Fine Lock Cylinders/Lock-up Cylinder

CL Series

ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100, ø125, ø140, ø160

CL Series

Specific Product Precautions 1

Be sure to read this before handling the products. The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. Refer to back page 50 for Safety Instructions. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7.

Design of Equipment and Machinery
 Warning

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders.
If there is a risk of contact, provide safety measures such as a cover or a system that uses sensors that will activate an emergency stop before contact is made.
2. Use a balance circuit in which lurching of the piston is taken into consideration. If the lock is applied at a desired position of a stroke and compressed air is applied to only one side of the cylinder, the piston will lurch at a high speed the moment the lock is disengaged. In such a situation, there is a risk of injury to humans, or equipment damage. To prevent the piston from lurching, use a balance circuit such as the recommended pneumatic circuit (P.788). If an air-hydro fine lock cylinder is used, make sure to operate the lock portion through air pressure. Never use oil on the lock-up cylinder because the lock-up cylinder is a non-lube type. Failure to observe this could cause the lock to malfunction.

Selection

\triangle Warning

Refer to the following criteria for the maximum load in the locked state, and set.

Holding force (maximum static load) means the maximum capability of holding a static load that is not accompanied by vibration or mpact under the condition that no load is applied. Therefore, it does not refer to a load that cannot be held constantly. To ensure braking force, the maximum load must be set as described below.

1. For constant static loads, such as for drop prevention:

- Fine lock series (CLJ2/CLM2/CLG1 series)
35% or less of the holding force (maximum static load)
Note) For applications such as drop prevention, consider situations in which the air source is shut off, and make selections based on the holding force of the spring locked state. Do not use the pneumatic lock for drop prevention purposes.
- Lock-up series (CL1 series) 50% or less of the holding force (maximum static load)

2. When kinetic energy acts upon the cylinder in a locked state, such as when effecting an intermediate stop, there are constraints in terms of the allowable kinetic energy. Therefore, refer to the allowable kinetic energy of the respective series. Furthermore, during locking, the mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the kinetic energy. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the amount of the load that can be sustained.

- Fine lock series (CLJ2/CLM2/CLG1 series)
Maximum load at horizontal mounting: 70% or less of the holding force (Maximum static load) for spring lock Maximum load at vertical mounting: 35\% or less of the holding force (Maximum static load) for spring lock
- Lock-up series (CL1 series)

Maximum load at horizontal mounting: 50% or less of the holding force (Maximum static load)
Maximum load at vertical mounting: 25\% or less of the holding force (Maximum static load)
3. In a locked state, do not apply impacts, strong vibrations or rotational forces.
Do not apply a impacts, strong vibrations or rotational forces from external sources, because this could damage or shorten the life of the lock unit
4. The locking of the fine lock cylinder is directional.
Although the fine lock cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions CLJ2/CLM2/CLG1 \cdots. Holding force at piston rod extended side decreases approx. 15\%.
5. The locking of the lock-up cylinder is unidirectional.
Because the locking direction of the lock-up cylinder is unidirectional, select the locking direction in accordance with the particular operating conditions. It is also possible to manufacture a bidirectional lock-up cylinder. For details, refer to "Made to Order" on page 1400. Due to the nature of its construction, a lock-up cylinder has a play of approximately 0.5 mm to 1 mm in the axial direction. Therefore, if an external stopper is used to stop the piston rod and the lock is engaged, the piston rod will shift in the amount of its axial play.
6. To effect an intermediate stop, take the cylinder's stopping precision and overrun amount into consideration. Because the lock is applied by mechanical means, the piston will not stop immediately in response to a stopping signal, but only after a time lag. This lag determines the amount of the overrun of the piston stroke. Thus, the range of the maximum and minimum amounts of the overrun is the stopping precision.

- Place the limit switch before the desired stopping position, only in the amount of the overrun
- The limit switch must have a detection length (dog length) of the overrun amount $+\alpha$.
- For SMC's auto switches, the operating range are between 8 and 14 mm . (It varies depending on a switch model.) When the overrun amount exceeds this range, self-holding of the contact should be performed at the switch load side.
* For stopping accuracy, refer to CLJ2 series (P. 793), CLM2 series (P. 804), CLG1 series (P. 820), and CL1 series (P. 831) respectively.

7. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.
To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.
8. Be aware that the stopping accuracy is influenced by changes in the piston speed. The variance in the stopping position increases if the piston speed changes, such as due to load fluctuations during the reciprocal movement of the piston Therefore, take measures to ensure a constant piston speed immediately preceding the stopping position Furthermore, the variances in the stopping position increases when the piston is effecting a cushioning stroke or during acceleration after starting its movement.
9. When unlocking is performed, if the thrust is applied to the piston, unlocking will not be easily done. To avoid that, ensure that unlocking should be performed before the thrust is applied to the piston.

Specific Product Precautions 2
Be sure to read this before handling the products. The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. Refer to back page 50 for Safety Instructions. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7.

Abstract

\section*{Mounting}

\section*{\triangle Warning} 1. Be certain to connect the rod end to the load with the lock released. - If this is performed with the lock engaged, a load that exceeds the allowable rotational force or holding force would be applied to the piston rod, which could damage the locking mechanism. The fine lock and CL1 series with $\varnothing 40$ to $\varnothing 100$ cylinders have a built-in manual unlocking mechanism. Therefore, they can be maintained in the unlocked state without supplying air. However, it is recommended that the piping is connected to the unlocking port, an air pressure of 0.3 MPa or more is supplied, and the work is performed in the unlocked state. For CL1 series with $\varnothing 125$ to $\varnothing 160$ cylinders, simply connect piping to the lock-up port, and supply air pressure of 0.2 MPa or more to disengage the lock in order to attach a load.

\triangle Caution

1. Do not apply offset loads on the piston rod.

- Pay particular attention to aligning the center of gravity of the load with the axial center of the cylinder. If there is a large amount of deviation, the piston rod could become unevenly worn or damaged due to the inertial moment that is created when the piston rod is stopped by the lock.

X Load center of gravity and cylinder shaft center are not matched.

O Load center of gravity and cylinder shaft center are matched.

Note) Can be used if all of the generated moment is absorbed by an effective guide.

© Caution

1. Do not turn the piston rod with the rod boot kept locked.
When turning the piston rod, loosen the band once and do not twist the rod boot.
2. Set the breathing hole in the rod boot downward or in the direction that prevents entry of dust or water content.

Adjustment
\triangle Caution

1. Place it in the locked position. (Excluding the CL1 series ø125 to ø160.)

- The locks are manually disengaged at the time the cylinders are shipped from the factory. Therefore, make sure to change them to the locked state before using the cylinders. For procedures to effect the change, refer to page 789 for the fine lock series. Be aware that the lock will not operate properly if the change is not performed correctly.
- Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure at the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.

2. Adjust the mounting position of detections such as those of the auto switches. To effect an intermediate stop, adjust the mounting position of the auto switch detection by taking the amount of overrun into consideration in relation to the desired stopping position.

Be sure to read this before handling the products. The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. Refer to back page 50 for Safety Instructions. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7 .

Pneumatic Circuit

. Warning

1. Be certain to use an pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.
In order to prevent cylinder lurching after a lock stop, when restarting or when manually unlocking, a circuit should be used to which will apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.
2. The effective area of the lock release solenoid valve should be at least 50% of the effective area of the cylinder driving solenoid valve, and it should be installed as close to the cylinder as possible so that it is closer than the cylinder driving solenoid valve.
If the effective area of the lock release solenoid valve is smaller than the cylinder driving solenoid valve or if it is installed at a distance from the cylinder, the time required for exhausting air for releasing the lock will be longer, which may cause a delay in the locking operation.
The delay in the locking operation may result in problems such as increase of overrunning when performing intermediate stop or emergency stop during operation, or if maintaining position from the operation stop state such as drop prevention, workpieces may be dropped depending on the timing of the load action to the operation delay of the lock.
3. Avoid backflow of the exhaust pressure when there is a possibility of interference of exhaust air, for example for a common exhaust type valve manifold.
The lock may not operate properly when the exhaust air pressure backflows due to interference of the exhaust air when exhausting air for lock release. It is recommended to use an individual exhaust type manifold or individual valves.
4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock.
When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.
If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
6. Carefully check for dew condensation due to repeated air supply and exhaust of the locking solenoid valve.
The operating stroke of the lock part is very small. So, if the piping is long and the air supply and exhaust are repeated, the dew condensation caused by the adiabatic expansion accumulates in the lock part. This may corrode internal parts, causing air leak or lock release fault.
7. Basic circuit
1) [Horizontal]

Forward

SOL.A	SOL.B	SOL.C	Action
ON	ON	OFF	Forward
OFF	OFF	OFF	Locked stop
ON	OFF	OFF	Unlocked
ON	ON	OFF	Forward
ON	OFF	ON	Backward
OFF	OFF	OFF	Locked stiop
ON	OFF	OFF	Unlocked
ON	OFF	ON	Backward

\triangle Caution

1. A 3 position pressure center solenoid valve and regulator with check valve can be replaced with two 3 port normally open valves and a regulator with relief function.

[Example]
1) [Horizontal]

2) [Vertical]
[Load in the direction of $]$ rod extension

* The symbol for the fine lock cylinder and lock-up cylinder in the pneumatic circuit uses SMC original symbol. (Fine lock cylinder)

Be sure to read this before handling the products. The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. Refer to back page 50 for Safety Instructions. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7.

How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

The lock is manually disengaged at the time the cylinder is shipped from the factory. Because the lock will not operate in this state, make sure to change it to the locked state before operation, after having adjusted the axial center for installation.

How to Change from Unlocked to Locked State

1. CLJ2, CLM2, CLG1 Series
1) Loose locking nut.
2) Turn the wrench flats section of the manual unlocking cam to the LOCK position that is marked on the cam guide.
3) While keeping the wrench flats section in place, tighten the lock nut.
Note) The manual unlocking cam will rotate approximately 180°. Do not rotate the wrench flats section excessively.

\triangle Warning

1. Never operate the unlocking cam until safety has been confirmed. (Do not turn to the FREE side.)

- When unlocking is performed with air pressure applied to only one side of the cylinder, the moving parts of the cylinder will lurch at high speed causing a serious hazard.
- When unlocking is performed, be sure to confirm that personnel are not within the load movement range and that no other problems will occur if the load moves.

2. Before operating the unlocking cam, exhaust any residual pressure which is in the system.
3. Take measures to prevent the load from dropping when unlocking is performed.

- Perform work with the load in its lowest position.
- Take measures for drop prevention by strut, etc.

Note) For details about how to manually unlock the lock-up cylinder ($\varnothing 40$ to $\varnothing 100$) and change from the unlocked state to the locked state, refer to page 834.

Manually Unlocking

The lock of a fine lock series cylinder can be disengaged manually through the procedure described below. However, make sure to disengage the lock pneumatically before operating the cylinder.
Note) Manual disengagement of the lock could create a greater cylinder sliding resistance than pneumatic disengagement of the lock.

1. CLJ2, CLM2, CLG1 Series
1) Loose locking nut.
2) Supply air pressure of 0.3 MPa or more to the lock release port.
3) Turn the wrench flats section of the manual unlocking cam until it stops at the FREE position that is marked on the cam guide.
4) While keeping the wrench flats section in place, tighten the lock nut.

CL Series

Prior to Use

Construction Principle/Applicable Series: CLJ2, CLM2, CLG1, MLGC
Spring locking type

Spring locking (Exhaust locking)
The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of $A B / A C$ through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the unlocking port, thus disengaging the brake spring force.

Pneumatic locking type

Spring and pneumatic locking type

Brake piston is operated by air pressure and spring force.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Fine Lock Cylinder Double Acting, Single Rod CLJ2 Series $\varnothing 16$

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed:

 $500 \mathrm{~mm} / \mathrm{s}$It can be used at 50 to $500 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range.

Head Cover Port Location

Either perpendicular to the cylinder axis or in-line with the cylinder axis is available for basic type.

Axial

Made to Order	Made to Order Specifications (For details, refer to pages 1247 to 1440.)
	Specifications
Symbol	Change of rod end shape
-XA \square	Cher

Refer to pages 798 to 800 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height
- Operating range
- Switch mounting bracket: Part no.

Specifications

Bore size (mm)	16
Action	Double acting, Single rod
Lubricant	Not required (Non-lube)
Lock operation	Spring locking (Exhaust locking) Pneumatic locking (Pressure locking) Spring and pneumatic locking
Fluid	Air
Proof pressure	1.05 MPa
Maximum operating pressure	0.7 MPa
Minimum operating pressure	0.08 MPa
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$
Cushion	Rubber bumper
Stroke length tolerance	+1.0 0
Mounting	Basic type, Axial foot type, Rod side flange type, Double clevis type

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.
The maximum speed of $750 \mathrm{~mm} / \mathrm{s}$ can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Fine Lock Specifications

Lock operation	Spring locking (Exhaust locking)	Spring and pneumatic locking	Pneumatic locking (Pressure locking)
Fluid	Air		
Maximum operating pressure	0.5 MPa		
Unlocking pressure	0.3 MPa or more		
Lock starting pressure	0.25 MPa or less	0.1 MPa or more	
Locking direction	Both directions		

Refer to the minimum auto switch mounting stroke (page 799) for Standard Stroke/those with an auto switch.
(mm)

Bore size (mm)	Standard stroke
16	$15,30,45,60,75,100,125,150,175,200$

* Manufacture of intermediate strokes at 1 mm intervals is possible. (Spacers are not used.)

Mounting Bracket and Accessory/For details about part numbers and dimensions, refer to page 797.

Mounting		Basic type	Axial foot type	Rod side flange type	Double clevis type
	Mounting nut	-	\bigcirc	-	-
	Rod end nut	-	\bigcirc	\bigcirc	\bigcirc
	Clevis pin	-	-	-	\bigcirc
$\begin{aligned} & \text { 들 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Single knuckle joint	\bigcirc	\bigcirc	-	\bigcirc
	Double knuckle joint (With pin)*	\bigcirc	-	\bigcirc	\bigcirc
	T-bracket	-	-	-	-

* Pins and retaining rings are packaged together with double clevis and double knuckle joint.

Mounting Bracket Part No.

Mounting bracket	Part no.
Foot	CLJ-L016B
Flange	CLJ-F016B
T-bracket $*$	CJ-T016B

* T-bracket is used with double clevis (D).

Fine Lock Cylinder Double Acting, Single Rod

Weight

Bore size (mm)		$\mathbf{1 6}$
Standard weight *		320
Additional weight per each 15 mm of stroke		6.5
Mounting bracket Weight	Axial foot type	27
	Rod side flange type	21
	Double clevis type (With pin)	**

* Mounting nut and rod end nut are included in the basic weight.
** Mounting nut is not included in double clevis type.
Calculation: (Example) CLJ2L16-60
- Basic weight............... 320 (ø16)
- Additional weight..........6.5/15 stroke
- Cylinder stroke 60 stroke
$320+6.5 / 15 \times 60+27=373 \mathrm{~g}$

Stopping Accuracy (Not including tolerance of control system.) (mm)

Lock type	Piston speed (mm/s)			
	50	100	300	500
Spring locking (Exhaust locking)	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic locking (Pressure locking) Spring and pneumatic locking	± 0.2	± 0.3	± 0.5	± 1.5

Condition: Load: 2 kg
Solenoid valve: Lock port mounting

\triangle Caution

Selection/Recommended Pneumatic Circuit/Caution on Handling
For detailed specifications of the fine lock cylinder, CLJ2 series mentioned above, refer to pages 786 to 789.

\triangle Caution/Allowable Kinetic Energy when Locking	
Bore size (mm)	$\mathbf{1 6}$
Allowable kinetic energy (J)	0.17

1. In terms of specific load conditions, this allowable kinetic energy is equivalent to a load of 3.7 kg in mass, and a piston speed of 300 $\mathrm{mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, there is no need to calculate.
2. Apply the following formula to obtain the kinetic energy of the load.
$E k=\frac{1}{2} m v^{2}$
Ek: Kinetic energy of load (J)
CLJ2
3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
4. The relationship between the speed and the load is indicated in the graph below. The area below the line is the allowable kinetic energy range.
5. There is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Locking (Maximum static load)

Bore size (mm)	16
Holding force (N)	122

Holding Force of Pneumatic Locking (Maximum static load)

* When selecting cylinders, refer to the Precautions and allowable kinetic energy when locking on page 786 , and then select a cylinder.

© Caution

Caution when Locking

Holding force (maximum static load) means the maximum capability of holding a static load that is not accompanied by vibration or impact under the condition that no load is applied. Therefore, it does not refer to a load that cannot be held constantly.
When using (selecting) this product, carefully check the following points.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- The upper limit of the load that is used under the conditions not associated with the kinetic energy when locking, such as drop prevention must be 35% or less of the holding force.
Do not use the cylinder in the locked state to sustain a load that involves impact.

Spring locking (Exhaust locking)
 Spring and pneumatic locking

Pneumatic locking (Pressure locking)

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cover A	Carbon steel	Nitrided, nickel chrome plated
4	Cover B	Aluminum alloy	Hard anodized
5	Cover C	Aluminum alloy	Hard anodized
6	Intermediate cover	Aluminum alloy	Hard anodized
7	Cylinder tube	Stainless steel	
8	Piston rod	Stainless steel	Hard chrome plated
9	Piston	Aluminum alloy	Chromated
10	Brake piston	Carbon steel	Nitrided
11	Brake arm	Carbon steel	Nitrided
12	Brake shoe	Special friction material	
13	Roller	Carbon steel	Nitrided
14	Pin	Carbon steel	Heat treated
15	Retaining ring	Carbon tool steel	
16	Brake spring	Steel wire	Zinc chromated
17	Bushing A	Bearing alloy	
18	Bushing B	Bearing alloy	
19	Manual lock release cam	Chromium molybdenum steel	Nitrided
20	Cam guide	Carbon steel	Nitrided, platinum silver painted
21	Lock nut	Rolled steel	

No.	Description	Material	Note
22	Plain washer	Rolled steel	
23	Retaining ring	Carbon tool steel	
24	Hexagon socket head cap screw	Chromium molybdenum steel	
25	Spring washer	Steel wire	
26	Hexagon socket head cap screw	Chromium molybdenum steel	
27	Spring washer	Steel wire	
28	Hexagon socket head cap screw	Chromium molybdenum steel	
29	Spring washer	Steel wire	
30	Silencer	Bronze	Type E only
31	Bumper	Urethane	
32	Wear ring	Resin	
33	Mounting nut	Brass	
34	Rod end nut	Rolled steel	
35	Piston seal	NBR	
36	Rod seal A	NBR	
37	Rod seal B	NBR	
38	Brake piston seal	NBR	
39	Cylinder tube gasket	NBR	
40	Intermediate cover gasket	NBR	
41	Cam gasket	NBR	
42	Piston gasket	NBR	

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Basic Type (B)
CLJ2B16- $\square \square$ - E

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

CLJ2 Series

Rod Side Flange Type (F)
CLJ2F16- $\square \square$ -

Double Clevis Type (D) * Clevis pin and retaining ring are shipped together.

CLJ2D16- $\square \square$ -

CLJ2 Series
 Accessory Bracket Dimensions

Accessory Bracket Dimensions

Clevis Pin: CD-Z015

* Retaining rings are shipped together.

Double Knuckle Joint: Y-LJ016B

* Knuckle pin and retaining ring are shipped together.

Material: Rolled stee

Knuckle Pin: IY-J015A

* Retaining rings are shipped together.

Material: Stainless stee \qquad
Material: Stainless steel
T-bracket: CJ-T016B

Material: Rolled steel													
Part no.	Bore size (mm)	TC	TDH10	TH	TK	TN	TT	TU	TV	TW	TX	TY	TZ
CJ-T016B	16	5.5	$5_{0}^{+0.048}$	35	20	6.4	2.3	14	48	28	38	16	10

*T-bracket includes a T-bracket base, single knuckle joint, hexagon socket head cap screw and spring washer.

Rod End Nut: NT-015A

Mounting Nut: SNLJ-016B

CLJ2 Series
 Auto Switch Mounting 1

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch
<Band Mounting>
D-A9■

(): For D-A96
D-C7 $\square / C 80$

D-C73C $\square / C 80 C$

Solid state auto switch

<Band Mounting>
D-M9 \square
D-M9 $\square \mathrm{A}$
D-M9 \square W

(): For D-M9■A
D-H7 \square
D-H7 \square W D-H7BA D-H7NF

D-H7C

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{A (V)} \end{aligned}$		D-A9 \square (V)		$\begin{aligned} & \text { D-C7/C8 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$		$\begin{aligned} & \text { D-H7 } \\ & \text { D-H7C } \\ & \text { D-H7 } \square \text { W } \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$	
	A	B	A	B	A	B	A	B
16	6.5	6.5	2.5	2.5	3	3	2	2

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

	$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{A (V)} \\ & \text { D-A9 } \square(\mathrm{V}) \end{aligned}$	$\begin{aligned} & \text { D-C7/C8 } \\ & \text { D-H7 } \square \\ & \text { D-H7 } \square \text { W } \\ & \text { D-H7NF } \\ & \text { D-H7BA } \end{aligned}$	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$	D-H7C
(mm)	Hs	Hs	Hs	Hs
16	21	20.5	23	23.5

Minimum Auto Switch Mounting Stroke

Auto switch mounting	Auto switch model	No. of auto switches mounted				
		1	2		n (n : No. of auto switches)	
			Different surfaces	Same surface	Different surfaces	Same surface
Band mounting	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-A9 } \square \end{aligned}$	10	$15^{\text {Note 1) }}$	45 Note 1)	$\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 45+15(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$
	D-M9 \square V	5	$15^{\text {Note 1) }}$	35	$\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$	10	$15^{\text {Note 1) }}$	35	$\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$
	D-A9 \square V	5	10	35	$\begin{gathered} 10+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \end{aligned}$	10	15	50	$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 50+20(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$	10	15	60	$\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{aligned} & 60+22.5(n-2) \\ & (\mathrm{n}=2,3,4,5 \ldots) \end{aligned}$
	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	10	15	65	$\begin{gathered} 15+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 50+27.5(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$

Note 1) Auto switch mounting.

