
Air Slide Table *MXP Series* Ø6, Ø8, Ø10, Ø12, Ø16

D-□ -**X**□ 327 ⊗

Cylinder: Built-in Linear Guide

SMC

(A)

MXP6 is not available

Side mounting with shock absorber and

Note)

Note) Side mounting of MXP6 is

not available

Compact Air Slide Table

Travelling parallelism*: 0.004 mm Parallelism: 0.02 mm

* Refer to page 335 for details of the traveling parallelism.

Numerous auto switch variations available

Reed switch, solid state switch, and 2-color indicator solid state auto switch can be mounted.

MXH

MXS MXO With auto switches and stroke adjuster MXO MXF Auto switch attachable MXW MXP 10) MXJ MXP MXY MTS Stroke adjuster Stroke adjustment range: 0 to 5 mm Available with rubber stopper, metal stopper. Stroke (mm) Stroke adjuster i Auto Metal Rubbe switch 10 15 20 25 30 Series 5 stonn stonn MXP6 MXP8 **MXP10 MXP12 MXP16** With shock absorber MXPJ6 Twice the allowable kinetic energy of a rubber stopper

329

D-🗆

-X

Highly flexible piping methods

Piping possible in two directions:

vertical or lateral

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Compact: Height 17 x Width 20

Compact shape is realized by the

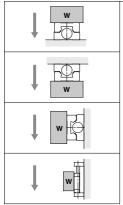
cylinder built into the linear guide

block. Material of body and table is martensitic stainless steel.

Stopping accuracy

is stable, because the guide block and the colli-

sion part of a shock absorber


are one-piece construction

MXP Series Model Selection

odel Selection Steps	Formula/Data	Selection Example
Operating Conditions		
Enumerate the operating conditions considering the mounting position and workpiece configuration. Check that the load mass does not exceed the maximum allowable load mass and that the average operating speed does not exceed the operating speed range.	Model to be used Mounting orientation Average operating speed Va (mm/s) Load mass W (kg): Fig. (1) Table (2) Overhang Ln (mm): Fig. (2)	Cylinder: MXP10-10 Mounting: Horizontal wall mount La+As La La+As La 20 mm La 30 mm
Kinetic Energy		
Find the kinetic energy E (J) of the load. Confirm that the kinetic energy of	$E = \frac{1}{2} \cdot W \left(\frac{V}{1000}\right)^{2}$ Collision speed V = $\underline{1.4} \cdot Va$ * Correction factor Kinetic energy (E) < Allowable kinetic energy (Emax)	$E = \frac{1}{2} \cdot 0.2 \left(\frac{420}{1000}\right)^2 = 0.018$ V = 1.4 x 300 = 420 Possible to use by E = 0.018 < Emax = 0.045
the load does not exceed the allowable kinetic energy.	Allowable kinetic energy Emax: Table (1)	
Load Factor		
Load Factor of Load mass		
Find the allowable load mass Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define $\alpha_1 = 0.$)	$\label{eq:Wa} \begin{split} &Wa = \beta \cdot Wmax \\ & \text{Allowable load weight coefficient } \beta; \ensuremath{\mbox{ Graph (1)}} \\ & \text{Max. allowable load mass Wmax: Table (2)} \end{split}$	Wa = 1 x 1.2 = 1.2 β = 1 Wmax = 1.2 $\alpha_1 = 0.2/1.2 = 0.17$
Find the load factor of the load mass α_1 .	0.1 = W/Wa	GI = 0.2 1.2 = 0.17
Load Factor of Static Momen	ıt	
Find the static moment M (N·m).	M = W x 9.8 (Ln + An)/1000 Moment center position distance compensation amount An: Table (3)	Examine Mr. [As Mp and My does not arise, examination is not needed.] Mr = 0.2 x 9.8 (20 + 6.8)/1000 = 0.053
Find the allowable static moment Ma (N·m).	Ma = Y· Mmax Allowable moment coefficient Y: Graph (2) Maximum allowable moment Mmax: Table (4)	A ₂ = 6.8 Mar = 1 x 4.2 = 4.2 Υ = 1
Find the load factor α_2 of the static moment.	02 = M/Ma	Mrmax = 4.2 α ₂ = 0.053/4.2 = 0.013
Load Factor of Dynamic Mon		
Find the dynamic moment Me (N-m).	$\begin{split} & Me = 1/3 \cdot We x 9.8 \ \frac{(Ln + An)}{1000} \\ & Load equivalent to collision We = \delta \cdot W \cdot V \\ & \delta Damper coefficient \\ Rubber stopper = 4/100 \\ & Shock absorber = 1/100 \\ & Metal stopper = 16/100 \\ & Corrected value for moment center position \\ & distance An: \ \mbox{Table (3)} \end{split}$	Examine Mep. $Mep = 1/3 \times 3.36 \times 9.8 \times \frac{(20 + 6.8)}{1000} = 0.29$ $We = 4/100 \times 0.2 \times 420 = 3.36$ $A_2 = 6.8$ $Meap = 0.7 \times 1.7 = 1.19$ $Y = 0.7$ $Mp max = 1.7$
Find the allowable dynamic moment Mea (N·m).	Mea = Y · Mmax Allowable moment coefficient Y: Graph (2) Max. allowable moment Mmax: Table (4)	$\begin{aligned} &\alpha_3 = 0.29 / 1.19 = 0.24 \\ &\text{Examine Mey.} \\ &\text{Mey} = 1/3 \ x \ 3.36 \ x \ 9.8 \ x \frac{(30 + 10.5)}{1000} = 0.44 \end{aligned}$
		We = 33.6
Find the load factor α_3 of the dynamic moment.	αa = Me/Mea	We = 33.6 A1 = 10.5 Meay = 1.19 (Same as Meap) α'3 = 0.44/1.19 = 0.37
	α.a = Me/Mea	A1 = 10.5 Meay = 1.19 (Same as Meap)

