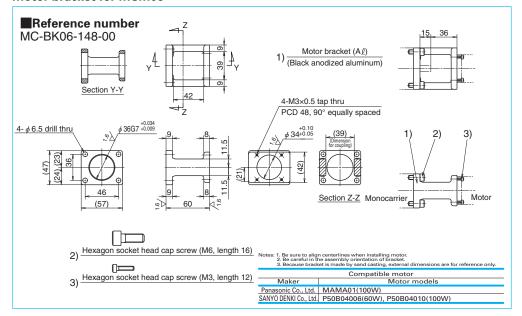

Motor bracket for MCM05

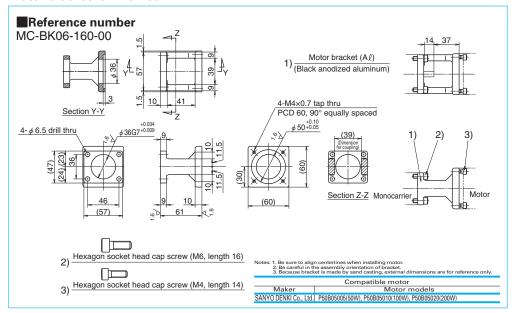


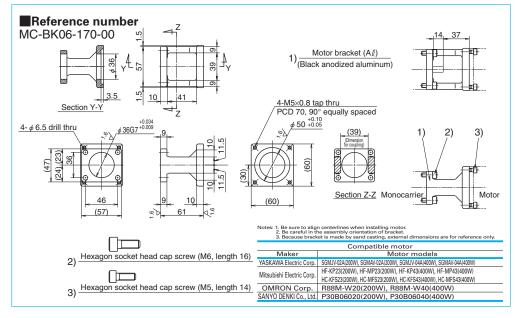
NSI

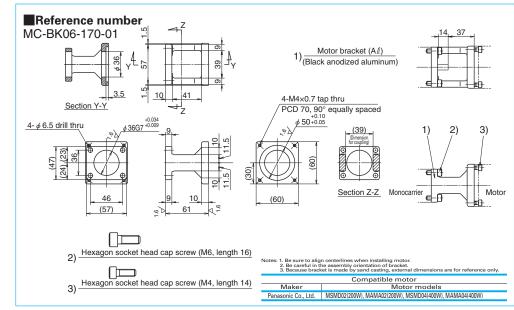

Motor bracket for MCM05

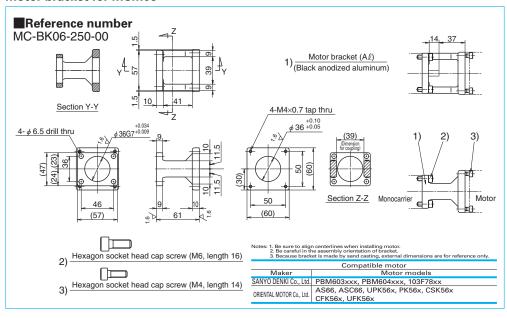


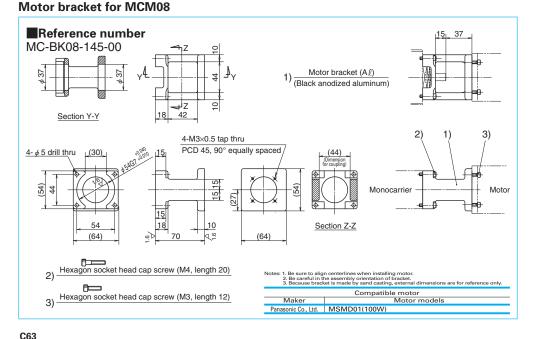

Motor bracket for MCM06

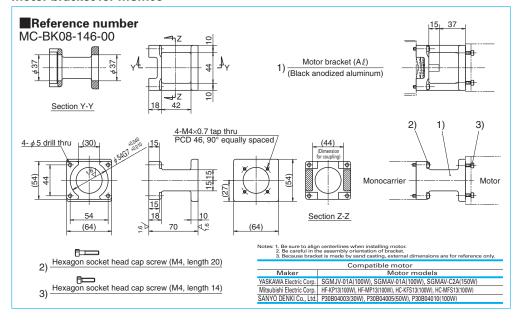

Motor bracket for MCM05

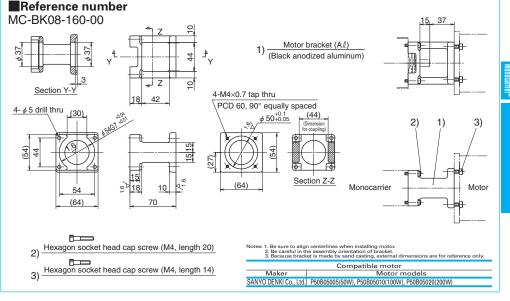


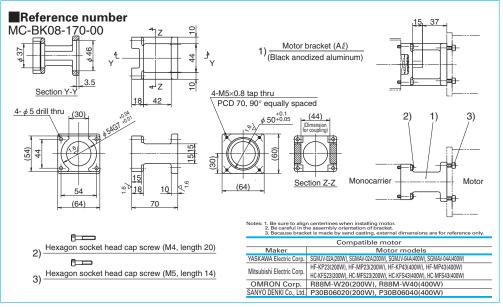


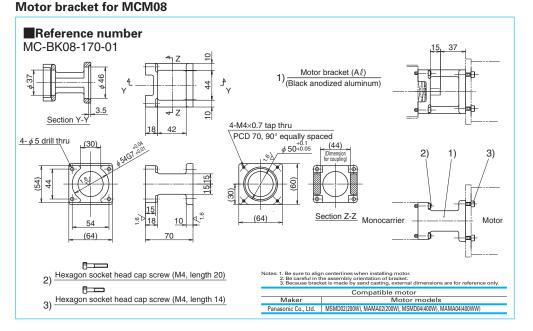

Motor bracket for MCM06

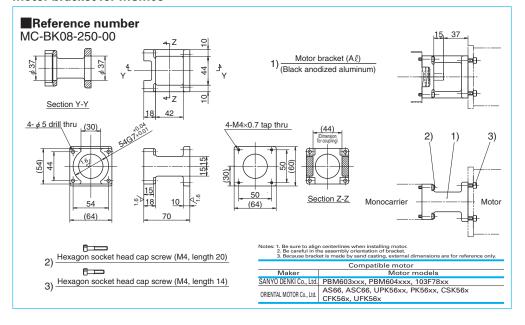


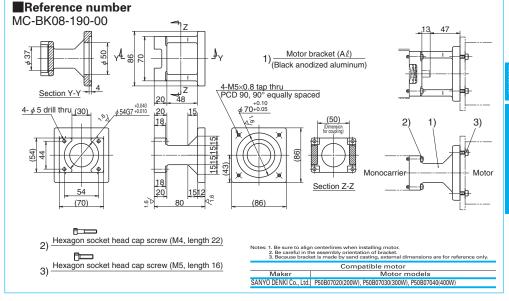

Motor bracket for MCM06

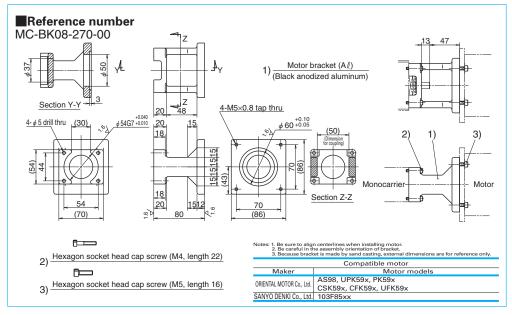


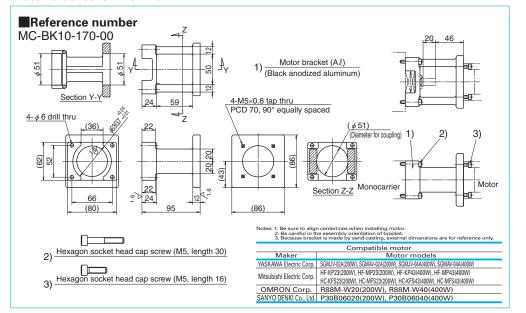


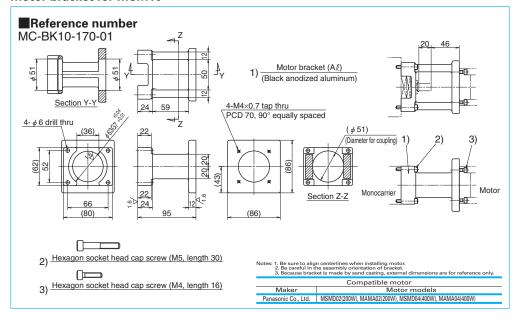


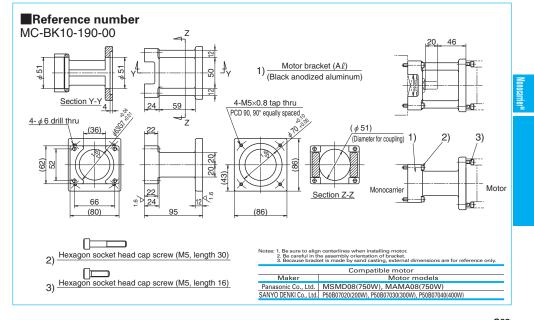


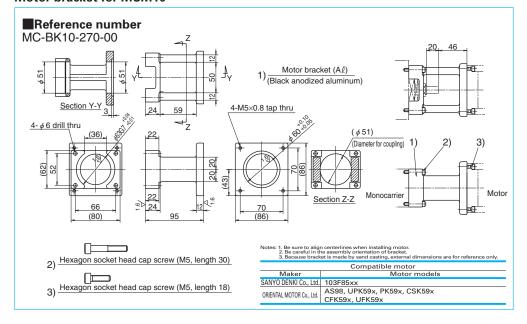











Motor bracket for MCM10

NSK

Motor bracket for MCM10

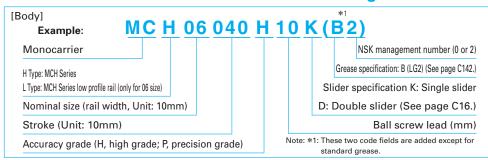
Light weight type

Motor Availability Table of Motor Bracket for MCM Series

Accessories

	. 5														
Marie 181	Reference No.	Motor bracket	Materia	Stepping motor					Wattac	e of AC servo	motor				
Model No.	code	reference No.	Motor manufacturer	model No.	10	20	30	50	60	100	150	200	300	400	750
	1	MC-BK02-128-00	YASKAWA Electric Corp.	model ito.	SGMM-A1	SGMM-A2		- 55	- 00	100	100	200	000	400	700
MCM02	2	MC-BK02-133-00	Mitsubishi Electric Corp.		HC-AQ013	HC-AQ023									
	3	MC-BK02-223-00	ORIENTAL MOTOR Co., Ltd.	PMU33/35 (5-phase)											1
				PMC33/35 (5-phase)											
			YASKAWA Electric Corp.				SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A				1
			more were Electric corp.				00110-017-0	SGMAV-A5A		SGMAV-01A	DGIVE W CEN				1
								HF-KP053		HF-KP13					
								HF-MP053		HF-MP13					1
	1	MC-BK03-146-00	Mitsubishi Electric Corp.					HC-KFS053		HC-KFS13					1
															1
								HC-MFS053		HC-MFS13					
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10					
MCM03			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010					1
*1014100	2	MC-BK03-148-01	SANYO DENKI Co., Ltd.						P50B04006	P50B04010					
			SANYO DENKI Co., Ltd.	PBM423xxx											
			SANYO DENKI Co., Ltd.	103F55xx											
			Green Deren Go., Etc.	AS46. ASC46											
	_			,											1
	3	MC-BK03-231-00		UPK54x, PK54x											1
			ORIENTAL MOTOR Co., Ltd.	CSK54x, CFK54x											1
				UMK24x, CSK24x											1
				PK24x											
	1	MC-BK05-145-00	Panasonic Co., Ltd.					MSMD5A		MSMD01					
								SGMJV-A5A		SGMJV-01A					
		1	YASKAWA Electric Corp.				SGMAH-A3	SGMAV-A5A		SGMAV-01A	SGMAV-C2A				1
		1					-	HF-KP053		HF-KP13					
															1
	2	MC-BK05-146-00	Mitsubishi Electric Corp.				1	HF-MP053		HF-MP13	1				1
								HC-KFS053		HC-KFS13					1
								HC-MFS053		HC-MFS13					1
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10					
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010					
MCM05	3	MC-BK05-148-00	Panasonic Co., Ltd.				1 00004000	1 00004000		MAMA01					
		MC-BK05-148-00										P50B05020			
	4	MC-BK05-160-00	SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020			
			SANYO DENKI Co., Ltd.	PBM603xx,											1
				PBM604xx											
			SANYO DENKI Co., Ltd.	103F78xx											1
	5	MC-BK05-250-00		AS66, ASC66											
				UPK56x, UFK56x											1
			ORIENTAL MOTOR Co., Ltd.	PK56x, CSK56x.											1
				CFK56x											1
				CFK56X										$\overline{}$	
	1	MC-BK06-145-00	Panasonic Co., Ltd.					MSMD5A		MSMD01					
			YASKAWA Electric Corp.					SGMJV-A5A		SGMJV-01A	SGMAV-C2A				1
								SGMAV-A5A		SGMAV-01A					1
								HF-KP053		HF-KP13					
	_							HF-MP053		HF-MP13					1
	2	MC-BK06-146-00	Mitsubishi Electric Corp.					HC-KES053		HC-KES13					1
															1
								HC-MFS053		HC-MFS13					
			OMRON Corp.					R88M-W05		R88M-W10				\vdash	
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010					
	3	MC-BK06-148-00	SANYO DENKI Co., Ltd.						P50B04006	P50B04010					
	3	INIC-DAUB-148-00	Panasonic Co., Ltd.							MAMA01					
			SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020			
	4	MC-BK06-160-00													
	-			-			-	-		-	-	SGMJV-02A		SGMJV-04A	
		1	YASKAWA Electric Corp.	1			1								1
MCM06												SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	1
	-	1 10 DV00 170 00	NO. 111151 6									HF-MP23		HF-MP43	1
	5	INIC-BK06-170-00	Mitsubishi Electric Corp.									HC-KFS23		HC-KFS43	1
		1					1				1	HC-MFS23		HC-MFS43	1
			OMRON Corp.									R88M-W20		R88M-W40	
												P30B06020		P30B06040	—
			SANYO DENKI Co., Ltd.												
	6	MC-BK06-170-01	Panasonic Co., Ltd.				1				1	MSMD02		MSMD04	1
		INIC BROOTFOOT	Tunusonic co., Etc.									MAMA02		MAMA04	
			CANDO DENIZIO : :	PBM603xxx,											
			SANYO DENKI Co., Ltd.	PBM604xxx											1
		1	SANYO DENKI Co., Ltd.	103F78xx										\vdash	
	_		SMINTO DEINNI CO., LTG.				-							1	—
	7	MC-BK06-250-00		AS66, ASC66											1
		1	ORIENTAL MOTOR Co., Ltd.	UPK56x, PK56x			1				1				1
		1		CSK56x, CFK56x			1				1				1
	1	1		UFK56x											1

Model No.	Reference No.	Motor bracket	Material	Stepping motor					Watta	ge of AC serve	motor				
Aodel No.	code	reference No.	Motor manufacturer	model No.	10	20	30	50	60	100	150	200	300	400	750
			Panasonic Co., Ltd.							MSMD01					
	1	MC-BK08-145-00													
			1/4 GV 11 4 1 1 1 1 G							SGMJV-01A	SGMAV-C2A				
			YASKAWA Electric Corp.							SGMAV-01A	SGIVIAV-CZA				
										HF-KP13					
	2	MC-BK08-146-00	Mitsubishi Electric Corp.							HF-MP13					
			Witsubishi Electric Corp.							HC-KFS13					
										HC-MFS13					
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010					
	3	MC-BK08-160-00	SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020			
			YASKAWA Electric Corp.									SGMJV-02A		SGMJV-04A	
			more were Execute corp.									SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	
	4	MC-BK08-170-00	Mitsubishi Electric Corp.									HF-MP23		HF-MP43	
												HC-KFS23		HC-KFS43	
												HC-MFS23		HC-MFS43	
MCM08			OMRON Corp.									R88M-W20		R88M-W40	
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040	
	5	MC-BK08-170-01	Panasonic Co., Ltd.									MSMD02		MSMD04	
												MAMA02		MAMA04	
	6	MC-BK08-190-00	SANYO DENKI Co., Ltd.	PBM603xxx,								P50B07020	P50B07030	P50B07040	
			SANYO DENKI Co., Ltd.	PBM604xxx											
			SANYO DENKI Co., Ltd.	103F78xx											
	7	MC-BK08-250-00	SANTO DENKI CO., Eta.	AS66, ASC66											
	,	WIC-BR00-230-00		UPK56x, PK56x											
			ORIENTAL MOTOR Co., Ltd.	CSK56x, CFK56x											
				UFK56x											
			SANYO DENKI Co., Ltd.	103F85xx											
				AS98											
	8	MC-BK08-270-00		UPK59x, PK59x											
			ORIENTAL MOTOR Co., Ltd.	CSK59x, CFK59x											
				UFK59x											
			VACUATE									SGMJV-02A		SGMJV-04A	
			YASKAWA Electric Corp.									SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	
	1	MC DV10 170 00	Mitsubishi Electric Corp.									HF-MP23		HF-MP43	
		IVIC-BK 10-170-00	Witsubishi Electric Corp.									HC-KFS23		HC-KFS43	
												HC-MFS23		HC-MFS43	
			OMRON Corp.									R88M-W20		R88M-W40	
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040	
MCM10	2	MC-BK10-170-01	Panasonic Co., Ltd.									MSMD02		MSMD04	
141014110	-	NIC DICIO 170 01	Tunusonic co., Etc.									MAMA02		MAMA04	
			Panasonic Co., Ltd.												MSMD08
	3	MC-BK10-190-00													MAMA08
			SANYO DENKI Co., Ltd.									P50B07020	P50B07030	P50B07040	
			SANYO DENKI Co., Ltd.	103F85xx											
				AS98											
	4	MC-BK10-270-00	ORIENTAL MOTOR Co., Ltd.	UPK59x, PK59x											
				CSK59x, CFK59x											
				UFK59x		1	1				I			L	



C-1-6 MCH Series	
1. MCH Series Reference Number	C 75
Coding	
2. MCH Series Dimension Table of	
Standard Products	
MCL06	C 76
MCH06	C77
MCH09	C 79
MCH10	C81
3. MCH Series Accessories	
3.1 Sensor Unit	C83
3.2 Cover Unit	C85
3.3 Intermediate Plate for Motor	C89

MCH Series

C-1-6 MCH Series

C-1-6. 1 MCH Series Reference Number Coding

14th digit is control No. of NSK. Customers cannot specify a number. See the pages of each nominal number for details.

[With Accessories]

Example:

MCS 06 040 H 10 K 0 2 K 0 0 0

S: With MCH Accessories

R: With MCL Accessories

NSK management number

Sensor unit

Cover unit

Note: Option parts are available separately.

Intermediate plate for motor

Table 1 Sensor unit (See page C83.)

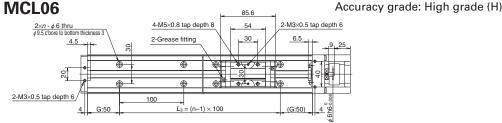
Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (Normally close contact 3 pieces)	MC—SRHxx—10
2	Proximity switch (Normally open contact 3 pieces)	MC—SRHxx—11
3	Proximity switch (Normally open contact 1 piece, Normally close contact 2 pieces)	MC—SRHxx—12
4	Photo sensor 3 pieces	MC—SRHxx—13

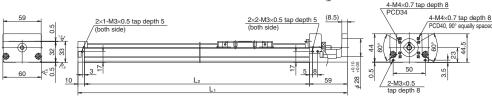
Notes: 1) xx: Nominal size

2) Sensor rail is not included in a sensor unit. If you require the rail, please specify upon ordering. (See page C83 to C84.)

Table 2 Cover unit (See page C85 to C87.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	For single slider	MC—HVxxxxx—00
'	For double slider	MC—HVxxxxxD00


Note: xxxxx; Nominal size and stroke number


Table 3 Intermediate plate for motor (See page C89 to C92.)

	, , , , , , , , , , , , , , , , , , , ,									
Reference		Model No.								
No. code	MCH06 (MCL06)	MCH09	MCH10							
0	N/A	N/A	N/A							
1	MC-BKH06-145-00	MC-BKH09-145-00	MC-BKH10-170-00							
2	MC-BKH06-146-00	MC-BKH09-146-00	MC-BKH10-170-01							
3	MC-BKH06-231-00	MC-BKH09-170-00	MC-BKH10-190-00							
4	MC-BKH06-250-00	MC-BKH09-170-01	MC-BKH10-190-01							
5	_	MC-BKH09-231-00	MC-BKH10-250-00							
6	_	MC-BKH09-250-00	MC-BKH10-270-00							

N/A: Not applicable

C-1-6. 2 MCH Series Dimension Table of Standard Products

- Rail of MCL 06 is made lighter than that of MCH 06 by lowering rail height. Weight ratio between MCH 06 and MCL 06 is 5 to 4.
- Double slider specification is also available for MCL 06.
- Combinations of stroke and ball screw lead of MCL 06 are the same as those of MCH 06.

Dimension of MCL06 (Single slider)

MCL06

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	L ₁	Bod L ₂	y length (r <i>L</i> 3	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
	50	53 (65)	5 10	219	150	100	2	2.38 3.45	1.0
MCL06010H05K02 MCL06010H10K02	100	103 (115)	5 10	269	200	100	2	3.17 4.12	1.3
MCL06020H05K02 MCL06020H10K02	200	203 (215)	5 10	369	300	200	3	4.51 5.46	1.9
MCL06030H10K02 MCL06030H20K02	300	303 (315)	10 20	469	400	300	4	6.80 10.6	2.6
MCL06040H10K02 MCL06040H20K02	400	403 (415)	10 20	569	500	400	5	8.13 11.9	3.2
MCL06050H10K02 MCL06050H20K02	500	503 (515)	10 20	669	600	500	6	9.47 13.3	3.9

Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

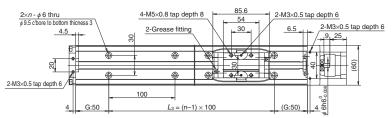
Coding for columns 13 and 14

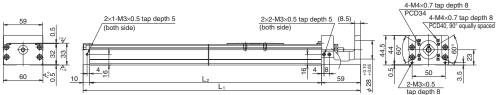
Grease	High-grade	Precision-grade	Monocarrier dyn	amic torque spec	cif
Standard	02	(None)	Ball screw	Accurac	y
LG2	B2	B0	lead(mm)	High grade	
LUL	52	50	5	1.0 - 4.8	
			10	1.1 - 5.8	Г

Vlonocarrier dyn	Aonocarrier dynamic torque specification (N - cm							
Ball screw	Accuracy grade							
lead(mm)	High grade	Precision						
5	1.0 - 4.8	1.9 - 7.6						
10	1.1 - 5.8	2.1 - 8.9						
20	1.6 - 7.9	2.5 - 10.6						
	1.0 7.0	2.0 10.0						

- 1 Frictional resistance of NSK K1 is included in dynamic
- 2. Grease is packed into ball screw, linear quide parts and
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic le	oad rating (N)		Basic static loa	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	$L_{a}(km)$	C_{0a}	C_0	load IIITIIC (IV)
5		4 390	22 800		5	6 260		
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450
20		2 660	14 400		20	3 800		


Clister	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	335	133	133				

4-M4×0.7 tap depth 8

Accuracy grade: High grade (H)

Accuracy grade: High grade (H)

Dimension of MCH06 (Single slider)

Reference No.	Nominal stroke Stroke limit (mm) Ball screw lead Body length (mm)			Inertia × 10 ⁻⁶ (kg · m ²)	Mass				
	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	x 10 -(kg · m-)	(kg)
◇MCH06005H05K02		53	5					2.38	
◇MCH06005H10K02	50	50 10 219 150 100 2	3.45	1.8					
		(65)	20				7.25		
MCH06010H05K02		103	5					3.17	
MCH06010H10K02	100		10	269	200	100	2	4.12	2.2
MCH06010H20K02		(115)	20				7,92		
MCH06020H05K02		203	5			200	3	4.51	3.0
MCH06020H10K02	200	(215)	10	369	300			5.46	
MCH06020H20K02		(210)	20					9.26	
MCH06030H05K02		303	5		400	300	4	5.85	
MCH06030H10K02	300	(315)	10	469				6.80	3.7
MCH06030H20K02		(515)	20					10.6	
MCH06040H05K02		403	5					7.18	
MCH06040H10K02	400	(415)	10	569	500	400	5	8.13	4.5
MCH06040H20K02		(413)	20					11.9	
MCH06050H05K02		503	5					8.52	
MCH06050H10K02	500	(515)	10	669	600	500	6	9.47	5.2
MCH06050H20K02		(010)	20				13.3		

Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

2. The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

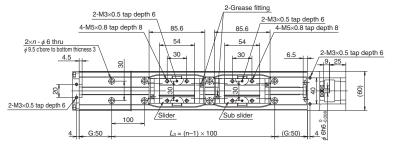
Coding for columns 13 and 14

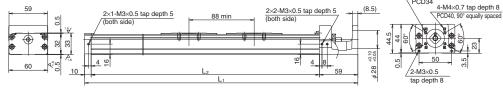
Grease	High-grade	Precision-grade	Monocarrier dyn	amic torque specification (N · c			
Standard	02	(None)	Ball screw	Accurac	cy grade		
LG2	B2	B2 B0	lead(mm)	High grade	Precision		
202	52	50	5	1.0 - 4.8	1.9 - 7.6		
			10	1.1 - 5.8	2.1 - 8.9		
			20	16-79	25-106		

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0		
5		4 390	22 800		5	6 260			
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450	
20]	2 660	14 400		20	3 800]		


Basic static moment load of linear quide

Oli de e	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	335	133	133					

MCH06 (Double slider)

MCH06

Dimension of MCH06 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> 1	Bod L2	y length (r <i>L</i> 3	nm)	Inertia × 10-6(kg · m2)	Mass (kg)
MCH06010H05D02	100	115	5	369	300	200	3	4.82	3.5
MCH06010H10D02		(139)	10	303	300	200	3	6.72	3.5
MCH06020H05D02	200	215	5	469	400	300	4	8.06	4.2
MCH06020H10D02		(239)	10				4	15.7	
MCH06030H05D02	200	315	5	569	500	400	5	9.40	5.0
MCH06030H10D02	300	(339)	10	569	500	400	5	17.0	
MCH06040H10D02	400		10	669	600	500	6	10.7	5.7
MCH06040H20D02	400	(439)	20	609	600		0	18.3	

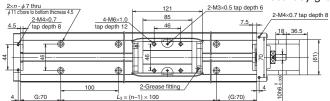
Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade		
Standard	02	(None)		
LG2	B2	В0		

Monocarrier dynamic torque specification (N -									
Ball screw	Accuracy grade								
lead(mm)	High grade	Precision							
5	1.2 - 5.2	2.1 - 8.5							
10	1.5 - 9.6	2.5 - 10.7							
20	2.3 – 11.8	3.4 – 14.1							

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa	ad rating (N)		
l	d Ball screw Linear guides Support unit Rated running distance		Ball screw	Linear guides	Support unit				
(mm)	(mm)	C_{a}	С	Ca	$L_{a}(km)$	C_{0a}	C_0	load limit (N)	
5		4 390	22 800		5	6 260			
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450	
20	7	2 660	14 400]	20	3 800		'	

01.1	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	770	730	730				

Accuracy grade: High grade (H)

Accuracy grade: High grade (H)