Auto switch model	With 2 auto switches		
	Different surfaces		Same surface ${ }^{(1)}$
	The proper auto switch mounting posit from the switch holder edge. The above A and B indicate values for table of page 798	tion is 5.5 mm inward band mounting in the	The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and lead wire do not interfere with each other.
D-M9 $\square / \mathrm{M9} \square$ W/M9 \square A	Less than 20 stroke ${ }^{\text {Note2) }}$		Less than 55 stroke ${ }^{\text {Note2) }}$
D-A90/A93	-		Less than 50 stroke ${ }^{\text {Note2) }}$

Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1.

Operating Range

(mm)	
Auto switch model	Bore size (mm)
	$\mathbf{1 6}$
D-A9 \square	7
D-M9 \square D-M9 $\square \mathbf{W}$	3
D-C7 $\square / C 80$ D-C73C/C80C	7
D-H7 $\square / H 7 \square$ W/H7BA/H7NF	4
D-H7C	9

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.

CLJ2 Series

Auto Switch Mounting 2

Auto Switch Mounting Bracket: Part No.

Auto switch mounting	Auto switch model	Bore size (mm)	
		10	16
Band mounting	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { V } \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-A9 } \square \\ & \text { D-A9 } \square \mathbf{V} \end{aligned}$	Note 1) BJ6-010	$\begin{gathered} \text { Note 1) } \\ \text { BJ6-016 } \end{gathered}$
	$\begin{aligned} & \text { D-M9 } \square \text { A } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$	$\begin{gathered} \text { Note 2) } \\ \text { BJ6-010S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BJ6-016S } \end{gathered}$
	$\begin{aligned} & \text { D-C7■/C80 } \\ & \text { D-C73C/C80C } \\ & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7BA/H7NF } \\ & \hline \end{aligned}$	BJ2-010	BJ2-016

Note 1) Set part number which includes the auto switch mounting band (BJ2-वप्व) and the holder kit (BJ5-1/Switch bracket: Transparent). Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.
Note 2) Set part number which includes the auto switch mounting band (BJ2-पด口S) and the holder kit (BJ4-1/Switch bracket: White).
Note 3) For the D-M9 \square A (V) type auto switch, do not install the switch bracket on the indicator light.
[Mounting screw set made of stainless steel]
The following set of mounting screws made of stainless steel is available. Use it in accordance with the operating environment. (Please order the auto switch mounting bracket separately, since it is not included.)

BBA4: For D-C7/C8/H7 types
Note 2) Refer to page 1226 for the details of BBA4.
D-H7BAL auto switch is set on the cylinder with the stainless steel screws above
when shipped. When an auto switch is shipped independently, BBA4 is attached.

Besides the models listed in How to Order, the following auto switches are applicable.
Refer to pages 1119 to 1245 for the detailed specifications.

Auto switch type	Part no.	Electrical entry (Fetching direction)	Features
Reed	D-C73, C76	Grommet (In-line)	-
	D-C80		Without indicator light
Solid state	D-H7A1, H7A2, H7B		-
	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color indicator)

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1192 and 1193 for details.
* Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1137 for details.

Fine Lock Cylinder Double Acting, Single Rod CLM2 Series
 $\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$

How to Order

Applicable Auto Switches/Refer to pages 1119 to 1245 for further intormation on auto switches.

						Load volt	tage	Auto swit	model		w	len	gth		d			
Type	Special function	entry		(Output)		DC	AC	Perpendicular	In-line	$\begin{array}{r} 0.5 \\ (\mathrm{Nil}) \\ \hline \end{array}$	$\begin{gathered} \hline 1 \\ (\mathrm{M}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ (Z) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { None } \\ \text { (N) } \end{array}$	connector	Applicab	le load	
		Grommet	$\stackrel{\infty}{\infty}$	3-wire (NPN)	$5 \mathrm{~V}, 12 \mathrm{~V}$		-	M9NV	M9N	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	IC circuit		
				3-wire (PNP)			M9PV	M9P	-	-	\bigcirc	\bigcirc	-	\bigcirc	IC circuit			
				2-wire	24 V	12 V		M9BV	M9B	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc			
		Connector		2-wire		12 V		-	H7C	\bigcirc	-	\bigcirc	-	\bigcirc	-			
		Terminal		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	G39A	-	-	-	-	\bigcirc	-	IC circuit		
				2-wire		12 V		-	K39A	-	-	-	O	\bigcirc	-	-		
	Diagnostic indication	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit	$\begin{aligned} & \text { Reay, } \\ & \text { PLC } \end{aligned}$	
	(2-color indicator)			3-wire (PNP)		\% 12 V		M9PWV	M9PW	\bigcirc	-	-	\bigcirc	-	\bigcirc	cincur		
				3-wire (NPN)				M9NAV*1	M9NA*1	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc			
	Water resistant (2-color indicator)			3-wire (PNP)		V, 12 V		M9PAV*1	M9PA*1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	circuit		
				2-wire		12 V		M9BAV*1	M9BA*1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-		
				4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	H7NF	-	-	-	\bigcirc	-	\bigcirc	IC circuit		
		Grommet	¢	3 -wire (NPN equivalent)	-	5 V		-	A96V	A96	-	-	-	-	-	-	IC circuit	-
			\geqslant	2-wire	24 V	12 V	100 V	A93V*2	A93	\bigcirc	-	-	-	-	-	-	Relay, PLC	
			$\frac{2}{2}$				100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	-	-	IC circuit		
			-				$100 \mathrm{~V}, 200 \mathrm{~V}$	-	B54	\bigcirc	-	\bigcirc	-	-	-	-		
			$\stackrel{3}{2}$				200 V or less	-	B64	\bigcirc	-	-	-	-	-			
		Connector	$\stackrel{0}{0}$			12 V	-	-	C73C	-	-	-	\bigcirc	\bigcirc	-			
			\%				24 V or less	-	C80C	-	-	-	\bigcirc	\bigcirc	-	IC circuit		
		Terminal	$\stackrel{\infty}{\sim}$				-	-	A33A	-	-	-	-	\bigcirc	-	-	PLC	
		conduit					$100 \mathrm{~V}, 200 \mathrm{~V}$	-	A34A	-	-	-	-	\bigcirc	-		Relay, PLC	
	Diamosicinimicion 2 2.obrinicicari	DIN terminal						-	A44A	-	-	-	-	\bigcirc	-			
		Grommet							B59W	-		,	-		-			

[^0]
Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: $500 \mathrm{~mm} / \mathrm{s}$

It can be used at 50 to $500 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range.

Specifications

Bore size (mm)	20	25	32	40
Action	Double acting, Single rod			
Type	Air cylinder			
Lock operation	Spring locking (Exhaust locking) Pneumatic locking (Pressurized locking), Spring and pneumatic locking			
Fluid	Air			
Proof pressure	1.5 MPa			
Maximum operating pressure	1.0 MPa			
Minimum operating pressure	0.08 MPa			
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)			
Lubrication	Not required (Non-lube)			
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$			
Cushion	Rubber bumper (Standard equipment)			
Stroke length tolerance	$\begin{gathered} +1.4 \\ 0 \\ \hline \end{gathered}$			
Piping/Screw-in type	Rc 1/8			Rc 1/4
Mounting	Basic type, Axial foot type, Rod side flange type, Head side flange type, Single clevis type, Double clevis type, Head side trunnion type, Clevis integrated type, Bosscut basic type, Boss-cut flange type			

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. The maximum speed of $750 \mathrm{~mm} / \mathrm{s}$ can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Fine Lock Specifications

Lock operation	Spring locking (Exhaust locking)	Spring and pneumatic locking	Pneumatic locking (Pressure locking)
Fluid	Air		
Maximum operating pressure	0.5 MPa		
Unlocking pressure	0.3 MPa or more	0.1 MPa or more	
Lock starting pressure	0.25 MPa or less	0.05 MPa or more	
Locking direction	Both directions		

* Refer to page 804 for the allowable kinetic energy when locking, holding force of spring locking and stopping accuracy.

Standard Stroke $/ \begin{aligned} & \text { Refer to the minimum auto switch mounting stroke (page 816) for } \\ & \text { those with an auto switch }\end{aligned}$

Bore size (mm)	Standard stroke ${ }^{(1)}$ (mm)	Maximum stroke (mm)
$\mathbf{2 0}$		
$\mathbf{2 5}$	$25,50,75,100,125,150$	1000
$\mathbf{3 2}$	$200,250,300$	
$\mathbf{4 0}$		

Note1) Intermediate strokes other than listed above are produced upon receipt of order. Manufacture of intermediate strokes at 1 mm intervals is possible. (Spacers are not used.)
Note 2) When exceeding 300 strokes, the allowable maximum stroke length is determined by the stroke selection table (technical data).

Fine Lock Cylinder Double Acting, Single Rod

Mounting Bracket and Accessory

	Standard equipment			Option					
	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double ${ }^{(3)}$ knuckle joint	$\begin{array}{\|c} \hline \text { Clevis }^{(4)} \\ \text { pivot } \\ \text { bracket } \\ \hline \end{array}$	Rod boot	Pivot ${ }^{(6)}$ bracket	Pivot ${ }^{(7)}$ bracket pin
Basic type	(1 pc.)	\bigcirc	-	-	-	-	-	-	-
Axial foot type	(2)	-	-	-	-	-	-	-	-
Rod side flange type	(1)	-	-	-	-	-		-	-
Head side flange type	(1)		-	-		-		-	-
Clevis integrated type	-(1)	-	-			-		-	-
Single clevis type	-(1)		-			-		-	-
Double clevis type ${ }^{(3)}$	- ${ }^{(1)}$		(5)			-		-	-
Head side trunnion type	(1) ${ }^{(2)}$		-			-		-	-
Boss-cut basic type	(1)		-			-		-	-
Boss-cut flange type	(1)	-	-	-	-	-		-	-
Note					With pin	With pin			

Note 1) Mounting nut is not equipped with clevis integrated type, single clevis type and double clevis type.
Note 2) Trunnion nuts are attached for head side trunnion type.
Note 3) Pin and retaining ring (ø40: cotter pin) are shipped together with double clevis and double knuckle joint.
Note 4) Pin and retaining ring are shipped together with clevis pivot bracket.
Note 5) Clevis pins come with retaining rings (cotter pins for ø40).
Note 6) Pivot brackets do not come with pins and retaining rings.
Note 7) Pivot bracket pins come with retaining rings.
Note 8) For part numbers and dimensions of accessories (Options), refer to pages 811 to 813 .

Calculation: (Example) CLM2L32-100-E

- Basic weight 1.10 (Foot, ø32)
- Additional weight $\cdot \cdots \cdots 0.08 / 50$ stroke
- Cylinder stroke $\cdot \cdots . . .100$ stroke $\quad 1.10+0.08 \times 100 / 50=1.26 \mathrm{~kg}$

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Axial foot *	CM-L020B	CM-L032B	CM-L040B	
Flange	CM-F020B	CM-F032B	CM-F040B	
Single clevis	CM-C020B	CM-C032B	CM-C040B	
Double clevis **	CM-D020B	CM-D032B	CM-D040B	
Trunnion (with nut)	CM-T020B	CM-T032B	CM-T040B	

* When ordering foot bracket, order 2 pieces per cylinder.
** Clevis pin and retaining ring (ø40: cotter pin) are shipped together with double clevis type.

Boss-cut type
Boss for the head side cover bracket is eliminated and the total length of cylinder is shortened.

Specifications

Fluid	Turbine oil (Lock portion is air)
Action	Double acting, Single rod
Bore size (mm)	$ø 20, \varnothing 25, \varnothing 32, \varnothing 40$
Maximum operating pressure	1.0 MPa
Minimum operating pressure	0.2 MPa
Piston speed	15 to $300 \mathrm{~mm} / \mathrm{s}$
Cushion	Rubber bumper (Standard equipment)
Piping	Screw-in type
Mounting	Basic type, Axial foot type, Rod side flange type Head side flange type, Single clevis type Double clevis type, Head side trunnion type Clevis integrated type, Boss-cut type

* Auto switch capable
- For an exterior dimension diagram to identify the mounting support types, refer to pages 806 to 810 as the dimensions are identical to those of standard.

§ Caution/Allowable Kinetic Energy when Locking				
Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Allowable kinetic energy (J)	0.26	0.42	0.67	1.19

1. In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, calculations are unnecessary.
2. Apply the following formula to obtain the kinetic energy of the load.
$E k=\frac{1}{2} m v^{2} \quad \begin{aligned} & \text { Ek: Kinetic energy of load (J) } \\ & m: \text { Load mass }(\mathrm{kg})\end{aligned}$
v: Piston speed (m / s)
3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
4. The relation between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
5. Even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy (Not including tolerance of control system.) (mm)

Locking method	Piston speed (mm/s)				
	$\mathbf{2 0 *}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring locking (Exhaust locking)	± 0.3	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic locking (Pressure locking) Spring and pneumatic locking	± 0.15	± 0.2	± 0.3	± 0.5	± 1.5

Conditions: Load: 25% of thrust force at 0.5 MPa
Solenoid valve: Mounted to the lock port
$20 \mathrm{~mm} / \mathrm{s}$ marked with the asterisk is in the case of actuating hydraulically by means of air-hydro type.

\triangle Caution

Selection/Recommended Pneumatic Circuit/Caution on Handling
「For detailed speceifications of the fine lock cylinder, CLM2 I
I series mentioned above, refer to pages 786 to 789.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Fine Lock Cylinder Double Acting, Single Rod
 CLM2 Series

Construction (Not able to disassemble)
Spring locking (Exhaust locking)
Spring and pneumatic locking

Pneumatic locking (Pressure locking)

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cover	Carbon steel	Nitrided, chrome plated
4	Intermediate cover	Aluminum alloy	Hard anodized
5	Cylinder tube	Stainless steel	
6	Piston rod	Carbon steel	Hard chrome plated
7	Piston	Carbon steel	Chromated
8	Brake piston	Carbon steel	Nitrided
9	Brake arm	Special friction material	
10	Brake shoe	Carbon steel	
11	Roller	Carbon steel	
12	Pin	Spring steol steel wire	
13	Retaining ring	Anti-corrosive treatment	
14	Brake spring	Bearing alloy	
15	Bushing	Stainloss steel	
16	Bushing	Chromium molybdenum steel	Nickel plated
17	Retaining ring	Carbon steel	Nitrided, painted
18	Manual lock release cam	Rolled steel	
19	Cam guide	Rolled steel	
20	Lock nut	Carbon tool steel	
21	Flat washer	Chromium molybdenum steel	
22	Retaining ring		
23	Hexagon socket head cap screw		

No.	Description	Material	Note
$\mathbf{2 4}$	Spring washer	Steel wire	
$\mathbf{2 5}$	Hexagon socket head cap screw	Chromium molybdenum steel	
$\mathbf{2 6}$	Spring washer	Steel wire	
$\mathbf{2 7}$	Hexagon socket head cap screw	Chromium molybdenum steel	
$\mathbf{2 8}$	Spring washer	Steel wire	
$\mathbf{2 9}$	Bumper A	Urethane	
$\mathbf{3 0}$	Bumper B	Urethane	
$\mathbf{3 1}$	Wear ring	Resin	
$\mathbf{3 2}$	Wear ring	Resin	
$\mathbf{3 3}$	Hexagon socket head plug	Carbon steel	Type E only
$\mathbf{3 4}$	Element	Bronze	Type E only
$\mathbf{3 5}$	Piston seal	NBR	
$\mathbf{3 6}$	Piston gasket	NBR	
$\mathbf{3 7}$	Brake piston seal	NBR	
$\mathbf{3 8}$	Rod seal A	NBR	
$\mathbf{3 9}$	Rod seal B	NBR	
$\mathbf{4 0}$	Middle cover gasket A	NBR	
$\mathbf{4 1}$	Middle cover gasket B	NBR	
$\mathbf{4 2}$	Cam gasket	NBR	
43	Mounting nut	Carbon steel	
44	Rod end nut	Carbon steel	

CLM2 Series

Basic Type (B)

CLM2B Bore size - Stroke

Standard type

Boss-cut type

With rod boot

Bore (mm)	Stroke range	A	AL	B1	B2	BC	BN	BP	BQ	BZ	D	E	F	GA	GB	GC	GD	GK	GL	GQ	GR	H	H_{1}	H_{2}	I
20	Up to 300	18	15.5	13	26	38	80	1/8	1/8	57.5	8	$20{ }_{-0.033}^{0}$	13	73.5	8	8	55	3.5	6	4	4	41	5	8	28
25	Up to 300	22	19.5	17	32	45	90	1/8	1/8	69	10	$26{ }_{-0.033}^{0}$	13	83.5	8	9	64.5	4	9	7	7	45	6	8	33.5
32	Up to 300	22	19.5	17	32	45	90	1/8	1/8	69	12	$26{ }_{-0.033}^{0}$	13	83.5	8	9	64.5	4	9	7	7	45	6	8	37.5
40	Up to 300	24	21	22	41	52	100.5	$1 / 8$	$1 / 8$	76	14	$32{ }_{-0.039}^{0}$	16	90.5	11	8	70	4	11	8	7	50	8	10	46.5

Bore (mm)	K	MM	N	NA	NN	P	PG	PH	PL	PW	S	ZZ
20	5	M8 $\times 1.25$	15	24	M 20×1.5	1/8	22	19.5	20	38	127	181
25	5.5	M10 1.25	15	30	M 26×1.5	1/8	27	24	24	41	137	195
32	5.5	M10 $\times 1.25$	15	34.5	$\mathrm{M} 26 \times 1.5$	$1 / 8$	27	24	24	41	139	197
40	7	M14 $\times 1.5$	21.5	42.5	M32 $\times 2$	$1 / 4$	29	24	24	41	167	233

Boss-cut

Bore (mm)	ZZ
20	168
25	182
32	184
40	217

With Rod Boot

Bore (mm)	e	f	h					ℓ					ZZ					$\underset{(\text { Reference })}{\text { JH }}$	$\underset{(\text { Reference })}{\text { JW }}$
			1 to 50	51 to 100	101 to 150	151 to 200	20110300	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	1 to 50	51 to 100	101 to 150	151 to 200	20110300		
20	36	17	68	81	93	106	131	12.5	25	37.5	50	75	208	221	233	246	271	23.5	10.5
25	36	17	72	85	97	110	135	12.5	25	37.5	50	75	222	232	247	260	285	23.5	10.5
32	36	17	72	85	97	110	135	12.5	25	37.5	50	75	224	237	249	262	287	23.5	10.5
40	46	19	77	90	102	115	140	12.5	25	37.5	50	75	260	273	285	298	323	23.5	10.5

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Fine Lock Cylinder Double Acting, Single Rod CLM2 Series

Axial Foot Type (L)
CLM2L

Bore (mm)	K	LC	LD	LH	LS	LT	LX	LZ	MM	N	NA	NN	P	PG	PH	PL	PW	S	X	Y	z	zz
20	5	4	6.8	25	167	3.2	40	55	M8× 1.25	15	24	M20 1.5	1/8	22	19.5	20	38	7	20	8	21	196
25	5.5	4	6.8	28	177	3.2	40	55	M10 $\times 1.25$	15	30	M26 $\times 1.5$	1/8	27	24	24	41	137	20	8	25	210
32	5.5	4	6.8	28	179	3.2	40	55	M10 1.25	15	34.5	M26 1.5	1/8	27	24	24	41	39	20	8	25	2
40	7	4	7	30	213	3.2	55	75	M14 1.5	21.5	42.5	M32 $\times 2$	$1 / 4$	29	24	24	41	167	23	10	27	250

Head Side Flange Type (G)

CLM2G Bore size - Stroke

(mm)

Bore (mm)	Stroke range	A	AL	B	B1	B2	BC	BN	BP	BQ	BZ	C_{1}	D	E	F	FD	FT	FX	FY	FZ	GA	GB
20	Up to 300	18	15.5	34	13	26	38	80	1/8	1/8	57.5	30	8	20-0.033	13	7	4	60		75	73.5	8
25	Up to 300	22	19.5	40	17	32	45	90	1/8	1/8	69	37	10	26-0.033	13	7	4	60	-	75	83.5	8
32	Up to 300	22	19.5	40	17	32	45	90	1/8	1/8	69	37	12	26-0.033	13	7	4	60	-	75	83.5	8
40	Up to 300	24	21	52	22	41	52	100.5	1/8	1/8	76	47.3	14	32-0.039	16	7	5	66	36	82	90.5	11

Bore (mm)	GC	GD	GK	GL	GQ	GR	H	H_{1}	H_{2}	K	MM	N	NA	NN	P	PG	PH	PL	PW	S	z	zz
20	8	55	3.5	6	4	4	41	5	8	5	M8 $\times 1.25$	15	24	M20 $\times 1.5$	1/8	22	19.5	20	38	127	172	181
25	9	64.5	4	9	7	7	45	6	8	5.5	M10 $\times 1.25$	15	30	M26× 1.5	1/8	27	24	24	41	137	186	195
32	9	64.5	4	9	7	7	45	6	8	5.5	M10 1.25	15	34.5	M26 1.5	1/8	27	24	24	41	139	188	197
40	8	70	4	11	8	7	50	8	10	7	M14 1.5	21.5	42.5	M 32×2	$1 / 4$	29	24	24	41	167	222	233

CLM2 Series

Rod Side Flange Type (F)

CLM2F Bore size - Stroke

Boss-cut type

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Fine Lock Cylinder Double Acting, Single Rod
 CLM2 Series