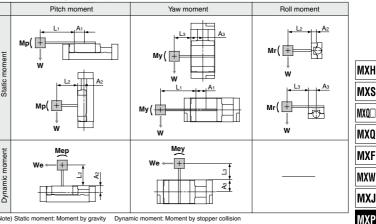
Model Selection MXP Series

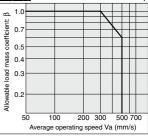
Fig. (1) Load Mass: W (kg)

Note) No need to consider this load factor in the case of using perpendicularly in a vertical position.

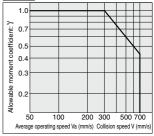
Table (1) Allowable Kinetic Energy: Emax (J)

Model	Allowable kinetic energy				
Model	Rubber stopper Shock abso		Metal stopper		
MXPJ6	0.010				
MXP 6	0.010		0.005		
MXP 8	0.033		0.017		
MXP10	0.045	0.090	0.023		
MXP12	0.076	0.152	0.038		
MXP16	0.135	0.270	0.068		




Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm)

Note) Static moment: Moment by gravity Dynamic moment: Moment by stopper collision


Table (2) Max. Allowable Load Mass: Wmax (kg)

Model	Maximum allowable load weight
MXPJ6	0.00
MXP 6	0.32
MXP 8	0.75
MXP10	1.2
MXP12	1.7
MXP16	3

Graph (1) Allowable Load Mass Coefficient: β

Graph (2) Allowable Moment Coefficient: γ

Note) Use the average operating speed when calculating static moment. Use the collision speed when calculating dynamic moment.

Table (3) Moment Center Position Distance Compensation Amount: An (mm)

Model	Stroke	Moment center position distance compensation amount (Refer to F				
woder	Stroke	A1	A2	A3		
MXPJ6	5	18.5	5.3	9		
MXP 6	10	23.5	5.5	9		
MXP 8	10	10.5	7.4	11		
IVIAP O	20	20.5	7.4			
MXP10	10	10.5	6.8	13.5		
WAPTU	20	19.5	0.0	13.5		
MXP12	15	14.5	8	16		
WAF 12	25	24.5	8	10		
MXP16	20	20	12.5	23		
WAP 10	30	28	12.5	23		

Table (4) Maximum Allowable Moment: Mmax (N·m)

	P	Pitch/Yaw moment: Mpmax/Mymax					Roll moment: Mrmax					
Model		Stroke (mm)				Stroke (mm)						
	5	10	15	20	25	30	5	10	15	20	25	30
MXPJ6								0.5				
MXP 6	1.4	2.3	_		-		2.6	3.5	_			
MXP 8	-	1.4	-	5.7	-	-	-	2.6	—	5.6	-	—
MXP10	-	1.7	-	6.3	-	-	-	4.2	-	8.5	—	—
MXP12	—	-	4.5	-	13	—	-	—	9.8	-	17	
MXP16	—	-	-	12	—	28	—	-	—	26	—	41