Dimension of MCH09 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	y length (r	nm)	Inertia	Mass
	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09010H05K02		107	5					9.2	
MCH09010H10K02	100	100 (121)	10	339.5	240	100	2	10.7	5.0
MCH09010H20K02		(121)	20					16.8	
MCH09020H05K02 MCH09020H10K02	200	207	5 10	439.5	340	200	3	12.4 13.9	6.5
MCH09020H20K02	200	(221) 10 439.5	340	200	3	20.0	- 0.5		
MCH09030H05K02			5					15.6	
MCH09030H10K02	300	307	10	539.5	440	300	4	17.1	8.1
MCH09030H20K02		(321)	20					23.2	
MCH09040H05K02		407	5				_	18.8	
MCH09040H10K02 MCH09040H20K02	400	(421)	10	639.5	540	400	5	20.3	9.7
MCH09040H20K02			20 5					26.4 22.0	
MCH09050H10K02	500	507	10	739.5	640	500	6	23.5	11
MCH09050H20K02	1	(521)	20					29.6	
MCH09060H05K02		607	5					25.2	
MCH09060H10K02	600	(621)	10	839.5	740	600	7	26.7	13
MCH09060H20K02		(02.1)	20					32.8	
MCH09070H05K02 MCH09070H10K02	700	707	5 10	939.5	840	700	8	28.4 30.0	14.5
MCH09070H20K02	700	(721)	20	555.5	0-10	700	0	36.0	14.5
MCH09080H05K02		007	5					31.6	
MCH09080H10K02	800	800 807 (821)	10	1 039.5	940	800	9	33.2	16
MCH09080H20K02			20			39.2			

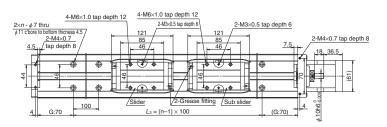
Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

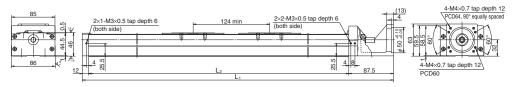
Coding for columns 13 and 14

Grease	nign-grade	Frecision-grade	ivioriocarrier dyr	iamic torque sper	mic torque specification (N · cr			
Standard	02	(None)	Ball screw	Accurac	cy grade			
LG2	B2	B0	lead(mm)	High grade	Precision			
LGZ	52	Во	5	1.0 - 5.9	2.5 - 11.0			
			10	2.0 - 7.8	2.8 - 13.4			
			20	2.0 - 10.8	3.4 - 16.1			

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic l	oad rating (N)		Basic static loa			
(mm)	d (mm)	Ball screw	Linear guides		Rated running distance	C	Linear guides	Support unit load limit (N)	
(111111)	(111111)	C _a	C	C _a	La (KIII)	C _{0a}	C ₀		
5		8 300	40 600		5	12 700			
10	φ 15	8 140	32 200	7 100	10	12 800	30 500	3 040	
20		5 080	25 500		20	7 460			


Basic static moment load of linear guide

Clister.	Basic st	atic moment load	d (N · m)
Slider	der Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	890	385	385

MCH09 (Double slider)

MCH09

Dimension of MCH09 (Double slider)

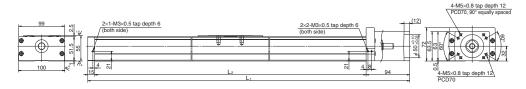
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	ly length (r	mm)	Inertia	Mass
hererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09015H05D02	150	183	5	539.5	440	300	4	16.1	8.9
MCH09015H10D02		(211)	10	539.5	440	300	4	19.2	
MCH09025H05D02	250	283	5	639.5	540	400	5	19.3	11
MCH09025H10D02	250	(311)	10	039.5	340	400	5	22.4	
MCH09035H05D02	350	383	5	739.5	640	500	6	22.5	12
MCH09035H10D02	350	(411)	10	739.5	040	500	0	25.6	12
MCH09045H10D02	450	483	10	020 5	740	600	7	28.8	14
MCH09045H20D02	450	(511)	20 839.5 740	740	600	/	40.9	14	
MCH09065H10D02	650	683	10	1 039.5	940	800	9	35.2	17
MCH09065H20D02	000	(711)	20	1 039.5	340	340 600	9	47.3	17

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Mo
Standard	02	(None)	E
LG2	B2	B0	'
			_

Monocarrier dynamic torque specification (N · cm)								
Ball screw	Accuracy grade							
lead(mm)	High grade	Precision						
5	1.5 - 7.0	2.8 - 12.4						
10	2.5 - 10.8	3.4 - 16.2						
20	4.0 - 17.2	4.5 – 21.7						


- 1. Frictional resistance of NSK K1 is included in dynamic
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic l	oad rating (N)	Basic static loa			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIITIIL (N)
5		8 300	40 600		5	12 700		
10	φ 15	8 140	32 200	7 100	10	12 800	30 500	3 040
20		5 080	25 500		20	7 460		

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	1 780	2 070	2 070

Accuracy grade: High grade (H)

Dimension of MCH10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> ₁		ly leng	th (mm)	l n	Inertia × 10 ⁻⁶ (kg · m ²)	Mass (kg)
	(11111)		, ,	L1	L ₂	G	L ₃	11		(Kg)
MCH10010H10K02	100	126	10	389	280	65	150	2	33.2	7.3
MCH10010H20K02	100	(142)	20	303	200	00	150		41.1	7.5
MCH10020H10K02	200	226	10	489	380	40	300	3	43.4	9.5
MCH10020H20K02	200	(242)	20	400	300	40	300	J	51.3	5.5
MCH10030H10K02	300	326	10	589	480	15	450	4	53.7	12
MCH10030H20K02	300	(342)	20	303	400	13	430	4	61.6	12
MCH10040H10K02	400	426	10	689	580	65	450	4	62.4	14
MCH10040H20K02	400	(442)	20	000	300	05	450	4	71.8	14
MCH10050H10K02	500	526	10	789	680	40	600	5	74.7	16
MCH10050H20K02	500	(542)	20	700	000	40	000	J J	82.3	10
MCH10060H10K02	600	626	10	889	780	15	750	6	84.9	19
MCH10060H20K02	000	(642)	20	000	700	15	750	U	92.5	19
MCH10070H10K02	700	726	10	989	880	65	750	6	95.1	21
MCH10070H20K02	700	(742)	20	303	000	05	750	U	103	21
MCH10080H10K02	800	826	10	1 089	980	40	900	7	105	23
MCH10080H20K02	800	(842)	20	1 000	300	40	300	_ ′	113	23
MCH10090H10K02	900	926	10	1 189	1 080	15	1 050	8	116	25
MCH10090H20K02	300	(942)	20	1 103	1 000	15	1 050	٥	123	25
MCH10100H10K02	1 000	1 026	10	1 289	1 180	65	1 050	8	126	27
MCH10100H20K02	1 000	(1 042)	20	1 209	1 100	05	1 050	l °	133	27
MCH10110H10K02	1 100	1 126	10	1 389	1 280	40	1 200	9	136	29
MCH10110H20K02	1 100	(1 142)	20	1 309	1 200	40	1 200	9	143	29
MCH10120H10K02	1 200	1 226	10	1 400	1 200	1.5	1.050	10	146	32
MCH10120H20K02	1 200	(1 242)	20	1 489	1 380	15	1 350	10	154	32

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

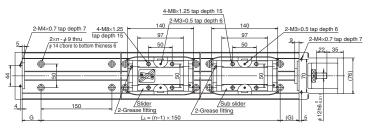
Grease	High-grade	Precision-grade	
Standard	02	(None)	
LG2	B2	В0	

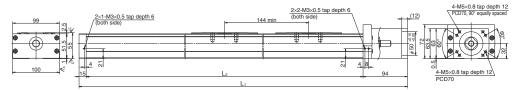
Monocarrier dynamic torque specification (N · cm)								
Ball screw Accuracy grade								
lead(mm)	High grade	Precision						
10	2.7 - 10.8	3.3 - 17.5						
20	3.1 – 12.7	3.8 - 20.4						

) Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic I	oad rating (N)		Basic static loa	Comment out to	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load liffiit (N)
10	ø 20	12 800	44 600	7 600	10	21 400	42 000	3 380
20	φ 20	8 190	35 400	7 600	20	12 600	42 000	3 380


Basic static moment load of linear guide

Slider	atic moment load	tic moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Single	1 460	610	610			

MCH10 (Double slider)

MCH10

Dimension of MCH10 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Boo	ly leng	th (mm)		Inertia	Mass
Herefelice No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH10025H10D02	250	282	10	689	580	65	450	4	67.1	15
MCH10025H20D02	230	(314)	20	300 000	05	450	4	82.4	15	
MCH10035H10D02	350	382	10	789	680	40	600	5	77.3	17
MCH10035H20D02	350	(414)	20	703	000	080 40	600	5	92.5	17
MCH10045H10D02	450	482	10	889	780	15	750	6	87.5	20
MCH10045H20D02	450	(514)	20	003	780	13	730	0	103	2.0
MCH10055H10D02	550	582	10	989	880	65	750	6	97.7	22
MCH10055H20D02	550	(614)	20	303	000	05	730	"	113	22
MCH10065H10D02	650	682	10	1 089	980	000	40 900	7	108	24
MCH10065H20D02	050	(714)	20	1 003	360	40	300	_ ′	123	24
MCH10075H20D02	750	782 (814)	20	1 189	1 080	15	1 050	8	133	26
MCH10085H20D02	850	882 (914)	20	1 289	1 180	65	1 050	8	143	28
MCH10095H20D02	950	982 (1 014)	20	1 389	1 280	40	1 200	9	154	30
MCH10105H20D02	1 050	1 082 (1 114)	20	1 489	1 380	15	1 350	10	164	33

Note: The nominal number in the above table is for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

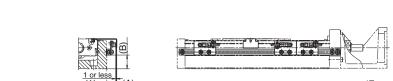
Grease	High-grade	Precision-grade	Monocarrier dyn	amic torque spe	cification (N · cm
Standard	02	(None)	Ball screw	Accurac	y grade
LG2	B2	B0	lead(mm)	High grade	Precision
LUZ	DZ.	ВО	10	4.2 - 15.6	4.4 - 21.6
			20	5.0 - 19.6	5.6 - 27.4

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
 2. Grease is packed into ball screw, linear guide parts and
 - support unit.
 - 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia	Basic dynamic load rating (N)				Basic static load rating (N)		Community consists
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load limit (N)
10	φ 20	12 800	44 600	7 600	10	21 400	42 000	3 380
20		8 190	35 400	/ 600	20	12 600	42 000	3 380

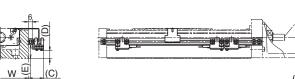

Clister	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	2 920	3 430	3 430		

C-1-6. 3 MCH Series Accessories

C-1-6. 3. 1 Sensor Unit

Proximity switch

Sensor rail is not included in a sensor unit.


(Example of assembly)

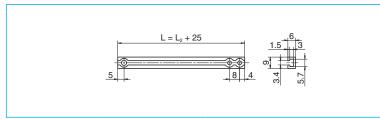
Model No.		Reference No.			A (mm)	B (mm)	Body width W (mm)
MCH06		MC-SRH06-10	MC-SRH06-11	MC-SRH06-12	17	10	60
MCH09		MC-SRH09-10	MC-SRH09-11	MC-SRH09-12	16	21	86
MCH10		MC-SRH10-10	MC-SRH10-11	MC-SRH10-12	16	16	100
Quantity	Proximity switch (normally open contact) ——		3	1	E2S-W1	3 (OMRO	N Corp.)
	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

Notes: 1. See page C137 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

Photo sensor

Sensor rail is not included in a sensor unit.

(Example of assembly)


Model No.	Reference No.	C (mm)	D (mm)	E (mm)	Body width W (mm)	Remarks
MCH06	MC-SRH06-13	24	2	11	60	EE-SX674 (OMRON Corp.)
MCH09	MC-SRH09-13	23	12	21	86	3 sets
MCH10	MC-SRH10-13	23	29	16	100	(EE-1001 connector attachment)

Notes: 1. See page C138 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

(1) Sensor rail

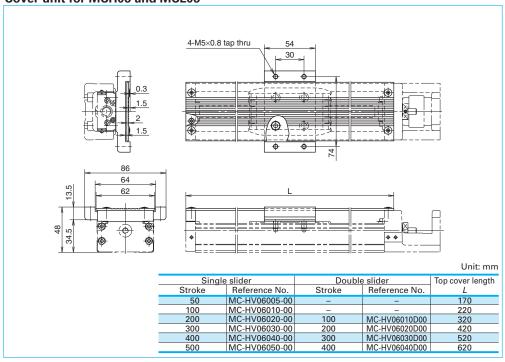
Reference number: MC-SRL- * * * *

 \bullet * * * * is the same as rail dimension L_2 .

Note: For combinations of sensors and rails, see page C82.

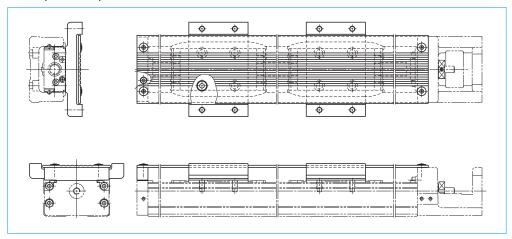
Body of MCH Series and Sensor Rail Combination Table

Accessories

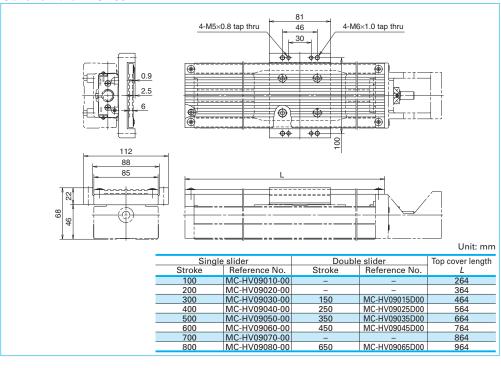

Table 4					
Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.		
	150	MCH06005H05K02 MCH06005H10K02 MCH06005H20K02	MC-SRL-0150		
	200	MCH06010H05K02 MCH06010H10K02 MCH06010H20K02	MC-SRL-0200		
	300	MCH06020H05K02 MCH06020H10K02 MCH06020H20K02 MCH06010H05D02 MCH06010H10D02	MC-SRL-0300		
MCH06	400	MCH06030H05K02 MCH06030H10K02 MCH06030H20K02 MCH06020H05D02 MCH06020H10D02	MC-SRL-0400		
	500	MCH06040H05K02 MCH06040H10K02 MCH06040H20K02 MCH06030H05D02 MCH06030H10D02	MC-SRL-0500		
	600	MCH06050H05K02 MCH06050H10K02 MCH06050H20K02 MCH06040H10D02 MCH06040H20D02	MC-SRL-0600		
	150	MCL06005H05K02 MCL06005H10K02	MC-SRL-0150		
	200	MCL06010H05K02 MCL06010H10K02	MC-SRL-0200		
140100	300	MCL06020H05K02 MCL06020H10K02	MC-SRL-0300		
MCL06	400	MCL06030H10K02 MCL06030H20K02	MC-SRL-0400		
	500	MCL06040H10K02 MCL06040H20K02	MC-SRL-0500		
	600	MCL06050H10K02 MCL06050H20K02	MC-SRL-0600		
	240	MCH09010H05K02 MCH09010H10K02 MCH09010H20K02	MC-SRL-0240		
	340	MCH09020H05K02 MCH09020H10K02 MCH09020H20K02	MC-SRL-0340		
	440	MCH09030H05K02 MCH09030H10K02 MCH09030H20K02 MCH09015H05D02 MCH09015H10D02	MC-SRL-0440		
MCH09	540	MCH09040H05K02 MCH09040H10K02 MCH09040H20K02 MCH09025H05D02 MCH09025H10D02	MC-SRL-0540		
	640	MCH09050H05K02 MCH09050H10K02 MCH09050H20K02 MCH09035H05D02 MCH09035H10D02	MC-SRL-0640		
	740	MCH09060H05K02 MCH09060H10K02 MCH09060H20K02 MCH09045H10D02 MCH09045H20D02	MC-SRL-0740		

Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No
		MCH09070H05K02	
	840	MCH09070H10K02	MC-SRL-0840
		MCH09070H20K02	
		MCH09080H05K02	
MCH09		MCH09080H10K02	
	940	MCH09080H20K02	MC-SRL-0940
	940	MCH09065H10D02	IVIO ONE 0040
		MCH09065H20D02	
		MCH1000001120202	
	280	MCH10010H10K02	MC-SRL-0280
		MCH10020H10K02	
	380	MCH10020H10K02	MC-SRL-0380
	480	MCH10030H10K02	MC-SRL-0480
		MCH10030H20K02	
	580	MCH10040H10K02	MC-SRL-0580
		MCH10025H10D02	
	680	MCH10050H10K02	
		MCH10050H20K02	MC-SRL-0680
		MCH10035H10D02	
		MCH10035H20D02	
	780	MCH10060H10K02	
		MCH10060H20K02	MC-SRL-0780
		MCH10045H10D02	IVIC-SITE-0760
		MCH10045H20D02	
		MCH10070H10K02	
	000	MCH10070H20K02	MC-SRL-0880
101140	880	MCH10055H10D02	IVIC-5HL-0880
MCH10		MCH10055H20D02	
	980	MCH10080H10K02	
		MCH10080H20K02	
		MCH10065H10D02	MC-SRL-0980
		MCH10065H20D02	
		MCH10090H10K02	
	1 080	MCH10090H20K02	MC-SRL-1080
	. 000	MCH10075H20D02	1410 0112 1000
		MCH10100H10K02	
	1 180	MCH10100H10K02	MC-SRL-1180
	1 100	MCH10085H20D02	IVIC-SITE-1100
		MCH10110H10K02	
	1 280	MCH10110H10K02 MCH10110H20K02	MC-SRL-1280
	1 200		IVIC-3NL-1280
		MCH10095H20D02	
		MCH10120H10K02	
	1 380	MCH10120H20K02	MC-SRL-1380
		MCH10105H20D02	I

Rody length /.

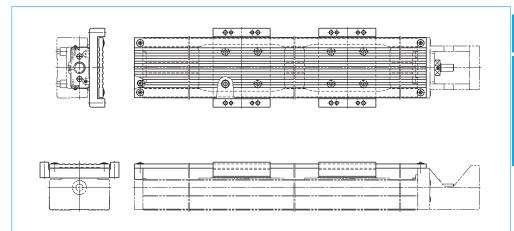

C-1-6, 3, 2 Cover Unit

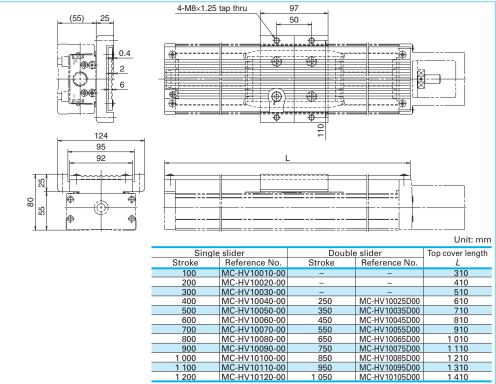
Cover unit for MCH06 and MCL06



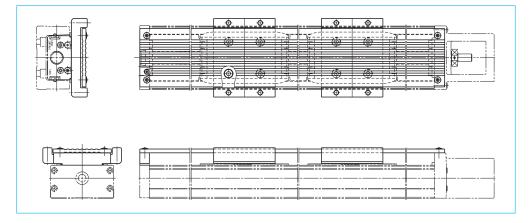
Cover unit for double sliders

Two spacers are provided for double slider.



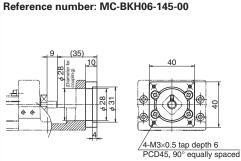

Cover unit for MCH09

Cover unit for double sliders


Two spacers are provided for double slider.

Cover unit for double sliders

Two spacers are provided for double slider.

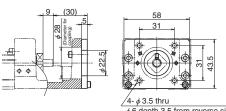


C88

●In case of parallel motor mount, please consult with NSK. ●Be sure to align centerlines when installing motor.

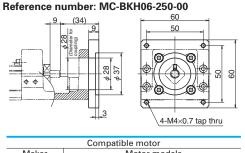
• Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

Motor Bracket for MCH06 and MCL06

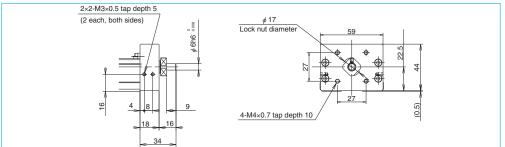

	L	
•		P 9
ها		4
199		
7		
	M3×0.5 tap o	
P	CD45, 90° ec	ually spaced
		. , .

Compatible motor		
Maker	Motor models	
Panasonic Co., Ltd.	MSMD5A(50W), MSMD01(100W)	

Reference number: MC-BKH06-146-00 4-M4×0.7 tap depth 10 PCD46, 90° equally spaced


Compatible motor		
Maker	Motor models	
VACKAWA FILATIA CAM	SGMAH-A3(30W), SGMJV-A5A(50W), SGMAV-A5A(50W)	
YASKAWA Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)	
	HF-KP053(50W), HF-MP053(50W), HC-KFS053(50W)	
Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)	
·	HC-KFS13(100W), HC-MFS13(100W)	
OMRON Corp.	R88M-W03(30W), R88M-W05(50W), R88M-W10(100W)	
SANYO DENKI Co., Ltd.	P30B04xxx P Series	

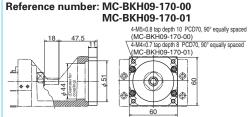
Reference number: MC-BKH06-231-00

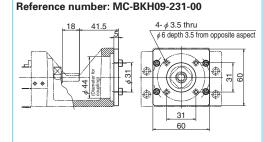


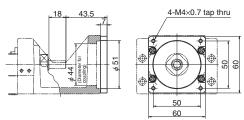
4- \$ 3.5 t	thru		
φ 6 depth	3.5 from	reverse	side

Maker Motor models ORIENTAL MOTOR AS46, ASC46, UPK54x, PK54x, Co. Ltd. CSK54x, CFK54x, LIMK24x, CSK24x, PK24x	Compatible motor			
ORIENTAL MOTOR AS46, ASC46, UPK54x, PK54x,	Maker	Motor models		
Co. Ltd. CSK54× CEK54× LIMK24× CSK24× PK24×	ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x,		
CO., Eta. CONCAA, CINCAA, CONCAA, INCAA	Co., Ltd.	CSK54x, CFK54x, UMK24x, CSK24x, PK24x		
SANYO DENKI Co., Ltd. PBM423xxx, 103F55xx	SANYO DENKI Co., Ltd.	PBM423xxx, 103F55xx		

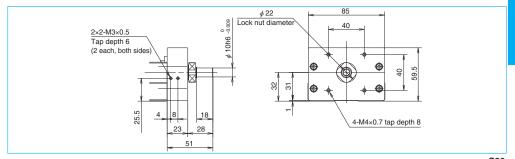
	Compatible motor
Maker	Motor models
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x,
Co., Ltd.	PK56x, CSK56x, CFK56x
OMRON Corp.	MUMS02(200W), MUMS04(400W)
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx


Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH06

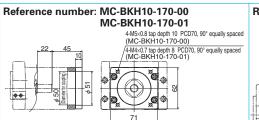

Motor Bracket for MCH09


Reference No.	Compatible motor						
Reference No.	Maker	aker Motor models nic Co., Ltd. MSMD5A(50W), MSMD01(100W) Electric Corp. SGMJV-45A(50W), SGMAV-45A(50W) Electric Corp. SGMJV-461(100W), SGMAV-014(100W) HF-KPGSSB0W), HF-KPGSSB0W), HF-KPGSSB0W), HC-KPSSB10WN, HC-KPSSB10WN, HC-KPSB10WN, HC-KPSB10WN DN Corp. R88M-W05(50W), R88M-W10(100W)					
MC-BKH09-145-00	Panasonic Co., Ltd.	MSMD5A(50W), MSMD01(100W)					
	YASKAWA Electric Corp.						
MC-BKH09-146-00	Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)					
	OMRON Corp.	R88M-W05(50W), R88M-W10(100W)					
	SANYO DENKI Co., Ltd.	P30B04xxx P Series					

Reference No.	Compatible motor						
neierence ivo.	Maker	Motor models					
	YASKAWA Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)					
	TABRAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)					
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)					
MC-BKH09-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)					
		HC-KFS43(400W), HC-MFS43(400W)					
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)					
	SANYO DENKI Co., Ltd.	P30B06xxx P Series					
MC-BKH09-170-01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)					
IVIC-DNTU9-1/0-01	r anasonic Co., Eta.	MSMA04(400W), MSMD04(400W)					

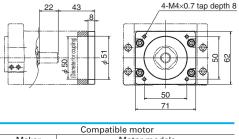

	Compatible motor
Maker	Motor models
SANYO DENKI Co., Ltd.	PBM423xxx, 103F55xx
ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x
Co., Ltd.	UMK24x, CSK24x, PK24x

Reference number: MC-BKH09-250-00


	Compatible motor
Maker	Motor models
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x, PK56x
Co., Ltd.	CSK56x, CFK56x

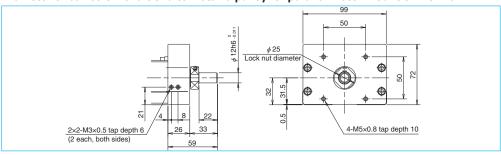
Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH09

NSK


Motor Bracket for MCH10

Reference No.	Compatible motor						
neierence ivo.	Maker	Motor models					
	YASKAWA Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)					
	TASKAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)					
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)					
MC-BKH10-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)					
		HC-KFS43(400W), HC-MFS43(400W)					
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)					
	SANYO DENKI Co., Ltd.	P30B06xxx P Series					
MC DKI110 170 01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)					
MC-BKH10-170-01	ranasonic Co., Ltd.	MSMD04(400W), MSMA04(400W)					

Reference number: MC-BKH10-250-00


Compatible motor						
Maker	Motor models					
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx					
ORIENTAL MOTOR	AS66, ASC66, UPK56x, PK56x, CSK56x, CFK56x					
Co., Ltd.	UMK56x, UFK56X					