Single Clevis Type (C)

Double Clevis Type (D)

CLM2D Bore size - Stroke

\square BQ (Rc, NPT) locking port for pressurizing

(mm)

Bore (mm)	Stroke range		A	AL	B1	BC	BN	BP	BQ	BZ	CD	CX	CZ	D	E		F	GA	GB	GC	GD	GK	GL
20	Up to 300		18	15.5	13	38	80	1/8	1/8	57.5	9	10	19	8		${ }_{0}^{0} 0$	13	73.5	8	8	55	3.5	6
25	Up to 300		22	19.5	17	45	90	$1 / 8$	1/8	69	9	10	19	10		${ }_{0}^{0.033}$	13	83.5	8	9	64.5	4	9
32	Up to 300		22	19.5	17	45	90	1/8	1/8	69	9	10	19	12		${ }_{0}^{0.033}$	13	83.5	8	9	64.5	4	9
40	Up to 300		24	21	22	52	100.5	1/8	1/8	76	10	15	30	14	32	${ }_{0}^{0.039}$	16	90.5	11	8	70	4	11
Bore (mm)	GQ	GR	H	H_{1}	I	K	L			N	NA			P	PG	PH	PL	PW	RR	S	U	Z	ZZ
20	4	4	41	5	28	5	30	M8 x	1.25	15	24	M20	$\times 1.5$	1/8	22	19.5	20	38	9	127	14	198	207
25	7	7	45	6	33.5	5.5	30	M10 \times	$\times 1.25$	15	30	M26	$\times 1.5$	$1 / 8$	27	24	24	41	9	137	14	212	221
32	7	7	45	6	37.5	5.5	30	M10 \times	$\times 1.25$	15	34.5	M26	$\times 1.5$	$1 / 8$	27	24	24	41	9	139	14	214	223
40	7	7	50	8	46.5	7	39	M14	x 1.5	21.5	42.5	M32	$\times 2$	$1 / 4$	29	24	24	41	11	167	18	256	267

[^1]
CLM2 Series

Head Side Trunnion Type (T)

Bore (mm)	Stroke range		A	AL	B1 $\mathrm{B}^{\text {B2 }}$	BC	BN	BP ${ }^{\text {BQ }}$	BZ	D	E			F	GA	GB	GC	GD	GK	GL	GQ
20	Up to 300		18	15.5	13 26	38	80	1/8 $1 / 8$	57.5	8		$20-0.033$		13	73.5	8	8	55	3.5	6	4
25	Up to 300		22	19.5	17	45	90	$1 / 8$	69	10		$26-0.033$		13	83.5	8	9	64.5	4	9	7
32	Up to 300		22	19.5	17	45	90	1/8 $1 / 1 / 8$	69	12		$26-0.033$		13	83.5	8	9	64.5	4	9	7
40	Up to 300		24	21	$22 \quad 41$	52	100.5	1/8 $1 / 8$	76	14		$32-0.039$		16	90.5	11	8	70	4	11	8
Bore (mm)	GR	H	H_{1}	K	MM	N	NA	NN	P	PG	PH	PL	PW	S	TD	TT	TX	TY	TZ	Z	ZZ
20	4	41	5	5	M8×1.25	15	24	M20 $\times 1.5$	1/8	22	19.5	20	38	127	8	10	32	32	52	173	183
25	7	45	6	5.5	M10 $\times 1.25$	15	30	M26 $\times 1.5$	1/8	27	24	24	41	137	9	10	40	40	60	187	197
32	7	45	6	5.5	M10 1.25	15	34.5	M26 $\times 1.5$	$1 / 8$	27	24	24	41	139	9	10	40	40	60	189	199
40	7	50	8	7	M14 $\times 1.5$	21.5	42.5	M 32×2	$1 / 4$	29	24	24	41	167	10	11	53	53	77	222.5	233

Clevis Integrated Type (E)

CLM2E Bore size-Stroke

Bore size - Stroke

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

CLM2 Series
 Accessory Bracket Dimensions 1

Single Knuckle Joint
(mm)

Bore size	\mathbf{A}	\mathbf{H}	$\mathbf{M M}$	$\mathbf{N D}_{\mathbf{H} 10}$	$\mathbf{N X}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	\mathbf{Y}	\mathbf{Z}
$\mathbf{2 0}$	18	41	$\mathbf{M} 8 \times 1.25$	$9^{+0.058}$	$9_{-0.2}^{-0.1}$	14	10	11	66
$\mathbf{2 5 , 3 2}$	22	45	M10 $\times 1.25$	$9_{0}^{+0.058}$	$9_{-0.2}^{-0.1}$	14	10	14	69
$\mathbf{4 0}$	24	50	M14 $\times 1.5$	$12^{+0.070}$	$16_{-0.3}^{-0.1}$	20	14	13	92

Double Knuckle Joint (mm)

Bore size	\mathbf{A}	\mathbf{H}	\mathbf{L}	$\mathbf{M M}$	$\mathbf{N D}$	$\mathbf{N X}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{U}_{\mathbf{2}}$	\mathbf{Y}	\mathbf{Z}
$\mathbf{2 0}$	18	41	25	M 8×1.25	9	$9_{+0.1}^{+0.2}$	10	14	11	66
$\mathbf{2 5 , 3 2}$	22	45	25	M10 $\times 1.25$	9	$9_{+0.1}^{+0.2}$	10	14	14	69
$\mathbf{4 0}$	24	50	49.7	M14 $\times 1.5$	12	$16_{+0.1}^{+0.3}$	13	25	13	92

Double Knuckle Joint

Single Knuckle Joint
(mm)

I-020B/032B Material: Rolled steel I-040B Material: Free cutting sulfur steel

Y-020B/Y-032B Material: Rolled steel
Y-040B Material: Cast iron

Part no.	Applicable bore size	A	A1	E1	L	L1	MM	ND	NX	NZ	R1	U_{1}	Applicable pin part number	Retaining Cosing size Cotter in
Y-020B	20	46	16	20	25	36	M8 $\times 1.25$	9	$9_{+0.1}^{+0.2}$	18	5	14	CDP-1	Type C 9 for axis
Y-032B	25, 32	48	18	20	25	38	M10 $\times 1.25$	9	$9_{+0.1}^{+0.2}$	18	5	14	CDP-1	Type C 9 for axis
Y-040B	40	68	22	24	49.7	55	M14 $\times 1.5$	12	$16_{+0.1}^{+0.3}$	38	13	25	CDP-3	ø3×18 ℓ

Double Clevis Pin/Material: Carbon steel
(mm)

Bore size/ø20, ø25, ø32
CDP-1

Retaining ring: Type C 9 for axis

Bore size/ø40 CDP-2

Cotter pin 93×18 ८

Double Knuckle Pin/Material: Carbon steel
(mm)

CDP-1
Bore size/ø40

Retaining ring: Type C9 for axis

CDP-3

Cotter pin
$\varnothing 3 \times 18 \ell$

CLM2 Series

Accessory Bracket Dimensions 2

Rod End Nut
(mm)

Material: Carbon steel

Part no.	Applicable bore size	\mathbf{B}	\mathbf{C}	D	d	\mathbf{H}
NT-02	$\mathbf{2 0}$	13	15.0	12.5	$\mathrm{M} 8 \times 1.25$	5
NT-03	$\mathbf{2 5 , 3 2}$	$\mathbf{1 7}$	19.6	16.5	$\mathrm{M} 10 \times 1.25$	6
NT-04	$\mathbf{4 0}$	22	25.4	21.0	$\mathrm{M} 14 \times 1.5$	8

Mounting Nut

Part no.	Applicable bore size	B	C	D	d	H
SN-020B	$\mathbf{2 0}$	26	30	25.5	$\mathrm{M} 20 \times 1.5$	8
SN-032B	$\mathbf{2 5 , 3 2}$	32	37	31.5	$\mathrm{M} 26 \times 1.5$	8
SN-040B	$\mathbf{4 0}$	41	47.3	40.5	$\mathrm{M} 32 \times 2.0$	10

Clevis Pivot Bracket (For CLM2E)
(mm)

Material: Rolled steel plate

Part no.	Applicable bore size	L	LC	LD	LE	LF	LG	LH	LR	LT	LX	LY	LV	Applicable pin part no.
CM-E020B	$\mathbf{2 0 , 2 5}$	24.5	8	6.8	22	15	30	30	10	3.2	12	59	18.4	CD-S02
CM-E032B	$\mathbf{3 2 , 4 0}$	34	10	9	25	15	40	40	13	4	20	75	28	CD-S03

Note 1) Clevis pins and retaining rings (cotter pins for $\varnothing 40$) are attached.
Note 2) It cannot be used for single clevis type (CM2C) and double clevis type (CM2D).

Clevis Pin (For CLM2E)

Material: Carbon steel

Part no.	Applicable bore size	$\mathbf{D}_{\mathbf{d 9}}$	\mathbf{d}	\mathbf{L}	\mathbf{L}_{1}	\mathbf{m}	\mathbf{t}	Applicable retaining ring part no.
CD-S02	$\mathbf{2 0 , 2 5}$	$8_{-0.046}^{-0.040}$	7.6	24.5	19.5	1.6	0.9	Type C 8 for axis
CD-S03	$\mathbf{3 2 , 4 0}$	$10_{-0.076}^{-0.040}$	9.6	34	29	1.35	1.15	Type C 10 for axis

Note) Retaining rings are attached.

Single Clevis

Rotation Angle

Bore size (mm)	\mathbf{A}°	\mathbf{B}°	$\mathbf{A}^{\circ}+\mathbf{B}^{\circ}+90^{\circ}$
$\mathbf{2 0}$	25	85	200
$\mathbf{2 5 , 3 2}$	21	81	192
$\mathbf{4 0}$	26	86	202

Mounting	Part no.	Applicable bore size	CX	$\mathbf{Z}+$ Stroke	CD	LX	LZ
CLM2C (Single clevis type)	CM-B032	20	10	198	9	44	60
		25		212			
		32		214			
	CM-B040	40	15	256	10	49	65

Note) Pivot brackets do not come with pivot bracket pins and retaining rings.
Head Side Trunnion

Note) Pivot brackets do not come with pivot bracket pins and retaining rings.

Pivot Bracket

* 2 brackets per set

Pivot Bracket Pin (For CM2C)

CLM2 Series
 Auto Switch Mounting 1

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch

D-A9 \square

(): For D-A96

D-C7/C8

D-B5/B6/B59W

D-A33A/A34A

D-A44A

D-C73C/C80C

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switch Proper Mounting Position

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height

	$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \text { W(V) } \\ & \text { D-M9 } \square \mathrm{A}(\mathrm{~V}) \\ & \text { D-A9 } \square \text { (V) } \end{aligned}$	$\begin{aligned} & \text { D-C7/C8 } \\ & \text { D-H7 } \square \\ & \text { D-H7 } \square W \\ & \text { D-H7NF } \\ & \text { D-H7BA } \end{aligned}$	$\begin{aligned} & \text { D-B5 } \square \\ & \text { D-B64 } \\ & \text { D-B59W } \\ & \text { D-G5NT } \\ & \text { D-H7C } \end{aligned}$	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$	$\begin{aligned} & \text { D-A3 } \square A \\ & \text { D-G39A } \\ & \text { D-K39A } \end{aligned}$	D-A44A
Bore size	Hs	Hs	Hs	Hs	Hs	Hs
20	23	22.5	25.5	25	60	69.5
25	25.5	25	28	27.5	62.5	72
32	29	28.5	31.5	31	66	75.5
40	33	32.5	35.5	35	70	79.5

CLM2 Series
Auto Switch Mounting 2

Minimum Auto Switch Mounting Stroke

n : No. of auto switches (mm)					
Auto switch model	No. of auto switches mounted				
	1	2		n	
		Different surfaces	Same surface	Different surfaces	Same surface
D-M9 \square	5	20	55	$\begin{array}{r} 20+35 \frac{(n-2)}{2} \\ (n=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-M9 \square W	10	20	55	$\begin{gathered} 20+35 \frac{(n-2)}{2} \\ (n=2,4,6 \ldots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-M9 \square A	10	25	60	$\begin{array}{r} 25+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 60+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-A9 \square	5	15	50	$\begin{array}{r} 15+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 50+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-M9 \square V	5	20	35	$\begin{array}{r} 20+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-A9 ${ }^{\text {V }}$	5	15	25	$\begin{array}{r} 15+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 25+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$	10	20	35	$\begin{array}{r} 20+35 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \mathrm{D}-\mathrm{C} 7 \square \\ & \mathrm{D}-\mathrm{C} 80 \end{aligned}$	5	20	60	$\begin{array}{r} 20+45 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 60+45(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7■W } \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$	10	25	70	$\begin{array}{r} 25+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 70+45(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \\ & \hline \end{aligned}$	15	30	80	$\begin{array}{r} 30+50 \frac{(n-2)}{2} \\ (n=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 80+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \\ & \text { D-G5 } \\ & \text { D-K59 } \end{aligned}$	10	25	70	$\begin{array}{r} 25+50 \frac{(n-2)}{2} \\ (n=2,4,6 \ldots)^{\text {Note } 3)} \end{array}$	$\begin{gathered} 70+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
D-B59W	15	30	75	$\begin{gathered} 30+50 \frac{(n-2)}{2} \\ (n=2,4,6 \ldots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 75+50(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$
$\begin{aligned} & \text { D-A3■A } \\ & \text { D-G39A } \\ & \text { D-K39A } \\ & \text { D-A44A } \\ & \hline \end{aligned}$	20	35	110	$\begin{aligned} & 35+30 \frac{(n-2)}{2} \\ & (n=2,3,4,5 \ldots) \end{aligned}$	$\begin{gathered} 110+100(n-2) \\ (n=2,3,4,5 \ldots) \end{gathered}$

Note 3) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 1) Auto switch mounting

Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Operating Range

Auto switch model	Bore size			
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
D-A9 \square	6	6	6	6
D-M9 \square D-M9 \square	3.5	3	3.5	3
D-C7 $\square / C 80$ D-C73C/C80C	7	8	8	8
D-B5 $\square / B 64$ D-A3 \square A/A44A	8	8	9	9
D-B59W				

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.

Auto Switch Mounting Bracket: Part No.

Auto switch model	Bore size (mm)			
	$ø 20$	$\varnothing 25$	ø32	$\varnothing 40$
$\begin{aligned} & \text { D-M9 } \square \mathrm{V}(\mathrm{~V}) \\ & \mathrm{D}-\mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) \\ & \mathrm{D}-\mathrm{A} 9 \square \mathrm{~V}(\mathrm{~V}) \end{aligned}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-020 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-025 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-032 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BM5-040 } \end{gathered}$
D-M9 \square AV(V)	$\begin{gathered} \text { Note 2) } \\ \text { BM5-020S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-025S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-032S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BM5-040S } \end{gathered}$
$\begin{aligned} & \text { D-C7 } \square / C 80 \\ & \text { D-C73C/C80C } \\ & \text { D-H7 } \square \\ & \text { D-H7 } \square W \\ & \text { D-H7NF } \\ & \text { D-H7BA } \end{aligned}$	BM2-020A	BM2-025A	BM2-032A	BM2-040A
$\begin{aligned} & \text { D-B5 } \square / B 64 \\ & \text { D-B59W } \\ & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square W / K 59 W \\ & \text { D-G5BA/G59F } \\ & \text { D-G5NT } \\ & \text { D-G5NB } \end{aligned}$	BA2-020	BA2-025	BA2-032	BA2-040
$\begin{aligned} & \text { D-A3 } \square \text { A/A44A } \\ & \text { D-G39A/K39A } \end{aligned}$	BM3-020	BM3-025	BM3-032	BM3-040

Note 1) Set part number which includes the auto switch mounting band (BM2- $\square \square \square \mathrm{A}$) and the holder kit (BJ5-1/Switch bracket: Transparent).
Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.
Note 2) Set part number which includes the auto switch mounting band (BM2- $\square \square \square \mathrm{AS} /$ Stainless steel screw) and the holder kit (BJ4-1/Switch bracket: White).
Note 3) For the D-M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch, do not install the switch bracket on the indicator light.
(1) BJ $\square-1$ is a set of "a" and " b ".
(2) BM2- $\square \square \square A(S)$ is a set of " c " and " d ". Band (c) is mounted so that the projected part is on the internal side (contact side with the tube).

BJ4-1 (Switch bracket: White)
BJ5-1 (Switch bracket: Transparent)

Auto switch type	Part no.	Electrical entry (Fetching direction)	Features
Reed	D-B53, C73, C76	Grommet (In-line)	-
	D-C80		Without indicator light
Solid state	D-H7A1, H7A2, H7B		-
	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color)
	D-G5NT		With timer

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1192 and 1193 for details.
* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1137 for details.
* Wide range detection type, solid state auto switches (D-G5NB type) are also available. Refer to page 1182 for details.

Fine Lock Cylinder Double Acting, Single Rod CLG1 Series $\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$

How to Order

Applicable Auto Switches/Refer to pages 1119 to 1245 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)					Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ (\mathrm{NiI}) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 1 \\ (\mathrm{M}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c} \hline 5 & \mathbf{N o} \\ \hline(\mathrm{Z}) & (\mathrm{I} \\ \hline \end{array}$	$\begin{aligned} & \text { None } \\ & (\mathrm{N}) \end{aligned}$			
	-	Grommet	$\stackrel{\Delta}{\infty} \stackrel{e}{\boldsymbol{\infty}}$	3-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	$\underset{\text { circuit }}{\text { IC }}$	Relay, PLC
				(NPN)				-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc		
				3-wire				M9PV	M9P	-	-	-	\bigcirc	-	\bigcirc		
								-	-	-	-	-	\bigcirc	-	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	-	
								-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc		
		Connector						-	H7C	-	-	-	\bigcirc	-	-		
	Diagnostic indication (2-color indicator)	Grommet		3-wire		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	-	-	-	\bigcirc	-	\bigcirc	$\underset{\text { circuit }}{\text { IC }}$	
				(NPN)				-	-	-	-	-	\bigcirc	-	\bigcirc		
								M9PWV	M9PW	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc		
				(PNP)				-	-	-	-	-	\bigcirc	-	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	
								-	-	-	-	-	\bigcirc	-	\bigcirc		
	Water			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NAV*1	M9NA* ${ }^{\text {* }}$	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	$\begin{array}{\|c\|} \hline \text { IC } \\ \text { circuit } \end{array}$	
	resistant			3-wire (PNP)				M9PAV*1	M9PA* ${ }^{\text {* }}$	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc		
	(2-color			2-wire				M9BAV*1	M9BA* ${ }^{\text {* }}$	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	
	indicator)			2-wire				-	-	-	-	-	\bigcirc	-	\bigcirc		
	${ }_{\text {With diagosic outut }}^{\text {(2-color indicato }}$			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	H7NF	-	-	-	\bigcirc	-	\bigcirc	IC circuit	
		Grommet		3 wive (NPNequividerit	-	5 V	-	A96V	A96	-	-	-	-	-	-	IC circuit	-
				2-wire	24 V	12 V	100 V	A93V*2	A93	-	-	-	\bigcirc	-	-	-	Relay, PLC
			$\frac{2}{2}$				100 V orless	A90V	A90	\bigcirc	-	-	-	-	-	IC circuit	
			\%				$100 \mathrm{~V}, 200 \mathrm{~V}$	-	B54	-	-	\bigcirc	\bigcirc	-	-	-	
			2				200 Vorless	-	B64	\bigcirc	-	\bigcirc	-	-	-		
		Connector	$\stackrel{0}{0}$				-	-	C73C	-	-	-	\bigcirc	\bigcirc	-		
			年				24 Vorless	-	C859	\bigcirc	-	-	-	-	-	IC circuit	
		Grommet	家			-	-	-	B59W	-	-	-	-	-	-	-	

[^2]* Since there are other applicable auto switches than listed above, refer to page 829 for details.
* For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.
* D-A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled at the time of shipment.)

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Fine Lock Cylinder Double Acting, Single Rod

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions
The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: $\mathbf{5 0 0} \mathbf{~ m m} / \mathrm{s}$
It can be used at 50 to $500 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range.

Weight					(kg)
Bore size (mm)		20	25	32	40
$\stackrel{7}{0}$$\stackrel{0}{0}$030000	Basic type	0.61	0.97	1.06	1.35
	Axial foot type	0.72	1.10	1.22	1.57
	Flange type	0.73	1.15	1.23	1.58
	Trunnion type	0.62	0.99	1.09	1.40
	Clevis type	0.66	1.05	1.21	1.58
Rod side pivot bracket		0.11	0.13	0.20	0.27
Head side pivot bracket		0.08	0.09	0.17	0.25
Single knuckle joint		0.05	0.09	0.09	0.10
Double knuckle joint (with pin)		0.05	0.09	0.09	0.13
Additional weight per each 50 mm of stroke		0.05	0.07	0.09	0.15
Additional weight with air cushion		0.01	0.01	0.02	0.02
Additional weight for long stroke		0.01	0.01	0.02	0.03

Calculation: (Example)
CLG1LA20-100 (Foot Type, ø20, 100 st)

- Basic weight 0.72
- Additional weight0.05/50 st
- Air cylinder stroke............................ 100 st
- Additional weight of air cushion $\cdots \cdots . .0 .01 \mathrm{~kg}$
$0.72+0.05 \times 100 / 50+0.01=0.83 \mathrm{~kg}$

Model

Series	Type	Action	Cushion	Bore size (mm)	Lock operation
CLG1 $\square \mathbf{N}$	Non-lube	Double acting	Rubber bumper	20,25 32,40	Spring locking (Exhaust locking) Pneumatic locking (Pressure locking) Spring and pneumatic locking

Specifications

Bore size (mm)	20	25	32	40
Fluid	Air			
Lubrication	Not required (Non-lube)			
Proof pressure	1.5 MPa			
Maximum operating pressure	1 MPa			
Minimum operating pressure	0.08 MPa			
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)			
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{sec}^{*}$			
Stroke length tolerance	Up to $1000 \mathrm{st}^{+1.4} \mathrm{~mm}$ to $1500 \mathrm{st}^{+1.8}{ }_{0} \mathrm{~mm}$			
Cushion	Rubber bumper, Air cushion			
Mounting **	Basic type, Axial foot type, Rod side flange type, Head side flange type, Rod side trunnion type, Head side trunnion type, Clevis type (Used when port position is changed to 90°.)			