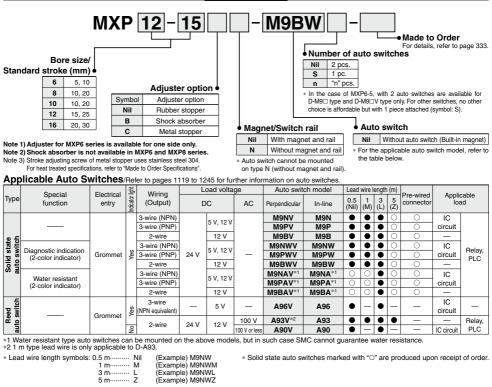
Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 3)	Correction values of moment center position distance	mm	v	Collision speed	mm/s
E	Kinetic energy	J	Va	Average operating speed	mm/s
Emax	Allowable kinetic energy J W		w	Load mass	kg
Ln (n = 1 to 3)	Overhang mm Wa Allowable load mass		kg		
M (Mp, My, Mr)	Static moment (pitch, yaw, roll) N·m We Mass equivalent to impact		kg		
Ma (Map, May, Mar)	May, Mar) Allowable static moment (pitch, yaw, roll)		Wmax	Max. allowable load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N∙m	α	Load factor	—
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N∙m	β	Allowable load mass coefficient	—
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	N∙m	γ	Allowable moment coefficient	_
COMO					

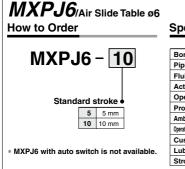
D-🗆 -X

MXY

MTS


SMC

Air Slide Table MXP Series ø6, ø8, ø10, ø12, ø16


RoHS

How to Order

* Since there are other applicable auto switches than listed, refer to page 347 for details.

For details about auto switches with pre-wired connector, refer to pages 1192 and 1193
 Auto switches are shipped together (not assembled).

Specifications

Bore size (mm)	6
Piping port size	M3 x 0.5
Fluid	Air
Action	Double acting
Operating pressure	0.15 to 0.7 MPa
Proof pressure	1.05 MPa
Ambient and fluid temperature	-10 to 60°C
Operating speed range (Average operating speed)	50 to 500 mm/s
Cushion	Rubber bumper
Lubrication	Non-lube
Stroke length tolerance	+1 mm

Theoretical Output

Stroke				eig	ht		
6	28	6	8	11	14	17	20
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7
Bore size	Piston area	Operating pressure (MPa)					
							(N)

Model Body weight Standard Model stroke MXPJ6-5 80 MXPJ6 MXPJ6-10 5.10 105

332

SMC

Air Slide Table **MXP** Series

With Shock Absorber

* Exclusive body is to be used for the one with shock absorber. Changing specifications, such as replacing component parts and retrofitting shock absorber is not possible.

Made to Order

Made to Order: Individual Specifications (For details, refer to pages 348 to 350.)

Symbol	mbol Specifications			
-X7	PTFE grease			
-X9 Grease for food processing machines				
-X16 Heat treated metal stopper bolt specification				
-X23 Axial piping port set screw specification				
-X39	Fluororubber seal			
-X42	Anti-rust guide specification			
-X45 EPDM seal				
-X51	Long adjustment nut specification			

For clean room specifications, refer to "Pneumatic Clean Series" catalog (CAT.E02-23)

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the IDK series in the Best Pneumatics No. 6.

Specifications

1	Nodel	MXP6	MXP8	MXP10	MXP12	MXP16	
Bore size (m	ım)	6	8	10	12	16	
Piping port	size	M3 x 0.5		M5 >	(0.8		
Fluid				Air			
Action				Double acting			
Operating p	ressure		(0.15 to 0.7 MPa	a		
Proof press	ure	1.05 MPa					
Ambient and	fluid temperature	-10 to 60°C					
Operating s (Average op	peed range erating speed)	50 to 500 mm/s (Adjuster option/Metal stopper: 50 to 200 mm/s)					
Cushion		Rubber bumper Shock absorber (Option is not available for MXP6 and MXP8 series) None (Adjuster option/Metal stopper)					
Lubrication				Non-lube			
Stroke adjus	ster	Standard equipment (Adjustable on one side only, for the MXP6)					
Stroke	Rubber stopper	0 to 5 mm on one side only	0 to 5 mm on one side only Each 0 to 3 mm on both ends				
adjustment	Shock absorber	_	_	Each 0	to 5 mm on bo	th ends	
range	Metal stopper	0 to 6 mm on one side only	Each 0 to 5 m	n on both ends	Each 0 to 4 mr	n on both ends	
Auto switch		Reed auto switch (2-wire, 3-wire) Solid state auto switch (2-wire, 3-wire) 2-color indicator solid state auto switch (2-wire, 3-wire)					
Stroke length tolerance		+1 mm					
None) Averag	e operating speed	Speed that the stroke is divided by a period of time from starting the					