MC-BKH10-190-01 SANYO DENKI Co., Ltd. P50B07xxx P Series

Reference number: MC-BKH10-270-00

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH10

Motor Availability Table of Intermediate Plate for MCH Series

Accessories

Model No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor				C servo moto				
	code 1	reference No.		model No.	30	50	100	200	400	750		
	- '	MC-BKH06-145-00	Panasonic Co., Ltd.		1	MSMD5A SGMJV-A5A	MSMD01 SGMJV-01A					
			YASKAWA Electric Corp.		SGMAH-A3	SGMAV-A5A						
	0					HF-KP053	HF-KP13					
	2	MC-BKH06-146-00	Mitsubishi Electric Corp.			HF-MP053 HC-KFS053	HF-MP13 HC-KFS13					
						HC-KFS053 HC-MFS053						
			OMRON Corp.		R88M-W03		R88M-W10					
			SANYO DENKI Co., Ltd.	P30B04xxx (P Series)								
			SANYO DENKI Co., Ltd.	PBM423xxx 103F55xx								
MCH06				AS46 , ASC46								
MCL06	3	MC-BKH06-231-00		UPK54x , PK54x								
			ORIENTAL MOTOR Co., Ltd.	CSK54x , CFK54x UMK24x , CSK24x								
				PK24x								
				PBM603xx								
			SANYO DENKI Co., Ltd.	PBM604xx								
	4	MC-BKH06-250-00		103F78xx AS66 , ASC66								
			ORIENTAL MOTOR Co., Ltd.	UPK56x , UFK56x								
			ONIENTAL WOTON CO., Etc.	PK56x, CSK56x								
			OMRON Corp.	CFK56x				MUMS02	MUMS04			
	1	MC-BKH09-145-00	Panasonic Co., Ltd.			MSMD5A	MSMD01	IVIOIVIOUZ	1010101004			
			YASKAWA Electric Corp.			SGMJV-A5A	SGMJV-01A					
			Triology vicious corp.		_		SGMAV-01A					
	_	MC-BKH09-146-00	Manual Francis			HF-KP053 HF-MP05	HF-KP13 HF-MP13		ĺ			
	2		IVIC-BKH09-146-00	IVIC-BKH09-146-00	Mitsubishi Electric Corp.			HC-KFS053	HC-KFS13			
			ON ADOM Com			HC-MFS053	HC-MFS13					
			OMRON Corp. SANYO DENKI Co., Ltd.	P30B04xxx (P Series)		H88IVI-VVU5	R88M-W10					
			YASKAWA Electric Corp.					SGMJV-02A	SGMJV-04A			
	3		IADIOAVA Electric corp.					SGMAV-02A HF-KP23	SGMAV-04A HF-KP43			
								HF-KP23 HF-MP23	HF-KP43 HF-MP43			
		MC-BKH09-170-00	Mitsubishi Electric Corp.					HC-KFS23	HC-KFS43			
								HC-MFS23	HC-MFS43			
			OMRON Corp. SANYO DENKI Co., Ltd.	P30B06xxx (P Series)				R88M-W20	R88M-W40			
MCH09	4	MC-BKH09-170-01	Panasonic Co., Ltd.	1 SOBOOXXX (1 Scries)				MSMD02	MSMD04			
		WIC-BKI 109-170-01	r dildsoriic Co., Etu.	2211100				MSMA02	MSMA04			
		MC-BKH09-231-00	SANYO DENKI Co., Ltd.	PBM423xxx 103F55xx								
	5			AS46 , ASC46								
				UPK54x , PK54x								
			ORIENTAL MOTOR Co., Ltd.	CSK54x , CFK54x UMK24x , CSK24x								
				PK24x								
				PBM603xx								
		6 MC-BKH09-250-00	SANYO DENKI Co., Ltd.	PBM604xx 103F78xx								
	6			AS66 , ASC66								
			ORIENTAL MOTOR Co., Ltd.	UPK56x, UFK56x								
				PK56x , CSK56x CFK56x								
			VACKANAN EL C-	CI KUUX				SGMJV-02A	SGMJV-04A			
			YASKAWA Electric Corp.					SGMAV-02A	SGMAV-04A			
								HF-KP23 HF-MP23	HF-KP43 HF-MP43			
	1	MC-BKH10-170-00	Mitsubishi Electric Corp.					HC-KFS23	HC-KFS43			
								HC-MFS23	HC-MFS43			
			OMRON Corp. SANYO DENKI Co., Ltd.	P30B06xxx (P Series)				R88M-W20	R88M-W40			
	_	140 01/11/04/20 04		r 30000xxx (r 3elies)				MSMD02	MSMD04			
	2	MC-BKH10-170-01	Panasonic Co., Ltd.					MSMA02	MSMA04			
										HC-KFS73 HC-MFS73		
	3	MC-BKH10-190-00	Mitsubishi Electric Corp.							HF-KP73		
MCH10										HF-MP73		
	4	MC-BKH10-190-01	SANYO DENKI Co., Ltd.	P50B07xxx (P Series)								
			SANYO DENKI Co., Ltd.	PBM603xx PBM604xx								
			2 O DETAIN CO., Etc.	103F78xx								
	5	MC-BKH10-250-00		AS66, ASC66								
			ORIENTAL MOTOR Co., Ltd.	UPK56x, PK56x CSK56x, CFK56x					ĺ			
				UMK56x , UFK56x								
				AS98, ASC98								
					1	1	1	I	i .	1		
	6	MC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	UPK59x, PK59x CSK59x, CFK59x					l			

NSK

C-2 Toughcarrier™

1. Features	C95
2. Classification and Series	C95
3. Accessories	C97
4. Selection of Toughcarrier	C98
4.1 Selection Procedures	C98
4.2 Stroke and Lead	C99
4.3 Reference Number Coding and Accuracy Gr	ade C100
4.4 Maximum Speed	C101
4.5 Rigidity	C103
4.6 Basic Load Rating	C104
4.7 Estimation of Life Expectancy	C105
4.8 Example of Life Estimation	C107
5. TCH Series Dimension Table for Standard Produ	ucts C111
5.1 TCH06 Series	C111
5.2 TCH09 Series	C113
5.3 TCH10 Series	C115
6. Accessories	C117
6.1 Sensor Unit	C117
6.2 Cover Unit	C118
6.3 Motor Bracket	C121
7. Motor Bracket Compatibility Table	C130
8. Sensor Rail and Top Cover Unit Combination Ta	ble C131
9. Toughcarrier High-Thrust Series	C134

C-2 Toughcarrier[™]

NSI

C-2 Toughcarrier[™]

C-2-1 Features

Greatly improved load capacity due to switching of rolling elements to rollers.

Mounting dimensions are compatible with those of the MCH Series, allowing substitution.

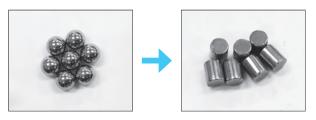
Light weight and compact design

Taking into account part composition and rigidity, the cross sections of the rail and slider are the same as MCH series.

Superb rust-preventive ability

Low-temperature chrome plating comes standard.

All-in-one structure

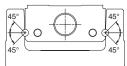

- 1) The all-in-one structure integrates a ball screw, a linear guide and a support unit into a single structure to significantly reduce design time.
- The bottom and one side of the rail are datum surfaces to facilitate highly accurate installation.Models with pin holes are also available as standard.
- 3) Immediate operation after installation and run-in is possible due to pre-packed grease.
- 4) A wide selection of ball screw leads are available.

Long-term maintenance-free operation

Use of NSK K1 lubrication unit and grease maintains smooth lubricating performance for long periods.

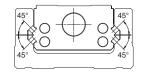
Updated rolling elements

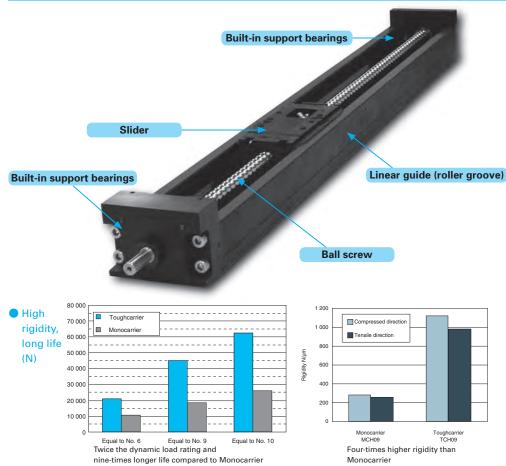
Rollers are installed as rolling elements for the first time anywhere.

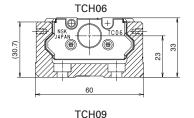


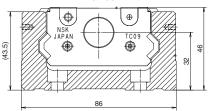
C-2-2 Classification and Series

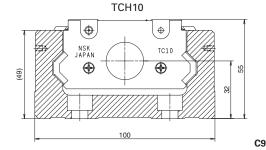
Structure


Rolling elements: Balls

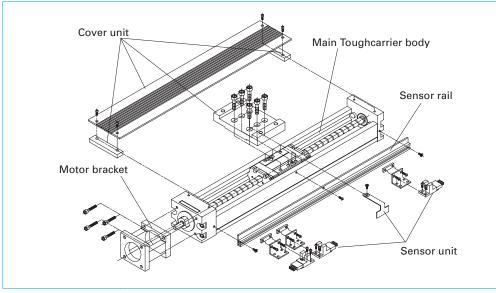

MCH Series


Rolling elements: Rollers


TCH Series



Cross-sections of TCH Series

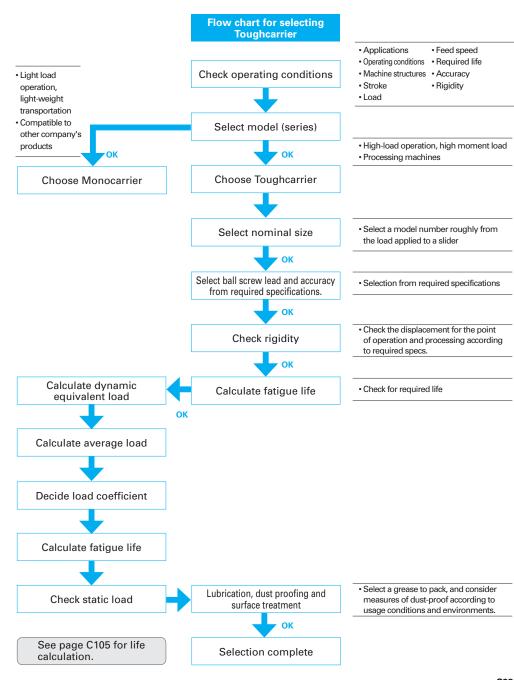


C-2-3 Accessories

Accessories for Toughcarrier

Assembly Example of accessories

Sensor unit, cover unit, motor bracket and sensor rail are available as options for Toughcarrier. Contact NSK for other specifications other than those of NSK standard accessories.


- 1. Sensor unit:
 - Photo sensor...Use of both OMRON EE-SX674 and EE-1001
- Proximity switch...Use of OMRON E2S-W13, E2S-W14

Available in a unit including sensor fitting clamps.

- 2. Sensor rail : This rail holds the sensor. Please order the appropriate rail according to the
- 3. Cover unit : This unit consists of a top cover and spacer plate.
- 4. Motor bracket: Brackets are available for a variety of models from different motor manufacturers. Please consult NSK when the mounting dimensions differ from your order.

C-2-4 Selection of Toughcarrier C-2-4. 1 Selection Procedure for Toughcarrier

Selection

C-2-4, 2 Stroke and Lead

◆ Combinations of rail length and lead

■ TCH06

Clidar tuna	Standard slider						Short slider						
Slider type	Si	ngle slid	ler	Double slider			Si	Single slider			Double slider		
Lead (mm) Rail length (mm)	5	10	20	5	10	20	5	10	20	5	10	20	
150	1	1	1				1	1					
200	/	1	1				1	1					
300	1	1	1	1	1		1	1		1	1		
400	/	1	1	1	1		1	1		1	1		
500	1	1	1	1	1		1	1		1	1		
600	1	1	1		1	1	1	1			1		

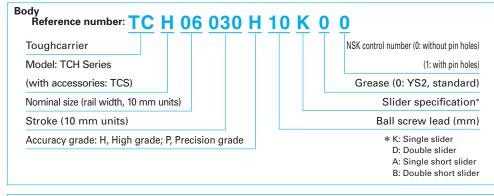
^{*20} mm lead for short sliders not available.

■ TCH09

Clidar type	Standard slider						Short slider					
Slider type	Single slider			Double slider			Single slider			Double slider		
Lead (mm)	5	10	20	5	10	20	5	10	20	5	10	20
240	1	1	1				1	1	1			
340	1	1	1				1	1	1			
440	1	1	1	1	1		1	1	1	1	1	
540	1	1	1	1	1		1	1	1	1	1	
640	1	1	1	1	1		1	1	1	1	1	
740	1	1	1		1	1	1	1	1		1	1
840	1	1	1				1	1	1			
940	1	1	1		1	1	1	1	1		1	1

TCH10

Slider type		Standar	d slider		Short slider				
Silder type	Single slider		Double	slider	Single	slider	Double slider		
Lead (mm) Rail length (mm)	10	20	10	20	10	20	10	20	
280	1	1			1	1			
380	1	1			1	1			
480	✓	1			✓	✓			
580	1	1	1	1	1	1	1	1	
680	✓	1	1	1	✓	✓	1	✓	
780	1	1	1	1	1	1	1	1	
880	✓	1	1	1	✓	✓	1	✓	
980	/	1	1	1	1	1	1	1	
1 080	1	1		1	1	1		✓	
1 180	1	1		1	1	1		1	
1 280	1	1		1	1	1		1	
1 380	✓	1		1	✓	✓		✓	


Availability

Model No.	Lead (mm)	Slider	Rail length (mm)	
TCH06	5, 10, 20	Single	600	
1000	5, 10, 20	Double	000	
TCH09	5, 10, 20	Single	940	
1009	5, 10, 20	Double	940	
TCH10	10, 20	Single	1 380	
ICHIU	10, 20	Double	1 300	

C-2-4. 3 Reference Number Coding and Accuracy Grade

Reference Number Coding and Accuracy Grade

Reference number coding for TCH Series

Special specifications Reference number: TC H 06 030 H 10 K -	XXB
3: Toughcarrier for special specs	Design serial number
5: Toughcarrier high-thrust series*	
* For the specifications of the High-Thrust Series, se	e page C134.

Reference number for accessories

1. Sensor unit	3. Cover unit				
Reference number: TC - SRH XX - 00	Reference number: TC - HV XX XXX K 00				
Toughcarrier	Toughcarrier				
Sensor unit	Cover unit				
Nominal size: 06, 09 and 10	Nominal size: 06, 09 and 10				
Control no. : see page C117	Stroke (nominal)				
	Slider specs: refer to the body reference no.				
	Control no.: See pages C118 to C120				
2. Sensor rail	4. Motor bracket				
Reference number: $TC - SRL X - XXXX$	Reference number: $TC - BKH XX - XXX - 00$				
Toughcarrier	Toughcarrier				
Sensor rail	Motor bracket				
Nominal size: 06 is 6, 09 is 9, and 10 is 1.	Nominal size: 06, 09 and 10				
Body rail length	Dimension for motor mounting				
	Control no.				

♦ Accuracy grade

Unit: µr	m
----------	---

Gr	Grade High grade (H grade) Precision grade (P grade)										
Stroke (mm) Repeatability		Repeatability	Running parallelism	Backlash	Repeatability	Positioning	Running parallelism	Backlash			
SHOK	.e (111111)		(vertical)			accuracy	(vertical)				
to	200		14			20	8				
to	400		16			25	10				
to	600	±10	20	20 or less	±3	30	12 2 or loos	3 or less			
to	700	±10	23	20 01 1688	±S	30	15	3 01 less			
to 1	1 000		23			35	15				
to 1	1 200		30			40	20				

High and precision grades are available for accuracy grade. Consult NSK for your requirements.

NSK

C-2-4. 4 Maximum Speed

Maximum speed (standard slider)

Maximum speed of the Toughcarrier is determined by the critical speed of the ball screw shaft and the d · n value.

Do not exceed the maximum speed in the table below.

			•		
	Stroke	Ball screw	Body rail	Maximum	
			length L2	speed	
	(nominal)	lead (mm)	(mm)	(mm/s)	
	50		150	, , , , ,	
	100	1	200	1	
	200	_	300		
	300	5	400	250	
	400	1	500	1	
	500		600		
	50		150		
TCH06	100	1	200	1	
	200	10	300	500	
Single slider	300	10	400	500	
silder	400	1	500	1	
	500		600		
	50		150		
	100		200		
	200	20	300	1 000	
	300		400		
	400		500		
	500		600		
	130	_	300	250	
	230	5	400	250	
TCH06	330		500		
Double	130 230		300 400		
slider	330	10	500	500	
	430	-	600		
	430	20	600	1 000	
	100	20	240	1 000	
	200		340	1	
	300	1	440	1	
	400	_	540	250	
	500	5	640		
	600		740		
	700	1	840	1	
	800	i	940	210	
	100		240	210	
	200]	340		
TCH09	300		440		
Single	400	10	540	500	
slider	500	10	640	[
Siluci	600		740	[
	700 800		840		
	800		940	410	
	100		240		
	200		340		
	300		440	1 000	
	400	20	540	1 000	
	500		640	-	
	600 700		740 840		
	800		940	820	
	000		340	020	

\	Stroke	Ball screw	Body rail	Maximur	
	(nominal)	lead (mm)	length L2	speed	
	1, , ,	1044 (11111)	(mm)	(mm/s)	
	170		440		
	270	5	540	250	
	370		640		
TCH09	170		440		
Double	270		540]	
slider	370	10	640	500	
	470		740		
	670		940		
	470	20	740	1 000	
	670		940		
	100		280		
	200		380		
	300		480		
	400		580	500	
	500		680		
	600	10	780		
	700		880	ı	
	800		980	440	
TCH10	900 1 000 1 100		1 080	440	
			1 180	360	
	1 200		1 280 1 380	300 250	
Single	100		280	250	
slider	200		380		
	300		480		
	400		580		
	500	1	680	1 000	
	600	1	780	1	
	700	20	880	1	
	800	-	980	-	
	900	1	1 080	870	
	1 000	1	1 180	720	
	1 100	1	1 280	600	
	1 200	1	1 280 1 380	510	
	270		580	0.0	
	370	1	680	1	
	470	10	780	500	
	570		880	1 330	
	670	1	980	1	
TCUIO	270		580		
TCH10	370	1	680	1	
Double	470	1	780	1 000	
slider	570	1	880	1 000	
	670	20	980	1	
	770	1	1 080	1	
	870	1	1 180	930	
	970	1	1 280	780	
	1 070	1	1 380	650	

Notes: 1) Please consult NSK before operating Monocarrier near maximum speed.

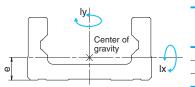
- 2) Maximum rotational speed is (3000 min⁻¹).
- 3) Refer to the above table for maximum speed for each stroke.

Maximum speed (short slider)

Maximum speed of the Toughcarrier is determined by the critical speed of the ball screw shaft and the d · n value.

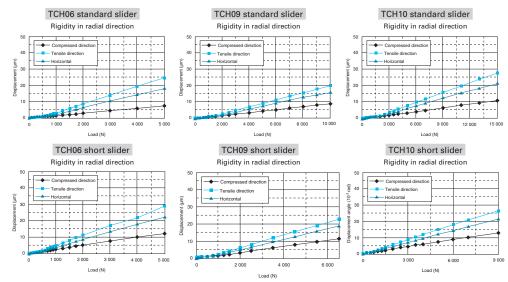
Do not exceed the maximum speed in the table below.

	Stroke (nominal)	Ball screw lead (mm)	Body rail length <i>L</i> ² (mm)	Maximum speed (mm/s)	
TCH06 Single	70 120 220 320 420 520	5	150 200 300 400 500 600	250	
slider	70 120 220 320 420 520	10	150 200 300 400 500 600	500	
TCH06	170 270 370	5	300 400 500	250	
Double slider	170 270 370 470	10	300 400 500 600	500	
	140 240 340 440 540 640	5	240 340 440 540 640 740	250	
	740		840	240	
TCH09 Single slider	840 140 240 340 440 540	10	940 240 340 440 540 640	190 - 500	
	640 740	1	740 840	480	
	840		940	380	
	140 240 340 440 540 640	20	240 340 440 540 640 740	1 000	
	740	1	840	960	
	840	1	940	760	

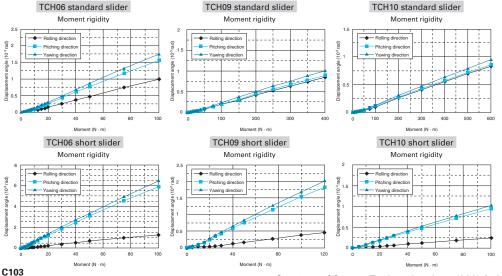

	Stroke	Ball screw	Body rail	Maximum	
	(nominal)	lead (mm)	length L2	speed	
	(HOHIIIIai)	leau (IIIIII)	(mm)	(mm/s)	
	250		440		
	350	5	540	250	
	450		640	1	
TCH09	250		440		
Double	350		540	500	
slider	450	10	640	- 000	
Sildoi	550		740	400	
	750		940	460	
	550	20	740	1 000	
	750 160	-	940 280	930	
	260		380	1	
	360		480	1	
	460		580	500	
	560		680	300	
	660		780	-	
	760	10	880		
	960 1 060 1 160		980	490	
			1 080	400	
			1 180	330	
TCH10			1 280	280	
	1 260		1 380	240	
Single	160		280		
slider	260	1 1	380		
	360	1	480		
	460	1 1	580	1 000	
	560		680		
	660	20	780		
	760	20	880		
	860		980	980	
	960		1 080	800	
	1 060		1 180	660	
	1 160		1 280	560	
	1 260		1 380	480	
	360		580	-	
	460 560	10	680 780	500	
	660	10	880	500	
	760		980	1	
	360		580		
TCH10	460		680	1	
Double	560		780	1 000	
slider	660		880	. 555	
	760	20	980	1	
	860		1 080	980	
	960	1	1 180	800	
	1 060	1 1	1 280	660	
	1 160	1	1 380	560	

near maximum speed.

- 2) Maximum rotational speed is (3000 min⁻¹).
- 3) Refer to the above table for maximum speed for each stroke.


C-2-4. 5 Rigidity

Rigidity of rail



	Geometrical mom	ent of inertia×104	Center of gravity	Mass
Model no.	(mı	m ⁴)	(mm)	(kg/100mm)
	lx	ly	е	W
TCH06	6.47	36.2	10.6	0.6
TCH09	28.4	162	15.7	1.32
TCH10	46	283	17.2	1.73

Rigidity in radial direction

◆ Moment in radial direction

C-2-4. 6 Basic Load Rating

Basic Load Rating

♦ Basic load rating for TCH series

Standard slider

		Shaft dia.	Basic d	ynamic load ra			oad rating (N)	Support bearing	
Model no.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support bearings C_a	Ball screw C_{0a}	Linear guide C_0	Support bearing limit load (N)	
	5		4 390			6 260			
TCH06	10	φ 12	2 740	20 900	6 600	3 820	45 000	2 700	
	20	1	2 660			3 800			
	5		8 300			12 700			
TCH09	10	φ 15	8 140	44 900	8 800	12 800	96 900	5 090	
	20	1	5 080			7 460			
TCH10	10	φ 20	12 800	62 400	9 600	21 400	132 000	5 670	
10010	20	φ 20	8 190	02 400	9 000	12 600	132 000	5 0/0	

Short slider

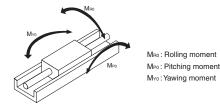
		Shaft dia.		ynamic load ra			pad rating (N)	Support bearing
Model no.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support bearings C_a	Ball screw C_{0a}	Linear guide C_0	limit load (N)
TCH06	5	<i>δ</i> 12	4 390	12 200	6 600	6 260	22 500	2 700
ТСПОО	10	φ12	2 740	12 200	0 000	3 820	22 500	2 700
	5		8 300			12 700		
TCH09	10	<i>φ</i> 15	8 140	27 900	8 800	12 800	52 500	5 090
	20		5 080			7 460		
TCH10	10	<i>φ</i> 20	12 800	38 700	9 600	21 400	71 500	5 670
ICHIU	20	φ 20	8 190	30 700	9 000	12 600	71 500	5 070

Basic dynamic and static load ratings indicate values for one slider.
 Basic dynamic load rating of linear guide is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball mounting surface.
 Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Toughcarriers to rotate 1 million

revolutions under the same condition without causing flaking by rolling contact fatigue.

Basic dynamic load rating of support bearings is load that allows 1 million revolutions under the same condition.

Basic static load rating is load that results in combined permanent deformations at contact points of rolling elements and rolling surfaces of respective parts at a diameter of 0.01%.


◆ Basic static moment load of linear guide

Standard slider

Model no.	Slider	Basic static moment load (N·m)						
woder no.		Rolling Mro	Pitching M _{P0}	Yawing Myo				
TCH06	Single	800	340	340				
TCH09	Single	2 510	1 340	1 340				
TCH10	Single	3 980	2 150	2 150				

Short slider

Model no.	Slider	Basic static moment load (N·m)						
woder no.		Rolling Mro	Pitching M _™	Yawing Myo				
TCH06	Single	400	85	85				
TCH09	Single	1 350	390	390				
TCH10	Single	2 150	630	630				

C-2-4. 7 Estimation of Life Expectancy

(1) Life of linear guide for Toughcarrier

Study the load to be applied to the linear guide of Toughcarrier (**Fig. 1**). The equivalent load (F_e) is determined by substituting the load for equation 1) (Eq. 2) or 2') for tightly coupled double slider type).

For single slider

For double slider

For double sliders, calculation of the load applied to each slider is required.

Dynamic equivalent load is only for rolling moment.

This is the same procedure as for linear guide selection where two sliders are installed in a rail. Check the mean load for each slider, and calculate shortest life becomes the life of linear guide.

When lateral direction (F_H) and vertical direction (F_V) loads are applied to the center of the coordinate in **Fig. 1**,

$$F_{\text{HA}} = \frac{F_{\text{H}}}{2} + \frac{M_{\text{Y}}}{\ell}, F_{\text{VA}} = \frac{F_{\text{V}}}{2} + \frac{M_{\text{P}}}{\ell}$$

$$F_{\text{HB}} = \frac{F_{\text{H}}}{2} - \frac{M_{\text{Y}}}{\ell}, F_{\text{VB}} = \frac{F_{\text{V}}}{2} - \frac{M_{\text{P}}}{\ell}$$

[Slider A]

$$F_{\text{PA}} = Y_{\text{H}} \cdot F_{\text{HA}} + Y_{\text{V}} \cdot F_{\text{VA}} + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2} \qquad 2)$$

$$= Y_{\text{H}} \cdot \left[\frac{F_{\text{H}}}{2} + \frac{M_{\text{V}}}{\ell} \right] + Y_{\text{V}} \cdot \left[\frac{F_{\text{V}}}{2} + \frac{M_{\text{P}}}{\ell} \right] + Y_{\text{R}} \mathcal{E}_{\text{R}} \cdot \frac{M_{\text{R}}}{2}$$

Slider B

$$F_{\text{eB}} = Y_{\text{H}} \cdot F_{\text{HB}} + Y_{\text{V}} \cdot F_{\text{VB}} + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2} \qquad 2)'$$

$$= Y_{\text{H}} \left[\frac{F_{\text{H}}}{2} - \frac{M_{\text{V}}}{\ell} \right] + Y_{\text{V}} \left[\frac{F_{\text{V}}}{2} - \frac{M_{\text{P}}}{\ell} \right] + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2}$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

 F_{v} : Vertical direction load acting on the slider (N)

 $M_{\rm R}$: Rolling moment acting on the slider (N · m)

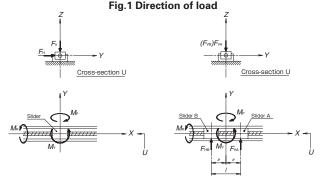
 M_P : Pitching moment acting on the slider (N · m)

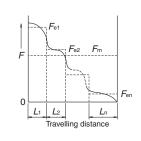
 M_{Y} : Yawing moment acting on the slider (N · m)

 $\epsilon_{_{\mbox{\scriptsize R}}}$: Dynamic equivalent coefficient to rolling moment

ε_P: Dynamic equivalent coefficient to pitching moment

ε ,: Dynamic equivalent coefficient to yawing moment


ℓ : Sliders span (m)


*For dynamic equivalent coefficient, see Table 1.

$$Y_{H}$$
, Y_{V} , Y_{R} , Y_{P} , Y_{Y} : 1.0 or 0.5

At equations 1), 2) and 2') for obtaining equivalent load F_{er} the maximum value of Y in the values for each equation is assumed to be 1.0. For others it is assumed to be 0.5.

Fig. 2 Stepwise Fluctuating Load

If the loads acting on the slider fluctuate (in general, M_P and M_V may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

Travelling distance under the equivalent load $F_{\rm e1}$: $L_{\rm 1}$ Travelling distance under the equivalent load $F_{\rm e2}$: $L_{\rm 2}$

Travelling distance under the equivalent load F_{en} : L_n

Mean effective load F_m is calculated by the following equation.

$$F_{\rm m} = \sqrt[10pt]{\frac{10}{\lambda}} \left(F_{\rm e1}^{\frac{10}{3}} \cdot L_1 + F_{\rm e2}^{\frac{10}{3}} \cdot L_2 + \dots + F_{\rm en}^{\frac{10}{3}} \cdot L_n \right) \cdots 3$$

F_m: Mean effective load of fluctuating loads (N)

L: Total travelling distance (mm)

The life of linear guide for Toughcarrier is determined by Eq. 4).

$$L = 50 \times \left(\frac{C}{f_{\rm w} \cdot F_{\rm m}}\right)^{\frac{10}{3}} \dots 4)$$

L: Life of linear guide (km)

C: Basic dynamic load rating of linear guide (N)

 $F_{\rm m}$: Mean effective load acting on linear guide (N)

f_w: Load coefficient (see **Table 2**)

When the estimated life does meet clear the required life, the life of the linear guide is calculated again after following measures are taken,

 Change from single slider type to double slider type.