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.
The maximum speed of $1000 \mathrm{~mm} / \mathrm{s}$ can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.
** The long stroke type is applicable to the axial foot type, and the rod side flange type.
Fine Lock Specifications

Lock operation	Spring locking (Exhaust locking)	Spring and pneumatic locking	Pneumatic locking (Pressure locking)
Fluid	Air		
Maximum operating pressure	0.5 MPa		
Unlocking pressure	0.3 MPa or more	0.1 MPa or more	
Lock starting pressure	0.25 MPa or less	0.05 MPa or more	
Locking direction	Both directions		

Accessory

Mounting		Basic type	Axial foot type	Rod side flange type	Head side flange type	Rod side trunnion type	Head side trunnion type	Clevis type
Standard equipment	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc
	Clevis pin	-	-	-	-	-	-	-
Option	Single knuckle joint	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Double knuckle joint* (With pin)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Pivot bracket	-	-	-	-	-	\bigcirc	-
	Rod boot	-	-	-	\bigcirc	-	-	-

* Pin and retaining ring are shipped together with double knuckle joint.
* For part numbers and dimensions, refer to page 825. (For rod boots, refer to pages 821 and 823.)

Standard Stroke $/ \begin{aligned} & \text { Refer to the minimum auto switch mounting stroke (page 827) for those } \\ & \text { with anto switch. }\end{aligned}$

Bore size (mm)	Standard stroke (mm)	Long stroke (mm)	Maximum manufacturable stroke (mm)
20	$\begin{aligned} & 25,50,75,100, \\ & 125,150,200 \\ & \hline \end{aligned}$	201 to 350	1500
25	$\begin{aligned} & 25,50,75,100, \\ & 125,150,200, \\ & 250,300 \end{aligned}$	301 to 400	
32		301 to 450	
40		301 to 800	

* Intermediate stroke is available, too. Spacers are not used.
* Long strokes are applicable for the axial foot and rod side flange types. If other mounting brackets are used or the length exceeds the long stroke limit, the maximum stroke should be determined based on the stroke selection table (technical data).

Refer to pages 826 to 829 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
\mathbf{J}	Nylon tarpaulin	$70^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}{ }^{*}$

* Maximum ambient temperature for the rod boot itself.
4 Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Allowable kinetic energy (J)	0.26	0.42	0.67	1.19

1. In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, calculations are unnecessary.
2. Apply the following formula to obtain the kinetic energy of the load.

Ek: Kinetic energy of load (J)
$E k=\frac{1}{2} m v^{2}$
m : Load mass (kg)
v : Piston speed (m/s) (Average speed $x 1.2$ times)
3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
4. The relation between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
5. Even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Locking (Maximum static load)

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Holding force (N)	196	313	443	784

Note) Holding force at piston rod extended side decreases approximately 15%.
Holding Force of Pneumatic Locking (Maximum static load)

* When selecting cylinders, refer to the Precautions and allowable kinetic energy when locking on page 786, and then select a cylinder.

© Caution

Caution when Locking

Holding force (maximum static load) means the maximum capability of holding a static load that is not accompanied by vibration or impact under the condition that no load is applied. Therefore, it does not refer to a load that cannot be held constantly.
When using (selecting) this product, carefully check the following points.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- The upper limit of the load that is used under the conditions not associated with the kinetic energy when locking, such as drop prevention must be 35% or less of the holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Stopping Accuracy (Not including tolerance of control system.) (mm)

	Piston speed (mm/s)			
Locking method	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring locking (Exhaust locking)	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic locking (Pressure locking) Spring and pneumatic locking	± 0.2	± 0.3	± 0.5	± 1.5

Condition/load: 25% of thrust force at 0.5 MPa
Solenoid valve: Mounted to the lock port

\triangle Caution

Selection/Recommended Pneumatic Circuit/Caution on Handling
For detailed speceifications of the fine lock cylinder, CLG1 series I mentioned above, refer to pages 786 to 789 .

Operating Precautions

\triangle Warning

1. Do not operate the cushion valve in the fully closed or fully opened state.
Using it in the fully closed state will cause the cushion seal to be damaged. Using it in the fully opened state will cause the piston rod assembly or the cover to be damaged.
2. Operate within the specified cylinder speed.

Otherwise, cylinder and seal damage may occur.
3. Carefully check the cushion performance in a low speed range. The performance and effect at around $50 \mathrm{~mm} / \mathrm{s}$ may vary depending on the individual difference of each product.
4. If a cylinder is actuated at high speed when mounted with one side fastened and one side free (basic type, flange type, direct mount type), the bending moment may act on the cylinder due to vibration at the stroke end, causing damage to the cylinder. In such cases, install a mounting bracket to suppress vibration of the cylinder body, or reduce piston speed until the cylinder body does not vibrate at the stroke end. Also, use a mounting bracket when moving the cylinder body, or mounting a long stroke cylinder horizontally with one-sided fastening.

\triangle Caution

1. Install a rod boot without twisting.

If the cylinder is installed with its bellows twisted, it could damage the bellows.
2. Tighten clevis bracket mounting bolts with the following proper tightening torque.
ø20: $1.5 \mathrm{~N} \cdot \mathrm{~m}$, $\varnothing 25$ to $32: 2.9 \mathrm{~N} \cdot \mathrm{~m}$, $\varnothing 40: 4.9 \mathrm{~N} \cdot \mathrm{~m}$,
$\varnothing 50: 11.8 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 63$ to $80: 24.5 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 100: 42.2 \mathrm{~N} \cdot \mathrm{~m}$

Mounting Bracket Part No.

Mounting blacket	Bore size (mm)			
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Axial foot*	CNG-L020	CNG-L025	CNG-L032	CNG-L040
Flange	CNG-F020	CNG-F025	CNG-F032	CNG-F040
Trunnion pin	CG-T020	CG-T025	CG-T032	CG-T040
Clevis **	CG-D020	CG-D025	CG-D032	CG-D040
Rod side pivot bracket	CNG-020-24	CNG-025-24	CNG-032-24	CNG-040-24
Head side pivot bracket	CG-020-24A	CG-025-24A	CG-032-24A	CG-040-24A

* When ordering foot bracket, order 2 pieces per cylinder.
** For the clevis type, clevis pins, retaining rings and mounting bolts are included.
*** Mounting bolts are shipped together for the foot and flange types.

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range	AL	A	B1	BC	BN	BZ	C	D	E	GA	GB	GC	GD	GK	GL	GQ	GR	1	J	K	KA	MM
20	Up to 200	15.5	18	13	38	91	57.5	14	8	12	84	10	19	54	3.5	5.5	4	4	26	M4 $\times 0.7$ depth 7	5	6	M8 $\times 1.25$
25	Up to 300	19.5	22	17	45	101	69	16.5	10	14	94	10	20	62	4	9	7	7	31	M5 $\times 0.8$ depth 7.5	5	8	M10 $\times 1.25$
32	Up to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 00.8 depth 8	5.5	10	M10 $\times 1.25$
40	Up to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	7	47	M6x 1 depth 12	6	14	M14 $\times 1.5$

		H	NA	P	PG	PH	PL	PW	S	TA	TB	TC		hout				th	d			
(mm)	range	H_{1}	N	P	PG	PH	PL	PW	S	TA	TB	1	H	ZZ	IJ	JH (Reterene)	JW (Reterane)	e	f	h	ℓ	ZZ
20	Up to 200	5	24	1/8	33	19.5	20	38	141	11	11	M5 x 0.8	35	178	27	15.5	10.5	30	18	55	$\begin{gathered} 1 / 4 \\ \text { stroke } \end{gathered}$	198 (206)
25	Up to 300	6	29	1/8	38	24	24	41	151	11	11	M6 x 0.75	40	193	32	16.5	10.5	30	19	62		215 (223)
32	Up to 300	6	35.5	1/8	39	24	24	41	154	11	10	M8 $\times 1$	40	196	38	18.5	10.5	35	19	62		218 (226)
40	Up to 300	8	44	1/8	44	24	24	41	169	12	10	M10 $\times 1.25$	50	221	48	21.5	10.5	35	19	70		241 (250)

[^3]
CLG1 Series

With Mounting Bracket

Foot type: CLG1LN

Foot Type

Bore size $(\mathbf{m m})$	$\mathbf{B Z}$	\mathbf{M}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	$\mathbf{L C}$	LD	$\mathbf{L H}$	LS	$\mathbf{L T}$	$\mathbf{L X}$	$\mathbf{L Z}$	Without rod boot $\mathbf{Z Z}$	W. With rod boot
$\mathbf{2 0}$	63.5	3	10	15	7	4	6	25	117	3	50	62	$182+$ stroke	$202+1.25$ stroke
$\mathbf{2 5}$	74.5	3.5	10	15	7	4	6	28	127	3	57	70	$197.5+$ stroke	$219.5+1.25$ stroke
$\mathbf{3 2}$	74.5	3.5	10	16	8	4	7	28	128	3	60	74	$200.5+$ stroke	$222.5+1.25$ stroke
$\mathbf{4 0}$	83	4	10	16.5	8.5	4	7	33	142	3	68	84	$226+$ stroke	$246+1.25$ stroke

* For long stroke, refer to page 823.

Rod side flange type: CLG1FN

Rod Side Flange Type

Bore size (mm)	\mathbf{B}	BZ	FD	FT	FX	FY	FZ
$\mathbf{2 0}$	38	57.5	5.5	6	52	25	65
$\mathbf{2 5}$	45	69	5.5	7	60	30	75
$\mathbf{3 2}$	45	69	6.6	7	60	30	75
$\mathbf{4 0}$	52	76	6.6	8	66	36	82

* For long stroke, refer to page 823.

Rod side trunnion type: CLG1UN

Head Side Flange Type

Bore size $(\mathbf{m m})$	Without rod boot	Wivit rod boot
$\mathbf{Z Z}$	$182+$ stroke	$\mathbf{Z Z}$
$\mathbf{2 0}$	$202+1.25$ stroke	
$\mathbf{2 5}$	$198+$ stroke	$220+1.25$ stroke
$\mathbf{3 2}$	$201+$ stroke	$223+1.25$ stroke
$\mathbf{4 0}$	$227+$ stroke	$247+1.25$ stroke

Rod Side Trunnion Type

Bore size (mm)	TDe8	TR	TS	TZ	Without rod boot
$\mathbf{2 0}$	$8_{-0.047}^{-0.025}$	51	40	59.6	\mathbf{Z}
$\mathbf{2 5}$	$10_{-0.047}^{-0.025}$	58	47	68	With rod boot
$\mathbf{3 2}$	$12_{-0.05}^{-0.032}$	$62+0.25$ stroke			
$\mathbf{4 0}$	$14_{-0.059}^{-0.032}$	72.5	77	77	754

Head Side Trunnion Type

Head side trunnion type: CLG1TN

Bore size (mm)	TDe8	TR	TS	TZ	Without rod boot		With rod boot	
					Z	ZZ	Z	ZZ
20	$8_{-0.047}^{-0.025}$	39	28	47.6	165 + stroke	178 + stroke	$185+1.25$ stroke	198+1.25 stroke
25	$10^{-0.0 .047}$	43	33	53	$180+$ stroke	$193+$ stroke	$202+1.25$ stroke	$215+1.25$ stroke
32	$12_{-0.059}^{-0.032}$	54.5	40	67.7	184 + stroke	196 + stroke	$206+1.25$ stroke	$218+1.25$ stroke
40	$14^{-0.059}$	65.5	49	78.7	209 + stroke	$221+$ stroke	$229+1.25$ stroke	$241+1.25$ stroke

Clevis Type

Bore size (mm)	CDH10	CZ L	L R	RR	TT TZ	Clevis pin and retaining ring are attached.	
20	$8^{+0.058}$	291	14	11	3.243 .4		
25	$10^{+0.058}$	331	161	13	3.248		
32	$12^{+0.070}$	402	201	15	4.5 59.4		
40	$14^{+0.070}$	49	221	18	4.571 .4		
Bore size (mm)	Without rod boot					With rod boot	
	Z		ZZ			Z	ZZ
20	190 + stroke		201 + stroke			$210+1.25$ stroke	$221+1.25$ stroke
25	207 + stroke		220 + stroke			$229+1.25$ stroke	$242+1.25$ stroke
32	214 + stroke		229 + stroke			$236+1.25$ stroke	$251+1.25$ stroke
40	241 + stroke		$259+$ stroke			$261+1.25$ stroke	$279+1.25$ stroke

Fine Lock Cylinder Double Acting, Single Rod

Basic Type with Air Cushion: CLG1BA

* Refer to page 822 for mounting bracket, since the dimensions except GA, P, WA, WB, WH, WW, W θ are the same.

CLG1 With rod boot (Mounting bracket: Basic type)

Bore size (mm)	Stroke range	AL	A	B1	BC	BN	BZ	C	D	E	GA	GB	GC	GD	GK	GL	GQ	GR	I	J	K	KA	MM	NA	H_{1}
20	Up to 200	15.5	18	13	38	91	57.5	14	8	12	85	10	19	54	3.5	5.5	4	4	26	M4 x 0.7 depth 7	5	6	M8 $\times 1.25$	24	5
25	Up to 300	19.5	22	17	45	101	69	16.5	10	14	95	10	20	62	4	9	7	7	31	M5 $\times 0.8$ depth 7.5	5.5	8	M10 $\times 1.25$	29	6
32	Up to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 x 0.8 depth 8	5.5	10	M10 1.25	35.5	6
40	Up to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	7	47	M6 x 1 depth 12	6	14	M14 $\times 1.5$	44	8

Bore size	Stroke	P	PG	PH	P	PW	S	TA	TB	TC	WA	WW	WB	WH	$\mathbf{W} \theta$						rod	oo			
(mm)	range	P	P	H	PL	W	S		TB	TC	WA	WW	WB	WH	W θ	H	ZZ	IJ	JH/(Reterane)	JW (Retreme)	e	f	h	ℓ	ZZ
20	Up to 200	M5 $\times 0.8$	33	19.5	20	38	141	11	11	M5 $\times 0.8$	86	5.5	15	23	30°	35	178	27	15.5	10.5	30	18	55	$\begin{gathered} 1 / 4 \\ \text { stroke } \end{gathered}$	198 (206)
25	Up to 300	M5 x 0.8	38	24	24	41	151	11	11	M6 $\times 0.75$	96	6	15	25	30°	40	193	32	16.5	10.5	30	19	62		215 (223)
32	Up to 300	1/8	39	24	24	41	154	11	10	M8×1	97	6	15	28.5	25°	40	196	38	18.5	10.5	35	19	62		218 (226)
40	Up to 300	1/8	44	24	24	41	169	12	10	M10 $\times 1.25$	106	8	15	33	20°	50	221	48	21.5	10.5	35	19	70		241 (250)

* The minimum stroke for cylinders with a rod boot is 20 mm .

Long Stroke/Refer to pages 821 to 823 for mounting dimensions except the table below.

Basic type

Foot type

Bore size (mm)	Stroke range	GB	S	LS	Without With rod boot rod boot	
					ZZ	ZZ
20	201 to 350	12	149	125	190	210
25	301 to 400	12	159	135	205.5	227.5
32	301 to 450	12	162	136	208.5	230.5
40	301 to 800	13	178	151	235	255

Rod side flange type

With rubber bumper: CLG1BN

With air cushion: CLG1BA

Long stroke

No.	Description	Material	Note
$\mathbf{4 2}$	Cylinder tube gasket	NBR	
$\mathbf{4 3}$	Head cover	Aluminum alloy	Clear hard anodized
$\mathbf{4 4}$	Cylinder tube	Aluminum alloy	Hard anodized
$\mathbf{4 5}$	Cushion ring A	Aluminum alloy	Anodized
$\mathbf{4 6}$	Cushion ring B	Aluminum alloy	Anodized
$\mathbf{4 7}$	Seal retaining	Rolled steel	Zinc chromated
$\mathbf{4 8}$	Cushion valve A	Chromium molybdenum steel	Electroless nickel plated
$\mathbf{4 9}$	Cushion valve B	Rolled steel	Electroless nickel plated
$\mathbf{5 0}$	Valve retaining	Rolled steel	Electroless nickel plated
$\mathbf{5 1}$	Lock nut	Rolled steel	Electroless nickel plated
$\mathbf{5 2}$	Retaining ring	Stainless steel	
$\mathbf{5 3}$	Cushion seal A	Urethane	
$\mathbf{5 4}$	Cushion seal B	Urethane	
$\mathbf{5 5}$	Cushion ring gasket A	NBR	
$\mathbf{5 6}$	Cushion ring gasket B	NBR	
$\mathbf{5 7}$	Valve seal A	NBR	
$\mathbf{5 8}$	Valve seal B	NBR	
59	Valve retaining gasket	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
$\mathbf{2 0}$	CG1N20-PS	
$\mathbf{2 5}$	CG1N25-PS	Set of nos. above 35, 38, 42
$\mathbf{3 2}$	CG1N32-PS	
$\mathbf{4 0}$	CG1N40-PS	

* Since the lock section for CLG1 series is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.
* Seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is needed.
Grease pack part no.: GR-S-010 (10 g)

CLG1 Series
 Accessory Bracket Dimensions

Single Knuckle Joint

I-G02/G03
Material: Rolled steel

I-G04
Material: Cast iron

Part no.	Applicable bore size (mm)	A	A1	E_{1}	L1	MM	${ }^{\text {R }} \mathbf{R}_{1}$	U_{1}	NDh10	NX
I-G02	20	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3	11.5	$8^{+0.058}$	$8{ }_{-0.4}^{-0.2}$
I-G03	25, 32	41	10.5	$\square 20$	30	M10 1.25	12.8	14	$10^{+0.058}$	$10{ }_{0}^{-0.2}$
I-G04	40	42	14	ø22	30	M14 1.5	12	14	$10^{+0.058}$	$18{ }_{-0.5}^{-0.3}$

Rod Side Pivot Bracket

$\varnothing 20$ to $\varnothing 40$

Material:
Rolled steel

Part no.	Applicable bore size (mm)	TB	Tdн9	TE	TF	TH	TN
CNG-020-24	20	42	$8_{0}^{+0.036}$	10	5.5	31	40
CNG-025-24	25	48	$10_{0}^{+0.036}$	10	5.5	37	47
CNG-032-24	32	53	$12^{+0.043}$	10	6.6	38.5	47
CNG-040-24	40	60	$14_{0}^{+0.043}$	10	6.6	42.5	55

Part no.	Applicable bore size (mm)	TR	TT	TU	TV	TW	TX	TY	TZ
CNG-020-24	20	13	3.2	21.2	47.8	42	26	28	50
CNG-025-24	25	15	3.2	21.3	54.8	42	28	28	57
CNG-032-24	32	17	4.5	25.6	57.4	48	28	28	61.4
CNG-040-24	40	21	4.5	26.3	65.4	56	36	30	71.4

Double Knuckle Joint * Knucke pin and retaining ing are packaged.

		A	A1	E1	L1	MM	${ }^{\text {R }} 1$	U_{1}	N	NX	NZ	L	
G02	20	34	8.5	-16	25	M8x1.25	10.3	11.	8	$8_{10.2}^{+0.4}$	16	21	G02
Y-G03	25,32	41	10.5	$\square 20$	30	M10x 1.25	12.8	14	10	$10_{+0.0}^{+0 .}$	2	5.6	G0
G0						M14x			10				

Head Side Pivot Bracket

Part no.	Applicable bore size (mm)		TB	Td	TE	TF	TH		TN
CG-020-24A	20		36	8	10	5.5	25		(29.3)
CG-025-24A	25		43	10	10	5.5	30		(33.1)
CG-032-24A	32		50	12	10	6.6	35		(40.4)
CG-040-24A	40		58	14	10	6.6	40		(49.2)
Part no.	Applicable bore size (mm)	TR	TT	TU	TV	TW	TX	TY	TZ
CG-020-24A	20	13	3.2	18.1	35.8	42	16	28	38.3
CG-025-24A	25	15	3.2	20.7	39.8	42	20	28	42.1
CG-032-24A	32	17	4.5	23.6	49.4	48	22	28	53.8
CG-040-24A	40	21	4.5	27.3	58.4	56	30	30	64.6

Rod End Nut

Knuckle Pin

Material: Carbon steel

* Retaining rings are included.

Clevis Pin

Material: Carbon steel

Part no. | $\begin{array}{c}\text { Applicable } \\ \text { bore size } \\ (\mathrm{mm})\end{array}$ | $\mathbf{D d 9}$ | \mathbf{L} | \mathbf{d} | \mathbf{L}_{1} | \mathbf{m} | \mathbf{t} | $\begin{array}{c}\text { Applicable } \\ \text { retaining ring }\end{array}$ |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

 *Retaining rings are included.