None) Average operating speed: Speed that the stroke is divided by a period of time from starting the operation to reaching the end.

Theoretical Output

							(IN)
Bore size	Piston area		Ор	erating pr	essure (M	Pa)	
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7
6	28	6	8	11	14	17	20
8	50	10	15	20	25	30	35
10	79	16	24	32	40	47	55
12	113	23	34	45	57	68	79
16	201	40	60	80	101	121	141

Standard Stroke

	(mm)
Model	Standard stroke
MXP6	5, 10
MXP8	10, 20
MXP10	10, 20
MXP12	15, 25
MXP16	20, 30

Weight

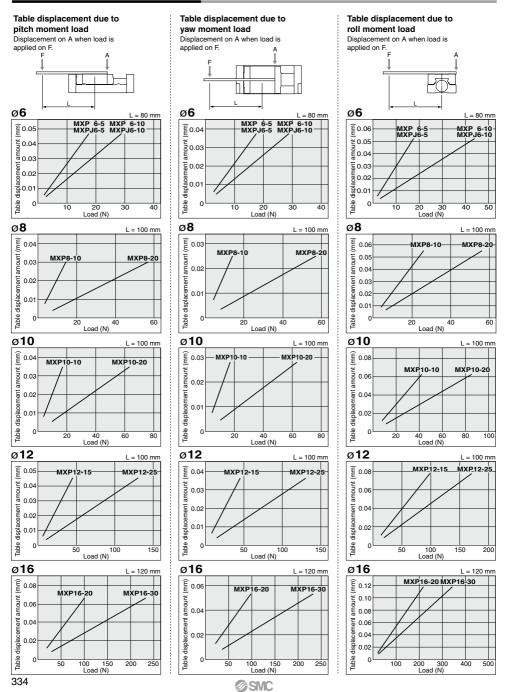
			(g)
	Body	mass	Additional
Model	Rubber bumper Metal stopper	Shock absorber	weight of magnet and switch rail
MXP6-5	80	_	10
MXP6-10	105	-	10
MXP8-10	100	-	8
MXP8-20	160	_	12
MXP10-10	130	170	13
MXP10-20	210	255	20
MXP12-15	210	250	17
MXP12-25	320	375	23
MXP16-20	640	700	20
MXP16-30	830	905	23

Shock Absorber Specifications

Shock absorber model		RB0805	RB0806
Applicable slide table		MXP10/12	MXP16
Max. energy absorption (J)		0.98	2.94
Stroke absorption (mm)		5	6
Max. collision speed (mm/s)		50 to 500	
Max. operating frequenc	y (cycle/min)	80	80
Max. allowable the	rust (N)	245	245
Ambient temperature range (°C)		-10 t	o 60
Spring force (N)	Extended	1.96	1.96
Spring loice (N)	Retracted	3.83	4.22
Weight (g)		15	15

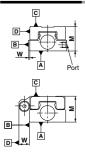
*The shock absorber service life is different from that of the MXP cylinder depending on the operating conditions. Refer to the RB series Specific Product Precautions for the replacement period.

(NI)


333 A

D-🗆

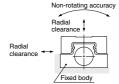
-X□


Table Deflection (Reference Values)

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable weight. Refer to the Model Selection for the loadable weight.

Air Slide Table MXP Series

Table Accuracy



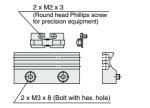
The amount of deflection on a dial gauge when the guide block travels a full stroke with the body secured on a reference base surface.