2: Use a larger Toughcarrier.

(2) Life of Ball Screw (Support Bearing)

The mean effective load is determined from the axial load.

Axial direction mean effective load F_{m}

$$F_{\rm m} = \sqrt[3]{\frac{1}{L}(F_{\rm e1}^3 \cdot L_1 + F_{\rm e2}^3 \cdot L_2 + \dots + F_{\rm en}^3 \cdot L_{\rm n})} \cdots 5)$$

The life of ball screw is determined by Eq. 6).

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 \dots 6)$$

ℓ : Ball screw lead (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of ball screw (N)

F_m: Mean effective load acting on ball screw (N)

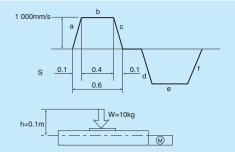
f...: Load factor (see Table 2)

The life of a support bearing is calculated by Eq. 6). If the life of ball screw/support bearing does not meet the required life, use a larger size Toughcarrier. After applying the calculations mentioned above, selection of the Toughcarrier is completed.

Table 2 Value of load factor

Operating conditions	Load factor f
At smooth operation with no mechanical shock	1.0 – 1.2
At normal operation	1.2 – 1.5
At operation with mechanical shock and vibration	1.5 – 3.0

*When the bottom of rail is not fastened, the load factor is 1.5 or greater.


Table 1 Dynamic equivalent coefficient

	TCH06				TCH09		TCH10			
	Rolling	Pitching	Yawing	Rolling	Pitching Yawing		Rolling	Pitching	Yawing	
Standard slider	56	93	93	39	51	51	33	44	44	
Short slider	56	186	186	39	95	95	33	80	80	

C-2-4. 8 Example of Life Estimation

Example of life estimation for Toughcarrier

Example-1

1. Use condition

Stroke : 500 mm

Maximum speed : 1 000 mm/s

Load mass : W = 10 kg

Acceleration : 9.80 m/s²

Setting position : Horizontal

Operating profile: See figure to above

2. Selection of model number (interim selection) First, select a greater ball screw lead as the maximum speed is 1 000 mm/s.

The interim selection is TCH06050H20K00, a single slider specification TCH06 that has 500 mm stroke, as the stroke is 500 mm.

- 3. Calculation
- 3-1. Linear guide
- 3-1-1. Fatigue life: Multiply the result of Eq. 1) by the dynamic equivalent coefficient (**Table 1** single slider) to convert the load volume. From operation profile in the above figure, the acceleration is 10 m/s².

i) Constant speed
$$F_{e1} = Y_{V} \cdot F_{V} = Y_{V} \cdot W \cdot g$$

 $= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$
ii) Accelerating $F_{e2} = Y_{V} \cdot F_{V} + Y_{P} \cdot \mathcal{E}_{P} \cdot M_{P}$
 $= Y_{V} \cdot W \cdot g + Y_{P} \cdot \mathcal{E}_{P} hW\alpha$
 $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 93 \cdot 0.1 \cdot 10 \cdot 10$
 $= 979 \text{ N}$
iii) Decelerating $F_{e1} = Y_{V} \cdot F_{e1} + Y_{e2} \cdot M_{P}$

iii) Decelerating $\begin{aligned} F_{e3} &= Y_{\text{\tiny V}} \cdot F_{\text{\tiny V}} + Y_{\text{\tiny P}} \cdot \mathcal{E}_{\text{\tiny P}} \cdot M_{\text{\tiny P}} \\ &= Y_{\text{\tiny V}} \cdot W \cdot g + Y_{\text{\tiny P}} \cdot \mathcal{E}_{\text{\tiny P}} h W \alpha \\ &= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 93 \cdot 0.1 \cdot 10 \cdot 10 \\ &= 979 \text{ N} \end{aligned}$

Mean effective load F_m

$F_{m} = \frac{\frac{10}{3}}{\sqrt{\frac{1}{L} \left(F_{e1}^{\frac{10}{3}} \cdot L_{1} + F_{e2}^{\frac{10}{3}} \cdot L_{2} + F_{e3}^{\frac{10}{3}} \cdot L_{3}\right)}}$ $= \frac{\frac{10}{3}}{\sqrt{\frac{1}{500} \left(98^{\frac{10}{3}} \cdot 400 + 979^{\frac{10}{3}} \cdot 50 + 979^{\frac{10}{3}} \cdot 50\right)}}$ = 605 N

$$L = 50 \times \left(\frac{C}{f_{\rm w} \cdot F_{\rm m}}\right)^{\frac{10}{3}}$$
$$= 50 \times \left(\frac{20\ 900}{1.2 \cdot 605}\right)^{\frac{10}{3}}$$
$$= 3.65 \times 10^{6} \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{F_{\rm e}} = \frac{C_{\rm o}}{F_{\rm e2}} = \frac{45\,000}{979} = 45.9$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load. By the process above,

i) Constant speed

$$F_{e1} = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98 \text{ N}$$

ii) Accelerating

$$F_{\rm e2} = F_{\rm e1} + W \cdot \alpha = 0.98 + 10 \cdot 10 = 101 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} + W \cdot \alpha = 0.98 - 10 \cdot 10 = 99 \text{ N}$$

Axial mean effective load

$$\begin{split} F_m &= \sqrt[3]{\frac{1}{L} \left(F_{e^1}^3 \cdot L_1 + F_{e^2}^3 \cdot L_2 + F_{e^3}^3 \cdot L_3\right)} \\ &= \sqrt[3]{\frac{1}{500} \left(0.98^3 \cdot 400 + 101^3 \cdot 50 + 99^3 \cdot 50\right)} \\ &= 59 \text{ N} \\ L &= \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 \\ &= 20 \times \left(\frac{2.660}{1.2 \cdot 59}\right)^3 \times 10^6 \\ &= 10.6 \times 10^5 \text{ km} \end{split}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

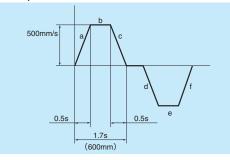
$$F_{\rm s} = \frac{C_{\rm 0a}}{F_{\rm c}} = \frac{C_{\rm 0a}}{F_{\rm c2}} = \frac{3\,800}{101} = 37.6$$

- 3-3. Support bearings
- 3-3-1. Fatigue life: Use the axial load $F_{\rm m}=59$ N that is the result of the calculation in 3-2-1, above.

$$L = \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times 10^{6}$$
$$= 20 \times \left(\frac{6600}{1.2 \cdot 59}\right)^{3} \times 10^{6}$$

 $= 1.62 \times 10^7 \text{ km}$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

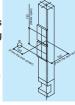

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{2730}{101} = 26.7$$

3-4. Result

TCH06050H20K00	Linear guide	Ball screw	Support bearings	
Fatiana life	3.65×	10.6×	1.62×	
Fatigue life	10 ⁶ km	10⁵ km	10 ⁷ km	
Static safety factor	45.9	37.6	26.7	

Example of life estimation

Example-2


1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s

Load mass : W = 20 kg

Acceleration : 9.8 m/s² Setting position: Vertical

Operating profile: See fiure to above

2. Selection of model number (interim selection) Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is TCH09067H10D00 (double slider specification) from the stroke and the vertical setting position.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of Eq. 2) and 2') by the dynamic equivalent coefficient (Table 1 double slider) to convert the load volume. From operation profile in the above figure, the acceleration is 1 m/s2. The interim slider span is 0.13.

Under this condition,

$$F_{H} = 0$$
, $F_{V} = 0$, $M_{R} = 0$

in Eq., and both sliders have the same load with different direction.

i) Constant speed

$$F_{e_1} = Y_H \cdot \frac{M_V}{\ell} + Y_V \cdot \frac{M_P}{\ell}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot 9.8}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot 9.8}{0.13}$$

$$= 302 \text{ N}$$

ii) Accelerating

$$F_{\rm e2} = Y_{\rm H} \cdot \frac{M_{\rm Y}}{\varrho} + Y_{\rm V} \cdot \frac{M_{\rm P}}{\varrho}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot (9.8 + 1.0)}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot (9.8 + 1.0)}{0.13}$$
$$= 333 \text{ N}$$

iii) Decelerating

$$F_{e3} = Y_{H} \cdot \frac{M_{Y}}{\ell} + Y_{V} \cdot \frac{M_{P}}{\ell}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot (9.8 - 1.0)}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot (9.8 - 1.0)}{0.13}$$

$$= 271 \text{ N}$$

Mean effective load F_{rr}

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{\frac{10}{3}} \cdot L_{1} + F_{e2}^{\frac{10}{3}} \cdot L_{2} + F_{e3}^{\frac{10}{3}} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(302^{\frac{10}{3}} \cdot 350 + 333^{\frac{10}{3}} \cdot 125 + 271^{\frac{10}{3}} \cdot 125 \right)}$$

$$= 304 \text{ N}$$

$$L = 50 \times \left(\frac{C}{f_{w} \cdot F_{m}} \right)^{\frac{10}{3}}$$

$$= 50 \times \left(\frac{44900}{1.2 \cdot 304} \right)^{\frac{10}{3}}$$

$$= 4.63 \times 10^{8} \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm s} = \frac{C_{\rm o}}{F_{\rm e}} = \frac{C_{\rm o}}{F_{\rm e2}} = \frac{96\,900}{333} = 290$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load.

i) Constant speed

$$F_{c1} = W \cdot a = 20 \cdot 9.8 = 196 \text{ N}$$

ii) Accelerating

$$F_{e2} = F_{e1} + W \cdot \alpha = 196 + 20 \cdot 1.0 = 216 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} - W \cdot \alpha = 196 - 20 \cdot 1.0 = 176 \text{ N}$$

Axial mean effective load F_m

 $= 4.08 \times 10^5 \text{ km}$

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3}\right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(196^{3} \cdot 350 + 216^{3} \cdot 125 + 176^{3} \cdot 125\right)}$$

$$= 197 \text{ N}$$

$$L = \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times 10^{6}$$

$$= 10 \times \left(\frac{8140}{1 \cdot 2 \cdot 197}\right)^{3} \times 10^{6}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm s} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{12\,800}{216} = 59.2$$

3-3. Support bearings

3-3-1. Fatique life: Use the axial load $F_{m} = 197 \text{ N}$ that is the result of the calculation in 3-2-1, above.

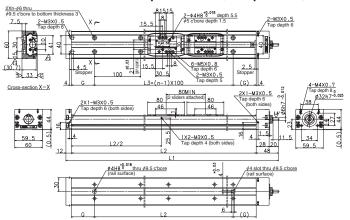
$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6$$

$$= 10 \times \left(\frac{8800}{1.2 \cdot 197}\right)^3 \times 10^6$$

$$= 5.15 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm s} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{5.090}{216} = 23.5$$

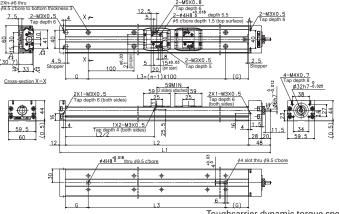

3-4. Result

TCH09067H10D00	Linear guide	Ball screw	Support bearings		
F 41 P4	4.63×	4.08×	5.15×		
Fatigue life	10 ⁸ km	10⁵ km	10⁵ km		
Static safety factor	290	59.2	23.5		

NSK

C-2-5 TCH Series Dimension Table for Standard Products C-2-5. 1 TCH06 series

♦ TCH06 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade				
woder no.	Slider specifications	High grade Feet	Precision grade				
		5	1.0 - 6.0	1.8 - 9.0			
Single standard slider	10	1.1 - 7.2	2.0 - 10.6				
TCH06		20	1.6 - 9.5	2.2 – 12.9			
101100		5	1.2 - 7.2	2.0 - 10.1			
[Double standard sliders	10	1.2 - 9.5	2.2 - 12.9			
		20	1.8 – 14.1	2.8 – 17.5			

◆ TCH06 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Madalaa	Slider specifications	Ball screw lead	Accuracy grade				
iviouei no.	Silder specifications	(mm)	High grade	Precision grade			
	Single short slider	5	0.8 – 5.9	1.8 - 8.9			
TCH06	Single short slider	10	1.0 - 7.0	2.0 - 10.4			
TCHUO	Double short sliders	5	1.0 - 7.0	2.0 - 10.0			
	Double Short Sliders	10	1.2 - 9.2	2.2 - 12.6			

TCH06 Standard Slider Specifications (Single)

TCH06

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
	stroke (mm)	(mm)	lead (mm)	L1	L2	Lз	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06005H05K00 (01)			5						2.94	
* TCH06005H10K00 (01)	50	63	10	210	150	100	25	2	3.38	2.2
* TCH06005H20K00 (01)			20						5.10	
* TCH06010H05K00 (01)			5						3.74	
* TCH06010H10K00 (01)	100	113	10	260	200	100	50	2	4.18	2.5
*TCH06010H20K00 (01)			20						5.90	
TCH06020H05K00 (01)			5						5.34	
TCH06020H10K00 (01)	200	213	10	360	300	200	50	3	5.78	3.3
TCH06020H20K00 (01)			20						7.50	
TCH06030H05K00 (01)			5						6.84	
TCH06030H10K00 (01)	300	313	10	460	400	300	50	4	7.28	3.9
TCH06030H20K00 (01)			20]					9.00	
TCH06040H05K00 (01)			5						8.44	
TCH06040H10K00 (01)	400	413	10	560	500	400	50	5	8.88	4.6
TCH06040H20K00 (01)			20						10.6	
TCH06050H05K00 (01)			5						10.1	
TCH06050H10K00 (01)	500	513	10	660	600	500	50	6	10.5	5.3
TCH06050H20K00 (01)			20						12.2	

Items marked with * are unavailable for upside-down operation.

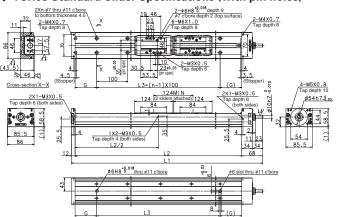
TCH06 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Hererence number	stroke (mm)	(mm)	lead (mm)	L1	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06013H05D00 (01)	130	133	5	360	300	200	50	3	5.47	3.6
* TCH06013H10D00 (01)	130	133	10	300	300	200	50		6.32	3.0
* TCH06023H05D00 (01)	230	233	5	460	400	300	50	4	7.06	4.2
* TCH06023H10D00 (01)	230	233	10	400	400	300	30	4	7.91	4.2
* TCH06033H05D00 (01)	330	333	5	560	500	F00 400	400 50	5	8.64	4.9
* TCH06033H10D00 (01)	330	333	10	300	500	400		5	9.49	
TCH06043H10D00 (01)	430	433	10	660	600	500	50	6	11.08	5.6
TCH06043H20D00 (01)	430	455	20	000	000	300	30	U	14.4	5.0

Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Single)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass		
TIOTOTOTIOO TIATTIBOT	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)		
*TCH06007H05A00 (01)	70	84	5	210	150	100	25	2	2.87	2.1		
* TCH06007H10A00 (01)	70	70	04	10	210	150	100	23		3.06	2.1	
*TCH06012H05A00 (01)	120	134	5	260	200	100	50	2	3.67	2.4		
* TCH06012H10A00 (01)	120	120	120	134	10	200	200	100	30		3.86	2.4
TCH06022H05A00 (01)	220	234	5	360	300	200	50	3	5.27	3.2		
TCH06022H10A00 (01)	220	234	10	300	300	200	50	3	5.46	5.2		
TCH06032H05A00 (01)	320	334	5	460	400	300	50	4	6.77	3.8		
TCH06032H10A00 (01)	320	334	10	460	400	300	50	4	6.96	3.0		
TCH06042H05A00 (01)	420	434	5	560	500	400	50	5	8.37	4.5		
TCH06042H10A00 (01)	420	434	10	500	500	400	50	5	8.56	4.5		
TCH06052H05A00 (01)	520	534	5	660	600	500	50	6	9.97	5.2		
TCH06052H10A00 (01)	320	520 534	10	000	600	500	50	0	10.2	5.2		

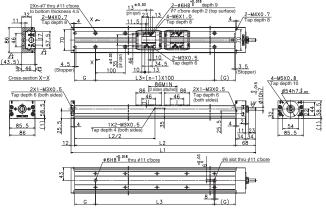

Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mn	n)	No. of mounting holes	Inertia	Mass
Hererence number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06017H05B00 (01)	170	175	5	360	300	0 200	0 50	3	5.34	3.4
* TCH06017H10B00 (01)	170	175	10	300				3	5.81	5.4
TCH06027H05B00 (01)	270	275	5	460	400	300	50	Α	6.93	4.0
TCH06027H10B00 (01)	270	2/5	10	400	400	300	50	4	7.40] 4.0
TCH06037H05B00 (01)	370	375	5	560	500	400	50	-	8.51	4.7
TCH06037H10B00 (01)	370	3/5	10	500	500	400) 50	5	8.98	4.7
TCH06047H10B00 (01)	470	475	10	660	600	500	50	6	10.57	5.4

Items marked with * are unavailable for upside-down operation.

♦ TCH09 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Madal na	Slider specifications	Ball screw lead	Accuracy grade					
iviouei no.	Silder specifications	(mm)	m) High grade Precision 5 2.8 - 7.7 4.2 - 1: 0 3.7 - 9.5 4.5 - 1: 0 3.7 - 12.6 5.1 - 1: 5 3.2 - 8.7 4.5 - 1: 0 4.2 - 12.6 5.1 - 1:	Precision grade				
		5	2.8 - 7.7	4.2 - 12.8				
	Single standard slider	10	3.7 - 9.5	4.5 – 15.1				
TCH09		20	3.7 – 12.6	5.1 – 17.9				
тспоэ		5	3.2 - 8.7	4.5 – 14.1				
	Double standard sliders	10	4.2 - 12.6	5.1 – 17.9				
		20	5.7 – 18.9	6.3 – 23.3				

♦ TCH09 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade				
iviouei no.	Silder Specifications	(mm)	High grade	Precision grade			
		5	2.0 - 6.9	3.5 – 12.0			
	Single short slider	10	2.9 - 8.7	3.8 - 14.3			
TCH09		20	2.9 – 11.8	4.3 – 17.1			
ICHU9		5	2.5 - 7.9	3.8 - 13.3			
	Double short sliders	10	3.4 – 11.8	4.3 – 17.1			
		20	4.9 – 18.1	5.5 – 22.6			

TCH09 Standard Slider Specifications (Single)

TCH09

		(
Reference number	Nominal	Stroke limit	Ball screw	В	ody len	igth (mr	n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH09010H05K00 (01) *TCH09010H10K00 (01) *TCH09010H20K00 (01)	100	108	5 10 20	320	240	100	70	2	9.13 11.0 18.6	6.5
TCH09020H05K00 (01) TCH09020H10K00 (01) TCH09020H20K00 (01)	200	208	5 10 20	420	340	200	70	3	14.2 16.0 23.6	7.9
TCH09030H05K00 (01) TCH09030H10K00 (01) TCH09030H20K00 (01)	300	308	5 10 20	520	440	300	70	4	18.1 19.9 27.5	9.4
TCH09040H05K00 (01) TCH09040H10K00 (01) TCH09040H20K00 (01)	400	408	5 10 20	620	540	400	70	5	21.9 23.8 31.4	10.8
TCH09050H05K00 (01) TCH09050H10K00 (01) TCH09050H20K00 (01)	500	508	5 10 20	720	640	500	70	6	25.9 27.7 35.3	12.3
TCH09060H05K00 (01) TCH09060H10K00 (01) TCH09060H20K00 (01)	600	608	5 10 20	820	740	600	70	7	29.4 31.3 38.9	13.6
TCH09070H05K00 (01) TCH09070H10K00 (01) TCH09070H20K00 (01)	700	708	5 10 20	920	840	700	70	8	33.5 35.4 43.0	15.0
TCH09080H05K00 (01) TCH09080H10K00 (01) TCH09080H20K00 (01)	800	808	5 10 20	1 020	940	800	70	9	37.4 39.3 46.9	16.4

Items marked with * are unavailable for upside-down operation.

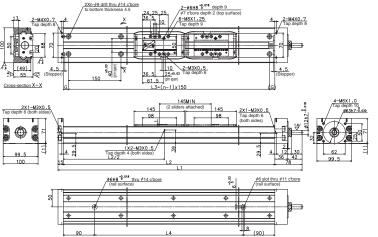
TCH09 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Treference framber	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH09017H05D00 (01) * TCH09017H10D00 (01)	170	184	5 10	520	440	300	70	4	19.47 22.89	10.3
* TCH09027H05D00 (01) * TCH09027H10D00 (01)	270	284	5 10 620 540 400		70	5	23.35 26.77	11.7		
TCH09037H05D00 (01) TCH09037H10D00 (01)	370	384	5 10	720 640 500		500	70	6	27.22 30.64	13.2
TCH09047H10D00 (01) TCH09047H20D00 (01)	470	484	10 20	820	740	600	70	7	34.55 48.24	14.5
TCH09067H10D00 (01) TCH09067H20D00 (01)	670	684	10 20	1 020	940	940 800		9	42.27 55.96	17.3

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Single)

	- Specific (Congre)									
Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Hererence Humber	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH09014H05A00 (01)			5						8.9	
* TCH09014H10A00 (01)	140	146	10	320	240	100	70	2	10.1	6.1
* TCH09014H20A00 (01)			20						14.6	
TCH09024H05A00 (01)			5						13.9	
TCH09024H10A00 (01)	240	246	10	420	340	200	70	3	15.1	7.5
TCH09024H20A00 (01)			20						19.6	
TCH09034H05A00 (01)			5	=					17.8	
TCH09034H10A00 (01)	340	346	10	520	440	300	70	4	18.9	9.0
TCH09034H20A00 (01)			20						23.5	
TCH09044H05A00 (01)			5		=			_	21.7	
TCH09044H10A00 (01)	440	446	10	620	540	400	70	5	22.8	10.4
TCH09044H20A00 (01)			20 5						27.4	
TCH09054H05A00 (01) TCH09054H10A00 (01)	540	546	10	720	640	500	70	6	25.6 26.7	11.9
TCH09054H10A00 (01)	540	546	20	/20	640	500	//	0	31.3	11.9
TCH09054H20A00 (01)			5						29.2	
TCH09064H10A00 (01)	640	646	10	820	740	600	70	7	30.3	13.2
TCH09064H20A00 (01)	040	040	20	020	740	000	/ / /	/	34.9	13.2
TCH09074H05A00 (01)			5						33.3	
TCH09074H10A00 (01)	740	746	10	920	840	700	70	8	34.4	14.6
TCH09074H20A00 (01)	,40	7-40	20	320	0-40	, 50	, 0		39.9	14.0
TCH09084H05A00 (01)			5						37.2	
TCH09084H10A00 (01)	840	846	10	1 020	940	800	70	9	38.3	16.0
TCH09084H20A00 (01)	1		20						42.8	

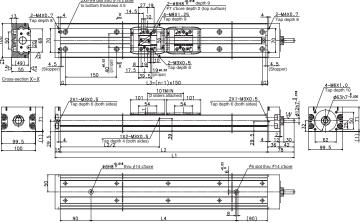

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L2 L3 G		n	× 10 ⁻⁶ (kg · m ²)	(kg)	
TCH09025H05B00 (01)	250	260	5	520	440	300	70	4	18.96	9.5
TCH09025H10B00 (01)	200	200	10	020	110	000	,,,	·	20.86	0.0
TCH09035H05B00 (01) TCH09035H10B00 (01)	350	360	10	620	540	400	70	5	22.84 24.74	10.9
TCH09045H05B00 (01) TCH09045H10B00 (01)	450	460	5 10	720	640	500	70	6	26.71 28.61	12.4
TCH09055H10B00 (01) TCH09055H20B00 (01)	550	560	10	820	740	600	70	7	32.52 40.13	13.7
TCH09035H20B00 (01) TCH09075H10B00 (01) TCH09075H20B00 (01)	750	760	10 20	1 020	940	800	70	9	40.13 40.24 47.85	16.5
1CH090/9H20B00 (01)			20						47.85	

C-2-5. 3 TCH 10 Series

◆ TCH10 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Madal na	Slider specifications	Ball screw lead	Accuracy grade				
iviouei no.	Silder specifications	(mm)	High grade	Precision grade			
	Single standard slider	10	3.5 – 12.3	3.7 – 21.2			
TCH10	Sirigle Staridard Silder	20	4.1 – 16.6	4.3 – 25.5			
	Double standard sliders	10	4.1 – 16.6	4.3 – 25.5			
	Double Staridard Silders	20	5.4 – 25.2	5.6 – 34.1			

◆ TCH10 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade					
woder no.	Silder Specifications	(mm)	High grade	Precision grade				
	Single short slider	10	3.6 – 11.7	3.8 – 20.5				
TCH10	Single Short Slider	20	4.4 – 15.4	4.6 - 24.2				
ICHIU	Double short sliders	10	4.4 – 15.4	4.6 - 24.2				
	Double Short Sliders	20	6.0 - 22.7	6.2 - 31.5				

TCH10 Standard Slider Specifications (Single)

TCH10

Reference number	Nominal Stroke limit Ball screw Body length (mm)						No. of mounting		Mass		
neierence number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10010H10K00 (01) * TCH10010H20K00 (01)	100	126	10 20	373	280	150	100	65	2	42.72 58.52	9.6
TCH10020H10K00 (01) TCH10020H20K00 (01)	200	226	10 20	473	380	300	200	40	3	54.97 65.62	11.5
TCH10030H10K00 (01) TCH10030H20K00 (01)	300	326	10 20	573	480	450	300	15	4	67.22 77.87	13.5
TCH10040H10K00 (01) TCH10040H20K00 (01)	400	426	10 20	673	580	450	400	65	4	79.47 90.12	15.4
TCH10050H10K00 (01) TCH10050H20K00 (01)	500	526	10 20	773	680	600	500	40	5	91.72 102.37	17.4
TCH10060H10K00 (01) TCH10060H20K00 (01)	600	626	10 20	873	780	750	600	15	6	104.02 114.67	19.3
TCH10070H10K00 (01) TCH10070H20K00 (01)	700	726	10 20	973	880	750	700	65	6	116.22 126.87	21.2
TCH10080H10K00 (01) TCH10080H20K00 (01)	800	826	10 20	1 073	980	900	800	40	7	128.52 139.17	23.2
TCH10090H10K00 (01) TCH10090H20K00 (01)	900	926	10 20	1 173	1 080	1 050	900	15	8	140.70 151.35	25.2
TCH10100H10K00 (01) TCH10100H20K00 (01)	1 000	1 026	10 20	1 273	1 180	1 050	1 000	65	8	152.94 163.59	27.1
TCH10110H10K00 (01) TCH10110H20K00 (01)	1 100	1 126	10 20	1 373	1 280	1 200	1 100	40	9	165.19 175.84	29.1
TCH10120H10K00 (01) TCH10120H20K00 (01)	1 200	1 226	10 20	1 473	1 380	1 350	1 200	15	10	177.43 188.08	31.1

TCH10 Standard Slider Specifications (Double)

Items marked with * are unavailable for upside-down operation

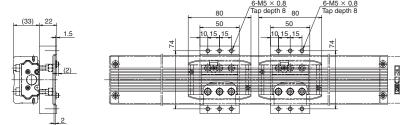
Reference number	Nominai	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting	Inertia	IVIass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L ₄	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10027H10D00 (01) * TCH10027H20D00 (01)	270	281	10 20	673	580	450	400	65	4	83.02 104.31	16.8
* TCH10037H10D00 (01) * TCH10037H20D00 (01)	370	381	10 20	773	680	600	500	40	5	95.27 116.56	18.8
TCH10047H10D00 (01) TCH10047H20D00 (01)	470	481	10 20	873	780	750	600	15	6	107.57 128.86	20.7
TCH10057H10D00 (01) TCH10057H20D00 (01)	570	581	10 20	973	880	750	700	65	6	119.77 141.06	22.6
TCH10067H10D00 (01) TCH10067H20D00 (01)	670	681	10 20	1 073	980	900	800	40	7	132.07 153.36	24.6
TCH10077H20D00 (01)	770	781	20	1 173	1 080	1 050	900	15	8	165.54	26.6
TCH10087H20D00 (01)	870	881	20	1 273	1 180	1 050	1 000	65	8	177.78	28.5
TCH10097H20D00 (01)	970	981	20	1 373	1 280	1 200	1 100	40	9	190.03	30.5
TCH10107H20D00 (01)	1 070	1 081	20	1 473	1 380	1 350	1 200	15	10	202.27	32.5