CLG1 Series

Auto Switch Mounting 1
Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
Reed auto switch
D-A9 \square

D-C7/C8

D-C73C/C80C

D-B5/B6/B59W

Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \mathrm{V}(\mathrm{~V}) \\ & \text { D-M9■A(V) } \end{aligned}$		D-A9 \square (V)		$\begin{aligned} & \text { D-C7/C8 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$		$\begin{aligned} & \text { D-B5 } \\ & \text { D-B6 } \end{aligned}$		D-B59W		$\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7C } \\ & \text { D-H7 } \square W \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$		$\begin{aligned} & \hline \text { D-G5■W } \\ & \text { D-K59WW } \\ & \text { D-G59F } \\ & \text { D-G5 } \\ & \text { D-K5 } \\ & \text { D-G5NT } \\ & \text { D-G5BA } \\ & \hline \end{aligned}$	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B
20	10.5	$\begin{array}{\|c\|} \hline 27 \\ (35) \\ \hline \end{array}$	6.5	$\begin{array}{\|c\|} \hline 23 \\ (31) \\ \hline \end{array}$	7	$\begin{array}{\|l\|} \hline 23.5 \\ (31.5) \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 17.5 \\ (25.5) \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 20.5 \\ (28.5) \\ \hline \end{array}$	6	$\begin{array}{\|l\|} \hline 22.5 \\ (30.5) \\ \hline \end{array}$	2.5	$\begin{array}{r} 19 \\ (27) \\ \hline \end{array}$
25	10.5	$\begin{array}{\|c\|} \hline 27 \\ (35) \\ \hline \end{array}$	6.5	$\begin{array}{\|c\|} \hline 23 \\ (31) \\ \hline \end{array}$	7	$\begin{array}{\|l\|} \hline 23.5 \\ (31.5) \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 17.5 \\ (25.5) \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 20.5 \\ (28.5) \\ \hline \end{array}$	6	$\begin{array}{\|l\|} \hline 22.5 \\ (30.5) \\ \hline \end{array}$	2.5	$\begin{gathered} \hline 19 \\ (27) \\ \hline \end{gathered}$
32	10.5	$\begin{array}{\|c\|} \hline 29 \\ (37) \\ \hline \end{array}$	6.5	$\begin{array}{\|c\|} \hline 25 \\ (33) \\ \hline \end{array}$	7	$\begin{array}{\|l\|} \hline 25.5 \\ (33.5) \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 19.5 \\ (27.5) \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 22.5 \\ (30.5) \\ \hline \end{array}$	6	$\begin{array}{\|l\|} \hline 24.5 \\ (32.5) \\ \hline \end{array}$	2.5	$\begin{gathered} \hline 21 \\ (29) \\ \hline \end{gathered}$
40	13.5	$\begin{array}{\|c\|} \hline 32 \\ (41) \end{array}$	9.5	$\begin{array}{\|c\|} \hline 28 \\ (37) \\ \hline \end{array}$	10	$\begin{array}{\|l\|} \hline 28.5 \\ (37.5) \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 22.5 \\ (31.5) \\ \hline \end{array}$	7	$\begin{array}{\|l\|} \hline 25.5 \\ (34.5) \\ \hline \end{array}$	9	$\begin{array}{\|l\|} \hline 27.5 \\ (36.5) \\ \hline \end{array}$	5.5	$\begin{gathered} \hline 24 \\ (33) \\ \hline \end{gathered}$

Solid state auto switch

D-M9 \square
D-M9 \square A
D-M9 $\square \mathbf{W}$

D-G5NT

D-H7 $\square /$ /H7 \square
 D-H7NF/H7BA

D-H7C

* (): Values for long strokes

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Courtesy of Steven Engineering, Inc - (800) 258-9200-sales@steveneng.com - www.stevenengineering.com

Minimum Auto Switch Mounting Stroke

Note 3) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 1) Auto switch mounting

Auto switch model	With 2 auto switches	
	Different surfaces	Same surface
	The proper auto switch mounting position is 3.5 mm inward from the switchholder edge.	The auto switch is mounted by slightly displacing it in a direction (cylinder tubecircumferential exterior) so that the auto switch and lead wire do not interfere witheach other.
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$	Less than 20 stroke ${ }^{\text {Note2) }}$	Less than 55 stroke ${ }^{\text {Note2) }}$
D-M9 \square A	Less than 20 stroke ${ }^{\text {Note2) }}$	Less than 60 stroke ${ }^{\text {Note2) }}$
D-A9 \square	-	Less than 50 stroke ${ }^{\text {Note2) }}$

Note 2) Minimum stroke for mounting auto switches in the other mounting types mentioned in note 1.

CLG1 Series
Auto Switch Mounting 2
Operating range

（mm）				
Auto switch model	Bore size (mm)			
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
D－A9 \square	7	6	8	8
D－M9 \square D－M9 $\square \mathbf{W}$	4.5	5	4.5	5.5
D－C7 $\square / C-80$ D－C73C／C－80C	8	10	9	10
D－B5 $\square / B 64$	8	10	9	10
D－B59W	13	13	14	14
D－H7 $\square / H 7$ D－H7BA／H7NF	4	4	4.5	5
D－H7C	7	8.5	9	10
D－G5NT	4	4	4.5	5
D－G5NB	35	40	40	45

＊Since the operating range is provided as a guideline including hysteresis，it cannot
be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may vary substantially depending on an ambient environment．
Auto Switch Mounting Bracket：Part No．

Auto switch model	Bore size（mm）			
	20	25	32	40
$\begin{array}{\|l} \hline \text { D-M9 } \square(V) \\ \text { D-M9 } \square \text { W } \\ \text { D-A9 } \\ \text { D } \\ \hline \end{array}$	Note 1） ВМАЗ－020	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-025 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-032 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-040 } \end{gathered}$
D－M9 $\square \mathrm{A}$（V）	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-020S } \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-025S } \end{gathered}$	Note 2） BMA3－032S	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-040S } \end{gathered}$
$\begin{aligned} & \text { D-C7■/C80 } \\ & \text { D-C73C/C80C } \\ & \text { D-H7 } \square \\ & \text { D-H7口W } \\ & \text { D-H7NF } \\ & \text { D-H7BA } \end{aligned}$	BMA2－020A	BMA2－025A	BMA2－032A	BMA2－040A
D－B5 $\square / B 64$ D－B59W D－G5 $\square / K 59$ D－G5 $\square W / K 59 W$ D－G5BA／G59F D－G5NT D－G5NB	BA－01	BA－02	BA－32	BA－04

Note 1）Set part number which includes the auto switch mounting band（BMA2－ロロロA） and the holder kit（BJ5－1／Switch bracket：Transparent）．
Since the switch bracket（made from nylon）are affected in an environment where alcohol，chloroform，methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used．Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mounting band（BMA2－■ดमAS／ Stainless steel screw）and the holder kit（BJ4－1／Switch bracket：White）．
Note 3）For the D－M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch，do not install the switch bracket on the indicator light．
［Mounting screw set made of stainless steel］
The following set of mounting screws made of stainless steel is available．Use it inaccordance with the operating environment．（Please order the auto switch mounting bracket separately，since it is not included．）

BBA3：For D－B5／B6／G5／K5 types
BBA4：For D－C7／C80／H7 types
Note 4）Refer to page 1225 for the details of BBA3
D－H7BA／G5BA auto switches are set on the cylinder with the stainless steel screws above when shipped．When an auto switch is shipped independently，BBA3 or BBA4 is attached．

（1）BJ \square－ 1 is a set of＂a＂and＂b＂． BJ4－1（Switch bracket：White） BJ5－1（Switch bracket：Transparent）
（2）BMA2－$\square \square \square A(S)$ is a set of＂c＂and＂d＂． Band（c）is mounted so that the projected part is on the internal side （contact side with the tube）．

Cylinder Bracket/Stroke: Auto Switch Mounting Surface

Mounting bracket	Basic, Foot, Flange, Clevis			Trunnion		
No. of auto switches	$\begin{gathered} 1 \\ \text { (Rod cover side) } \end{gathered}$	$\begin{gathered} 2 \\ \text { (Different surfaces) } \end{gathered}$	$\stackrel{2}{(\text { Same surface) }}$	(Rod cover side)	$\begin{gathered} 2 \\ \text { (Different surfaces) } \end{gathered}$	$\begin{gathered} 2 \\ \text { (Same surface) } \end{gathered}$
Switch mounting surface Switch model		Port side	Port side			
$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \end{aligned}$	10 st or more	15 to 44 st	45 st or more	10 st or more	15 to 44 st	45 st or more
D-C7 $\square / \mathrm{C80}$	10 st or more	15 to 49 st	50 st or more	10 st or more	15 to 49 st	50 st or more
D-H7 $\square / \mathrm{H} 7 \square$ W D-H7BA/H7NF	10 st or more	15 to 59 st	60 st or more	10 st or more	15 to 59 st	60 st or more
D-C73C/C80C/H7C	10 st or more	15 to 64 st	65 st or more	10 st or more	15 to 64 st	65 st or more
D-B5 $\square / B 64 / \mathrm{G} 5$ NT	10 st or more	15 to 74 st	75 st or more	10 st or more	15 to 74 st	75 st or more
D-B59W	15 st or more	20 to 74 st	75 st or more	15 st or more	20 to 74 st	75 st or more

Refer to pages 1119 to 1245 for the detailed specifications.

Auto switch type	Part no.	Electrical entry (Fetching direction)	Features	Applicable bore size
Reed	D-B53, C73, C76	Grommet (In-line)	-	ø20 to ø40
	D-C80		Without indicator light	
Solid state	D-H7A1, H7A2, H7B		-	
	D-H7NW, H7PW, H7BW		Diagnosicic indication (2-color indicator)	
	D-G5NT		With timer	

[^4] * Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1137 for details.

* Wide range detection type, solid state auto switches (D-G5NB type) are also available.Refer to page 1182 tor details.

Lock-up Cylinder Double Acting, Single Rod CL1 Series

$\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125, \varnothing 140, \varnothing 160$
The CL1 series lock-up cylinder is a self-locking type that contains a ring that is tilted by a spring force, which is further tilted by the load that is applied to the cylinder, thus locking the piston rod. This cylinder is suitable for intermediate stops, emergency stops, or for drop prevention.

How to Order

Applicable Auto Switches/Refer to pages 1119 to 1245 for further information on auto switches.

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots . .$. Nil (Example) M9NW * Solid state auto switches marked with "○" are produced upon receipt of order.

mNil	(Example) M9NW
$1 \mathrm{~m} \cdots \cdots . . \mathrm{M}$	(Example) M9NWM
$3 \mathrm{~m} \mathrm{L}$	(Example) M
$5 \mathrm{~m} \mathrm{Z}$	(Example) M

* Solid state auto switches marked with " O " are produced upon receipt of order.
** D-A9ロ/A9■V cannot be mounted on $\varnothing 50$.
*** The following auto switches cannot be mounted on $\varnothing 125$ to $\varnothing 160$.
D-G39C, K39C, A3 C, A44C, G5■, K59, G5 \square W, K59W, G5BA, G59F, G5NT, B5 \square, B64, B59W, P4DW.
* Since there are other applicable auto switches than listed, refer to page 850 for details.
* For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.
* D-A9■/M9■/M9■W/M9■A auto switches are shipped together (not assembled). (Only auto switch mounting brackets for the models listed above are assembled at the time of shipment.)

Lock-up Cylinder Double Acting, Single Rod
 CL1
 Series

Made to Order: Individual Specifications (For details, refer to page 851.)
Symbol
\qquad
Made to Order Specifications
(For details, refer to pages 1247 to 1440.)

Symbol	Specifications
-XA \square	Change of rod end shape
-XC3	Special port location
-XC14	Change of trunnion bracket mounting position (640 to 100 only)

Lock-up Unit Specifications

Lock operation	Spring lock
Lock-up release pressure	0.2 MPa or more (at no load)
Lock-up start pressure	0.05 MPa or less
Lock-up direction	One direction (Lock direction can be changed.)

Stopping Accuracy

(Not including tolerance of control system)

Piston speed	Bore size (mm)	
	40 to $\mathbf{1 0 0}$	125 to $\mathbf{1 6 0}$
$50 \mathrm{~mm} / \mathrm{s}$	$\pm 0.6 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$
$100 \mathrm{~mm} / \mathrm{s}$	$\pm 1.2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$
$200 \mathrm{~mm} / \mathrm{s}$	$\pm 2.3 \mathrm{~mm}$	$\pm 3 \mathrm{~mm}$

Specifications

Bore size (mm)	$\boldsymbol{0} \mathbf{4 0}$ to $\varnothing \mathbf{1 0 0}$	$\varnothing \mathbf{1 2 5}$ to $\varnothing \mathbf{1 6 0}$
Proof pressure	1.5 MPa	1.57 MPa
Maximum operating pressure	1.0 MPa	0.97 MPa
Minimum operating pressure	0.0 .08 MPa	
Piston speed	50 to $200 \mathrm{~mm} / \mathrm{s}^{*}$	
Ambient and fluid temperature	Without auto switch -10 to $70^{\circ} \mathrm{C}$ With auto switch -10 to $60^{\circ} \mathrm{C}$ (No freezing)	Without auto switch 0 to With auto switch 0 to $60^{\circ} \mathrm{C}$ (No freezing)
Lubrication	Not required (Non-lube)	

* The holding force (max. static load) indicates the maximum capability to hold a static load without loads, vibration or impact. This does not indicate a load that can be held in ordinary conditions. The maximum load is limited depending on the mounting orientation.
Refer to the CL series Specific Product Precautions 1 on page 786 for selecting cylinders.

Cylinder Stroke ($\varnothing 40$ to $\varnothing 100) /$| Refer to the minimum auto switch mounting |
| :--- |
| stroke (pages 844 and 846) for those with |
| an auto switch. |

Bore size (mm)	Standard stroke (mm)	
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500$	Long stroke (L, F only)
	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500,600$	800
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200$, $250,300,350,400,450,500,600,700$	1200

Note 1) Strokes other than listed above are produced upon receipt of order. Spacers are not used for intermediate strokes.
Note 2) Long strokes are applicable for the axial foot and rod side flange types. If other mounting brackets are used or the length exceeds the long stroke limit, the maximum stroke should be determined based on the stroke selection table (technical data).

Cylinder Stroke ($\varnothing 125$ to $\varnothing 160$)
Unit: mm

Tube material	Aluminum alloy	Carbon steel piping	
Bore size (mm)	Basic type, Head side flange type, Single clevis type, Double clevis type, Center tunnion type, Foot type, Rod side flange type	Basic type, Head side flange type, Single clevis type,Double clevis type, Center trunnion type,	Foot type, Rod side flange type
$\mathbf{1 2 5 , 1 4 0}$	Up to 1000	Up to 1000	Up to 1600
$\mathbf{1 6 0}$	Up to 1200	Up to 1200	Up to 1600

Lock-up Unit Model

Applicable bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Lock-up unit part no.	CL-40	CL-50	CL-63	CL-80	CL-100

Refer to pages 844 to 850 for cylinders with auto switches.

- Minimum auto switch mounting stroke
- Proper auto switch mounting position (detection at stroke end) and mounting height
- Operating range
- Switch mounting bracket: Part no.

Cylinder Stroke/
Cylinder with Auto Switch (Built-in magnet)
Refer to the minimum auto switch mounting stroke (pages 844 and 846) for those with an auto switch.

Unit: mm

Bore size (mm)	Basic type, Head side flange type, Single clevis type,Double clevis type, Center trunnion type,	Foot type, Rod side flange type
$\mathbf{1 2 5 , 1 4 0}$	Up to 1000	Up to 1400
$\mathbf{1 6 0}$	Up to 1200	Up to 1400

CL1 Series

Accessory

Mounting		Basic type	Foot type	Rod side flange type	Head side flange type	Single clevis type	Double clevis type	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Center } \\ \text { trunnion } \\ \text { type } \end{array} \\ \hline \end{array}$
Standard products	Rod end nut *	\bigcirc						
	Clevis pin	-	-	-	-	-	-	-
Option	Single knuckle joint	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Double knuckle joint (with pin)	\bigcirc						
	Rod boot	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-

* ø125 to ø160: Option

Weight

	Tubing Material				Alum	um tube			
Bore size (mm)		40	50	63	80	100	125	140	160
Locked-up unit mass		0.76	1.23	2.05	3.04	4.40	16.93	21.46	32.31
	Basic type	1.66	2.55	4.12	6.56	9.49	30.88	38.25	55.72
	Foot type	1.83	2.75	4.42	7.36	10.43	32.21	40.83	59.09
	Rod side flange type	2.06	3.15	5.08	8.40	11.81	33.65	43.28	60.95
	Head side flange type	2.09	3.29	5.16	8.51	12.06	34.35	44.32	62.98
	Single clevis type	1.93	3.00	4.88	7.94	11.80	36.02	45.46	65.45
	Double clevis type	1.92	2.98	4.90	7.94	11.82	35.83	45.17	64.28
	Trunnion type	2.26	3.30	5.47	8.90	13.02	35.77	46.09	63.86
Additional weight per each 100 mm of stroke		0.44	0.56	0.74	1.04	1.30	1.77	1.90	2.39
	Single knuckle	0.23	0.26	0.26	0.66	0.83	0.91	1.16	1.56
	Double knuckle (with pin)	0.37	0.43	0.43	0.87	1.27	1.37	1.81	2.48

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$70^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temperature for the rod boot itself.

Calculation: (Example) CL1L125-500F

- Basic weight 32.21 (ø125, Foot type)
- Additional weight 1.77/100 st
$32.21+1.77 / 100 \times 500=41.06 \mathrm{~kg}$
* Add the lock-up unit weight for $\varnothing 40$ to $\varnothing 100$ and $\varnothing 125$ to $\varnothing 160$ steel tubes to the cylinder unit weight of CA2 and CS1 series listed in Best Pneumatics No. 2-1.

Mounting Bracket Part No.

Bore size (mm)		40	50	63	80	100	125	140	160
Foot type *	Rod side	CA-L04	CA-L05	CA-L06	CA-L08	CA-L10	CS1-L12	CS1-L14	CS1-L16
	Head side	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10			
Rod side flange type **		CA-F04	CA-F05	CA-F06	CA-F08	CA-F10	CS1-FL12	CS1-FL14	CS1-FL16
Head side flange type		CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10	CS1-F12	CS1-F14	CS1-F16
Single clevis		CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10	CS1-C12	CS1-C14	CS1-C16
Double clevis ***		CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10	CS1-D12	CS1-D14	CS1-D16

* When ordering foot bracket for 1 cylinder, order 1 foot bracket each for the rod side and the head side for $\varnothing 40$ to $\varnothing 100$ and 2 foot brackets for $\varnothing 125$ to $\varnothing 160$.
** The ø125 to ø160 rod side flange types use the long stroke flanges of the CS1 series.
***Clevis pin, plain washer and cotter pin are shipped together with double clevis type.

Lock-up Cylinder Double Acting, Single Rod
 CL1 Series

Construction Principle

\triangle Caution

Caution on Changing the Lock-up Direction

$\varnothing 40$ to $\varnothing 100$

The lock-up is unidirectional. However, the lock-up direction can be changed easily. To change the direction, pay particular attention to the following steps:
Loosening the tie-rods for the purpose of changing the direction could also loosen the nuts on the cylinder side. Therefore, before assembling the unit, make sure to verify that the nuts on the cylinder are not loose. Retighten the nuts if they are loose, and while turning the piston rod, apply a low pressure of 0.08 MPa to make sure that it operates smoothly in both the extending and retracting directions.

1. Loosen the tie-rod nuts and pull out the four tie-rods.

2. Open the rubber cap and screw in the unlocking bolt, which is provided as an accessory part. At this time, apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and insert the bolt. (The operation to follow can be performed properly and easily with the application of air pressure.) After verifying that the bolt has been inserted properly, pull out the unit from the rod. Then, loosen the three screws in the scraper presser plate to remove the presser plate and the scraper. Install the scraper and the presser plate, in

\triangle Caution

When the lock-up unit is not secured by the tie-rods, the air pressure applied to the lock-up port should be between 0.2 MPa and 0.3 MPa. Never supply a higher air pressure as it could lead to equipment damage.
3. Turn the unit to the opposite end so that the end without the scraper is facing the cylinder rod cover. Then, securely insert the unit into the end boss portion of the rod cover.
4. Install four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Until the installation and adjustment have been completed, never pull out the unlocking bolt (or release the air pressure).

The processes described above complete the changing of the locked-up direction. Before using the cylinder, make sure that the lock-up operates properly.

$\varnothing 125$ to $\varnothing 160$

1. Loosen the tie-rod nuts and pull out the four tie-rods.

2. Apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and pull out the lock-up unit from the piston rod.

3. Remove the retainer plate from the lock-up unit and install the retainer plate on the opposite end. Reapply the air pressure, and with the end on which the retainer plate had, until now, been the retainer plate had, until now, been
facing towards the cylinder, insert the facing towards the cylinder, insert the
locked-up unit into the piston rod and fit it into the end boss portion of the rod cover.

4. Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque.
Maintain the application of air pressure until the installation and adjustment have been completed, and never actuate the lock in the meantime.

\triangle Warning

1. Do not unlock manually until the safety is confirmed.
2. Perform the unlocking after the residual pressure inside the system has been exhausted.
3. Take measures to prevent the load from dropping when unlocking is performed.

- Perform work with the load in its lowest position.
- Take measures for drop prevention by strut, etc.

Manual Lock Release ($\varnothing 40$ to $\varnothing 100$)

To manually disengage the lock, perform the following steps:

1. Open the rubber cap.
2. Apply 0.2 MPa to 0.3 MPa of air pressure to the locking port, and bring the tilted ring upright.
3. Screw a bolt of an appropriate length into the ring tap.
The bolt size is M5 for $\varnothing 40$ and ø50, and M6 for $\varnothing 63, \varnothing 80$, and $\varnothing 100$.

Caution

During installation adjustment, perform the operation by applying air pressure only to the lock-up port.

\triangle Caution

The lock is manually disengaged at the time the cylinder is shipped from the factory. Because the lock will not operate in this state, make sure to change it to the locked state before operation, after having adjusted the axial center for installation. (Only ø40 to ø100)

$\varnothing 40$ to $\varnothing 100$
(On cylinders $\varnothing 125$ to $\varnothing 160$, the lock cannot be disengaged manually.)