With shock absorber

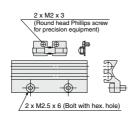
							(11111)
Model		MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16
Parallelism	Surface C to surface A	0.02					
Surface D to surface B 0.02							
Traveling Surface C to surface A		0.004					
parallelism Surface D to surface B 0.004							
M dimension tolerance		±0.05					
W dime	W dimension tolerance		±0.05				

MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16	N
0 to -2	0 to -2	0 to -3	0 to -3	0 to5	0 to -7	Ľ
) ±0.03	±0.03	±0.03	±0.03	±0.04	±0.04	
	0 to -2	0 to -2 0 to -2	0 to -2 0 to -2 0 to -3	0 to -2 0 to -2 0 to -3 0 to -3	0 to -2 0 to -2 0 to -3 0 to -3 0 to -5	MXPJ6 MXP6 MXP8 MXP10 MXP12 MXP16 0 to -2 0 to -2 0 to -3 0 to -3 0 to -5 0 to -7 0 ±0.03 ±0.03 ±0.03 ±0.04 ±0.04

MXS
MXQ□
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

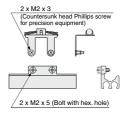

MXH

Option Specifications


Rail assembly for mounting auto switch

When auto switch is mounted on air slide table without rail (MXPD-DN), this assembly is used.

Dimensions



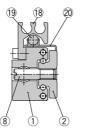
MXP10, 12, 16

(mm)

MXP8

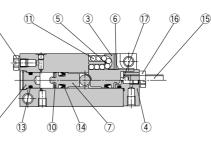
Applicable size Switch rail part no. Note MXP6-5 MXP-AD6-5 MXP6-10 MXP8-10 MXP-AD8-10 **MXP8-20** MXP-AD8-20 With magnet and MXP10-10 MXP-AD10-10 mounting screw MXP10-20 MXP-AD10-20 MXP12-15 MXP-AD12-15 MXP12-25 MXP-AD12-25 MXP16-20 MXP-AD10-20 MXP16-30 MXP-AD12-25

Note) MXP16-20 and MXP10-20 are common. MXP16-30 and MXP12-25 are common.



335

SMC


Construction

MXP6

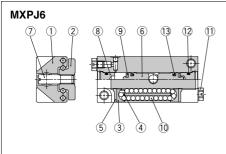
12

9

Component Parts

No.	Description	Material	Note
INO.	Description	Material	Note
1	Body	Stainless steel	Heat treated
2	Table	Stainless steel	Heat treated
3	Cover	Resin	
4	End plate	Stainless steel	
5	Return guide	Resin	
6	Scraper	Stainless steel, NBR	
7	Piston	Brass	Electroless nickel plated
8	Joint shaft	Carbon steel	Electroless nickel plated
9	End cap	Brass	Electroless nickel plated
10	Rod bumper	Polyurethane	
11	Steel ball	High carbon chrome bearing steel	
12	Plug	Brass, Stainless steel, NBR	Electroless nickel plated

Replacement Parts/ Seal Kit


Bore size (mm)	Kit no.	Contents
6	MXP6-PS	2 pieces of no. (3, (4) and Gasket for (2)

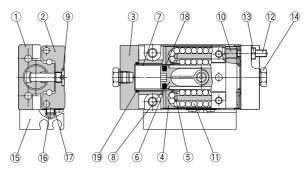
Component Parts

No.	Description	Material	Note
13	O-ring	NBR	
14 Piston seal		NBR	
45	Adjustment bolt	Carbon steel (Rubber stopper)	Zinc chromated
15 Adjustment bolt		Stainless steel (Metal stopper)	
16	Adjustment nut	Carbon steel	Zinc chromated
17	17 Adjustment bumper Polyurethane		None for the metal stopper
18 Switch rail Al		Aluminum alloy	Hard anodized
19	Magnet	_	Nickel plated
20	Magnet holder	Steel	Nickel plated

Replacement Parts/ Grease Pack

Applied unit Grease pack part no. Guide unit GR-S-010 (10g) GR-S-020 (20g) GR-S-020 (20g)		
Guide unit	Applied unit	Grease pack part no.
	Cuido unit	GR-S-010 (10g)
	Guide unit	GR-S-020 (20g)
GR-L-005 (5g)	Culinder unit	GR-L-005 (5g)
Cylinder unit GR-L-010 (10g)	Cylinder unit	GR-L-010 (10g)

Replacement Parts/ Grease Pack


	Applied unit	Grease pack part no.
	Guide unit	GR-S-010 (10g)
	GR-S-020 (20g)	
Ordinden unit	GR-L-005 (5g)	
Cylinder unit	Cylinder unit	GR-L-010 (10g)