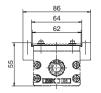
TCH10 Short Slider Specifications (Single)

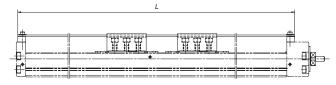
Items marked with * are unavailable for upside-down operation

Defenses and beau	Nominal Stroke limit Ball screw Body length (mm)						No. of mounting	Inertia	Wass		
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10016H10A00 (01) * TCH10016H20A00 (01)	160	170	10 20	373	280	150	100	65	2	41.19 47.36	8.9
TCH10026H10A00 (01) TCH10026H20A00 (01)	260	270	10 20	473	380	300	200	40	3	53.45 59.54	10.9
TCH10036H10A00 (01) TCH10036H20A00 (01)	360	370	10 20	573	480	450	300	15	4	65.70 71.79	12.8
TCH10046H10A00 (01) TCH10046H20A00 (01)	460	470	10 20	673	580	450	400	65	4	77.95 84.04	14.8
TCH10056H10A00 (01) TCH10056H20A00 (01)	560	570	10 20	773	680	600	500	40	5	90.20 96.29	16.7
TCH10066H10A00 (01) TCH10066H20A00 (01)	660	670	10 20	873	780	750	600	15	6	102.50 108.59	18.6
TCH10076H10A00 (01) TCH10076H20A00 (01)	760	770	10 20	973	880	750	700	65	6	114.70 120.79	20.6
TCH10086H10A00 (01) TCH10086H20A00 (01)	860	870	10 20	1 073	980	900	800	40	7	127.00 133.09	22.6
TCH10096H10A00 (01) TCH10096H20A00 (01)	960	970	10 20	1 173	1 080	1 050	900	15	8	139.18 145.27	24.5
TCH10106H10A00 (01) TCH10106H20A00 (01)	1 060	1 070	10 20	1 273	1 180	1 050	1 000	65	8	151.42 157.51	26.5
TCH10116H10A00 (01) TCH10116H20A00 (01)	1 160	1 170	10 20	1 373	1 280	1 200	1 100	40	9	163.67 169.76	28.4
TCH10126H10A00 (01) TCH10126H20A00 (01)	1 260	1 270	10 20	1 473	1 380	1 350	1 200	15	10	175.91 182.00	30.4

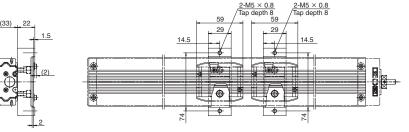
TCH10 Short Slider Specifications (Double)

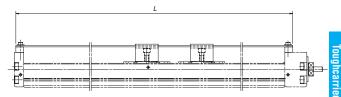

Items marked with * are unavailable for upside-down operation


Reference number	Nominal	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L2	L3	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
TCH10036H10B00 (01)	360	369	10	673	580	450	400	65	4	79.97	15.6
TCH10036H20B00 (01)	000	000	20	070	000	400	400	00	7	92.14	10.0
TCH10046H10B00 (01)	460	469	10	773	680	600	500	40	5	92.22	17.5
TCH10046H20B00 (01)	400	400	20	773	000	000	300	40	5	104.39	17.5
TCH10056H10B00 (01)	560	569	10	873	780	750	600	15	6	104.52	19.4
TCH10056H20B00 (01)	300	505	20	0/3	700	/50	000	10	0	116.69	13.4
TCH10066H10B00 (01)	660	669	10	973	880	750	700	65	6	116.72	21.4
TCH10066H20B00 (01)	000	003	20	3/3	000	/50	700	00	0	128.89	21.4
TCH10076H10B00 (01)	760	769	10	1 073	980	900	800	40	7	129.02	23.4
TCH10076H20B00 (01)	700	703	20	10/3	300	300	800	40	/	141.19	23.4
TCH10086H20B00 (01)	860	869	20	1 173	1 080	1 050	900	15	8	153.37	25.3
TCH10096H20B00 (01)	960	969	20	1 273	1 180	1 050	1 000	65	8	165.61	27.3
TCH10106H20B00 (01)	1 060	1 069	20	1 373	1 280	1 200	1 100	40	9	177.86	29.2
TCH10116H20B00 (01)	1 160	1 169	20	1 473	1.380	1.350	1 200	15	10	190 10	31.2

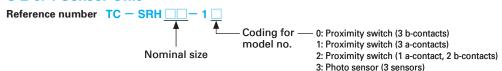

Accessories

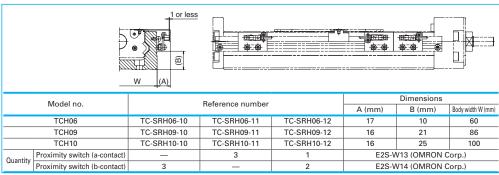
C-2-6. 2 Cover Unit


◆ Cover Unit TC-HV06XXXK00 TC-HV06XXXD00

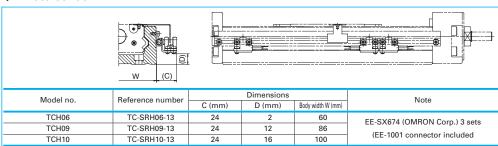


TC-HV06XXXA00 TC-HV06XXXB00




TCH06

			Slider specifications			
Body rail length	Dimensions	Standard		Short		
	L	Single	Double	Single	Double	
150	170	TC-HV06005K00	_	TC-HV06007A00	_	
200	220	TC-HV06010K00	_	TC-HV06012A00	_	
300	320	TC-HV06020K00	TC-HV06013D00	TC-HV06022A00	TC-HV06017B00	
400	420	TC-HV06030K00	TC-HV06023D00	TC-HV06032A00	TC-HV06027B00	
500	520	TC-HV06040K00	TC-HV06033D00	TC-HV06042A00	TC-HV06037B00	
600	620	TC-HV06050K00	TC-HV06043D00	TC-HV06052A00	TC-HV06047B00	


C-2-6 Accessories C-2-6. 1 Sensor Unit

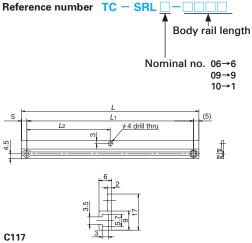
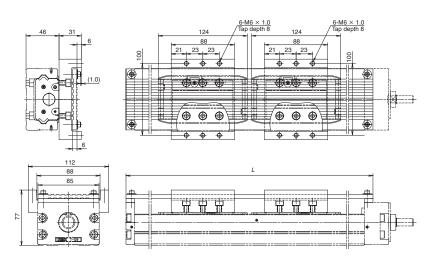
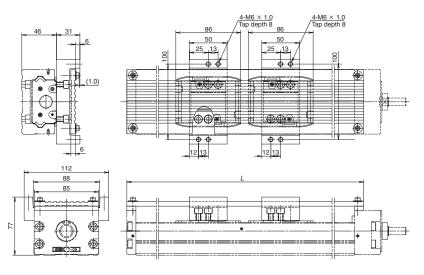

◆ Proximity switch

Photo sensor

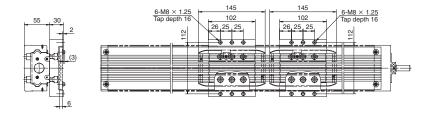


(1) Sensor Rail



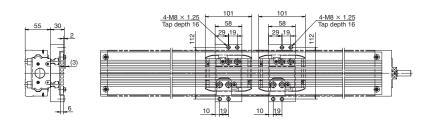
	Model no.	Body rail	Dimensions				
wiodei iio.		length	L	L ₁	L ₂		
		150	168	158	79		
		200	218	208	104		
	TCH06	300	318	308	154		
	ТСПОВ	400	418	408	204		
		500	518	508	254		
		600	618	608	304		
		240	258	248	124		
		340	358	348	174		
	TCH09	440	458	448	224		
		540	558	548	274		
		640	658	648	324		
		740	758	748	374		
		840	858	848	424		
		940	958	948	474		
		280	298	288	144		
		380	398	388	194		
		480	498	488	244		
		580	598	588	294		
		680	698	688	344		
	TCH10	780	798	788	394		
		880	898	888	444		
		980	998	988	494		
		1 080	1 098	1 088	544		
		1 180	1 198	1 188	594		
		1 280	1 298	1 288	644		
_		1,380	_1 398	1 388	(0069405)		

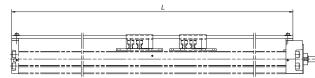
TC-HV09XXXK00 TC-HV09XXXD00


TC-HV09XXXA00 TC-HV09XXXB00

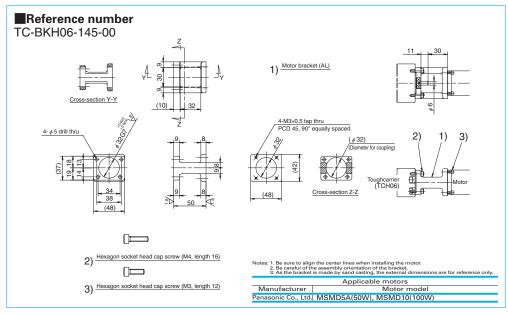
TCH09

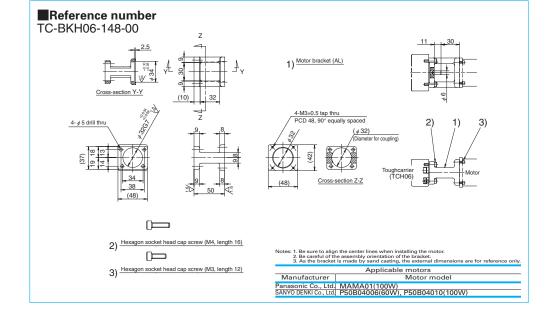
		Slider specifications			
Body rail length	Dimensions	Standard		Short	
	L	Single	Double	Single	Double
240	264	TC-HV09010K00	_	TC-HV09014A00	_
340	364	TC-HV09020K00	_	TC-HV09024A00	_
440	464	TC-HV09030K00	TC-HV09017D00	TC-HV09034A00	TC-HV09025B00
540	564	TC-HV09040K00	TC-HV09027D00	TC-HV09044A00	TC-HV09035B00
640	664	TC-HV09050K00	TC-HV09037D00	TC-HV09054A00	TC-HV09045B00
740	764	TC-HV09060K00	TC-HV09047D00	TC-HV09064A00	TC-HV09055B00
840	864	TC-HV09070K00	_	TC-HV09074A00	_
940	964	TC-HV09080K00	TC-HV09067D00	TC-HV09084A00	TC-HV09075B00

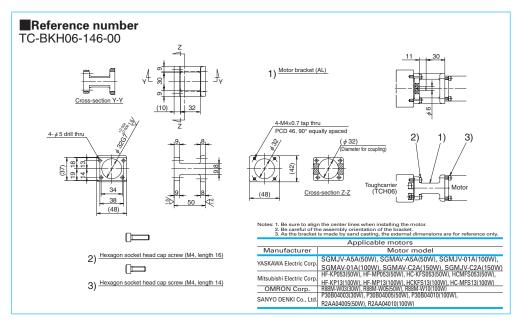

TC-HV10XXXK00 TC-HV10XXXD00

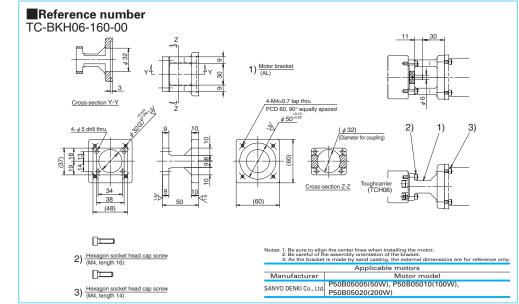


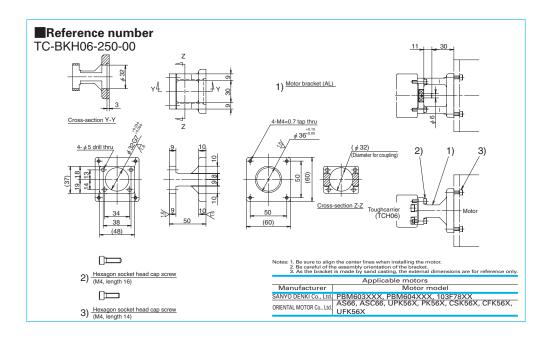
TC-HV10XXXA00 TC-HV10XXXB00

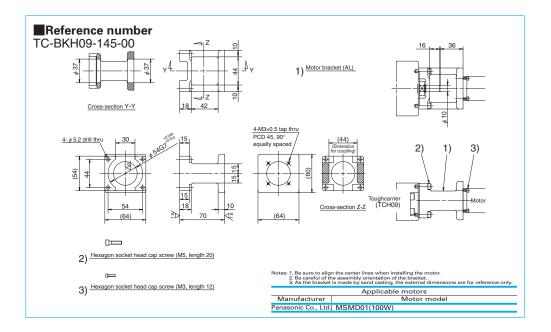

TCH10

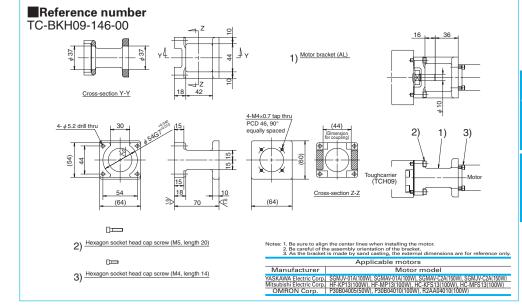

		Slider specifications			
Body rail length	Dimensions	Standard		Short	
	L	Single	Double	Single	Double
280	310	TC-HV10010K00	_	TC-HV10016A00	_
380	410	TC-HV10020K00	_	TC-HV10026A00	_
480	510	TC-HV10030K00	_	TC-HV10036A00	_
580	610	TC-HV10040K00	TC-HV10027D00	TC-HV10046A00	TC-HV10036B00
680	710	TC-HV10050K00	TC-HV10037D00	TC-HV10056A00	TC-HV10046B00
780	810	TC-HV10060K00	TC-HV10047D00	TC-HV10066A00	TC-HV10056B00
880	910	TC-HV10070K00	TC-HV10057D00	TC-HV10076A00	TC-HV10066B00
980	1 010	TC-HV10080K00	TC-HV10067D00	TC-HV10086A00	TC-HV10076B00
1 080	1 110	TC-HV10090K00	TC-HV10077D00	TC-HV10096A00	TC-HV10086B00
1 180	1 210	TC-HV10100K00	TC-HV10087D00	TC-HV10106A00	TC-HV10096B00
1 280	1 310	TC-HV10110K00	TC-HV10097D00	TC-HV10116A00	TC-HV10106B00
1 380	1 410	TC-HV10120K00	TC-HV10107D00	TC-HV10126A00	TC-HV10116B00

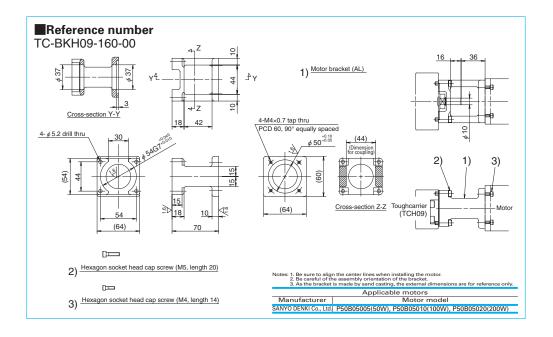

C-2-6. 3 Motor Bracket

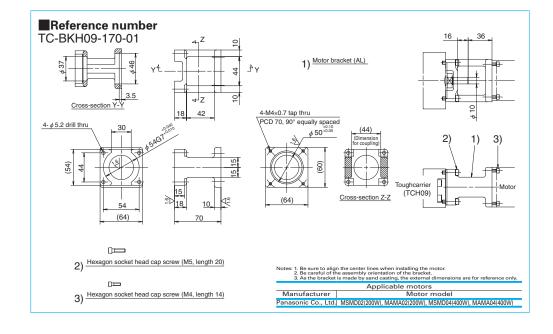

◆ Motor bracket


Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer. For motors other than applicable motors shown below, please contact NSK.

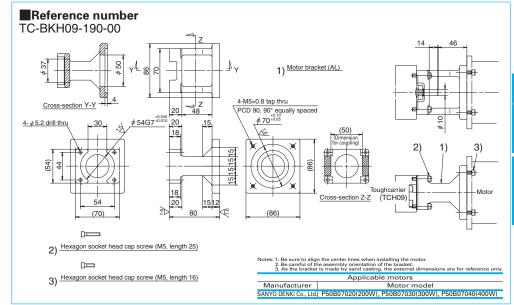


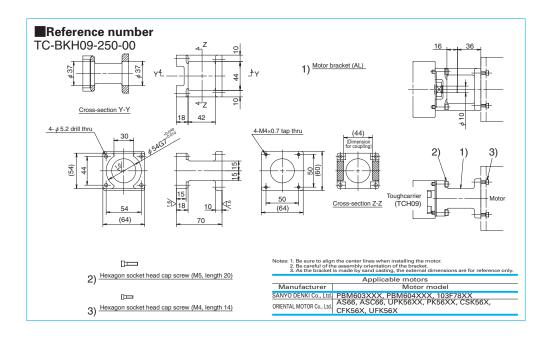


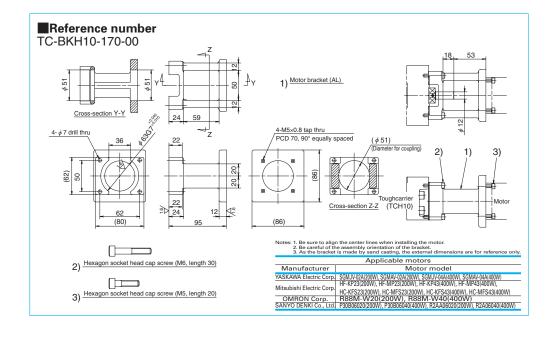


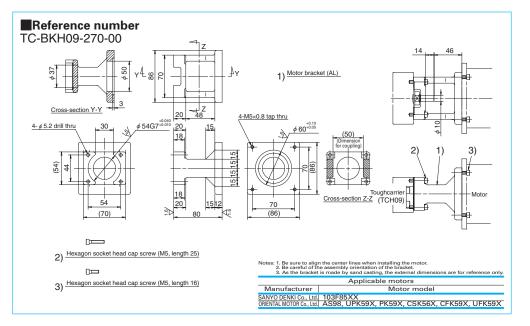


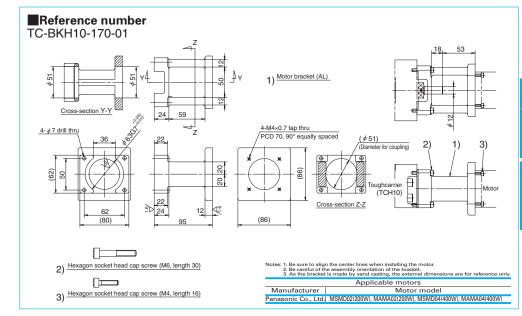


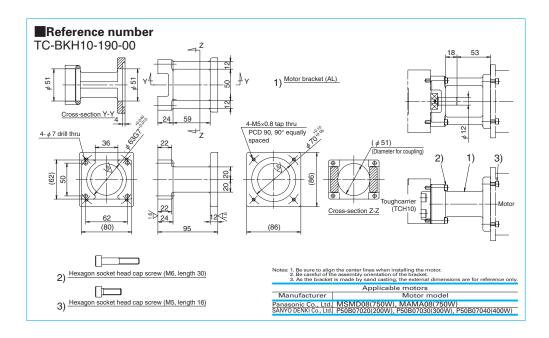












C-2-7 Motor Bracket Compatibility Table

Model No.	Reference number	Motor manufacturer	Stepping motor	00:::		00:11		age of AC servo			400	75
	TC-BKH06-145-00	Panasonic Co., Ltd.	model no.	30W	50W MSMD5A	60VV	100W MSMD10	150W	200VV	300W	400W	750VV
	TC-BKH06-145-00				SGMJV-A5A		SGMJV-01A	SGMJV-C2A				
		YASKAWA Electric Corp.			SGMAV-A5A		SGMAV-01A	SGMAV-C2A				
					HF-KP053		HF-KP13					
		Mitsubishi Electric Corp.			HF-MP053		HF-MP13					
	TC-BKH06-146-00				HC-KFS053 HC-MFS053		HC-KFS13 HC-MFS13					
		OMRON Corp.		R88M-W03	R88M-W05		R88M-W10					
		SANYO DENKI Co., Ltd.		P30B04003	P30B04005		P30B04010					
		SANYO DENKI Co., Ltd.			R2AA04005		R2AA04010					
	TC-BKH06-148-00	Panasonic Co., Ltd.					MAMA01					
TCH06	TC-BKH06-160-00	SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd.			P50B05005	P50B04006	P50B04010 P50B05010		P50B05020			
	1C-BKH06-160-00	SAINTO DEINKI CO., LLO.	PBM603XXX		roubuouuo		POUBUSUIU		F50B05020			
		SANYO DENKI Co., Ltd.	PBM604XXX 103F78XX									
			AS66									
	TC-BKH06-250-00		ASC66									
		ORIENTAL MOTOR Co., Ltd.	UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X CSK56X									
			CFK56X									
			UFK56X									
	TC-BKH09-145-00	Panasonic Co., Ltd.					MSMD01					
		YASKAWA Electric Corp.					SGMJV-01A	SGMJV-C2A				
							SGMAV-01A HF-KP13	SGMAV-C2A				
							HF-KP13 HF-MP13					
	TC-BKH09-146-00	Mitsubishi Electric Corp.					HC-KFS13					
							HC-MFS13					
		SANYO DENKI Co., Ltd.			P30B04005		P30B04010					
	TC-BKH09-160-00	SANYO DENKI Co., Ltd.			P50B05005		R2AA04010 P50B05010		P50B05020			
	TC-BKH09-160-00				P50B05005		P50B05010		SGMJV-02A		SGMJV-04A	
		YASKAWA Electric Corp.							SGMAV-02A		SGMAV-04A	
									HF-KP23		HF-KP43	
		Mitsubishi Electric Corp.							HF-MP23		HF-MP43	
	TC-BKH09-170-00	William Electric corp.							HC-KFS23		HC-KFS43	
		OMRON Corp.							HC-MFS23 R88M-W20		HC-MFS43 R88M-W40	
									P30B06020		P30B06040	
		SANYO DENKI Co., Ltd.					R2AA06010		R2AA06020		R2AA06040	
TCH09	TC-BKH09-170-01	Panasonic Co., Ltd.							MSMD02		MSMD04	
									MAMA02		MAMA04	
	TC-BKH09-190-00	SANYO DENKI Co., Ltd.	PBM603XXX						P50B07020	P50B07030	P50B07040	
		SANYO DENKI Co., Ltd.	PBM604XXX 103F78XX									
			AS66									
	TC-BKH09-250-00		ASC66									
		ODIENTAL MOTOD O	UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X CSK56X									
			CFK56X									
			UFK56X									
			AS98									
			UPK59X									
	TC-BKH09-270-00	ORIENTAL MOTOR Co., Ltd.	PK59X CSK59X									
	10-BK1103-270-00		CFK59X									
			UFK59X									
		SANYO DENKI Co., Ltd.	103F85XX									
		YASKAWA Electric Corp.							SGMJV-02A SGMAV-02A		SGMJV-04A SGMAV-04A	
									HF-KP23		HF-KP43	
									HF-MP23		HF-MP43	
	TC-BKH10-170-00	Mitsubishi Electric Corp.							HC-KFS23		HC-KFS43	
				1					HC-MFS23		HC-MFS43	
		OMRON Corp.		1					R88M-W20 P30B06020		R88M-W40 P30B06040	
		SANYO DENKI Co., Ltd.							P30B06020 R2AA06020		P30B06040 R2AA06040	
TCH10	TC-BKH10-170-01	Panasonic Co., Ltd.							MSMD02 MAMA02		MSMD04 MAMA04	
. 51110	TORKE	Panasonic Co., Ltd.							140-040402		100-000004	MSMD08
	TC-BKH10-190-00	SANYO DENKI Co., Ltd.							P50B07020	PEORO7020	P50B07040	MAMA08
		SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd.	103FB5XX						roub0/020	F0UBU/U30	roub0/040	
		2 // O DENNI GO., Eld.	AS98									
			UPK59X									
	TC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	PK59X									
		1	CSK59X	1	1		1	1		1	1	
			CEK59X									

Reference number TC-BKH10-270-00 Cross-section Y.Y. 36 22 4-M5x0.81	1) Motor bracket (AL) ap thru (\$\psi\$ 51)
62 24 124 95	
	Notes: 1. Be sure to align the center lines when installing the motor. 2. Be careful of the essembly orientation of the bracket.
2) Hexagon socket head cap screw (M6, length 30)	As the bracket is made by sand casting, the external dimensions are for reference only.
	Applicable motors Manufacturer Motor model
3) Hexagon socket head cap screw (M5, length 16)	SANYO DENKI Co., Ltd. 103FB5XX ORIENTAL MOTOR Co., Ltd. 4AS98, UPK59X, PK59X, CSK59X, CFK59X, UFK59X

Accessories

C-2-8 Sensor Rail and Top Cover Unit Combination Table

o ochodi	nan and	op oover		nation labic	
Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numbe	
	TCH06005H05K00				
	TCH06005H10K00			TC-HV06005K00	
	TCH06005H20K00	150	TC-SRL6-0150		
	TCH06007H05A00			TC-HV06007A00	
	TCH06007H10A00			TC-11V00007A00	
	TCH06010H05K00				
	TCH06010H10K00			TC-HV06010K00	
	TCH06010H20K00	200	TC-SRL6-0200		
	TCH06012H05A00			TC-HV06012A00	
	TCH06012H10A00			10-11/00012A00	
	TCH06020H05K00				
	TCH06020H10K00			TC-HV06020K00	
	TCH06020H20K00				
	TCH06013H05D00			TC-HV06013D00	
	TCH06013H10D00	300	TC-SRL6-0300	10-11/00013000	
	TCH06022H05A00			TC-HV06022A00	
	TCH06022H10A00			TC=11V00022A00	
	TCH06017H05B00			TC-HV06017B00	
[TCH06017H10B00			10-000017800	
	TCH06030H05K00		TC-SRL6-0400		
	TCH06030H10K00	400		TC-HV06030K00	
	TCH06030H20K00				
TCH06	TCH06023H05D00			TC 111/00000D00	
	TCH06023H10D00			TC-HV06023D00	
	TCH06032H05A00			TC 111/00000 400	
	TCH06032H10A00			TC-HV06032A00	
Ī	TCH06027H05B00			TO 111/00007D00	
	TCH06027H10B00			TC-HV06027B00	
	TCH06040H05K00				
Ī	TCH06040H10K00			TC-HV06040K00	
	TCH06040H20K00				
	TCH06033H05D00			TC 111/00000D00	
	TCH06033H10D00	500	TC-SRL6-0500	TC-HV06033D00	
Ī	TCH06042H05A00			TO 111/000 40 400	
	TCH06042H10A00			TC-HV06042A00	
	TCH06037H05B00			TO 111/00007D00	
Ī	TCH06037H10B00			TC-HV06037B00	
	TCH06050H05K00				
	TCH06050H10K00			TC-HV06050K00	
Ī	TCH06050H20K00				
ļ	TCH06043H10D00		TO ODL O OCOC	TC 111/00040D00	
Ī	TCH06043H20D00	600	TC-SRL6-0600	TC-HV06043D00	
	TCH06052H05A00			TO 111/000F0 400	
	TCH06052H10A00			TC-HV06052A00	
	TCH06047H10B00			TC-HV06047B00	