- Caution

Stopping Accuracy

1. Load fluctuations during the reciprocal movement of the piston could cause the piston speed to change. A change in the piston speed could greatly increase the variance in the piston's stopping position. Therefore, take appropriate measures so that the piston speed becomes constant during the piston's reciprocal movement, particularly just before stopping.
2. During a cushioning stroke, or when the piston is in the acceleration region following the start of its travel, there is a large change in speed. Thus, the variance in the stopping position will also be large. Therefore, when effecting a step movement in which the stroke from the start of the operation to the next position is short, be aware of the possibility of being unable to attain the accuracy.
3. Precautions regarding lock-up after the piston has been stopped with an external stopper:
To apply the lock-up after the piston has been stopped by an external stopper other than the locked-up mechanism, including stoppage by the stroke end of the cylinder, be aware of the matters described below.
Due to the nature of the lock-up mechanism, there is an axial play of about 0.5 to 1.0 mm . Furthermore, due to pipe routing conditions, if it takes longer for the air to discharge through the lock-up port than for the balance pressure to stabilize, causing a delay in locking, the piston rod will move for an amount that is equivalent to the "play + delay".

Piston speed over $200 \mathrm{~mm} / \mathrm{s}$ (When locking)

4. Immediately before a lock stop, drop the piston speed to $200 \mathrm{~mm} / \mathrm{s}$ or lower by switching the speed controller (to the bypass circuit). Then, operate the lock-up. 834

Caution

Caution on Handling

1. Flushing

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove cutting chip, cutting oil and other debris from inside the pipe.
2. The load on the piston rod

Use the cylinder in the state in which the load to the piston rod is always applied in the axial direction. This must be more strictly adhered to than with ordinary air cylinders. Furthermore, use a guide to control the movement of the load so as not to cause chatter or twist.
3. A rotational force against the piston rod
Avoid applying a rotational force against the piston rod. In particular, the application of a rotational force must be prevented when in a lock-up state.
4. Protecting the sliding portion of the rod
Use caution that no scratch or dent will be given to the slide part of the guide rod, as this could damage the seals and lead to leaks or faulty lock-up.

5. Lubrication

It is not necessary to lubricate the CL series because it is the non-lube type. Never lubricate it because doing so will cause faulty lock-up.

\triangle Caution

Recommended Pneumatic Circuit

For recommended pneumatic circuits, refer to page 788 .

1. Operating the pneumatic circuit Instead of the current reciprocal air cylinder circuit, use an pneumatic circuit, such as the recommended circuit, in which measures are taken to prevent the piston from lurching after the lock-up has been disengaged.
2. Lock-up direction

The lock-up is unidirectional. The locking direction is in accordance with the position of the lock-up port, as shown in the figure below.

Extension locking

Retraction locking
$\varnothing 125$ to ø160
For cylinders $\varnothing 40$ to $\varnothing 100$, verify the - $\mathrm{m}^{(1)}$-portion that is stamped on the cap of the lock.
3. Maximum speed and maximum load Never lock up a cylinder that involves a kinetic energy that exceeds the maximum speed or the maximum load indicated in the specifications.

Lock-up Cylinder Double Acting, Single Rod
 CL1
 Series

Construction

CL1ø40 to $\varnothing 100$

Component Parts: CL1ø125 to $\varnothing 160$
Component Parts: CL1 $\varnothing 40$ to $\varnothing 100$

No.	Description	Material	Note
1	Body	Aluminum alloy	Black painted
2	Cover	Aluminum alloy	Black painted
3	Locked-up ring	Carbon steel	Heat treated
4	Release piston	General rolled steel	Zinc chromated
5	Pivot	Carbon steel	Heat treated, zinc chromated
6	Spring	Steel wire	Zinc chromated
7	Stopper	Urethane	
8	Retaining plate	Beared steel	Black zinc chromated
9	Bushilloy		
10	Spring pin	Carbon steel	
11	Spring pin for non-rotating	Carbon steel	
12	Wing nut	Rolled steel	
13	Unit fixing hex. socket head cap screw	Chromium molybdenum steel	
14	Retainer machine screw	Rolled steel	
15	Hexagon socketcountersunkhead screw	Chromium molybdenum steel	
16	Non lube air cylinder		CA1口N series
17	Cap	Nylon	
18	Cap screw	Rolled steel	
19	Release bolt	Chromium molybdenum steel	
20	Spacer	Aluminum alloy	Black painted
21	Unit holding tie-rod	Carbon steel	Chromated
22	Scraper	NBR	
23	O-ring	NBR	
24	O-ring	NBR	
25	Rod seal	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Bore size (mm)	Kit no.
$\mathbf{4 0}$	CL40-PS	$\mathbf{1 0 0}$	CL100-PS
$\mathbf{5 0}$	CL50-PS	$\mathbf{1 2 5}$	CL125-PS
$\mathbf{6 3}$	CL63-PS	$\mathbf{1 4 0}$	CL140-PS
$\mathbf{8 0}$	CL80-PS	$\mathbf{1 6 0}$	CL160-PS

[^5]| No. | Description | Material | Note |
| :---: | :---: | :---: | :---: |
| 1 | Body | Rolled steel plate | Black painted |
| 2 | Cover | Rolled steel plate | Black painted |
| 3 | Locked-up ring | Carbon steel | Heat treated |
| 4 | Release piston | Rolled steel plate | Zinc chromated |
| 5 | Pivot | Carbon steel | Heat treated |
| 6 | Spring | Steel wire | Zinc chromated |
| 7 | Stopper | Urethane | |
| 8 | Retaining plate | Cast iron | Black painted |
| 9 | Bushing | Bearing alloy | - |
| 10 | Spring pin | Carbon steel | |
| 11 | Spring pin | Carbon steel | |
| 12 | Wing nut | Rolled steel | |
| 13 | Unit fixing hex. socket head cap screw | Chromium molybdenum steel | |
| 14 | Hex. socket head cap screw | Chromium molybdenum steel | |
| 15 | Hexagon socket countersunk head screw | Chromium molybdenum steel | |
| 16 | Non lube air cylinder | - | Serie CS1ロN |
| 17 | Brake tube | Carbon steel tube | Inside: Hard chrome plated |
| 18 | Sleeve | Rolled steel | Zinc chromated |
| 19 | Unit holding tie-rod | Carbon steel | Chromated |
| 20 | Spacer | Rolled steel | Black painted |
| 21 | Retaining plate | Cast iron | Black painted |
| 22 | Element | Sintered metallic BC | - |
| 23 | Wiper ring | NBR | |
| 24 | Retaining plate gasket | NBR | |
| 25 | O-ring | NBR | |
| 26 | O-ring | NBR | |
| 27 | Rod seal | NBR | |

CL1 Series

Basic Type (B)
$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

$ø 125$ to $\varnothing 160$

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		A	AL	B	B_{1}	BX	BY	BP	C	D	EA	EB	F	FA	GA	GB	GC	H_{1}	J		KA
	Without rod boot	With rod boot																				
40	Up to 500	20 to 500	30	27	60	22	59	69	1/4	44	16	40	32	6.5	-	15	15	11	8	M8 $\times 1.25$	6	14
50	Up to 600	20 to 600	35	32	70	27	67	78	$1 / 4$	52	20	50	40	6.0	-	17	17	11	11	M8 $\times 1.25$	7	18
63	Up to 600	20 to 600	35	32	86	27	73	84	$1 / 4$	64	20	55	40	6.0	-	17	17	11	11	M10 $\times 1.25$	7	18
80	Up to 750	20 to 750	40	37	102	32	77	92	$1 / 4$	78	25	65	52	8.0	-	21	21	11	13	M12 $\times 1.75$	11	22
100	Up to 750	20 to 750	40	37	116	41	85	100	$1 / 4$	92	30	80	52	8.0	-	21	21	11	16	M12 $\times 1.75$	11	26
125	Up to 1000	30 to 1000	50	47	145	-	112.5	141.5	$1 / 2$	115	36	90	-	43	14	16	16	16	-	M14 $\times 1.5$	15	31
140	Up to 1000	30 to 1000	50	47	161	-	121	150	$1 / 2$	128	36	90	-	43	14	16	16	16	-	M14 $\times 1.5$	15	31
160	Up to 1200	30 to 1200	56	53	182	-	133	167	$3 / 4$	144	40	90	-	43	14	18.5	18.5	18.5	-	M16 $\times 1.5$	17	36

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	M	MM	N	P	S	W	Without rod boot		With rod boot				
							H	ZZ	e	f	h	ℓ	ZZ
40	11	M14 $\times 1.5$	27	$1 / 4$	84	8	51	215	36	16.5	59	$1 / 4$ stroke	223
50	11	$\mathrm{M} 18 \times 1.5$	30	$3 / 8$	90	0	58	237	45	16.0	66	$1 / 4$ stroke	245
63	14	M18 $\times 1.5$	31	3/8	98	0	58	254	45	16.0	66	1/4 stroke	262
80	17	M 22×1.5	37	$1 / 2$	116	0	71	296	60	18.0	80	$1 / 4$ stroke	305
100	17	M 26×1.5	40	$1 / 2$	126	0	72	315	60	18.0	81	$1 / 4$ stroke	324
125	27	M30 $\times 1.5$	35	$1 / 2$	98	-	110	376.5	75	40	133	1/5 stroke	399.5
140	27	M 30×1.5	35	$1 / 2$	98	-	110	385	75	40	133	1/5 stroke	408
160	30.5	M 36×1.5	39	$3 / 4$	106	-	120	423.5	75	40	141	1/5 stroke	444.5

Note) In installing an air cylinder, if a hole must be made to accommodate the rod portion, make sure to machine a hole that is larger than the boot outer diameter "øe".

Courtesy of Steven Engineering, Inc - (800) 258-9200-sales@steveneng.com - www.stevenengineering.com

Lock-up Cylinder Double Acting, Single Rod
 CL1 Series

Axial Foot Type (L)
$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

Long stroke

$\varnothing 50$ to $\varnothing 100$
$\varnothing 125$ to $\varnothing 160$

Width across flats

 is not available.

(mm)

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		A	AL	B	B_{1}	BX	BY	BP	C	D	EA	EB	F	FA	GA	GB	GC	H_{1}	J	K	KA	LD	LH
	Without rod boot	With rod boot																						
40	Up to 500	20 to 500	30	27	60	22	59	69	1/4	44	16	40	32	6.5	-	15	15	11	8	$\mathrm{M} 8 \times 1.25$	6	14	9	40
50	Up to 600	20 to 600	35	32	70	27	67	78	$1 / 4$	52	20	50	40	6.0	-	17	17	11	11	M8 $\times 1.25$	7	18	9	45
63	Up to 600	20 to 600	35	32	86	27	73	84	$1 / 4$	64	20	55	40	6.0	-	17	17	11	11	$\mathrm{M} 10 \times 1.25$	7	18	11.5	50
80	Up to 750	20 to 750	40	37	102	32	77	92	$1 / 4$	78	25	65	52	8.0	-	21	21	11	13	$\mathrm{M} 12 \times 1.75$	11	22	13.5	65
100	Up to 750	20 to 750	40	37	116	41	85	100	1/4	92	30	80	52	8.0	-	21	21	11	16	$\mathrm{M} 12 \times 1.75$	11	26	13.5	75
125	Up to 1400	30 to 1400	50	47	145	-	112.5	141.5	$1 / 2$	115	36	90	-	43	14	16	16	16	-	$\mathrm{M} 14 \times 1.5$	15	31	19	85
140	Up to 1400	30 to 1400	50	47	161	-	121	150	$1 / 2$	128	36	90	-	43	14	16	16	16	-	$\mathrm{M} 14 \times 1.5$	15	31	19	100
160	Up to 1400	30 to 1400	56	53	182	-	133	167	$3 / 4$	144	40	90	-	43	14	18.5	18.5	18.5	-	$\mathrm{M} 16 \times 1.5$	17	36	19	106

Bore size (mm)	LS	LT	LX	LY	MM	N	P	S	W	X	YA	YB	Without rod boot		With rod boot				
													H	ZZ	e	f	h	ℓ	ZZ
40	207	3.2	42	70	M14 $\times 1.5$	27	1/4	84	8	27	13	13	51	244	36	16.5	59	1/4 stroke	252
50	222	3.2	50	80	$\mathrm{M} 18 \times 1.5$	30	3/8	90	0	27	13	13	58	266	45	16.0	66	1/4 stroke	274
63	250	3.2	59	93	$\mathrm{M} 18 \times 1.5$	31	3/8	98	0	34	16	16	58	290	45	16.0	66	1/4 stroke	298
80	296	4.5	76	116	$\mathrm{M} 22 \times 1.5$	37	$1 / 2$	116	0	44	21	16	71	339	60	18.0	80	1/4 stroke	348
100	312	6.0	92	133	$\mathrm{M} 26 \times 1.5$	40	$1 / 2$	126	0	43	22	17	72	358	60	18.0	81	1/4 stroke	367
125	329.5	8	100	157.5	$\mathrm{M} 30 \times 1.5$	35	$1 / 2$	98	-	45	20	20	110	414.5	75	40	133	1/5 stroke	437.5
140	338	9	112	180.5	$\mathrm{M} 30 \times 1.5$	35	$1 / 2$	98	-	45	30	30	110	433	75	40	133	1/5 stroke	456
160	373	9	118	197	M36 $\times 1.5$	39	$3 / 4$	106	-	50	25	25	120	468	75	40	141	1/5 stroke	489

CL1 Series

Head Side Flange Type (G)
$\varnothing 40$ to $\varnothing 100$

$\propto 125$ to $\propto 160$

Bore size (mm)	Stroke range (mm)		A	AL	B	B_{1}	BF	BP	BX	BY	C	D	EA	EB	F	FA	FD	FT	FX	FY	FZ	F	GA	GB	C	H_{1}
	Without rod boot	With rod boot																								
40	Up to 500	20 to 500	30	27	60	22	71	1/4	59	69	44	16	40	32	6.5	-	9.0	12	80	42	100	60	15	15	11	8
50	Up to 600	20 to 600	35	32	70	27	81	$1 / 4$	67	78	52	20	50	40	6.0	-	9.0	12	90	50	110	70	17	17	11	1
63	Up to 600	20 to 600	35	32	86	27	101	$1 / 4$	73	84	64	20	55	40	6.0	-	11.5	15	105	59	130	86	17	17	11	11
80	Up to 750	20 to 750	40	37	102	32	119	$1 / 4$	77	92	78	25	65	52	8.0	-	13.5	18	130	76	160	102	21	21	11	13
100	Up to 750	20 to 750	40	37	116	41	133	$1 / 4$	85	100	92	30	80	52	8.0	-	13.5	18	150	92	180	116	21	21	11	16
125	Up to 1000	30 to 1000	50	47	145	-	145	$1 / 2$	112.5	141.5	115	36	90	-	43	14	19	14	190	100	230	-	16	16	16	
140	Up to 1000	30 to 1000	50	47	161	-	160	1/2	121	150	128	36	90	-	43	14	19	20	212	112	255	-	16	16	16	-
160	Up to 1200	30 to 1200	56	53	182	-	180	$3 / 4$	133	167	144	40	90	-	43	14	19	20	236	118	275	-	18.5	18.5	18.5	-

Bore size (mm)	J	K	KA	MM	N	P	S	W	Without rod boot		With rod boot				
									H	ZZ	e	f	h	ℓ	ZZ
40	M8 $\times 1.25$	6	14	M14 $\times 1.5$	27	1/4	84	8	51	216	36	16.5	59	$1 / 4$ stroke	224
50	M8×1.25	7	18	M18 $\times 1.5$	30	3/8	90	0	58	238	45	16.0	66	$1 / 4$ stroke	246
63	M10 $\times 1.25$	7	18	M18 $\times 1.5$	31	3/8	98	0	58	255	45	16.0	66	$1 / 4$ stroke	263
80	M12 $\times 1.75$	11	22	M22 $\times 1.5$	37	1/2	116	0	71	297	60	18.0	80	$1 / 4$ stroke	306
100	M12 $\times 1.75$	11	26	M26 x 1.5	40	$1 / 2$	126	0	72	316	60	18.0	81	$1 / 4$ stroke	325
125	M14 $\times 1.5$	15	31	M30 $\times 1.5$	35	$1 / 2$	98	-	110	363.5	75	40	133	$1 / 5$ stroke	386.5
140	M14 $\times 1.5$	15	31	M30 $\times 1.5$	35	$1 / 2$	98	-	110	378	75	40	133	$1 / 5$ stroke	401
160	M16 $\times 1.5$	17	36	M36 $\times 1.5$	39	$3 / 4$	106	-	120	413	75	40	141	$1 / 5$ stroke	434

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Lock-up Cylinder Double Acting, Single Rod
 CL1 Series

Rod Side Flange Type (F)
$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		Long stroke range (mm)	A	AL	B	B1	BF	BP	BX	BY	C	D	EA	EB	F	FD	FT	FX	FY	FZ
	Without rod boot	With rod boot																			
40	Up to 500	20 to 500	501 to 800	30	27	60	22	71	1/4	59	69	44	16	40	32	-	9.0	12	80	42	100
50	Up to 600	20 to 600	601 to 1000	35	32	70	27	81	$1 / 4$	67	78	52	20	50	40	-	9.0	12	90	50	110
63	Up to 600	20 to 600	601 to 1000	35	32	86	27	101	$1 / 4$	73	84	64	20	55	40	-	11.5	15	105	59	130
80	Up to 750	20 to 750	751 to 1000	40	37	102	32	119	$1 / 4$	77	92	78	25	65	52	-	13.5	18	130	76	160
100	Up to 750	20 to 750	751 to 1000	40	37	116	41	133	$1 / 4$	85	100	92	30	80	52	-	13.5	18	150	92	180
125	Up to 1400	30 to 1400	-	50	47	145	-	145	$1 / 2$	112.5	141.5	115	36	90	59	43	19	14	190	100	230
140	Up to 1400	30 to 1400	-	50	47	161	-	160	1/2	121	150	128	36	90	59	43	19	20	212	112	255
160	Up to 1400	30 to 1400		56	53	182	-	180	$3 / 4$	133	167	144	40	90	59	43	19	20	236	118	275

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	FV	GA	GB	GC	H_{1}	J	K	KA	M	M1	MM	N	P	S	W	Withuut rod boot		With rod boot				
																H	ZZ	e	f	h	ℓ	ZZ
40	60	15	15	11	8	M8 $\times 1.25$	6	14	11	-	M14 $\times 1.5$	27	1/4	84	8	51	215	36	16.5	59	1/4 stroke	223
50	70	17	17	11	11	M8 $\times 1.25$	7	18	11	-	M18 $\times 1.5$	30	3/8	90	0	58	237	45	16.0	66	1/4 stroke	245
63	86	17	17	11	11	M10 $\times 1.25$	7	18	14	-	M18 $\times 1.5$	31	3/8	98	0	58	254	45	16.0	66	1/4 stroke	262
80	102	21	21	11	13	M12 $\times 1.75$	11	22	17	-	M22 $\times 1.5$	37	1/2	116	0	71	296	60	18.0	80	1/4 stroke	305
100	116	21	21	11	16	M12 $\times 1.75$	11	26	17	-	M26 x 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 stroke	324
125	-	16	16	16	-	M14 $\times 1.5$	15	31	30	22	M 30×1.5	35	1/2	98	-	110	379.5	75	40	133	1/5 stroke	402.5
140	-	16	16	16	-	M14 $\times 1.5$	15	31	24	19	M30 $\times 1.5$	35	1/2	98	-	110	382	75	40	133	1/5 stroke	405
160	-	18.5	18.5	18.5	-	M16 $\times 1.5$	17	36	26	22	M 36×1.5	39	$3 / 4$	106	-	120	419	75	40	141	1/5 stroke	440

CL1 Series

Rod Side Flange Type (F)/Long Stroke
$\varnothing 50$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

$\propto 125$ to $\varnothing 160$

Bore size (mm)	Stroke range (mm)	A	AL	B	B1	BF	BP	BX	BY	C	D	EA	EB	F	FD	FT	FX	FY	FZ	GA	GB	GC	H_{1}	J	K	KA
50	1001 to 1200	35	32	70	27	88	1/4	67	78	52	20	50	40	-	9.0	20	120	58	144	17	17	11	11	M8 $\times 1.25$	7	18
63	1001 to 1200	35	32	86	27	105	$1 / 4$	73	84	64	20	55	40	-	11.5	23	140	64	170	17	17	11	11	M10 1.25	7	18
80	1001 to 1400	40	37	102	32	124	$1 / 4$	77	92	78	25	65	52	-	13.5	28	164	84	198	21	21	11	13	M12 $\times 1.75$	11	22
100	1001 to 1500	40	37	116	41	140	$1 / 4$	85	100	92	30	80	52	-	13.5	29	180	100	220	21	21	11	16	M12 $\times 1.75$	11	26
125	1401 to 1600	50	47	145	-	145	$1 / 2$	112.5	141.5	115	36	90	59	43	19	14	190	100	230	16	16	16	-	M14 $\times 1.5$	15	31
140	1401 to 1600	50	47	161	-	160	$1 / 2$	121	150	128	36	90	59	43	19	20	212	112	255	16	16	16	-	M14 $\times 1.5$	15	31
160	1401 to 1600	56	53	182	-	180	$3 / 4$	133	167	144	40	90	59	43	19	20	236	118	275	18.5	18.5	18.5	-	M16 $\times 1.5$	17	36