Com	oonent Parts		
No.	Description	Material	Note
1	Body	Stainless steel	Heat treated
2	Table	Stainless steel	Heat treated
3	Cover	Resin	
4	Return guide	Resin	
5	Scraper	Stainless steel, NBR	
6	Piston	Brass	Electroless nickel plated
7	Joint shaft	Carbon steel	Electroless nickel plated
8	End cap	Brass	Electroless nickel plated
9	Rod bumper	Polyurethane	
10	Steel ball	High carbon chrome bearing steel	
11	Plug	Brass, Stainless steel, NBR	Electroless nickel plated
12	O-ring	NBR	
13	Piston seal	NBR	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
6	MXPJ6-PS	2 pieces of no. $\textcircled{1}{2}$ and $\textcircled{1}{3}$ and Gasket for $\textcircled{1}{1}$

MXP8,10,12,16

No.	Description	Material	Note
1	Body	Stainless steel	Heat treated
2	Guide block	Stainless steel	Heat treated
3	End plate	Aluminum alloy	Hard anodized
4	Cover	Resin	
5	Return guide	Resin	
6	Scraper	Stainless steel, NBR	
7	Tube	Stainless steel	(Except ø8)
8	Piston	Resin	
9	Joint shaft	Carbon steel	Electroless nickel plated
10	Adjustment bumper	Polyurethane	None for the metal stopper

11 Steel ball High carbon chrome bearing steel 12 Adjustment bolt Carbon steel (Rubber stopper) Zinc chromated 13 Adjust nut Carbon steel (Metal stopper) Zinc chromated 14 Plug Brass, Stainless steel, NBR Electroless nickel plated 15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated	<u> </u>			ponent Parts	Comp
12 Adjustment bolt Carbon steel (Rubber stopper) Zinc chromated 13 Adjust nut Carbon steel (Metal stopper) 3 14 Piug Brass, Stainless steel, NBR Electroless nickel plated 15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated	MXY	Note	Material	Description	No.
12 Adjustment bolt Stainless steel (Metal stoppr) 13 Adjust nut Carbon steel Zinc chromated 14 Plug Brass, Stainless steel, NBR Electroless nickel plated 15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated			High carbon chrome bearing steel	Steel ball	11
Stainless steel (Metal stopper) 13 Adjust nut Carbon steel Zinc chromated 14 Plug Brass, Stainless steel, NBR Electroless nickel plated 15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated	MTS	Zinc chromated	Carbon steel (Rubber stopper)		10
14 Plug Brass, Stainless steel, NBR Electroless nickel plated 15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated			Stainless steel (Metal stopper)	Adjustment bolt	12
15 Switch rail Aluminum alloy Hard anodized 16 Magnet — Nickel plated		Zinc chromated	Carbon steel	Adjust nut	13
16 Magnet — Nickel plated		Electroless nickel plated	Brass, Stainless steel, NBR	Plug	14
		Hard anodized	Aluminum alloy	Switch rail	15
17 Magnet holder Stool Electroloss nickel plated		Nickel plated	_	Magnet	16
Steel Lieutoless nickel plated		Electroless nickel plated	Steel	Magnet holder	17
18 Piston seal NBR			NBR	Piston seal	18
19 O-ring NBR			NBR	O-ring	19

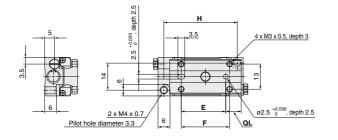
Replacement Parts/ Seal Kit

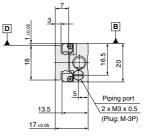
inopiacomont i a		
Bore size (mm)	Kit no.	Contents
8	MXP8-PS	
10	MXP10-PS	2 pieces of no.18, 19 and
12	MXP12-PS	Gasket for
16	MXP16-PS	

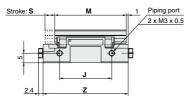
Replacement	Parts/	Grease	Pack
-------------	--------	--------	------

Applied unit	Grease pack part no.
Guide unit	GR-S-010 (10g)
Guide unit	GR-S-020 (20g)
Cylinder unit	GR-L-005 (5g)
Cylinder unit	GR-L-010 (10g)