[•] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

1odel No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numb	
	TCH09010H05K00				
	TCH09010H10K00			TC-HV09010K00	
	TCH09010H20K00	240	TC-SRL9-0240		
	TCH09014H05A00			TO 1 11 1000 1 1 1 00	
	TCH09014H10A00			TC-HV09014A00	
	TCH09014H20A00				
	TCH09020H05K00			TO 111/000001/00	
	TCH09020H10K00			TC-HV09020K00	
	TCH09020H20K00	340	TC-SRL9-0340		
	TCH09024H05A00			TO 1 11/2000 44 00	
	TCH09024H10A00			TC-HV09024A00	
	TCH09024H20A00				
	TCH09030H05K00			TO 111/000001/00	
	TCH09030H10K00	-		TC-HV09030K00	
	TCH09030H20K00				
	TCH09017H05D00 TCH09017H10D00			TC-HV09017D00	
		440	TC-SRL9-0440		
	TCH09034H05A00			TC 111/0000 4 4 00	
	TCH09034H10A00			TC-HV09034A00	
	TCH09034H20A00				
	TCH09025H05B00			TC-HV09025B00	
	TCH09025H10B00				
	TCH09040H05K00			TC 11/00040K00	
	TCH09040H10K00	- - -	TC-SRL9-0540	TC-HV09040K00	
	TCH09040H20K00				
	TCH09027H05D00			TC-HV09027D00	
	TCH09027H10D00 TCH09044H05A00	540			
	TCH09044H05A00 TCH09044H10A00			TC-HV09044A00	
				TC-HV09044A00	
	TCH09044H20A00				
	TCH09035H05B00	-		TC-HV09035B00	
	TCH09035H10B00		TC-SRL9-0640		
	TCH09050H05K00 TCH09050H10K00			TC-HV09050K00	
CH09				TC-HV09050K00	
	TCH09050H20K00				
	TCH09037H05D00			TC-HV09037D00	
	TCH09037H10D00 TCH09054H05A00	640			
	TCH09054H10A00	-		TC-HV09054A00	
	TCH09054H10A00	-		1C-11V09054A00	
	TCH09045H05B00	-			
	TCH09045H10B00	-		TC-HV09045B00	
	TCH09060H05K00				
	TCH09060H10K00	-		TC-HV09060K00	
	TCH09060H20K00	-		10-1100000000	
	TCH09047H10D00	-			
	TCH09047H10D00	-		TC-HV09047D00	
	TCH09064H05A00	740	TC-SRL9-0740		
	TCH09064H10A00	1		TC-HV09064A00	
	TCH09064H10A00	1		1011100004000	
	TCH09055H10B00	-			
	TCH09055H20B00	-		TC-HV09055B00	
	TCH09070H05K00				
	TCH09070H10K00	-		TC-HV09070K00	
	TCH09070H20K00	-		1011100070100	
	TCH09074H05A00	840	TC-SRL9-0840		
	TCH09074H09A00	-		TC-HV09074A00	
	TCH09074H10A00	1		10111000747100	
	TCH09080H05K00				
	TCH09080H10K00	1		TC-HV09080K00	
	TCH09080H20K00	1			
	TCH09067H10D00	1			
	TCH09067H10D00	1		TC-HV09067D00	
	TCH09084H05A00	940	TC-SRL9-0940		
	TCH09084H10A00	1		TC-HV09084A00	
	TCH09084H10A00 TCH09084H20A00	1		10-11/03004A00	
	TCH09084H20A00 TCH09075H10B00	1			
	I CHUSU/SHIUDUU	I .	1	TC-HV09075B00	

Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

[•] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

[•] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numb
	TCH10010H10K00 TCH10010H20K00			TC-HV10010K00
	TCH10016H10A00 TCH10016H20A00	280	TC-SRL1-0280	TC-HV10016A00
	TCH10020H10K00			TC-HV10020K00
	TCH10020H20K00 TCH10026H10A00	380	TC-SRL1-0380	
	TCH10026H20A00 TCH10030H10K00			TC-HV10026A00
	TCH10030H20K00	480	TC-SRL1-0480	TC-HV10030K00
	TCH10036H10A00 TCH10036H10A00			TC-HV10036A00
	TCH10040H10K00 TCH10040H20K00	_		TC-HV10040K00
	TCH10027H10D00			TC-HV10027D00
	TCH10027H20D00 TCH10046H10A00	580	TC-SRL1-0580	TC-HV10046A00
	TCH10046H20A00 TCH10036H10B00			
	TCH10036H20B00			TC-HV10036B00
	TCH10050H10K00 TCH10050H20K00			TC-HV10050K00
	TCH10037H10D00 TCH10037H20D00			TC-HV10037D00
	TCH10056H10A00	680	TC-SRL1-0680	TC-HV10056A00
	TCH10056H20A00 TCH10046H10B00			TC-HV10046B00
	TCH10046H20B00 TCH10060H10K00			
	TCH10060H20K00	780	TC-SRL1-0780	TC-HV10060K00
	TCH10047H10D00 TCH10047H20D00			TC-HV10047D00
	TCH10066H10A00 TCH10066H20A00			TC-HV10066A00
	TCH10056H10B00			TC-HV10056B00
	TCH10056H20B00 TCH10070H10K00	880	TC-SRL1-0880	TC-HV10070K00
TCH10	TCH10070H20K00 TCH10057H10D00			
	TCH10057H20D00 TCH10076H10A00			TC-HV10057D00
	TCH10076H20A00			TC-HV10076A00
	TCH10066H10B00 TCH10066H20B00			TC-HV10066B00
	TCH10080H10K00 TCH10080H20K00		TC-SRL1-0980	TC-HV10080K00
	TCH10067H10D00			TC-HV10067D00
	TCH10067H20D00 TCH10086H10A00	980		TC-HV10086A00
	TCH10086H20A00 TCH10076H10B00			
	TCH10076H20B00			TC-HV10076B00
	TCH10090H10K00 TCH10090H20K00			TC-HV10090K00
	TCH10077H20D00 TCH10096H10A00	1 080	TC-SRL1-1080	TC-HV10077D00
	TCH10096H20A00			TC-HV10096A00
	TCH10086H20B00 TCH10100H10K00			TC-HV10086B00
	TCH10100H20K00 TCH10087H20D00			TC-HV10100K00 TC-HV10087D00
	TCH10106H10A00	1 180	TC-SRL1-1180	TC-HV10106A00
	TCH10106H20A00 TCH10096H20B00			TC-HV10096B00
	TCH10110H10K00 TCH10110H20K00			TC-HV10110K00
	TCH10097H20D00	1 280	TC-SRL1-1280	TC-HV10097D00
	TCH10116H10A00 TCH10116H20A00			TC-HV10116A00
	TCH10106H20B00 TCH10120H10K00			TC-HV10106B00
	TCH10120H20K00			TC-HV10120K00
	TCH10107H20D00 TCH10126H10A00	1 380	TC-SRL1-1380	TC-HV10107D00 TC-HV10126A00
			1	I -HVIDI26Δ()()

[•] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

Specifications

The life of the feeding system is improved by use of higher load capacity ball screw part and support bearings for standard Toughcarrier.

			TCH06	TCI	H09	TCI	H10
	Shaft diameter (mm)		12	20		25	
	Lead	(mm)	10	10	20	20	25
Ball screw	Basic dynamic load rating Ca (N)		4 260	13 400	10 100	11 400	11 400
	Basic static load ra Coa	ting (N)	6 260	25 400	18 700	23 600	23 600
Linear guide	Basic dynamic load rating C (N)		20 900	44 900		62 400	
Linear guide	Basic static load rating Co (N)		45 000	96 900		132 000	
Support bearings	Basic dynamic load rating (N)		5 900	21 000		23 000	
	Load limit	(N)	3 500	18 600*		26 600*	

^{*}Permissible axial load is 0.7 times the limiting axial load.

- 1) Only compatible with standard slider.
- 2) Applicable strokes are as follows.

TCH09: Stroke 500 mm
TCH09: Stroke 800 mm
TCH10: Stroke 1 200 mm

3) High and precision grades are available for accuracy

♦ Features

- 1) Mounting dimensions are the same as Monocarrier MCH Series and standard Toughcarrier. (Interchangeable)
- 2) Permissible rotational speed is faster than standard Toughcarrier due to different ball recirculation system.

[·] Shapes and numbers of spacer plates for cover unit are selected according to slider specifications.

hnical Materia

C-3 Technical Materials

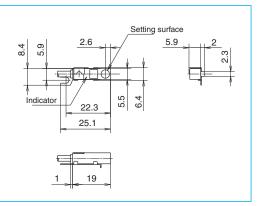
1. Sensor Specification	C137
1.1 Proximity Switch	C137
1.2 Photo Sensor	C138
2. Characteristics and Evaluation Method	C139
2.1 Positioning Accuracy	C139
2.2 Repeatability	C139
2.3 Running Parallelism	C139
3. Special Specifications	C140
4. Maintenance	C141
4.1 Maintenance Method	C141
4.2 NSK K1™ Lubricant Unit	C141
5. NSK Clean Grease LG2 Specification	C142

C-3 Technical Materials

C-3-1 Sensor Specification C-3-1. 1 Proximity Switch

Use of OMRON E2S-W13 and E2S-W14

Item	E2S-W13 type	E2S-W14 type			
Setting surface	Front face				
Sensing distance	1.6 mm ±15%				
Setting distance	0 to 1.2 mm				
Differential travel	10% max. of sensing distance				
Detectable object type	Ferrous metal				
Standard sensing object	Iron,12 × 12 × 1 mm				
Response frequency	1 kHz min.				
Power supply voltage (operating voltage range)	12 to 24 VDC; ripple (pp), 10% max (10 to 30 VDC)				
Current consumption	13 mA max. at 24 VDC with no load				
Control output (Switching Capacity)	NPN open collector output, 50 mA max. (30 VDC max.)				
Control output (Residual voltage)	1.0 V max. with a load current of 50 mA and a cable length of 1 m				
Indicator	Operation indicator (orange)				
Operating status (with sensing object approaching)	NO (Normally open contact) NC (Normally close contact)				
Wire lead length	1 000 mm				

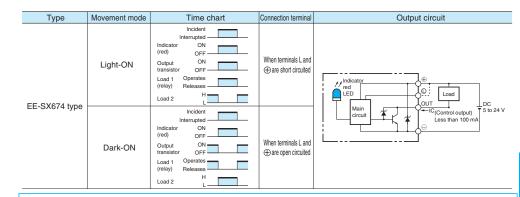

Notes: 1) Do not make a wrong connection. 2) Please contact NSK for PNP output type.

Movement mode	Output type	Type	Time chart	Output circuit
NO	- NPN	E2S-W13 type	Target object Ves No Output transistor (load) ON OFF ON OFF	Main Load Load Circuit Cultury
NC		E2S-W14 type	Target object Yes No Output transistor (load) ON OFF ON OFF	*(Maximum load current: 50 mA)

E2S-W13 (Normally open contact)

E2S-W14 (Normally close contact)

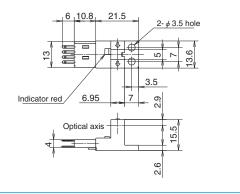
The external appearances are the same.


C-3-1, 2 Photo Sensor

Use of OMRON EE-SX674

EE-SX674 type
5 mm
Opaque, 2 × 0.8 mm
0.025 mm
GaAs infrared LED with peak wavelength of 940 nm
ON GaP red LED (peak emission wavelength, 690 nm)
5 to 24 VDC ±10%; ripple (pp), 10% max.
35 mA max.
NPN open collector output models, 5 to 24 VDC, 100 mA load current
1 kHz max. (3 kHz typ.)
Fluorescent light, 1 000 lx max.
-25°C to 55°C (-13°F to 131°F) (for operating); -30°C to 80°C (-22°F to 176°F) (for storing)
5 to 85% RH (for operating); 5 to 95% RH (for storing)
EE-1001/1006 Connectors, soldering terminals

Notes: 1) Do not make a wrong connection.


2) Please contact NSK for PNP output type.

EE-SX674 (Sensor)

EE-1001 (Connector)

A connector is mounted to the sensor in the right figure.

C-3-2 Characteristics and Evaluation Method

C-3-2. 1 Positioning Accuracy

Perform successive positioning from the reference position in a specific direction. Measure the difference between the actual and desired travel distances for each point from the reference position. Repeat this measurement seven times to determine the average value. Measure such average value over the entire travel distance at the intervals specified for each model and take the maximum difference of the average values determined at respective positions as the measured value.

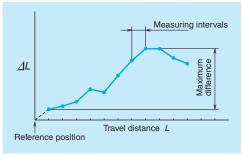


Fig. 1

C-3-2. 3 Running Parallelism (Vertical direction)

We specify the parallelism of slider to the datum bottom surface of rail. An indicator is moved in the axial slider making its stylus slightly touching on the rail bottom surface. The slider is moved in the axial direction for the checking. We define the total indicator reading as the running parallelism. During the checking, the rail is not fixed to the table base. Please be aware that, in general application, the rail is fixed to the machine base, and thus the wobbly rolling error will be added to the running parallelism.

C-3-2. 2 Repeatability

Repeat positioning at any point seven times from the same direction to measure the stopping position and determine one half of the maximum difference of readings. Repeat this measurement over the entire travel distance at the intervals specified for each model. Take the maximum difference of the determined values as the measured value. Express one half of the maximum difference with a plus-or-minus (±) sign.

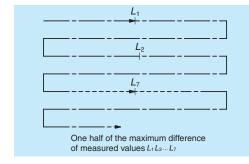


Fig. 2

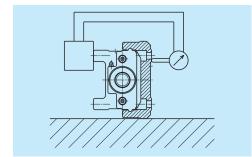


Fig. 3 Setting of indicator

NSK

C-3-3 Special Specifications

Please consult NSK if your requirement is not in the standard products.

(1) Surface Treatment

Fluoride low temperature chrome plating
 Note: Ball screw parts (including low temperature chrome plating.)

(2) Special Machining (Processing)

- i) Shaft end processing
- · Key way processing
- · One flat or two flats processing
- ii) Pin hole processing
- Slider
- Rail

Note: Due to interference with the internal construction, the position of pin hole is limited. Please consult with NSK about the pin position.

(3) Motor Bracket and Intermediate Plate for Motor Mounting

- We provide motor mounting brackets and intermediate plates that are not listed in the catalog.
- We assemble motor upon request if the motor is provided in advance.

Note: Motion check of the motor is unavailable.

(4) Reversed Motor Mount

The reversed motor mount is available. Please consult NSK.

Notes: 1) We do not check motor running condition.

 Please refer to the bottom of page C89 to C91 for the configuration of reversed motor mounting of the MCH series.

(5) Right and Left Turn Thread

Right and left turn ball screw is available. Please consult with NSK for available leads.

(6) Ball-Screw-Less Specification (Only Linear Guide Part)

A ball-screw-less rail part with the same cross section of standard Monocarriers is available for a driven linear guide. It will lessen a height adjustment work compared with a construction with two standard Monocarriers.

Note: Height grinding adjustment of the two axes assembly is not available.

NS

C-3-4 Maintenance C-3-4.1 Maintenance Method

- For standard Monocarrier, we pack grease in the slider, linear guides and ball screw.
- 2. Monocarriers are equipped with NSK K1 Lubrication Unit as a standard feature, therefore, you may use it for 5 years or 10 000 km depending on your application, whichever comes first, without maintenance. However, replenishment of preceded grease may extend its life substantially.
- 3. The NSK K1 Lubrication Unit is ideal in environments where oily dust exists. However, the life may be shorter than described in Clause 2 above. In such a case, it requires increasing the frequency of replenishment.

 A Nozzle for the NSK grease pump for MCH Monocarriers is available as an option.
 NSK reference number: NSK HGP NZ8

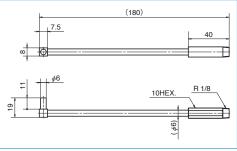


Fig. 4 NSK HGP NZ8

Precautions for handling

- 1. Please consult with NSK when the motor is coupled to the ball screw using a pulley because there is a restriction on allowable load to the end of ball screw shaft.
- 2. To extend high performance of NSK K1 lubrication unit, please observe the following.

1. Temperature range Ambient temperature: 50°C

Max. instantaneous temperature: 80°C

2. Use of chemicals Never leave a Monocarrier in close proximity of grease

removing organic solvents such as hexane or thinner. Never

immerse it in an antirust solvent that contains kerosene.

Note: Other oils, such as water-based and oil based cutting oil, and grease do not cause any problems.

C-3-4. 2 NSK K1[™] Lubricant Unit

NSK K1 lubrication unit exhibits outstanding features, confirmed by abundant experimental data, along with proven performance of linear guides and ball screws that are equipped with NSK K1.

(1) High-Speed Durability Test of Linear Guides without Lubricant

Results of high-speed durability testing of a linear guide without lubricant are shown in **Fig.** 5 While the linear guide cannot be operated without lubricant for even short periods without damage, the installation of the NSK K1 permits the linear guide to run over 25 000 km without any problem.

	Test piece: LH30AN (Preload Z1)					
Conditions	Speed: 3.3 m/s					
	Stroke: 1 800 mm					
No lubricant	All grease removed					
NSK K1	All grease removed + NSK K1					

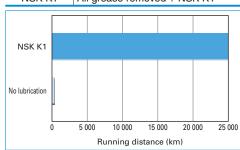


Fig. 5 Results of high-speed durability test of linear guides without lubricant

(2) High-Speed Durability Test of Ball Screws without Lubricant

Results of high-speed durability testing of ball screw without lubrication are shown in Fig. 6 While the ball screw cannot be operated without a lubricant at 8.5 km without damage, the installation of the NSK K1 permits the ball screw to run over 21 000 km without any problem.

	Test piece: BS2020 (Ball screw)					
	Shaft diameter: 20 mm					
0	Lead: 20 mm					
Conditions	Load: none					
	Speed: 1.3 m/s (4 000 min ⁻¹)					
	Stroke: 600 mm					
No lubricant	All grease removed					
NSK K1	All grease removed + NSK K1					

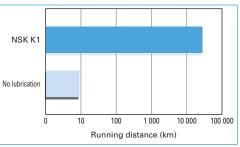


Fig. 6 Results of high-speed durability test of ball screws without lubricant

NSK K1 Lubrication Units for food processing and medical devices are available.

For safety equipment of food processing and medical care, NSK provides the Monocarrier equipped with special NSK K1 Lubrication Unit that is made of materials approved by the FDA. Dimensions are the same as the standard NSK K1 Lubrication Unit, and special handling care is not required.

C-3-5 NSK Clean Grease LG2 Specification

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean rooms. Compared to the fluoride grease which are commonly used in clean rooms, LG2 has several advantages such as: higher in lubrication function, longer lubrication life, more stable torque (resistant to wear), and higher rust prevention. In dust generation, LG2 is more than equal to fluoride grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general grease.

Applications

LG2 is lubrication grease for rolling contact machine components such as linear guides and ball screws for processing equipment for semiconductors and LCD which require highly clean environment at normal pressure in normal temperatures. It cannot be used in a vacuum environment.

■ Nature

Nature	
Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic Viscosity	32 mm²/s (40°C)

Other

B	LOCK

Other

D1 -D24

1 Special Environments

1.1 Specifications for Special Environments

1. Linear guide

Table 1.1 Linear guide specifications

Environment	Condition		NSK linear guide specifications			
Environment	Condition	Rail, slide	Steel balls/rollers	Ball recirculation component	Lubrication/surface treatment	Explanation Page No.
		Ctandard material	Cton doud motorial	Standard material	LG2, LGU Grease	D8
	Atmoonhore	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
	Atmosphere,				LG2, LGU Grease	D8
Clean	normal temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
Vacuum	Atmosphere-Vacuum up to 200°C		M			
	Atmosphere-Vacuum up to 300°C	iviartensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Van av ataana	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Standard material	Standard material	Standard material	Fluoride low temperature chrome plating	D5
	Acid, alkali	Standard material	Standard material			D5
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D5
Corrosion	Acid, alkali, clean				Fluoride low temperature chrome plating	D5
resistance					LG2, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET-100K Grease	
Uiah	up to 150°C			Austenitic stainless steel	E1-100K Grease	
High temperature	Atmosphere up to 200°C	Martanaitia atainlaga ataal	Martensitic stainless steel		Fluoride grease	
temperature	Atmosphere up to 200°C,	ividitensilic stanness steer	ividitensitic stanness steer		Fluoride grease	
	Corrosion resistant				Truoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmosphere	Standard material	Standard material	Standard material	Radiation resistant grease	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	madiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	INSK KI IUDIICATION UNIT	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

2. Ball screw

Table 1.2 Ball screw specifications

Environment	Condition	NSK Ball screw specification				Technical Explanation
LIIVII OIIIII EIIL	Condition	Screw shaft, ball nut	Steel balls	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2, LGU Grease	D8
	Atmoonhovo	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
	Atmosphere,				LG2, LGU Grease	D8
	normal temperature				NSK K1 lubrication unit	D10
Clean		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum up to 200°C, Corrosion resistant	Ceramic	Ceramic	Ceramic	Fluoride grease	
Vacuum -	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C	Martanaitia atainlaan ataal	Martanaitia atainlaaa ataal	Austenitic stainless steel		
	Atmosphere-Vacuum up to 300°C	wartenshic stainless steel	Martensitic stainless steel	Austennic stanness steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Standard material	Standard material		Fluoride low temperature	D5
Corrosion	Acid, alkali, clean	Martensitic stainless steel	Martensitic stainless steel	A	chrome plating	D5
resistance		Precipitation hardening stainless steel	Precipitation hardening stainless steel	Austenitic stainless steel	Fluorido grando	
	Strong acid, strong alkali, clean, nonmagnetic	Ceramic	Ceramic		Fluoride grease	
M	Atmosphere-Vacuum, clean	Special austenitic stainless steel	C	A	Fluoride grease	
Nonmagnetic	Atmosphere-Vacuum, up to 200°C, clean	Ceramic	Ceramic	Austenitic stainless steel	Fluoroplastic	
	Atmosphere up to 200°C	Standard material	Standard material		Fluoride grease	
High	Atmosphere up to 200°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
temperature	Atmosphere up to 500°C,	Ceramic	Ceramic	Austennic stanness steer		
	corrosion resistance	Ceramic	Cerannic		Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmoonhous	Standard material	Standard material	Standard material	Dediction resistant areas	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
F					NSK K1 lubrication unit	
Foreign matters	wooden chips	Managemental and the control of the	Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10

1.2 Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

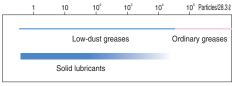


Fig. 2.1 Lubrication in clean environment

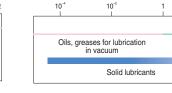


Fig. 2.2 Lubrication in vacuum

Ordinary lubricating

oils, greases

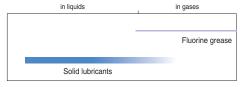


Fig. 2.3 Lubrication in corrosive environment

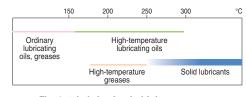


Fig. 2.4 Lubrication in high temperature

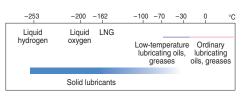


Fig. 2.5 Lubrication in low temperature

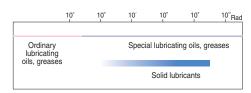


Fig. 2.6 Lubrication in radioactive environment

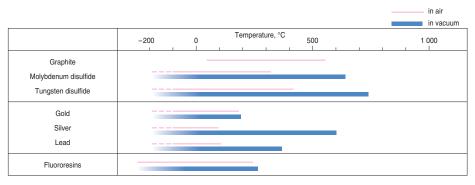


Fig. 2.7 Temperature range for using solid lubricants

2. Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as

the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 2.1 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness* HB
For clean environment, vacuum environment, corrosion resistance, low temperature, high temperature, radioactive resistance	Martensitic stainless steel SUS440C	10.1	200	580
	Austenitic stainless steel SUS304	16.3	193	150
	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

1.3 Rust Prevention and Surface Treatment

1. Fluoride low temperature chrome plating The use environment of NSK linear guides, ball screws and monocarriers is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment.

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluoro resin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating".) This surface treatment methods has proved its superiority as the rust prevention of linear guides and ball screws which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

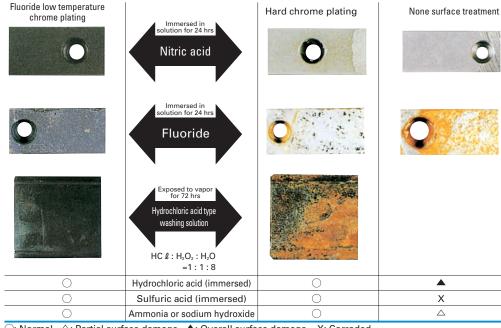
Do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

D5

Table 3.1 Results of the humidity test

		Test sample	cironie plaulig	Hard chrome plating		Equivalent to SUS440C material	Standard steel
Chara	cterist	ic	(recommended)	(reference)	(reference)		
		Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	ng	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Ŗ	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	t (ma	t conditions> Testing chamber: High emperature, highly moist shamber ade by DABAI ESPEC) Temperature: 70°C Relative humidity: 95%	0		0	O	O
Corrosio	Tim "rar tem con Ran	esting time: 96 h e to "ramp-up" and mp-down" condition of the sperature and the humidity ditions np-up: 5 h np-down: 2 h			· · · · · · · · · · · · · · · · · · ·		
		Film thickness	5 µm	0.5 – 7 μm	10 µm	_	


Rustina

A: No rust C: Spotty rust B: Not rusted, but slightly discolored

Chemical corrosion resistance test

Table 3.2 Results of the corrosion resistance test

Test conditions Rail base material: Equivalent to SUS440C Chemical density: 1 mol/L

○: Normal △: Partial surface damage ▲: Overall surface damage X: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

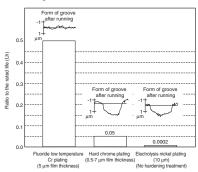


Fig. 3.1 Results of durability test

Total evaluation

Table 3.3 Evaluation

	Available length	ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating	© (4 m)	0	0	0	0
Hard chrome plating	△ (2 m)	0	Х	\triangle	\triangle
Electroless nickel plating	© (4 m)	0	Δ	Х	\triangle
Material equivalent to SUS440C	(3.5 m)	0	0	0	Δ
©: Excellent			O: S	Suitable	in use

 \triangle : Not so good for use

X: Problem in use

1.4 Measures Against Special Environments

1. In vacuum

Silver-film plated ball screw

Ball screws that are plated by soft metal (special silver film) as a solid lubricant are developed the application for vacuum environment such as semiconductor manufacturing equipment and surface modification systems.

Durability test in high vacuum

Test equipment and conditions

Table 4.1 shows ball screw specifications. Fig. 4.1 is a schematic of the testing system in vacuum chamber. Table 4.2 shows testing conditions.

Table 4.1 Ball screw specifications

	Table 4.1 Ball screw specifications			
	Shaft diameter	12 mm		
	Lead	4 mm		
	Steel ball diameter	2.381 mm		
Numbers of circuit of balls		2.5 turns, 1 circuit		
Axis load (preload)		29.4 N		
Max	ximum surface pressure (preload volume)	about 690 MPa		
	Shaft	SUS630		
Material	Nut	SUS440C		
/ate	Ball return tube	SUS304		
_	Steel balls	SUS440C		
	Solid lubricant	Special silver film		

Table 4.2 Testing conditions

Rotational speed	300 min ⁻¹
Vacuum chamber	1.3×10⁻ – 1.3×10⁻ Pa
pressure	1.5×10 1.5×10 1 u
Stroke	160 mm

Evaluation method

It is understood that the rolling bearing with solid lubrication reaches end of life when the lubrication film deteriorates, resulting in sudden rise of friction torque. In this test, ball screw rotation torque was constantly measured to study durability and operation. Results were then evaluated.

Test results

Fig. 4.2 shows two distinctive examples obtained in the torque characteristic test.