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	M	M 1	MM	N	P	RT	RY	S	W	Without rod boot		With rod boot				
											H	ZZ	e	f	h	ℓ	ZZ
50	1001 to 1200	6	-	M18 $\times 1.5$	30	3/8	30	76	90	0	67	241	45	16.0	66	1/4 stroke	240
63	1001 to 1200	10	-	M18 $\times 1.5$	31	3/8	40	92	98	0	71	263	45	16.0	66	1/4 stroke	258
80	1001 to 1400	12	-	M22 $\times 1.5$	37	1/2	45	112	116	0	87	307	60	18.0	80	1/4 stroke	300
100	1001 to 1500	12	-	M26 $\times 1.5$	40	1/2	50	136	126	0	89	327	60	18.0	81	1/4 stroke	319
125	1401 to 1600	30	22	M30 $\times 1.5$	35	$1 / 2$	36	164	98	-	110	379.5	75	40	133	1/5 stroke	402.5
140	1401 to 1600	24	19	M 30×1.5	35	$1 / 2$	36	184	98	-	110	382	75	40	133	1/5 stroke	405
160	1401 to 1600	26	22	M36 $\times 1.5$	39	3/4	45	204	106	-	120	419	75	40	141	1/5 stroke	440

Note) Bore size $\varnothing 40$ and bore sizes $\varnothing 125$ through $\varnothing 160$ with auto switch are not available.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Lock-up Cylinder Double Acting, Single Rod
 CL1 Series

Single Clevis Type (C)

$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)			A	AL	B	B_{1}	BP	BX	BY	C	CD			CX		D	EA	F	FA	GA	GB	GC	H_{1}	
	Without rod boot	With ros	d boot											CT											
40	Up to 500	20 to 500		30	27	60	22	$1 / 4$	59	69	44			-	15.0		16	40	6.5	-	15	15	11	8	
50	Up to 600	20 to 600		35	32	70	27	$1 / 4$	67	78	52			-			20	50	6.0	-	17	17	11	11	
63	Up to 600	20 to 600		35	32	86	27	$1 / 4$	73	84	64			-			20	55	6.0	-	17	17	11	11	
80	Up to 700	20 to 700		40	37	102	32	$1 / 4$	77	92	78			-	31.5		25	65	8.0	-	21	21	11	13	
100	Up to 700	20 to 700		40	37	116	41	$1 / 4$	85	100	92			-	35.5		30	80	8.0	-	21	21	11	16	
125	Up to 1000	30 to 1000		50	47	145	-	1/2	112.5	141.5	115			17	32.0	-0.3	36	90	43	14	16	16	16		
140	Up to 1000	30 to 1000		50	47	161	-	$1 / 2$	121	150	128			17	36.0	-0.3	36	90	43	14	16	16	16		
160	Up to 1200	30 to 1200		56	53	182	-	3/4	133	167	144			20	40.0	-0.3	40	90	43	14	18.5	18.5	18.5		
Bore size	J	K	KA	L	MM		N	P	RR	S	U	W	Without rod boot			With rod boot									
(mm)	J						H						Z	ZZ	e	f	h		ℓ		Z	ZZ			
40	M8 $\times 1.25$	6	14	30	M14	$\times 1.5$		27	$1 / 4$	10	84	16	8	51	234	244	36	16.5	59		/4 strok		242	252	
50	M8 $\times 1.25$	7	18	35	M18	$\times 1.5$	30	$3 / 8$	12	90	19	0	58	261	273	45	16.0	66		1/4 strok		269	281		
63	M10 $\times 1.25$	7	18	40	M18	$\times 1.5$	31	$3 / 8$	16	98	23	0	58	280	296	45	16.0	66		1/4 strok		288	304		
80	M12 $\times 1.75$	11	22	48	M22	$\times 1.5$	37	$1 / 2$	20	116	28	0	71	327	347	60	18.0	80		$1 / 4$ strok		336	356		
100	M12 $\times 1.75$	11	26	58	M26	x 1.5	40	$1 / 2$	25	126	36	-	72	356	381	60	18.0	81		/4 strok		365	390		
125	M14 $\times 1.5$	15	31	65	M30	$\times 1.5$	35	$1 / 2$	29	98	35	-	110	414.5	443.5	75	40	133		5 strok		437.5	466.5		
140	M14 $\times 1.5$	15	31	75	M30	$\times 1.5$	35	$1 / 2$	32	98	40	-	110	433	465	75	40	133		15 strok		456	488		
160	M16 $\times 1.5$	17	36	80	M36	$\times 1.5$	39	$3 / 4$	36	106	45	-	120	473	509	75	40	141		5 strok		494	530		

CL1 Series

Double Clevis Type (D)
$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

ø125 to $\varnothing 160$

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		A	AL	B	B1	BP	BX	BY	C	CD	CT	CX	CZ	D	EA	F	FA	GA	GB
	Without rod boot	With rod boot																		
40	Up to 500	20 to 500	30	27	60	22	$1 / 4$	59	69	44	10	-	$15.0{ }_{+0.1}^{+0.3}$	29.5	16	40	6.5	-	15	15
50	Up to 600	20 to 600	35	32	70	27	$1 / 4$	67	78	52	12	-	$18.0{ }^{+0.3}$	38	20	50	6.0	-	17	17
63	Up to 600	20 to 600	35	32	86	27	$1 / 4$	73	84	64	16	-	$25.0{ }_{+0.1}^{+0.3}$	49	20	55	6.0	-	17	17
80	Up to 700	20 to 700	40	37	102	32	$1 / 4$	77	92	78	20	-	$31.5{ }_{+0.1}^{+0.3}$	61	25	65	8.0	-	21	21
100	Up to 700	20 to 700	40	37	116	41	$1 / 4$	85	100	92	25	-	$35.5{ }_{+0.1}^{+0.3}$	64	30	80	8.0	-	21	21
125	Up to 1000	30 to 1000	50	47	145	-	$1 / 2$	112.5	141.5	115	25	17	$32.0{ }_{+0.1}^{+0.3}$	64-0.2	36	90	43	14	16	16
140	Up to 1000	30 to 1000	50	47	161	-	$1 / 2$	121	150	128	28	17	$36.0{ }_{+0.1}^{+0.3}$	$72{ }_{-0.2}^{0}$	36	90	43	14	16	16
160	Up to 1200	30 to 1200	56	53	182	-	$3 / 4$	133	167	144	32	20	$40.0{ }_{+0.1}^{+0.3}$	80-0.2	40	90	43	14	18.5	18.5

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	GC	H_{1}	J	K	KA	L	MM	N	P	RR1	RR_{2}	S	U	W	Without rod boot			With rod boot					
															H	Z	ZZ	e	f	h	ℓ	Z	ZZ
40	11	8	M8 $\times 1.25$	6	14	30	M14 $\times 1.5$	27	1/4	10	16	84	16	8	51	234	244	36	16.5	59	$1 / 4$ stroke	242	252
50	11	11	M 8×1.25	7	18	35	M18 $\times 1.5$	30	3/8	12	19	90	19	0	58	261	273	45	16.0	66	$1 / 4$ stroke	269	281
63	11	11	M10 $\times 1.25$	7	18	40	M18 $\times 1.5$	31	3/8	16	23	98	23	0	58	280	296	45	16.0	66	1/4 stroke	288	304
80	11	13	M12 $\times 1.75$	11	22	48	M 22×1.5	37	1/2	20	28	116	28	0	71	327	347	60	18.0	80	$1 / 4$ stroke	336	356
100	11	16	M12 $\times 1.75$	11	26	58	$\mathrm{M} 26 \times 1.5$	40	1/2	25	23.5	126	36	0	72	356	381	60	18.0	81	$1 / 4$ stroke	365	390
125	16	-	M14 $\times 1.5$	15	31	65	M 30×1.5	35	1/2	29	-	98	35	-	110	414.5	443.5	75	40	133	$1 / 5$ stroke	437.5	466.5
140	16	-	M14 $\times 1.5$	15	31	75	M30 $\times 1.5$	35	1/2	32	-	98	40	-	110	433	465	75	40	133	$1 / 5$ stroke	456	488
160	18.5	-	M16 x 1.5	17	36	80	M36 $\times 1.5$	39	$3 / 4$	36	-	106	45	-	120	473	509	75	40	141	$1 / 5$ stroke	494	530

[^6]Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Lock-up Cylinder Double Acting, Single Rod
 CL1 Series

Center Trunnion Type (T)
$\varnothing 40$ to $\varnothing 100$
(A) Lock-up at piston forward (B) Lock-up at piston backward

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)		A	AL	B	B1	BP	BX	BY	C	D	EA	EB	F	FA	GA	GB	GC	H_{1}	J	K	KA
	Without rod boot	With rod boot																				
40	Up to 500	20 to 500	30	27	60	22	$1 / 4$	59	69	44	16	40	32	6.5	-	15	15	11	8	M8 $\times 1.25$	6	4
50	Up to 600	20 to 600	35	32	70	27	$1 / 4$	67	78	52	20	50	40	6.0	-	17	17	11	11	M8 $\times 1.25$	7	18
63	Up to 600	20 to 600	35	32	86	27	1/4	73	84	64	20	55	40	6.0	-	17	17	11	11	M10 $\times 1.25$	7	18
80	Up to 700	20 to 700	40	37	102	32	$1 / 4$	77	92	78	25	65	52	8.0	-	21	21	11	13	M12 $\times 1.75$	11	22
100	Up to 700	20 to 700	40	37	116	41	$1 / 4$	85	100	92	30	80	52	8.0	-	21	21	11	16	M12 $\times 1.75$	11	26
125	25 to 1000	30 to 1000	50	47	145	-	$1 / 2$	112.5	141.5	115	36	90	-	43	14	16	16	16	-	M14 $\times 1.5$	15	31
140	30 to 1000	30 to 1000	50	47	161	-	$1 / 2$	121	150	128	36	90	-	43	14	16	16	16	-	M14 $\times 1.5$	15	31
160	35 to 1200	35 to 1200	56	53	182	-	$3 / 4$	133	167	144	40	90	-	43	14	18.5	18.5	18.5	-	M16 $\times 1.5$	17	36

Bore size (mm)	M	MM	N	P	R	S	TDe8	TT	TX	TY	TZ	W	Without rod boot			With rod boot					
													H	Z	ZZ	e	f	h	ℓ	Z	ZZ
40	-	M14 $\times 1.5$	27	1/4	-	84	$15_{-0.059}^{-0.032}$	22	85	62	117	8	51	162	209	36	16.5	59	1/4 stroke	170	217
50	-	M18 $\times 1.5$	30	3/8	-	90	$15^{-0.032}$-059	22	95	74	127	0	58	181	232	45	16.0	66	$1 / 4$ stroke	189	240
63	-	M18 $\times 1.5$	31	3/8	-	98	$18_{-0.599}^{-0.032}$	28	110	90	148	0	58	191	246	45	16.0	66	1/4 stroke	199	254
80	-	M 22×1.5	37	$1 / 2$	-	116	$25_{-0.073}^{-0.040}$	34	140	110	192	0	71	221	286	60	18.0	80	$1 / 4$ stroke	230	295
100	-	M 26×1.5	40	$1 / 2$	-	126	$25_{-0.073}^{-0.040}$	40	162	130	214	0	72	235	306	60	18.0	81	$1 / 4$ stroke	244	315
125	19	M 30×1.5	35	1/2	1.0	98	32 ${ }_{-0.089}^{-0.050}$	50	170	164	234	-	110	300.5	368.5	75	40	133	1/5 stroke	323.5	391.5
140	19	M30 $\times 1.5$	35	1/2	1.5	98	$36_{-0.089}^{-0.050}$	55	190	184	262	-	110	309	377	75	40	133	1/5 stroke	332	400
160	22	M36 $\times 1.5$	39	$3 / 4$	1.5	106	$40_{-0.089}^{-0.050}$	60	212	204	292	-	120	340	415	75	40	141	1/5 stroke	361	436

CL1 Series
Auto Switch Mounting 1
Minimum Auto Switch Mounting Stroke
Applicable Model: CDL1 Brackets for types other than the center trunnion type

Auto switch model	No. of auto switches mounted		Brackets for types other than the center trunnion type	
			$\varnothing 40$ to $\varnothing 100$	ø125 to $\varnothing 160$
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$		Different suffaces, same surface) 1	15	15
		n	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square W V \end{aligned}$		Different surfaces, same surface) 1	10	10
		n	$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-M9 \square A		Different surfaces, same surface) 1	15	20
		n	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 20+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-M9 \square AV		Different surfaces, same surface) 1	10	15
		n	$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 15+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-A9 \square		Different suffaces, same surface) 1	15	15
		n	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-A9 \square V		Different surfaces, same surface) 1	10	10
		n	$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-F5 $\square /$ J5 \square D-F5 \square W/J59W D-F5BA/F59F D-A5 $\square /$ A6 \square		Different suffaces, same surface) 1	15	25
		n	$\begin{gathered} 15+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 25+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-F5NT		Different suffaces, same surface) 1	25	35
		n	$\begin{gathered} 25+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+55 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
D-A59W		Different surfaces, same surface) 1	20	25
		n	$\begin{gathered} 20+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 25+55 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$
$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \square \end{aligned}$	2	Different surfaces	35	
		Same surface	100	
	n	Different surfaces	$\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4 \cdots) \end{aligned}$	
		Same surface	$\begin{gathered} 100+100(n-2) \\ (n=2,3,4 \cdots) \\ \hline \end{gathered}$	
		1	10	15
D-A44	2	Different surfaces	35	
		Same surface	55	
	n	Different surfaces	$\begin{aligned} & 35+30(n-2) \\ & (\mathrm{n}=2,3,4 \ldots) \\ & \hline \end{aligned}$	
		Same surface	$\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4 \cdots) \end{aligned}$	
		1	10	15

Auto switch model	No. of auto switches mounted		Brackets for types other than the center trunnion type	
			$\varnothing 40$ to $\varnothing 100$	$\varnothing 125$ to $\varnothing 160$
$\begin{aligned} & \text { D-G39C } \\ & \text { D-K39C } \\ & \text { D-A3 } \square \text { C } \end{aligned}$	2	Different surfaces	20	-
		Same surface	100	
	n	Different surfaces	$\begin{aligned} & 20+30(n-2) \\ & (n=2,3,4 \ldots) \end{aligned}$	
		Same surface	$\begin{gathered} 100+100(n-2) \\ (n=2,3,4 \cdots) \\ \hline \end{gathered}$	
	1		10	
D-A44C	2	Different surfaces	20	-
		Same surface	55	
	n	Different surfaces	$\begin{aligned} & 20+30(n-2) \\ & (n=2,3,4 \cdots) \\ & \hline \end{aligned}$	
		Same surface	$\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4 \cdots) \end{aligned}$	
		1	10	
$\begin{aligned} & \text { D-G5■/K59 } \\ & \text { D-G5 } \square W \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \\ & \text { D-G5NT } \\ & \text { D-B5 } \square \text { B64 } \end{aligned}$	2	Different surfaces	15	-
		Same surface	75	
	n	Different surfaces	$\begin{gathered} 15+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$	
		Same surface	$\begin{gathered} 75+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	
		1	10	
D-B59W	2	Different surfaces	20	-
		Same surface	75	
	n	Different surfaces	$\begin{gathered} 20+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	
		Same surface	$\begin{aligned} & 75+50(n-2) \\ & (n=2,3,4 \cdots) \\ & \hline \end{aligned}$	
		1	10	
$\begin{aligned} & \text { D-Y59■/Y7P } \\ & \text { D-Y7 } \square W \\ & \text { D-Z7 } \square / Z 80 \end{aligned}$		Different surfaces, same surface) \qquad	15	
		n	$\begin{array}{r} 15+40 \\ (\mathrm{n}=2,4,6, \end{array}$	$\frac{(n-2)}{2 \cdots)^{(N o t e ~ 3)}}$
$\begin{aligned} & \text { D-Y69 } \square / Y 7 P V \\ & \text { D-Y7 } \square W V \end{aligned}$		Different surfaces, same surface) 1	10	
		n	$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots) \text { Note } 3) \end{gathered}$	
D-Y7BA		Different surfaces, same surface) 1	20	
		n	$\begin{gathered} 20+45 \frac{(n-2)}{2} \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	
D-P4DW		Different surfaces, same surface) 1	15	-
		n	$\begin{gathered} 15+65 \frac{(n-2)}{2} \\ (n=2,4,6,8 \ldots)^{\text {Note } 3)} \end{gathered}$	

Note 1) Reed auto switches D-A9 $\square /$ A9 \square V cannot be mounted on ø50.
Note 2) The following auto switches cannot be mounted on $\varnothing 125$ to $\varnothing 160$.
D-G39C, K39C, A3 \square C, A44C, G5■, K59, G5 \square W, K59W, G5BA, G59F, G5NT, B5■, B64, B59W, P4DW.
Note 3) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Minimum Auto Switch Mounting Stroke

Applicable Model: CDL1 Center trunnion type only

n: No. of auto switches

Auto switch model	No. of auto switches mounted	Center trunnion type						
			ø63	$\varnothing 80$	$\varnothing 100$	$\varnothing 125$	$\varnothing 140$	$\varnothing 160$
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \end{aligned}$	2 (Different surfaces, same surface) 1	80	85	90	95	105	110	115
	n	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{aligned} & 85+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {NNete } 2)} \end{aligned}$	$\begin{aligned} & 90+40 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {WNate } 2)} \end{aligned}$	$\begin{aligned} & 95+40 \frac{(\mathrm{n}-4)}{2} \\ & \left.(\mathrm{n}=4,8,12,16 \ldots)^{\text {Nole }} \text { Nol }\right) \end{aligned}$	$\begin{aligned} & 105+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nose } 2)} \end{aligned}$	$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16, \ldots)^{\text {Nale } 2)} \end{aligned}$	
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$	2 Difiterentisurfases, same sutace) 1	55	60	65	70	80	85	90
	n	$\begin{gathered} 55+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|l\|} \hline 60+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {N(Nate 2) }} \\ \hline \end{array}$	$\begin{aligned} & 65+30 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {WNobe2] }} \end{aligned}$	$\begin{array}{\|l\|} \hline 70+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Node } 2)} \end{array}$	$\begin{aligned} & 80+30 \frac{(\mathrm{n}-4)}{2} \\ & \left.(\mathrm{n}=4,8,12,16 \ldots)^{\text {Nowe }}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline 85+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{array}$	$\begin{array}{\|l} 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{n(0) e 2)} \end{array}$
D-M9 \square A	2 (Different surfaces, same surface) 1	80	85	95	100	115	120	
	n	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$	$\begin{array}{\|l\|} 85+40 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Node }} \text { (Ne) } \end{array}$	$\begin{aligned} & 95+40 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{(\text {Note } 2)} \end{aligned}$	$\left\lvert\, \begin{aligned} & 100+40 \frac{(n-4)}{2} \\ & \left.(n=4,8,12,16 \ldots)^{\text {Note } 2}\right) \end{aligned}\right.$	$\begin{aligned} & 115+40 \frac{(n-4)}{2} \\ & \left.(n=4,8,12,16 \ldots)^{\text {Nowe }} 2\right) \end{aligned}$	$\begin{gathered} 120+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
D-M9 \square AV	2 (Different Surfaces, same surface) 1	60	65	70	75	90	95	
	n	$\begin{gathered} 60+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{aligned} & 65+30 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {N(Nate2) }} \\ & \hline \end{aligned}$	$\begin{aligned} & 70+30 \frac{(n-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {Noble2 }} \end{aligned}$	$\left\|\begin{array}{l} 75+30 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{array}\right\|$	$\begin{aligned} & 90+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nute } 2)} \end{aligned}$	$\begin{gathered} 95+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$	
D-A9 \square	2 (pifierentisurfaces, same surfaee) 1	$\begin{array}{\|c\|} \hline 75 \\ \hline 75+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{n(n e z e 2)} \\ \hline \end{array}$	80	85	90	100	105	110
	n		$\begin{array}{\|l\|} \hline 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {N(Nate2) }} \\ \hline \end{array}$	$\begin{aligned} & 85+40 \frac{(\mathrm{n}-4)}{2} \\ & \left.(\mathrm{n}=4,8,12,16, \ldots)^{\|0\| 12]}\right) \end{aligned}$	$\begin{aligned} & 90+40 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {N(Nle } 2)} \\ & \hline \end{aligned}$	$\begin{aligned} & 100+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nose } 2)} \end{aligned}$	$\begin{aligned} & 105+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{aligned}$	$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {nndee })} \end{aligned}$
D-A9 \square V	$\begin{array}{\|c} 2 \text { 2 Dififerent surfays, samare surfacee) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50 \\ \hline \begin{array}{c} 50+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Nofer } 2)} \end{array} \\ \hline \end{array}$	55	60	65	75	80	85
	n		$\begin{array}{\|l\|} \hline 55+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {N(Nde 2) }} \\ \hline \end{array}$	$\begin{aligned} & 60+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {ND/ } 202)} \end{aligned}$	$\begin{aligned} & 65+30 \frac{(\mathrm{n}-4)}{2} \\ & \left.(\mathrm{n}=4,8,12,16 \ldots)^{\text {Nole } 2)}\right) \end{aligned}$	$\begin{aligned} & 75+30 \frac{(n-4)}{2} \\ & \left.(n=4,8,12,16 \ldots)^{\text {NNate2 }}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 80+30 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Node } 2)} \end{aligned}$	$\begin{aligned} & 85+30 \frac{(\mathrm{n}-4)}{2} \\ & (\mathrm{n}=4,8,12,16 \ldots)^{\text {nvoer })} \end{aligned}$
D-F5 $\square /$ J5 \square D-F5 \square W/J59W D-F5BA/F59F D-A5 $\square /$ /A6 \square	2 (Different surfaces, same surface) \qquad	90	100	110	120	125	135	
	n	$\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{aligned} & 100+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {N(Nate2) }} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {\|ndere2 }} \end{array}$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Node } 2)} \\ & \hline \end{aligned}$	$\begin{aligned} & 125+55 \frac{(n-4)}{2} \\ & \left.(n=4,8,12,16 \ldots)^{\text {Novere }}\right) \end{aligned}$	$\begin{gathered} 135+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
D-F5NT	2 (Different suffases, same sufface) 1	110	120	130	140	145	155	
	n	$\begin{gathered} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots) \text { Note } 2) \end{gathered}$	$\begin{array}{\|l\|} 120+55 \frac{(n-4)}{2} \\ \left.(n=4,8,12,16 \ldots)^{\text {Note 2l }}\right) \\ \hline \end{array}$	$\begin{array}{\|l\|} 130+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {(blez2 })} \end{array}$	$\begin{aligned} & 140+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{aligned}$		$\begin{gathered} 155+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
D-A59W	2 Dififerentsurfases, same e utrace) 1	90	100	110	120	125	135	
	n	$\begin{gathered} 90+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|l\|} \hline 100+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {N(Nde 2) }} \\ \hline \end{array}$	$\begin{array}{\|l} 110+55 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {NbLe2 } 2)} \end{array} .$	$\begin{aligned} & 120+55 \frac{(n-4)}{2} \\ & (n=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{aligned}$	$\begin{aligned} & 125+55 \frac{(n-4)}{2} \\ & \left.(n=4,8,12,16 \ldots)^{\text {NNose2 }}\right) \end{aligned}$	$\begin{gathered} 135+55 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	
$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$	2 Different surfaces	75	80	90		110		
	2 Same surface	100	100	100				
	n Different surfaces	$\begin{gathered} 75+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$	$\begin{gathered} 80+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 90+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$		$\begin{gathered} 110+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$		
	Same surface	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$						
	1	75	80	90		110		
D-A44	$$	75	80	90		110		
	n Different surfaces	$\begin{gathered} 75+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$	$\begin{gathered} 80+30(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Notes }} \mathbf{3} \end{gathered}$	$\begin{array}{r} 90+30 \\ (\mathrm{n}=2,4,6, \end{array}$	$\begin{aligned} & 0(\mathrm{n}-2) \\ & , 8 \ldots)^{\text {Note 3) }} \\ & \hline \end{aligned}$	$\begin{gathered} 110+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$		
	Same surface	$\begin{gathered} 75+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \\ \hline \end{gathered}$	$\begin{gathered} 80+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$		$\begin{gathered} 110+50(n-2) \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 3)} \end{gathered}$		
	1	75	80	90		110		

[^7]
CL1 Series
 Auto Switch Mounting 2

Minimum Auto Switch Mounting Stroke

Applicable Model: CDL1 Center trunnion type only

n : No. of auto switches

Note 1) The following auto switches cannot be mounted on $\varnothing 125$ to $\varnothing 160$.