MXH

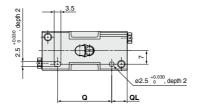

MXS MXQ

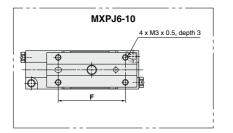

MXQ


MXF MXW MXJ

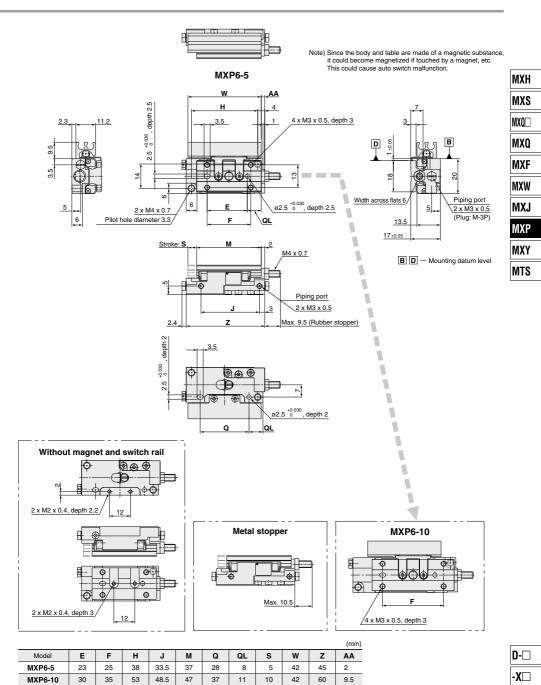
MXP

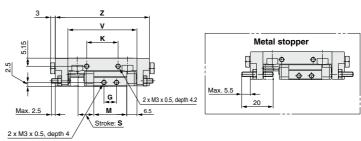
Dimensions: MXPJ6



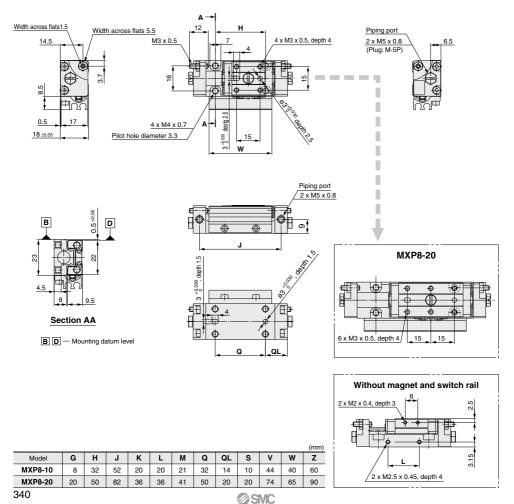


MXPJ6-5

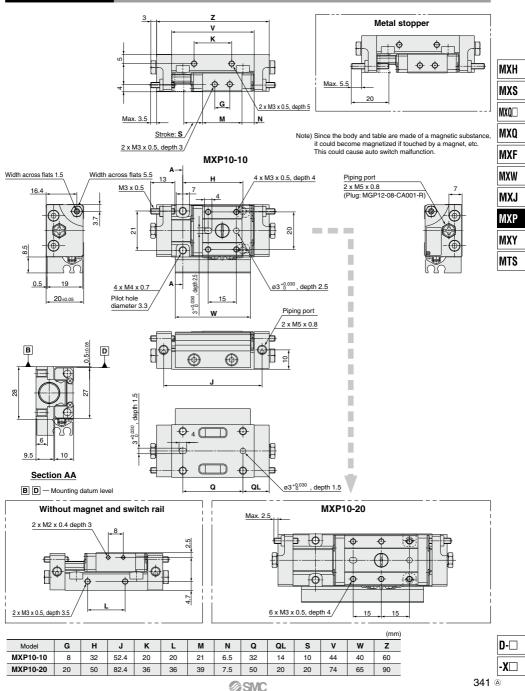

B D - Mounting datum level


									(mm)
Model	E	F	н	J	м	Q	QL	S	z
MXPJ6-5	23	25	38	27	37	28	8	5	44
MXPJ6-10	30	35	53	42	47	37	11	10	59
338 SSNC									