Photo 4.1 Vacuum testing system

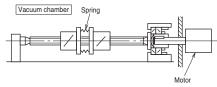


Fig. 4.1 Schematic of the testing system

Test results of the ball screw (a)

The torque tendency was stable until about 1 \times 10 7 rev. Then the torque characteristics slightly deteriorated. At about 1.35 \times 10 7 rev, the torque suddenly rose. At this point, it was determined that the ball screw reached the end of its life.

Test results of the ball screw (b)

Torque value is a little higher in the test (a). The value is also little unstable. The torque momentarily soared several times during the test (some 10 N⋅cm). It is thought this is attributable to the repeated peeling/sticking of the surface film made of soft metal (silver, etc.).

When the torque finally soared at 1.13×10^7 rev., it was determined that the ball screw reached the end of its life.

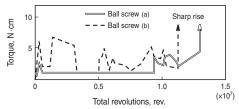
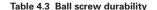



Fig. 4.2 Torque variation

	Classification	Ball screw (a)	Ball screw (b)
	Total revolutions (rev.)	1.35×10 ⁷	1.13×10 ⁷
Life	Total traveling distance (km)	54.0	45.2
_	Total traveling hours*(h)	750	628

^{*)} Total traveling hours when operated constantly at 300 min-

Conclusion

Table 4.3 explains results of the two ball screw durability tests.

From these results and other findings, it is estimated that a life of more than 1×10^7 rev. is possible with a load of about 29.4 N.

Torque may soar momentarily before the ball screw reaches its final life due to peeling/sticking of the surface film made of soft metal like silver. For this reason, it is recommendable to select a drive motor with extra torque capacity.

2. Clean environment

NSK Clean Grease LG2 and LGU

NSK Clean Grease LG2 is used in clean room for NSK linear guides, ball screws, Monocarriers, XY Modules, Megatorque motors, XY tables, etc. with low-dust emitting specifications. For its low dust emission and high durability, LG2 earns trust and high reputation of semiconductor equipment manufacturers.

LG2 is superior in many areas to fluorine greases which are commonly used in clean room.

Features

- Remarkably low dust emission
- Long life -- More than ten times longer than fluoride greases, and equivalent to ordinary greases.
- Excellent rust prevention -- Significantly higher capacity than fluorine greases.
- Low and stable torque -- 20% or less than that of fluorine greases

Table 4.4 Nature of Clean Grease LG2 and LGU

Name	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Consistency	Dropping point °C
Clean Grease LG2	Lithium soap	Synthetic hydrocarbon oil + mineral oil	32	199	201
Clean Grease LGU	Diurea	Synthetic hydrocarbon oil	95.8	201	260

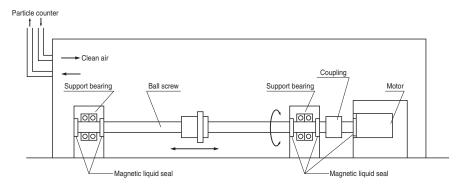
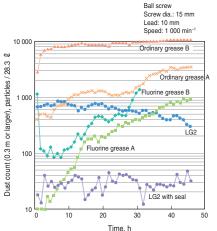



Fig. 4.3 Setting to measure dust generated by ball screw

Feature 1: Remarkably low dust emission

Compared with fluoride greases, dust emission by LG2 is low and stable for long period of time.

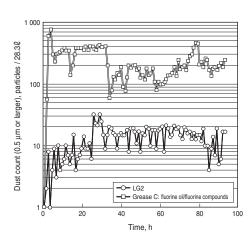


Fig. 4.5 Dust emission from linear guide (Linear guide: LU09)

Feature 2: Long life

Life is ten times or longer than fluorine greases, and equivalent to ordinary greases. This stretches maintenance intervals.

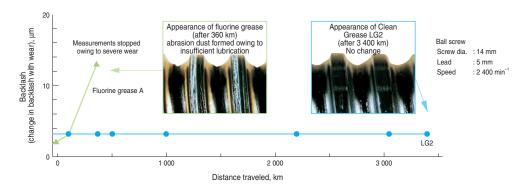


Fig. 4.6 Results of ball screw durability test

• Feature 3: Excellent rust prevention capacity

The rust prevention capacity is significantly higher than fluoride type greases. Handling and preparation for operation are easy.

Ball screw rust prevention test (test conditions: 96 hr at humidity 95%, temperature 70°C)

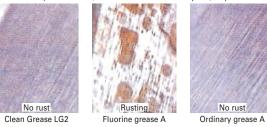


Photo 4.2

Table 4.5 Rust prevention test on bearing

Type	Rusting after 7 days
NSK Clean Grease LG2	No rust
Fluorine grease B	Rusted

Test conditions: 19 mg is sealed in ball bearing 695

: Temp. 90°C, Humidity 60%

Evaluation : Studied by microscope

● Feature 4: Stable torque

Torque is 20% or lower than fluorine greases.

Fig. 4.7 Comparison of torque characteristics

Total evaluation

No rust

Table 4.6 Evaluation

Characteristic	LG2	Fluorine grease	General grease
Dust generation	0	O - △	△ – X
Torque	0	X	O- △
Durability	0	△ – X	0
Rust prevention ability	0	△ – X	0

○: Suitable △: Not very suitable X: Problem in use

3. Environment with foreign matters

NSK K1 lubrication unit (linear guide and ball screw)

Molded oil is made of a lubrication oil and polyolefin which has affinity with the lubrication oil. More than 70% of the mass is lubrication oil.

Molded oil which is formed into NSK K1 lubrication unit effectively seals linear guides, continually supplying lubrication oil. NSK K1 lubrication unit has made it possible to use linear guides in water or powder dust.

NSK K1 lubrication unit for ball screws is also

For monocarriers, NSK K1 is equipped as a standard feature.

Features

- Extend maintenance-free intervals
- No contamination of surrounding environment
- Prolong life of the products exposed to water

Refer to pages A38, B579 and C141 for details of NSK K1 lubrication unit.

1.5 Table to Cope With Special Environments

1. Linear guides

es	Special environment which linear guide				juide car	tolerate	
Series	Model No.	Clean	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminated
	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
NH	NH30	0	0	0	0	0	
INH	NH35	0		0	0	0	
	NH45	0		0	0		
	NH55	0		0			
	NH65	0		0			
	VH15	0		0			0
	VH20	0		0			0
	VH25	0		0			0
VH	VH30	0		0			0
	VH35	0		0			0
	VH45	0		0			0
	VH55	0		0			0
	NS15	0	0	0	0	0	
	NS20	0	0	0	0	0	
NS	NS25	0	0	0	0	0	
	NS30	0	0	0	O*	0	
	NS35	0		0		0	
	LW17	0		0	O*	0	
	LW21	0		0	O*	0	
LW	LW27	0		0	0	0	
	LW35	0		0		0	
	LW50	0		0			
	PU05	0		0			
	PU07	0		0			
PU	PU09	0		0		0	
	PU12	0		0		0	
	PU15	0		0		0	
	LU05	0		0			
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU	LU09_R	0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15		0	0	0*	Ó	

^{*)} Dust-proof parts are not applicable to hightemperature environmental use.

ies	Madal N-	Special	environm			uide can	
Series	Model No.	Clean	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminated
	PE05	0		0			
	PE07	0		0			
PE	PE09	0		0		0	
	PE12	0		0		0	
	PE15	0		0		0	
	LE05	0		0			
	LE07	0	0	0	O*		
	LE09_L	0	0	0	O*	0	
	LE09_R	0		0		0	
LE	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	Ô	0	0	0	Ó	
	LE15AR	Ŏ		Ó		Ó	
ᆂ	LH08	Ŏ		Õ			
Winiature LH	LH10	Ô		Õ			
Vinie Minie	LH12	Ô	0	Õ	O*	0	
_	RA15	Ô		Õ			
	RA20	Ô		Õ			
	RA25	Ŏ		Ŏ			
	RA30	Ŏ		Ŏ			
RA	RA35	Õ		Ŏ			
	RA45	Ŏ		Õ			
	RA55	Ŏ		Õ			
	RA65	Ŏ		Ŏ			
-	RB30	Õ		Ŏ			
	RB35	Ŏ		Õ			
RR	RB45	Ŏ		Õ			
110	RB55	Ŏ		Õ			
	RB65	Ŏ		Ŏ			
-	LA25	<u> </u>		0			
	LA30	0		0			
	LA35	0		0			
LA	LA45	0		0			
	LA55	l ŏ	1	ŏ			
	LA65	0		0			
-	HA25	0	1	<u> </u>			
на	HA30	0	1	0			
	HA35	10		0			
	HA35 HA45	0	-	0			_
		0	1	0			
-	HA55		1				-
	HS15		-	0			_
	HS20	0	-	0			
15	HS25	0		0			
	HS30	0		0			
	HS35	0		\cup			

2. Ball screws

Series	Special environment				
	Clean	Vacuum	Rust prevention	High temp.	Foreign matters
KA Series	0	0	0		
For Contaminated environments VSS Type					0
Made-to-order ball screw	0*	0*	0*	0*	0*

*Available in the made-to-order ball screw.

Please consult NSK.

3. Monocarriers

Please consult with NSK for special environmental use.

1.6 Precautions for Handling

Please observe the following precautions to maintain high functions of ball screws and linear motion guide bearings in special environment over a long period.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the ball slide (randommatching type linear guide) and ball nut (R series ball screw) in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel).
 Do not apply rust preventive oil or paper or product that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in clean place.

2. Lubrication

There are two types of lubricating method -- grease and oil -- for ball screws, linear guides and monocarriers.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize functions of ball screws, linear guides and monocarriers.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speeds and high

The following are lubrication methods using grease and oil.

2.1 Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubricants made by NSK are:

- · Various types of grease in bellows tubes that can be instantly attached to a grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 1.1 shows the marketed general grease widely used for linear guides, ball screws and monocarrier for specific uses, conditions and purposes.

Table 1.1 Grease lubricant for linear guides, ball screws and monocarriers

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2	Lithium type	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 - 110	For low temperature and high frequency operation
LR3	Lithium type	Synthetic oil	30	-30 - 130	For high speed, medium load
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 - 70	For clean environment
LGU	Diurea	Synthetic hydrocarbon oil	95.8	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistance

(1) NSK Grease AS2

Features

It is an environmentally friendly and widely used grease for high load application. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is a standard grease for general NSK linear guides, ball screws and monocarriers. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability in oxidization.

(2) NSK Grease LR3

Features

It contains a special synthetic oil for high temperature and stability, and a carefully selected anti-oxidation agent. This grease dramatically increases lubrication life under high temperature conditions. It is used for high speed, medium load. Lubrication life exceeded 2 000 hours in the endurance test at 150°C. Its rust prevention capacity in severe conditions such as water and moist environments is further strengthened.

Application

It is a standard grease for ball screws PSS type (shaft dia. 15 mm or over), FSS type, FA type (except shaft dia. 10 mm with lead of 4mm and shaft dia. 12 mm with lead of 5 mm) and VFA type. It is ideal for operation with medium load, at high speed such as positioning in high tact material handling equipment.

(3) NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low temperature operation. It is for high speed and light load.

Application

It is a standard grease for NSK miniature linear guides and ball screws. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hi
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil
Consistency	228
Dropping point	208°C
Volume of evaporation	0.58% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	1.9% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm ² /s (40°C)

Nature

· reactar o	
Thickener	Lithium soap base
Base oil	Synthetic oil + Synthetic hydrocarbon oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15.9 mm ² /s (40°C)

(4) NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean room. Compared to the fluorine grease which are commonly used in clean room, LG2 has several advantages such

- · Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for rolling element products such as linear guides and ball screws for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page D8 for detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

(5) NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for ball screws and linear guides which are used in clean rooms.

In comparison with fluorine base grease, which has been used commonly in clean rooms. LGU has better lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust emission. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for ball screws and linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30 to 120°C.

This cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

(6) NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease is suitable for ball screws and linear guides of which application include oscillating operations. Allowable temperature range is -40 to 100°C.

Nature

Diurea
Synthetic hydrocarbon oil
288
260°C
0.22% (99°C, 22 hr)
Satisfactory (Method B, 100°C, 24 hr)
0.5% (100°C, 24 hr)
26 mm²/s (40°C)

Precautions for handling

- · Wash the linear guides and ball screws to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- · Clean grease is exclusively used for clean environments at normal temperatures.

Note) Refer to NSK Grease Unit Catalog (CAT. No.3317) for details of NSK Grease.

2. Before use of NSK Precision Products

Wipe off the rust preventive oil before use for the products that the oil is applied.

If grease is not applied, apply grease, and move a ball slide or ball nut a few strokes so the grease permeates into the ball slide and inside the nut. (Move the ball slide or the ball nut 5 to 10 times with full stroke.)

Then wipe off the excess grease.

3. How to replenish grease and volume of grease to be replenished

Use grease fitting if exclusive grease supply component is not used. Supply required amount through grease fitting by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used or there is no oil filler due to the size limitation, apply grease directly to the rail or to the ball groove of the screw shaft. Remove the seal if possible, move a ball slide or ball nut a few strokes so that the grease permeates into the ball slide, nut and inside the

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

* When replenishing using a grease pump:

Use a grease pump and fill the inside of ball slide, ball nut and monocarrier slider with grease. Supply grease until it comes out from the ball slide, ball nut or monocarrier slider area. Move ball slide, ball nut or monocarrier slider by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease. Trial operations are necessary because the resistance to sliding force and screw torque greatly increases immediately after replenishment (full-pack state) and may cause problems. The agitating resistance of grease is accountable for this phenomenon. Wipe off excess grease that accumulates at end of rail and screw shaft after trial runs so the grease does not move to other areas.

- * When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:
- All at once, replenish the amount that fills about 50% of the internal space of the ball slide or the internal space of the ball nut. This method eliminates waste of grease and is efficient.

Tables 1.2, 1.3 and 1.4 show internal spaces of ball slide, ball nut and monocarrier slider for reference.

Table 1.2 Inside space of the slide of linear guide

NH Series

Unit: cm				
Series	NH			
Model No.	High-load type	Super-high-load type		
15	3	4		
20	6	8		
25	9	13		
30	13	20		
35	22	30		
45	47	59		
55	80	100		
65	139	186		

PU. LU Series

. 0, 20 0	CIICS		Unit: cm ³		
Series	PU		LU		
Model No.	Standard type	High-load type	Standard type	High-load type	
05	0.1	-	0.1	-	
07	0.1	-	0.1	-	
09	0.2	0.3	0.2	0.3	
12	0.3	0.4	0.3	0.4	
15	0.8	1.1	0.8	1.1	

VH Series

Unit:			
Series	VH		
Model No.	High-load type	Super-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

PE, LE Series

Series PE LE	,	,				Unit: cm
05 0.1 - 0.1 0.1 -	Series	Series	PE		LE	
	Model No.	el No. Standard	type High-load typ	oe Medium-load type	Standard type	High-load type
07 02 - 01 02 03	05	05 0.1	-	0.1	0.1	-
07 0.2 0.1 0.2 0.3	07	07 0.2	_	0.1	0.2	0.3
09 0.4 0.5 0.2 0.4 0.5	09	09 0.4	0.5	0.2	0.4	0.5
12 0.5 0.7 0.3 0.5 0.7	12	12 0.5	0.7	0.3	0.5	0.7
15 1.2 1.6 0.8 1.2 1.6	15	15 1.2	1.6	0.8	1.2	1.6

NS Series

		Unit: cm
Series	N	S
Model No.	Medium-load type	High-load type
15	2	3
20	3	4
25	5	8
30	8	12
35	12	19

Miniature LH Series

	Unit: cm
Series Model No.	LH
08	0.2
10	0.4
12	1.2

	Onit: cm
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

RA Series

KA Series	S Unit: cm		
Series	RA		
Model No.	High-load type	Super-high-load type	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

RB Series

Unit: c		Unit: cm³	
Series	RB		
Model No.	High-load type	Super-high-load type	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

LA Series

		Offic. Ci
Series	L	A
Model No.	High-load type	Super-high-load t
25	8	12
30	14	18
35	21	29
45	38	48
55	68	86
65	130	177

HA, HS Series

HA, HS S	Unit: cm³	
Series Model No.	HA	HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	_
55	122	_

Table 1.3 Inside space of ball nut Return tube type (single nut)

	Unit: cm³		Unit: cm³		Unit: cm³		Unit: cm³
Nut model	Inside space	Nut model	Inside space	Nut model	Inside space	Nut model	Inside space
1004 – 2.5	0.8	2004 – 5	2.7	2520 – 2.5	12	3225 – 2.5	17
1205 – 2.5	1.2	2005 – 5	4.3	2525 - 1.5	7.5	3232 - 1.5	15
1210 – 2.5	1.4	2010 - 2.5	4.7	2805 – 5	6	3610 – 5	32
1405 – 2.5	2.2	2020 - 1.5	4.2	2805 - 10	9	4005 - 10	14
1408 – 2.5	2.1	2504 – 5	3.2	2806 – 5	6	4010 – 5	30
1510 – 2.5	2.3	2505 – 5	5	2806 – 10	9.5	4012 – 5	34
1605 – 2.5	2.6	2506 – 5	7	3205 – 5	7	4510 – 5	34
1616 – 1.5	2.1	2510 – 3	9.5	3206 – 5	9.5	5010 – 5	37
				3210 – 5	22	5010 – 10	59

Deflector (bridge) type

n³
е

End cap type

cm³
се

Note:

Nut model: shaft diameter, lead, total number of turns of balls

Please consult NSK for other specifications. Refer to B110 to B146 for Compact FA Series.

Table 1.4 Inside space of the monocarrier

		-						
MCM Series Unit: cm³			Unit: cm³			MCH Serie	Unit: cm³	
Model No.	Lead (mm)		Model No.	Lead (mm)		Model No.	Lead (mm)	Inside space
NACNA00	1	0.3		5	8.3	MCH06	5	2.8
MCM02	2	0.3	MCM06	10	6.5	MCL06	10	2.7
	1	1		20	5.5	IVICLUS	20	2.7
	2	0.9		5	11.6		5	5.8
MCM03	10	1.8		10	9.8	MCH09	10	5.8
	12	1.7	MCM08	20	8.7		20	5.6
-	5	4.2		30	4.3		10	10.9
	10	4		10	19.4	MCH10	20	10.1
MCM05	20	2.1	MCM10	20	17.4			
	30	2.0		30	8.8			

4. Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the ball slide and ball nut is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter. Grease should be replenished depending on frequency of use. The following is a guide of grease replenishment intervals for linear guides and ball screws.

Table 1.5 Intervals of checks and replenishments for grease lubrication

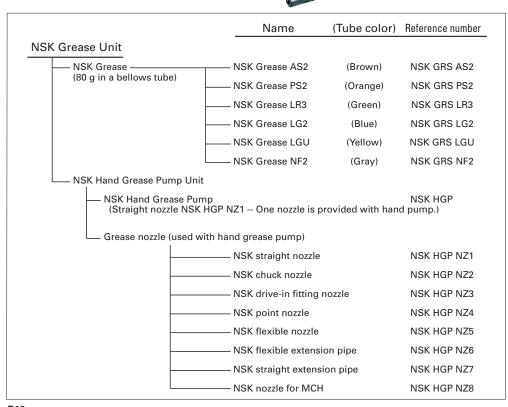
Intervals of checks	Items to check	Intervals of replenishments
3-6 months	Dirt, foreign matters such as	Usually once per year. Every 3 000 km for material handling
	cutting chips	system that travels more than 3 000 km per year. Replenish
		if checking results warrant it necessary.


Notes: 1) As a general rule, do not mix greases of different brands.

- 2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperatures. Pay attention to increases in linear guide and monocarrier sliding resistance and ball screw and monocarrier torque in such conditions.
- 3) When the ambient temperature is low, or in Winter, if it is difficult to pump out the grease from the container, wait until the grease is softened.
- 4) In locations where coolant is dispersed or scattered, emulsification of lubricants and rinsing with water may significantly deteriorate the integrity of the lubricant and efficiency of the grease. Protect the grease unit from coolant by shielding it with a cover, etc.

D17

5. NSK Grease Unit


Supply grease to NSK linear guides and ball screws by manual type hand grease pump. Install grease in bellows tube to the pump. Several types of grease (80 g) are available.

Grease in bellows tube

(1) Composition of NSK Grease Unit

Components and grease types are shown below.

(2) NSK Greases (80 g in bellows tube)

Refer to pages D14 and D15 for their natures and details.

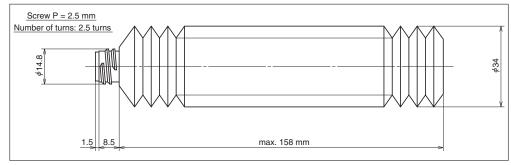


Fig. 1.1 Bellows tube

(3) NSK Manual Grease Pump Unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

- Light-weight ······ Can be operated by one hand, yet there is no worry to make a mistake.
- Inserting by high pressure ···· Insert at 15 Mpa.
- No leakingDoes not leak when held upside down.
- Easy to change grease ···· Simply attach grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on tube.
- Several nozzles ······ Six types of nozzles to choose from.

Specifications

- Discharge pressure ·· 15 Mpa
- Spout volume ······ 0.35 cc/shot
- Mass of main body ... Without nozzle 240 g
 Provided nozzle 90 g
- Grease tube outer diameter ϕ 38.1
- Accessory Several nozzles for a unique application can be attached

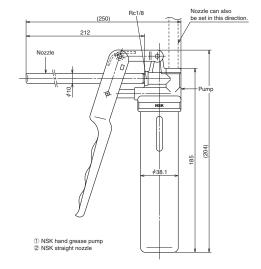


Fig. 1.2 NSK Hand Grease Pump with NSK straight nozzle

Other

*Air is contained in the unopened bellows tube. Try the system tens of times when to use the hand grease pump. The tube will be use after deflated from the tube.

b) Nozzles

Table 1.6 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions			
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8			
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come to contact due to the chucking mechanism at the tip.	R1/8			
NSK drive-in fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 11 M6V1.0 02 35 120 155			
NSK point nozzle	NSK HGP NZ4	Used for linear guides and ball screws which do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of ball slide or ball slide to inside.	Tip. ≠ 1.5 R1/8			
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is chuck nozzle. The straight nozzle is not available for use.	14HEX. 14HEX. R1/8			
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. 14HEX. R1/8			
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8			
NSK nozzle for MCH	NSK HGP NZ8	For MCH Series grease replenishment	7.5. (180) © 40			

Table 1.7 Grease fittings used for NSK linear guide

Series	Model number	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type			0		
NH	NH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type					
VH	VH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	Ō	Ō			Ō
	NS15	φ3	Drive-in type					
NS	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type					
LW	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	Ō	Ō			Ō
	PU05, 07, 09, 12	_					0	
PU	PU15	φ3	Drive-in type					
LU	LU05, 07, 09, 12, 15	- '-					0	
	PE05, 07, 09, 12	_	_				Ō	
PE	PE15	φ3	Drive-in type					
LE	LE05, 07, 09, 12, 15	-	- "				0	
NA: :	LH08, 10	_	_				0	
Miniature LH	LH12	φ3	Drive-in type					
	RA15, 20	φ3	Drive-in type					
RA	RA25, 30, 35*	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	RB30	φ3	Drive-in type					
RB	RB35, 45	M6×0.75	B type	0	0			0
	RB55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*	M6×0.75	B type	0	0			0
LA	LA45, 55, 65	Rc1/8	B type	0	0			0
	HA25, 30, 35*	M6×0.75	B type	0				0
HA	HA45, 55	Rc1/8	B type	0	0			0
	HS15	φ3	Drive-in type					
HS	HS20, 25, 30, 35*	M6×0.75	B type	0	0			

^{*)} If using a chuck nozzle, avoid interference with table and rail.

Note: 1) For PU, PE, LU, and LE Series, apply grease directly to ball groove, etc. using point nozzle.

2) A long threaded grease fitting is required for NSK linear guides because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

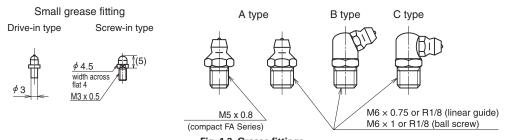


Fig. 1.3 Grease fittings

Table 1.8 Applicable grease nozzle for ball screws

Ser	SeriesTap hole for grease fitting		Model No.		Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
		High-accuracy, clean	USS			A type	0	0		0	0
	Compact FA	General	PSS		M5×0.8	A type	O*1	O*1		0	O*1
		Transfer equipment	FSS			A type	O*1	O*1		0	O*1
	Ministrus	ina laad	B 4 A	Shaft dia. 12 or less	-	_				0	
	Miniature, f	ine iead	MA	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FA		M6×1	-	O*2	O*2		0	O*2
Finished	Machine	toolo	SA	Shaft dia. 36 or less	M6×1	-	0	0		0	0
shaft end	iviaciiiie	toois	SA	Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
	Stainless steel		KA	Shaft dia. 12 or less and lead 2 or less	M3×0.5	-			0	0	
				except above	M6×1	-	O*2	O*2		0	O*2
				Shaft dia. 12 or less	φ 2.7	-				0	
	Transfer equ	uipment	VFA	Shaft dia. 15 or over	φ 3.5	-				0	
			RMA		_	-				0	
	Ministrus	Miniature, fine lead MS		Shaft dia. 12 or less	-	-				0	
	iviiniature, i	ine iead	IVIS	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FS		M6×1	-	O*2	○*2		0	O*2
			SS	Shaft dia. 36 or less	M6×1	_	0	0		0	0
	Machine	tools		Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
			HSS		M6×1	_	0	0		0	0
Blank			RMS		-	-				0	
shaft end			RNFTL	Shaft dia. 12 or less	M3×0.5	-			0	0	
onant ona			IVINI IL	Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNFBL	Shaft dia. 12 or less	M3×0.5	-			0	0	
	Transfer equ	uipment		Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNCT		-	-				0	
			RNFCL	Shaft dia. 12 or less	M3×0.5	-			0	0	
				Shaft dia. 15 or over	M6×1	-	0	0		0	0
			RNSTL		M6×1	_	0	0		0	0

^{*1} Unavailable for shaft dia. 25 mm
*2 If using A type grease fitting, may not install the nozzle.

Table 1.9 Applicable grease nozzles for Monocarriers

Series	Model No.	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Flexible nozzle NZ5	MCH exclusive fitting nozzle NZ8
	MCM02	-	-					
MCM	MCM03,05,08,10	φ3	Drive-in type			0		0*
	MCM06	M6×0.75	A type	0	0		0	
MCH	MCH06,09,10	φ3	Drive-in type					0

^{*)} Use of NZ3 is recommended.

D23

2.2 Oil Lubrication

Required amount of new oil is regularly supplied by:

- · Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the ball slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32 to 68 for the oil mist lubrication system.

ISO VG 68 to 220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a ball slide of linear guide per hour can be obtained by the following formula.

In case of ball type linear guides except the LA Series

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$ In case of LA Series, RA Series $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide code

e.g. When NH45 is used,

n = 45

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Similarly, approximate oil supply volume Q to ball screw can be obtained by the following formula.

 $Q = d/15 \text{ (cm}^3/\text{hr)}$

d: Nominal shaft diameter of the ball screw

e.g. When the shaft diameter is 50,

d = 50

Therefore,

 $Q = 50/15 = 3.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the ball slide or ball nut are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. For ball screw lubrication as well, oil does not spread if the oil orifice is installed at the bottom, causing insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system. Table 2.1 shows the criterion of intervals of oil checks and replenishments.

Table 2.1 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- Some components of the linear guide and ball screw are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet part.

3. RoHS Compliant

1. Linear Guides

- · Linear Guides listed in the catalog except the products for special environments, are compliant with RoHS
- Please consult NSK for RoHS of special parts and lubricant provided by customer, and customersupplied product.

2. Ball Screws

· Ball screws listed in the catalog except the products for special environments, are compliant with RoHS.

3. Monocarriers

· Monocarriers listed in the catalog are compliant with RoHS.

4. Ball Screw Support Bearings

· Ball screw support bearings listed in the catalog are compliant with RoHS.