Note 2) When " n " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.
Note 3) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Auto Switch Proper Mounting Position（Detection at Stroke End）and Its Mounting Height

＜Band Mounting＞$\varnothing 40$ to $\varnothing 100$

D－B5 $\square / B 64$
D－B59W

D－A44

＜Tie－rod Mounting＞$\varnothing 40$ to $\varnothing 100$
D－A9■／A9■V D－Z7ロ／Z80
D－M9／M9■V
D－Y59■／Y69■／Y7P／Y7PV
D－M9■W／M9■WV
D－Y7ロW／Y7ロWV
D－M9 \square A／M9 $\square A V$
D－Y7BA

D－A3 \square C
D－G39C／K39C

D－F5 $\square /$ J5 \square
D－F5NT
D－F5 \square W／J59W

D－A44C

CL1 Series

Auto Switch Mounting 3

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

<Band Mounting> ø125 to $\varnothing 160$

<Tie-rod Mounting> ø125 to $\varnothing 160$
D-Y7 $\square / Z 80 / A 9 \square / A 9 \square V$
D-Y59 $\square / Y 69 \square / Y 7 P / Y 7 P V / M 9 \square / M 9 \square V$
D-Y7 $\square W / Y 7 \square W V / F 9 \square W / F 9 \square W V$
D-Y7BA/M9 \square A/M9 \square AV

D-A5 $\square /$ A6 \square
D-A59W
A 33 Auto switch

D-F5 $\square / J 5 \square / D-F 5 N T$
D-F5■W/J59W
D-F5BA/F59F
(33)
 $\mathrm{A} \quad 30$

Auto Switch Proper Mounting Position
(mm)

Note 1) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \\ & \text { D-A9 } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { D-M9 } \mathrm{V} \\ & \text { D-M9■WV } \\ & \text { D-M9■AV } \end{aligned}\right.$		D-A9 $\square \mathrm{V}$		$\begin{array}{\|l\|} \text { D-Y59 } \\ \text { D-Y7P } \\ \text { D-Y7■W } \\ \text { D-Y7BA } \\ \text { D-Z7ロ } \\ \text { D-Z80 } \end{array}$		$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$		D-F5 D-J5 D-F59F D-F5 \square W D-J59W D-F5BA D-F5NT		$\begin{array}{\|l} \text { D-A5 } \square \\ \text { D-A6 } \square \\ \text { D-A59w } \end{array}$		$\begin{array}{\|l} \text { D-G39 } \\ \text { D-K39 } \\ \text { D-A3 } \end{array}$	D-A44	D-P4DW		$\begin{array}{\|l} \text { D-G39C } \\ \text { D-K39C } \\ \text { D-A3 } \end{array}$		D-A44C		D-G5 D-K59 D-G59F D-G5 W D-K59W D-G5BA D-G5NT D-B5 D-B64 D-B59W
	Hs	Ht	Hs	Hs	Hs	Ht	Hs	Ht	Hs	Ht	Hs												
40	30	30	35	30	32	30	30	30	30.5	30	38.5	31	40	31	72.5	80.5	43	33.5	73	69	81	69	38
50	34	34	39	34	36.5	34	34	34	35	34	42.5	35	43.5	35	78	86	47	38	78.5	77	86.5	77	43.5
63	41	41	46	41	43.5	41	41	41	42.5	41	48	42	49	42	85	93	53	44	85.5	91	93.5	91	50.5
80	49.5	49	54	49	51.5	49	49.5	48.5	51	48.5	54	50	55.5	50	93.5	101.5	60	52	94	107	102	107	59
100	57	56	62.5	56	59.5	56	58.5	56	59	56	62	57.5	63	57.5	104	112	67	59	104	121	112	121	69.5
125	69	69.5	71.5	69.5	69	69.5	69	69.5	69	69.5	74.5	70	75.5	69.5	116	126	-	-	-	-	-	-	-
140	76	76	77.5	76	76	76	76	76	76	76	80	76.5	81	76.5	124	134	-	-	-	-	-	-	-
160	85	85	86	85	85	85	85	85	85	85	88	87.5	89	87.5	134.5	144.5	-	-	-	-	-	-	-

Note 2) D-A9■/A9■V cannot be mounted on $\varnothing 50$.
Note 3) The following auto switches cannot be mounted on $\varnothing 125$ to $\varnothing 160$.
D-G39C, K39C, A3 \square C, A44C, G5■, K59, G5 \square W, K59W, G5BA, G59F, G5NT, B5 $\square, ~ B 64, ~ B 59 W, ~ P 4 D W . ~$

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Operating range

								（mm）
Auto switch model	Bore size（mm）							
	40	50	63	80	100	125	140	160
D－M9 $\square / M 9 \square V$ D－M9 \square W／M9 $\square W V$ D－M9 \square A／M9 $\square \mathrm{AV}$	4.5	5	5.5	5	6	7	6.5	6.5
$\begin{aligned} & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7aV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BA } \end{aligned}$	8	7	5.5	6.5	6.5	12	13	7
D－F5 $\square / J 5 \square / F 59 F$ D－F5 \square W／J59W D－F5BA／F5NT	4	4	4.5	4.5	4.5	5	5	5.5
D－G5■／K59／G59F D－G5 \square W／K59W D－G5BA／G5NT	5	6	6.5	6.5	7	－	－	－
D－G39／K39	9	9	10	10	11	11	11	10
D－G39C／K39C						－	－	－
D－P4DW	4	4	4.5	4	4.5	－	－	－
D－A9 $\square /$ A9 \square V	7	－	9	9	9	12	12.5	11.5
D－Z7口／Z80	8	7	9	9.5	10.5	14	14.5	13
D－A3 $\square /$ A44						10	10	10
D－A3 \square C／A44C	9	10	11	11	11	－	－	－
D－A5 $\square /$ A6 \square			11	11	11	10	10	10
D－B5 $\square / B 64$						－	－	－
D－A59W	13	13	14	14	15	17	17	17
D－B59W	14	14	17	16	18	－	－	－

Note 1）D－A9■／A9■V cannot be mounted on $\varnothing 50$ ．
Note 2）The following auto switches cannot be mounted on $\varnothing 125$ to $\varnothing 160$ ． D－G39C，K39C，A3 \square C，A44C，G5 \square ，K59，G5 \square W，K59W，G5BA，G59F， G5NT，B5ם，B64，B59W，P4DW．

Since the operating range is provided as a guideline including hysteresis，it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．It may vary substantially depending on an ambient environment．

Auto Switch Mounting Bracket：Part No．

＜Tie－rod Mounting＞

Auto switch	Bore size（mm）							
	$\varnothing 40$	$\varnothing 50$	$ø 63$	$\varnothing 80$	$\varnothing 100$	$\varnothing 125$	$\varnothing 140$	$\varnothing 160$
```D-M9\square/M9\squareV D-M9\squareW/M9\squareWV D-M9\squareA/M9\squareAV D-A9\square/A9\squareV```	BA7－040	$\underset{\text { (1) }}{B A 7-040}$	BA7－063	BA7－080	BA7－080	BS5－125	BS5－125	BS5－160
D－F5 $\square / J 5 \square$   D－F5 $\square W / J 59 W$   D－F5BA／F59F／F5NT   D－A5 $\square /$ A6／A59W   D．	BT－04	BT－04	BT－06	BT－08	BT－08	BT－12	BT－12	BT－16
$\begin{array}{\|l} \hline \text { D-G39C/K39C } \\ \text { D-A3 C/A44C } \\ \text { (2), (3) } \\ \hline \end{array}$	ВАЗ－040	ВАЗ－050	BA3－063	ВАЗ－080	BA3－100	－	－	－
$\begin{array}{\|l} \hline \text { D-Y59■/Y7P/Y7ロW } \\ \text { D-Y69ロ/Y7PV/Y7ロWV } \\ \text { D-Y7BA } \\ \text { D-Z7ロ/Z80 } \\ \hline \end{array}$	BA4－040	BA4－040	BA4－063	BA4－080	BA4－080	BS4－125	BS4－125	BS4－160
$\begin{aligned} & \text { D-P4DW } \\ & \hline \end{aligned}$	BAP2－040	BAP2－040	BAP2－063	BAP2－080	BAP2－080	－	－	－


－The above figures show the mounting example of $\mathrm{D}-\mathrm{A} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square(\mathrm{~V}) /$ M9 $\square W(V) / M 9 \square A(V)$ ．

## ＜Band Mounting＞

Auto switch	Bore size（mm）							
	$\varnothing 40$	$\varnothing 50$	$\varnothing 63$	$\varnothing 80$	$\varnothing 100$	$\varnothing 125$	$\varnothing 140$	$\varnothing 160$
$\begin{array}{\|l\|} \hline \text { D-G39/K39 } \\ \text { D-A3 } \square / \text { A44 } \\ \hline \end{array}$	BD1－04M	BD1－05M	BD1－06M	BD1－08M	BD1－10M	BS1－125	BS1－140	BS1－160
D－G5■／K59   D－G5 $\square$ W／K59W   D－G5BA／G59F／G5NT   D－B5 $\square / B 64 / B 59 W$   （2）	BA－04	BA－05	BA－06	BA－08	BA－10	－	－	－

Note 1）D－A9 $\square / A 9 \square V$ cannot be mounted on $ø 50$.
Note 2）The following auto switches cannot be mounted on ø125 to ø160． D－G39C，K39C，A3 $\square \mathrm{C}, \mathrm{A} 44 \mathrm{C}, \mathrm{G} 5 \square$ ，K59，G5 $\square \mathrm{W}, \mathrm{K} 59 \mathrm{~W}, \mathrm{G} 5 \mathrm{BA}, \mathrm{G} 59 \mathrm{~F}$, G5NT，B5 $\square$, B64，B59W，P4DW．
Note 3）Auto switch mounting brackets are attached to D－G39C／K39C／A3 $\square$ C／A44C． When ordering，specify the part number as follows depending on the cylinder size．
（Example）ø40：D－A3ロC－4，ø50：D－A3ロC－5
ø63：D－A3 $\square \mathrm{C}-6, ~ ø 80: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-8$
ø100：D－A3 $\square \mathrm{C}-10$
If auto switch mounting brackets are necessary，order them with the part numbers above．
Note 4）Cylinder tube thickness varies depending on the cylinder type．Take precautions when cylinder types change when band mounting type auto switches are used．

## ［Mounting screw set made of stainless steel］

The following set of mounting screws made of stainless steel is available．Use it in accordance with the operating environment．
（Please order the auto switch mounting bracket separately，since it is not included．）

> BBA1: For D-F5/J5/A5/A6 types BBA3：For D－G5／K5／B5／B6 types
Note 5）Refer to pages 1225 and 1233 for the details of BBA1 and BBA3 D－F5BA／G5BA auto switches are set on the cylinder with the stainless steel screws above when shipped．When an auto switch is shipped independently，BBA1 or BBA3 is attached．
Note 6）When using D－M9 $\square A(V) / Y 7 B A$ ，do not use the steel set screws which is included with the auto switch mounting brackets above（BA7－$\square \square \square$ ， BA4－$\square \square \square$ ，BS5－$\square \square \square$ ，BS4－$\square \square \square$ ）．Order a stainless steel screw set （BBA1）separately，and select and use the M4 x 6L stainless steel set screws included in the BBA1．

## CL1 Series <br> Auto Switch Mounting 4

Besides the models listed in How to Order, the following auto switches are applicable.
Refer to pages 1119 to 1245 for the detailed specifications.

Auto switch type	Part no.	Electrical entry (Feiching direction)	Features	Applicable bore size
Solid state	D-M9NV, M9PV, M9BV	Grommet (Perpendicular)	-	$\varnothing 40$ to ø160
	D-Y69A, Y69B, Y7PV			
	D-M9NWV, M9PWV, M9BWV		Diagnostic indication (2-color indicator)	
	D-Y7NWV, Y7PWV, Y7BWV			
	D-M9NAV, M9PAV, M9BAV		Water resistant (2-color indicator)	
	D-Y59A, Y59B, Y7P	Grommet (In-line)	-	
	D-F59, F5P, J59			
	D-Y7NW, Y7PW, Y7BW		Diagnostic indication (2-color indicator)	
	D-F59W, F5PW, J59W			
	D-F5BA, Y7BA		Water resistant (2-color indicator)	
	D-F5NT		With timer	
	D-G5NT			$\varnothing 40$ to $\varnothing 100$
	D-P5DW		Magnetic field resistant (2-color indicator)	
Reed	D-A93V, A96V	Grommet (Perpendicular)	-	$\varnothing 40$ to $\varnothing 160$
	D-A90V		Without indicator light	
	D-A67, Z80	Grommet (In-line)		
	D-A53, A56, Z73, Z76		-	
	D-B53			ø40 to ø100

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1192 and 1193 for details. * Normally closed ( $\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches ( $\mathrm{D}-\mathrm{F} 9 \mathrm{G} / \mathrm{F} 9 \mathrm{H} / \mathrm{Y} 7 \mathrm{G} / \mathrm{Y} 7 \mathrm{H}$ types) are also available. Refer to pages 1137 and 1139 for details. * Wide range detection type, solid state auto switches (D-G5NB type) are also available. Refer to page 1182 for details.

CL1 Series

# Made to Order: Individual Specifications 

Please contact SMC for detailed dimensions, specifications and lead times.

## 2 Both-direction Lock-up Cylinder

-X51

CL1 Mounting type Bore size - Stroke - Suffix - X51
A type of CA1 series ( $\varnothing 40$ to $\varnothing 100$ ) and CS1 series ( $\varnothing 125$ to $\varnothing 160$ ) air cylinder, this is a bi-directional locked-up cylinder in which two uni-directional locked-up units have been assembled by facing them away from each other.


Maximum Load and Holding Force of Locking (Max. static load)

Bore size (mm)		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 4 0}$	$\mathbf{1 6 0}$
Max. load   according to   mounting   orientation (N)	Horizontal   mounting	588	981	1470	2450	3820	6010	7540	9850
Vertical   mounting	294	490	735	1230	1910	3000	3770	4920	
Holding force (N)		1230	1920	3060	4930	7700	12100	15100	19700

* The cylinder can be used to $1 / 2$ of its holding force or below if only a stationary load is applied, such as for drop prevention.
Construction/Dimensions


									$(\mathrm{mm})$		
Bore size $(\mathrm{mm})$	BU	BW	BX	BY	$\mathbf{X}$						
$\mathbf{4 0}$	48	31	59	137	283						
$\mathbf{5 0}$	56	30	67	153	312						
$\mathbf{6 3}$	62	30	73	165	335						
$\mathbf{8 0}$	66	34	77	181	385						
$\mathbf{1 0 0}$	74	34	85	197	412						

* For dimensions according to mounting type, refer to CL1 series.

Bore size (mm)	BU	BP	BX	BY	$\mathbf{X}$
$\mathbf{1 2 5}$	95.5	$3 / 8$	191	220	455
$\mathbf{1 4 0}$	104.5	$3 / 8$	209	238	473
$\mathbf{1 6 0}$	112.5	$3 / 8$	225	259	515.5

* For dimensions according to mounting type. refer to CS1 series.
* Added the length of BY for full length dimension.

Note) Locked-up port: $\varnothing 40$ to $\varnothing 100-2$ positions, $\varnothing 125$ to $\varnothing 160-1$ position. In the case of lock releasing of $\varnothing 40$ to $\varnothing 100$, be sure to supply air to both locked-up ports and to release the lock.
$ø 125$ to $\varnothing 160$


Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

## CL1 Series

Related Products

## Large Bore Lock-up Cylinder (ø180 to ø300)

-This is a lock-up cylinder with a self-locking system that can be mounted onto a large bore air cylinder (CS1 series) from $\varnothing 180$ to $\varnothing 300$, and contains a ring that is tilted by a spring force, which is further tilted by the thrust of the cylinder to securely lock the piston rod.

Produced upon receipt of order.
Please contact SMC for details.


Specifications

Applicable bore size	$\varnothing \mathbf{1 8 0}, \varnothing \mathbf{2 0 0}, \varnothing \mathbf{2 5 0}, \varnothing \mathbf{3 0 0}$
Maximum operating pressure	0.97 MPa
Locked-up releasing pressure	0.2 MPa or more (at no-load)
Locked-up starting pressure	0.05 MPa or less
Locked-up direction	One way (Locking direction is selectable.)
Mounting	Basic type, Foot type, Rod side flange type   Head side flange type, Single clevis type   Double clevis type, Center trunnion type
Maximum speed at locked-up	$200 \mathrm{~mm} / \mathrm{sec}$

Maximum Load and Holding Force of Locking (Max. static load)

Bore size (mm)		$\mathbf{1 8 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$
Max. load   according   to mounting   orientation   (N)	Horizontal   mounting	12250	14700	24000	29400
	Vertical   mounting	6125	7350	12000	14700
Holding force (N)		24500	29400	48000	58800

* The cylinder can be used to $1 / 2$ of its holding force or below if only a stationary load is applied, such as for drop prevention.


[^0]:    *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
    Consult with SMC regarding water resistant types with the above model numbers.
    *2 1 m type lead wire is only applicable to D-A93.

    * Lead wire length symbols: 0.5 m .......Nil (Example) M9NW
    * Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order. $1 \mathrm{~m} \cdots \ldots . \mathrm{M}$ (Example) M9NWM $3 \mathrm{~m} \ldots \ldots . \mathrm{L}$ (Example) M9NWL $5 \mathrm{~m} \cdot \ldots \ldots . \mathrm{Z}$ (Example) M9NWZ None ...... N (Example) H7CN
    * Since there are other applicable auto switches than listed above, refer to page 817 for details.
    * For details about auto switches with pre-wired connector, refer to pages 1192 and 1193
    * D-A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled at the time of shipment.)
    * Do not indicate suffix " $N$ " for no lead wire on D-A3 $\square A / A 44 A / G 39 A / K 39 A$ models.

[^1]:    * Clevis pin and snap ring (ø40: cotter pin) are shipped together.

[^2]:    * Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee the water resistance.

    A water-resistant type cylinder is recommended for use in an environment which requires water resistance. However, please contact SMC for water-resistant products of $\varnothing 20$ and $\varnothing 25$.
    *2 1 m type lead wire is only applicable to D-A93.
     $3 \mathrm{~m} \ldots \ldots . \mathrm{L}$ (Example) M9NWL

[^3]:    * For long stroke refer to page 823
    ** The minimum stroke for cylinders with a rod boot is 20 mm .

[^4]:    * For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1192 and 1193 for details.

[^5]:    * Since the lock section for CL1 series is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.
    * Seal kit includes a grease pack ( $\varnothing 40, \varnothing 50: 10 \mathrm{~g}, \varnothing 63, \varnothing 80: 20 \mathrm{~g}, \varnothing 100: 30 \mathrm{~g}$, $\varnothing 125$ to $\varnothing 160: 40 \mathrm{~g}$ ).
    Order with the following part number when only the grease pack is needed. Grease pack part no.: GR-S-010 (10 g), GR-S-020 (20 g)

[^6]:    * Clevis pin, flat washer and cotter pin are attached.

[^7]:    Note 1) Reed auto switches D-A9■/A9■V cannot be mounted on ø50.
    Note 2) When " $n$ " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.
    Note 3) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation.