Notes: 1) Normally, grease fitting is not provided to NSK ball screw except Compact FA Series. Ball nut has a tap hole to install a grease fitting. The user should install a grease fitting if necessary.

²⁾ For M3 × 0.5 tap hole, small fitting (screw-in type) is available. Please contact NSK.

³⁾ VFA type cannot install grease fitting. Apply grease directly to inside the nut through oil hole using point nozzle.

⁴⁾ MA, RMA, MS, RMS, and RNCT types have no tap hole, apply grease directly to the screw shaft and ball grooves using point nozzle.

^{*}For details of country-specific RoHS, contact NSK.

APPENDICES: TABLES

Ę

BLOCK

Appendices: Tables

- 1. Conversion from International Systems of Units (SI) E1
- 2. Conversion table between N and kgf ······E3
- 3. Conversion table between kg and lb E4
- 4. Hardness conversion table ·· E5
- 4. Hardness conversion table ·· E
- 5. Variations of shaft used in common fits E7
- 6. Variations of housing holes in common fits E9

1. Conversion from international system of units (SI)

Comparisons of SI, CGS, and engineering systems of units

Items System of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	s	K, °C	m/s²	N	Pa	Pa	J	W
CGS system	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering system	m	kgf • s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf • m	kgf • m/s

Conversion rates from SI system of units

l.	SI unit		Units other than	SI units	0 :
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit
Angle	Radian	rad	Degree	0	180/π
			Minute	1	10 800/π
			Second		648 000/π
Length	Meter	m	Micron	μ	10 ⁶
			Angstrom	Å	1010
Area	Square meter	m²	Are	а	10-2
			Hectare	ha	10⁻⁴
Volume	Cubic meter	m³	Liter	I, L	10³
			Deciliter	dl, dL	10 ⁴
Time	Second	s	Minute	min	1/60
			Hour	h	1/3 600
			Day	d	1/86 400
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	S ⁻¹	1
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm	60
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000
			Knot	kn	3 600/1 852
Acceleration	Meter per square second	m/s²	Gal	Gal	10 ²
			G	G	1/9.806 65
Mass	Kilogram	kg	Ton	t	10 ⁻³
Force	Newton	N	Weight kilogram	kgf	1/9.806 65
			Weight ton	tf	1/(9.806 65×10³)
			Dyne	dyn	10⁵
Torque and	Newton meter	N • m	Weight kilogram	kgf • m	1/9.806 65
moment of force			meter		
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/(9.806 65×10 ⁴)
	(Newtons per square meter)	(N/m^2)	Weight kilogram per square millimeter	kgf/mm²	1/(9.806 65×10 ⁶)

Prefixes for SI units

Powers of 10	Prefix Name Code	Powers of 10	Prefix Name Code
10 ¹⁸	exa E	10 ⁻¹	deci d
10 ¹⁵	peta P	10 ⁻²	centi c
10 ¹²	tera T	10 ⁻³	milli m
10°	giga G	10 ⁻⁶	micro μ
10°	mega M	10 ⁻⁹	nano n
103	kilo k	10 ⁻¹²	pico p
10 ²	hecto h	10 ⁻¹⁵	femto f
10 ¹	deca da	10 ⁻¹⁸	atto a

Conversion rates from SI units (continued from previous page)

	SI unit		Units other than		307
Item		A11 1 11			Conversion rate from SI unit
	Name of unit	Abbreviation	Name of unit	Abbreviation	
Pressure	Pascal	Pa	Weight kilogram per square meter	kgf/m²	1/9.806 65
	(newton per square meter)	(N/m^2)	Water column meter	mH₂O	1/(9.806 65×10³)
			Mercurial column millimeter	mmHg	760/(1.013 25×10 ⁵)
			Torr	Torr	760/(1.013 25×10 ⁵)
			Bar	bar	10-5
			Atmosphere	atm	1/(1.013 25×10 ⁵)
Energy	Joule	J	Erg	erg	10 ⁷
	(newton meter)	(N • m)	Calorie (international)	cal _{IT}	1/4.186 8
			Weight kilogram meter	kgf • m	1/9.806 65
			Kilowatt hour	kW • h	1/(3.6×10 ⁶)
			Metric horsepower/hour	PS • h	≈3.776 72×10 ⁻⁷
Electric power,	Watt	W	Weight kilogram meter per second	kgf • m/s	1/9.806 65
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163
			Metric horsepower	PS	≈1/735.498 8
Viscosity, Viscosity index	Pascal second	Pa•s	Poise	Р	10
Kinematic viscosity,	Square meter	m²/s	Stokes	St	10⁴
Kinematic viscosity index	per second		Centistokes	cSt	10 ⁶
Temperature, Difference in temperature	Kelvin, Celsius degrees	K, °C	Degree	°C	[See Note (1)]
Electrical current, magnetomotive force	Ampere	А	Ampere	Α	1
Electrical power, electromotive force	Volt	V	(Watt per ampere)	(W/A)	1
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	4π/10³
Magnetic flux density	Tesla	Т	Gauss	Gs	104
			Gamma	γ	10 ⁹
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1

Note (1) Conversion from TK to θ °C is : θ = T – 273.15. To indicate temperature difference: Δ T = $\Delta\theta$. Δ T and $\Delta\theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1 N = 1/9.806 65 kgf

NSK

2. Conversion table between N and kgf

[How to read the table]

To convert 10 N to kgf, locate 10 in the center column in the first block. Locate a corresponding kgf figure in the right side column. You will find 10 N is 1.0197 kgf. To convert 10 kgf to N, locate a figure in N column to its left. You will find 10 kgf is 98.006 N.

3. Conversion table between kg and lb

[How to read the table]

To convert 10 kg to lb, locate 10 in the center column in the first block. Locate a corresponding lb figure in right column. You will find 10 kg is 22.046 lb. To convert 10 lb to kg, locate the figure in the kg column to the left. You will find 10 lb is 4.536 kg.

1	kg	= 2.2046226	lb
1	lb	= 0.45359237	kg

N		kgf	N		kgf	N		kgf	kg		lb	kg		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321	0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341	0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360	1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380	1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400	2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420	2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439	3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459	3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479	4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498	4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518	4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538	5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558	5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577	6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597	6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617	7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636	7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656	8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676	8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696	9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715	9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735	9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755	10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774	10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794	11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814	11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834	12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853	12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873	13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893	13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912	14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932	14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095	14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

4. Conversion table of hardness

Rockwell C Scale			Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
	hardness	Vickers hardness	Standard ball Tungsten		Load 588.4 N	Load 980.7 N	Shore hardness
	(1 471 N)		Standard San	carbide ball		Diameter 1.5888 mm {1/16 in} sphere	naruness
	68	940	_	_	85.6	_	97
	67	900	_	_	85.0	_	95
	66	865	_	_	84.5	_	92
	65	832	_	739	83.9	_	91
	64	800	_	722	83.4	_	88
	63	772	_	705	82.8	-	87
	62	746	_	688	82.3	-	85
	61	720	_	670	81.8	-	83
	60	697	_	654	81.2	-	81
	59	674	_	634	80.7	_	80
	58	653	_	615	80.1	-	78
	57	633	_	595	79.6	-	76
	56	613	_	577	79.0	-	75
	55	595	_	560	78.5	-	74
	54	577	_	543	78.0	-	72
	53	560	_	525	77.4	-	71
	52	544	500	512	76.8	-	69
	51	528	487	496	76.3	_	68
	50	513	475	481	75.9	_	67
	49	498	464	469	75.2	-	66
	40						
	48	484	451	455	74.7	-	64
	47	471	442	443	74.1	_	63
	46	458	432	432	73.6	_	62
	45	446	421	421	73.1	-	60
	44	434	409	409	72.5	-	58
	40	400	400	400	70.0		F-7
	43	423	400	400	72.0	_	57
	42	412	390	390	71.5	_	56
	41	402	381	381	70.9	-	55
	40	392	371	371	70.4	_	54
	39	382	362	362	69.9	_	52

Rockwell C Scale hardness Vickers hardness Vickers hardness Vickers hardness Standard ball Tungsten carbide ball Tungsten carbide ball Diameter 1.5888 mm (1/16 in) sphere Shore hardness Standard ball Tungsten carbide ball Diameter 1.5888 mm (1/16 in) sphere Shore hardness Standard ball Tungsten carbide ball Diameter 1.5888 mm (1/16 in) sphere Shore hardness S										
Vickers hardness Standard ball Tungsten carbide ball Drale penetrator Diameter 1.5888 mm {\ \(\frac{1}{1471} \rm N \rm) \)				Brinell h	ardness					
14/1				Standard ball	Tungsten	Load 588.4 N	Load 980.7 N			
37 363 344 344 68.9 — 50 36 354 336 336 68.4 (109.0) 49 35 345 327 327 67.9 (108.5) 48 34 336 319 319 67.4 (108.0) 47 33 327 311 311 66.8 (107.5) 46 32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 <td></td> <td>(1 471 N)</td> <td></td> <td>Ctanaara zan</td> <td>carbide ball</td> <td>brale penetrator</td> <td></td> <td>Haraness</td>		(1 471 N)		Ctanaara zan	carbide ball	brale penetrator		Haraness		
36 354 336 336 68.4 (109.0) 49 35 345 327 327 67.9 (108.5) 48 34 336 319 319 67.4 (108.0) 47 33 327 311 311 66.8 (107.5) 46 32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38		38	372	353	353	69.4	_	51		
35 345 327 327 67.9 (108.5) 48 34 336 319 319 67.4 (108.0) 47 33 327 311 311 66.8 (107.5) 46 32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 66.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 32 24 260 247 247 62.4 (101.0) 36		37	363	344	344	68.9	_	50		
34 336 319 319 67.4 (108.0) 47 33 327 311 311 66.8 (107.5) 46 32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 <td></td> <td>36</td> <td>354</td> <td>336</td> <td>336</td> <td>68.4</td> <td>(109.0)</td> <td>49</td>		36	354	336	336	68.4	(109.0)	49		
33 327 311 311 66.8 (107.5) 46 32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 2286 286 68.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33		35	345	327	327	67.9	(108.5)	48		
32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18)		34	336	319	319	67.4	(108.0)	47		
32 318 301 301 66.3 (107.0) 44 31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18)										
31 310 294 294 65.8 (106.0) 43 30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16)		33	327	311	311	66.8	(107.5)	46		
30 302 286 286 65.3 (105.5) 42 29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) <td< td=""><td></td><td>32</td><td>318</td><td>301</td><td>301</td><td>66.3</td><td>(107.0)</td><td>44</td></td<>		32	318	301	301	66.3	(107.0)	44		
29 294 279 279 64.7 (104.5) 41 28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204		31	310	294	294	65.8	(106.0)	43		
28 286 271 271 64.3 (104.0) 41 27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 90.7 28 (8) 188		30	302	286	286	65.3	(105.5)	42		
27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188		29	294	279	279	64.7	(104.5)	41		
27 279 264 264 63.8 (103.0) 40 26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188										
26 272 258 258 63.3 (102.5) 38 25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 <t< td=""><td></td><td>28</td><td>286</td><td>271</td><td>271</td><td>64.3</td><td>(104.0)</td><td>41</td></t<>		28	286	271	271	64.3	(104.0)	41		
25 266 253 253 62.8 (101.5) 38 24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165		27	279	264	264	63.8	(103.0)	40		
24 260 247 247 62.4 (101.0) 37 23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158		26	272	258	258	63.3	(102.5)	38		
23 254 243 243 62.0 100.0 36 22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		25	266	253	253	62.8	(101.5)	38		
22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		24	260	247	247	62.4	(101.0)	37		
22 248 237 237 61.5 99.0 35 21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24										
21 243 231 231 61.0 98.5 35 20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		23	254	243	243	62.0	100.0	36		
20 238 226 226 60.5 97.8 34 (18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		22	248	237	237	61.5	99.0	35		
(18) 230 219 219 — 96.7 33 (16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		21	243	231	231	61.0	98.5	35		
(16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		20	238	226	226	60.5	97.8	34		
(16) 222 212 212 — 95.5 32 (14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24										
(14) 213 203 203 — 93.9 31 (12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		(18)	230	219	219	_	96.7	33		
(12) 204 194 194 — 92.3 29 (10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		(16)	222	212	212	_	95.5	32		
(10) 196 187 187 — 90.7 28 (8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		(14)	213	203	203	_	93.9	31		
(8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24		(12)	204	194	194	_	92.3	29		
(8) 188 179 179 — 89.5 27 (6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24										
(6) 180 171 171 — 87.1 26 (4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24				187	187	-	90.7			
(4) 173 165 165 — 85.5 25 (2) 166 158 158 — 83.5 24				1		-				
(2) 166 158 158 — 83.5 24			180	1	171	-	87.1	26		
						-		-		
(0) 160 152 152 — 81.7 24				1		-				
		(0)	160	152	152	_	81.7	24		

NSK

5. Deviations of shafts used in common fits

	cation of er (mm)	. d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
Over	or less	- 20	- 14	- 6	- 2	- 2	0	0	0	0	0	0	-	
	3 6	- <u>26</u> - 30	- 20 - 20	- 12 - 10	- 6 - 4	- 8 - 4	- 4 0	- <u>6</u>	-10 0	- 14 0	- 25 0	- 40 0	± 2	± 3
6	10	- 38 - 40	- 28 - 25	- 18 - 13	- 9 - 5	- 12 - 5	- 5 0	- 8 0	-12 0	- 18 0	- 30 0	- 48 0	± 2.5 ± 3	± 4.5
10	18	- 49 - 50 - 61	- 34 - 32 - 43	- 22 - 16 - 27	-11 - 6 -14	- 14 - 6 - 17	- 6 0 - 8	- 9 0 -11	-15 0 -18	- 22 0 - 27	- 36 0 - 43	- <u>58</u> 0 - 70	± 4	± 5.5
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	0 - 9	0 -13	0 -21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 –11	0 -16	0 –25	0 - 39	0 - 62	0 -100	± 5.5	± 8
50	80	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 -19	0 -30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 -22	0 -35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 -40	0 - 63	0 -100	-160	± 9	±12.5
180	250	-170 -199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 -29	0 -46	0 - 72	0 -115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 –57	0 - 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 –27	0 -40	0 -63	0 - 97	0 -155	0 -250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 -70	0 -110	0 -175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 -50	0 -80	0 -125	0 –200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 –90	0 -140	0 -230	0 -360	-	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 -310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

											Unit: µm
j7	k5	k6	k7	m5	m6	n6	р6	r6	r7	Classific diamete	ation of r (mm)
							·			Over	or less
+ 6 - 4	+ 4	+ 6 0	+10 0	+ 6 + 2	+ 8 + 2	+ 10 + 4	+ 12 + 6	+ 16 + 10	+ 20 + 10	_	3
+ 8 - 4	+ 6 + 1	+ 9 + 1	+13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
+10 - 5	+ 7 + 1	+10 + 1	+16 + 1	+12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
+12 - 6	+ 9 + 1	+12 + 1	+19 + 1	+15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
+13 - 8	+11 + 2	+15 + 2	+23 + 2	+17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
+15 −10	+13 + 2	+18 + 2	+27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
+18	+15	+21	+32	+24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
+20	+18	+25	+38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100

j5 j6

± 2

NSK

Classification of diameter (mm)

Unit: µm

6. Deviations of holes used in common fits

	cation of er (mm) or less	E6	F6	F7	G6	G7	Н6	H7	Н8	J6	J7	JS6	JS7
_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6 0	+ 10 0	+ 14 0	+ 2 - 4	+ 4 - 6	± 3	± 5
3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12	+ 18	+ 5 - 3	± 6	± 4	± 6
6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9	+ 15 0	+ 22	+ 5 - 4	+ 8 - 7	± 4.5	± 7.5
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18 0	+ 27 0	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35	+ 54	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72	+22 - 7	+30 -16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52	+ 81	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 -18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63	+ 97	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70	+110	_	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50	+ 80	+125 0	_	_	±25	±40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56	+ 90	+140	_	_	±28	±45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105	+165	_	_	±33	±52.5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125	+195	_	_	±39	±62.5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75

		•••			••••				. 0		Over	or less
0 - 4	0 - 6	0 - 10	- 2 - 6	- 2 - 8	- 2 - 12	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 16	_	3
0 - 5	+ 2 - 6	+ 3 - 9	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 20	3	6
+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 24	6	10
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	–18 –33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 -21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	–21 –39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 -24	+ 13 - 33	–11 –31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 -27	+ 16 - 36	–13 –36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 –29	+ 17 - 40	–14 –39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 -44	0 - 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630

K6

0

0

0

0

0

-92

-78

-66

-56

- 80

- 90

-105

-125

-150

0

-50

K5

K7

M5

M6

- 30

- 80

- 34

- 90

- 40

-106

- 48

-126

- 58

-150

- 30

-110

- 34

-124

- 40

-145

- 48

-173

- 58

-208

- 50

-100

- 56

-112

- 66

-132

- 78

-156

- 92

-184

- 50

-130

- 56

-146

- 66

-171

- 78

-203

- 92

-242

- 88

-138

-100

-156

-120

-186

-140

-218

-170

-262

- 88

-168

-100

-190

-120

-225 -140 -265

-170

-320

630

800 1 000

1 000 1 250

1 250 1 600

1 600 2 000

800

M7

N5

N6

N7

P6

Worldwide Sales Offices

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN NSK HONG KONG LTD. HONG KONG A Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T. Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan Kowloon, Hong Kong, China INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS P: +852-2739-9933 F: +852-2739-9323 P: +81-3-3779-7227 F: +81-3-3779-7644 SHENZHEN Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS P: +86-755-25904886 F: +86-755-25904883 P: +81-3-3779-7189 F: +81-3-3779-7917 Taiwan: Africa TAIWAN NSK PRECISION CO., LTD. South Africa 10F-A6, No.168, Sec.3, Nanjing East Rd., Zhonoshan Dist., Taipei City 104. TAIPEL & NSK SOUTH AFRICA (PTY) LTD. Taiwan 25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa P: #886-2-2772-3355 F: #886-2-2772-3300 P: +27-11-458-3600 F: +27-11-458-3608 TAICHUNG 3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan Asia and Oceania P: +886-4-2708-3393 F: +886-4-2708-3395 TAINAN Rm. A1, 9F., No.189, Sec. 1, Yongfu Rd., West Central Dist., Tainan City 700, Australia: NSK AUSTRALIA PTY. LTD. P: +886-6-215-6058 F: +886-6-215-5518 MELBOURNE 2 100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia P: +61-3-9765-4400 F: +61-3-9765-4466 India: Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia NSK BEARINGS INDIA PRIVATE LTD. SYDNEY TVH Beliciaa Towers, 2nd Floor, Block I, No.71/1, MRC Nagar Main Road, MRC P: +61-2-9839-2300 F: +61-2-8824-5794 CHENNAI & 1/69 Selburst Street, Coopers Plains, Queensland 4108, Australia Nagar, Chennai, India - 600 028 RRISBANE P: +91-44-2847-9600 F: +91-44-2847-9601 P: ±61_7_3347_2600 F: ±61_7_3345_5376 DEBTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia DELHI Unit No-202 2nd Floor Block-A Iris Tech Park Sector-48 Sohna Boad P: +61-8-9256-5000 F: +61-8-9256-1044 Gurgaon-122018, Harvana, India New Zealand P: ±91-124-4838000 F: ±91-124-4104-532 MUMBA 321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (East), Mumbai NSK NEW ZEALAND LTD. AUCKLAND 3 Te Apunga Place, Mt. Wellington, Auckland 1060, New Zealand -400 093. India P: +91-22-2838-7787 F: +91-22-2838-5191 P: +64-9-276-4992 F: +64-9-276-4082 Indonesia China NSK (SHANGHAI) TRADING CO., LTD. PT. NSK INDONESIA Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia No 8 NSK Rd. Huagian Economic Development Zone, Kunshan, Jiangsu, China (215332) JAKARTA JIANGSU P: +86-512-5796-3000 F: +86-512-5796-3300 P: +62-21-252-3458 F: +62-21-252-3223 NSK (CHINA) INVESTMENT CO., LTD. Korea: NSK KORFA CO. LTD. No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) Posco Center (West Wing) 9F, Western-wing, 440, Teheran-ro, Gangnam-gu, P: +86-512-5796-3000 F: +86-512-5796-3300 SECUL BELLING Room 1906, Beijing Fortune Bldg., No.5 Dong San Huan Bei Lu, Chao Yang District, Seoul 135-777 Korea Beijing, China (100004) P: +82-2-3287-0300 F: +82-2-3287-0345 P: +86-10-6590-8161 F: +86-10-6590-8166 Malaysia NSK BEARINGS (MALAYSIA) SDN. BHD. Unit 4604, 46/F., Metropolitan Tower, 183 Naniing Road, Heping District, Tianiin, China (300051) No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park P: +86-22-8319-5030 F: +86-22-8319-5033 40150 Shah Alam, Selangor, Malaysia Room 902-03, Changchun Hongwell International Plaza, No 3299 Renmin Street, P: +60-3-7803-8859 F: +60-3-7806-5982 CHANGCHUN Changchun, Jilin, China (130061) PRA No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia P: +86-431-8898-8682 F: +86-431-8898-8670 P: +60-4-3902275 F: +60-4-3991830 JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Java, 81100 Johor Bahru, Johor, Malaysia SHENYANG Room 1101 China Resources Building, No. 286 Qingnian Street P: +60-7-3546290 F: +60-7-3546291 Hening District, Shenyang Liagning, China (110004) IPOH No.10&10A Jalan Industri Paloh, Kawasan Perindustrian Bingan Paloh P: +86-24-2334-2868 F: +86-24-2334-2058 Room 1805 Xiwang Tower, No.136 Zhongshan Road 30200 Ipoh, Perak Darul Bidzuan, Malaysia. DALIAN Zhongshan District, Dalian, Liaoning, China (116001) P: +60-5-2555000 F: +60-5-2553373 P: +86-411-8800-8168 F: +86-411-8800-8160 Philippines: NSK REPRESENTATIVE OFFICE Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, 8th Floor The Salcedo Towers 169 H.V. dela Costa St., Jiangsu, China (210029) MANILA Salcedo Village Makati City, Philippines 1227 P: +86-25-8472-6671 F: +86-25-8472-6687 FUZHOU Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, P: +63-2-893-9543 F: +63-2-893-9173 Fuzhou, China (350009) Singapore P: +86-591-8380-1030 F: +86-591-8380-1225 NSK INTERNATIONAL (SINGAPORE) PTE LTD. Room 1512. No.198Yuncai Road, Office Building, Oceanwide City Square, 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 WUHAN SINGAPORE P: ±65_6496_8000 F: +65-6250-5845 JiangHan District WuHan China (400039) P: +86-27-8556-9630 F: +86-27-8556-9615 NSK SINGAPORE (PRIVATE) I TD OINGDAO Room 802, Farglory International Plaza, No.26 Xlanggang Zhong Road, Shinan District, SINGAPORE 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 Qingdao, Shandong, China (266071) P: +65-6496-8000 F: +65-6250-5845 P: +86-532-5568-3877 F: +86-532-5568-3876 GUANGZHOU Room 1011-16, Yuexiu Financial Tower, No.28 Zhujiang Road East, Zhujiang NSK BEARINGS (THAILAND) CO.,LTD. 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand New Town, Guangzhou, Guangdong, China (510627) P: +86-20-3817-7800 F: +86-20-3786-4501 P: +66-2320-2555 F: +66-2320-2826 CHANGSHA Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005) Vietnam: P: +86-731-8571-3100 F: +86-731-8571-3255 NSK VIETNAM CO., LTD. LUOYANG Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) HANO Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District, P: +86-379-6069-6188 F: +86-379-6069-6180 Hanoi, Vietnam P: +84-24-3955-0159 F: +84-24-3955-0158 Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi, NSK REPRESENTATIVE OFFICE China (710068) P: +86-29-8765-1896 F: +86-29-8765-1895 HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1.HCMC, Vietnam CHONGQING Room 612, Commercial Apartment, Sofitel Hotel, No.288, Keyuan Rd.4. P: +84-28-3822-7907 F: +84-28-3822-7910 Jiulongpo District, Chongqing, China (400039) P: +86-23-6806-5310 F: +86-23-6806-5292

CHENGDU

JIANGSU

NSK CHINA SALES CO., LTD.

Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041)

No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

P: +86-28-8528-3680 F: +86-28-8528-3690

P: +86-512-5796-3000 F: +86-512-5796-3300

Worldwide Sales Offices P: Phone F: Fax \$\frac{1}{2}\$: Head Office

Europe

United Kingdon

NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)

Belmont Place, Belmont Road, Majdenhead, Berkshire SL6 6TB, U.K. MAIDENHEAD

P: +44-1628-509-800 F: +44-1628-509-808

Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. NEWARK

France NSK FRANCES AS

NSK UK LTD.

Quartier de l'Europe, 2 Bue Georges Guynemer, 78283 Guyancourt, France PARIS

P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany

NSK DEUTSCHLAND GMBH

DUSSELDORF & Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290 Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany

P: +49-711-79082-0 F: +49-711-79082-289 WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany

P: +49-5361-27647-10 F: +49-5361-27647-70

Italy:

NSK ITALIA S.P.A.

Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy MILANO

F: +39-299-025778

Netherlands

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

De Kroonstraat 38, 5048 AP Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4647648

Poland:

NSK REPRESENTATIVE OFFICE

Ul. Migdalowa 4/73, 02-796, Warsaw, Poland

P: +48-22-645-1525 F: +48-22-645-1529

Russia NSK POLSKA SP. Z O.O.

SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178

P: +7-812-332-5071 F: +7-812-332-5072

Spain:

NSK SPAIN S.A.

C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain BARCELONA

P: +34-93-289-2763 F: +34-93-433-5776

NSK RULMANLARI ORTA DOGU TIC. LTD. STJ.

STANBUL 19 Mayis Mah. Ataturk Cad., Ulya Engin Is Merkezi No: 68 Kat. 6, P.K.: 34736,

Kozyatagi-Istanbul, Turkey

P: +90-216-477-7111 F: +90-216-477-7174

United Arab Emirates:

NSK BEARINGS GULF TRADING CO.

JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, DownTown Jebel Ali,

Dubai HAF

P: ±971-4-804-8207 F: ±971-4-884-7227

North and South America

United States of America:

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: +1-317-738-5000 F: +1-317-738-5050

780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A.

P: +1-408-944-9400 F: +1-408-944-9405

NSK LATIN AMERICA, INC. MIAMI

3470 NW 82nd Avenue Suite 625, Miami FL 33122, U.S.A.

P: +1-305-477-0605 F: +1-305-477-0377

NSK CANADA INC.

Canada:

5585 McAdam Road, Mississaura, Ontario, Canada I 47 1N4 P: +1-905-890-0740 F: +1-800-800-2788

MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: +1-514-633-1220 F: +1-800-800-2788

VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4 P: +1-877-994-6675 F: +1-800-800-2788

Argentina

NSK ARGENTINA SRL

BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

Brazil: NSK BRASIL LTDA.

JOINVILLE

Peru

Mexico:

SUZANO A Av. Vereador Joao Batista Fitipaldi, 66, CEP 08685-000, Vila Maluf, Suzano, SP, Brazil P: +55-11-4744-2500

BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG. Brazil

30150-311

P: +55-31-3274-2591 F: +55-31-3273-4408 Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250

P: +55-47-3422-2239 F: +55-47-3422-2817

PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001 P: +55-51-3346-7851 F: +55-51-3222-2599

RECIFE Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020

P: +55-81-3326-3781 F: +55-81-3326-5047

NSK PERU S.A.C.

LIMA Calle Teniente Enrique Palacios 360 Oficina 311 Miraflores, Lima, Peru

P: +51-1-493-4385

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

MEXICO CITY & Av. Presidente Juarez No.2007 Lote 5. Col. San Jeronimo Tepetlacalco.

Tlalnepantla, Estado de Mexico, Mexico, C.P.54090 P: +52-55-3682-2900 F: +52-55-3682-2937

Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa MONTERREY

Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267

P: +52-81-8000-7300 F: +52-81-8000-7095

<As of October 2018> For the latest information, please refer to the NSK website.

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