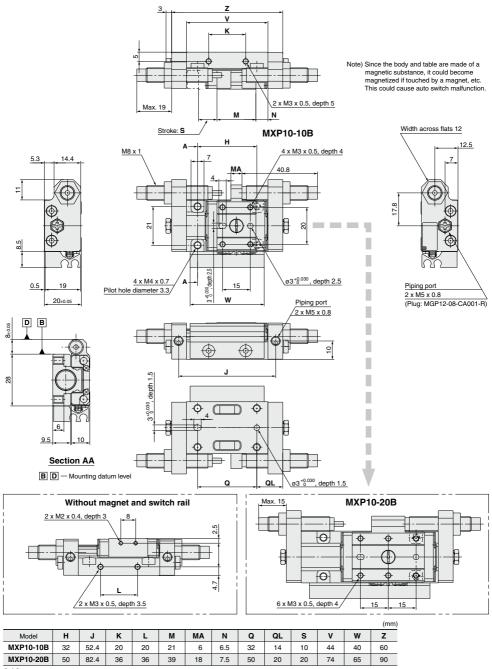
Air Slide Table **MXP** Series


339

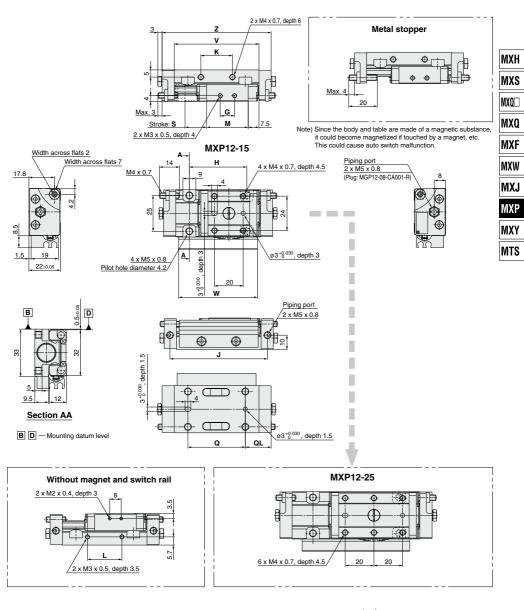
Dimensions: MXP8



Note) Since the body and table are made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction.


MXP8-10

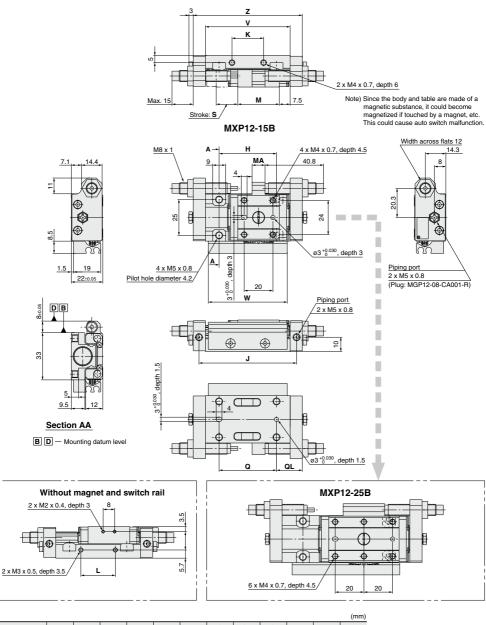
Dimensions: MXP10



Dimensions: MXP10 with Shock Absorber

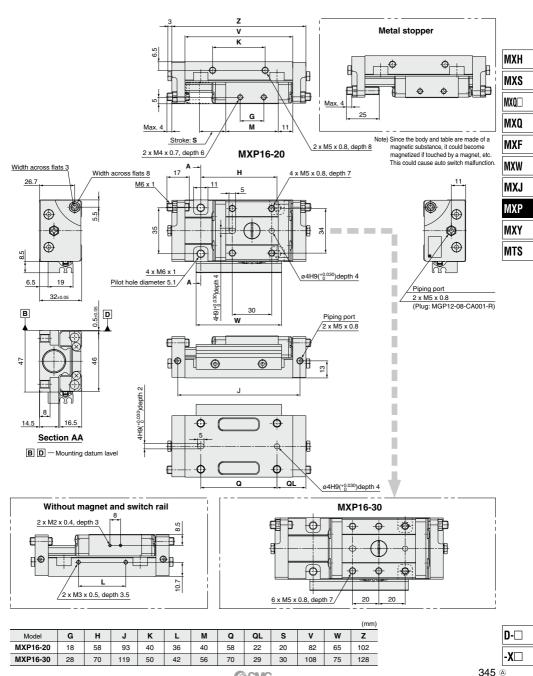
SMC

Dimensions: MXP12

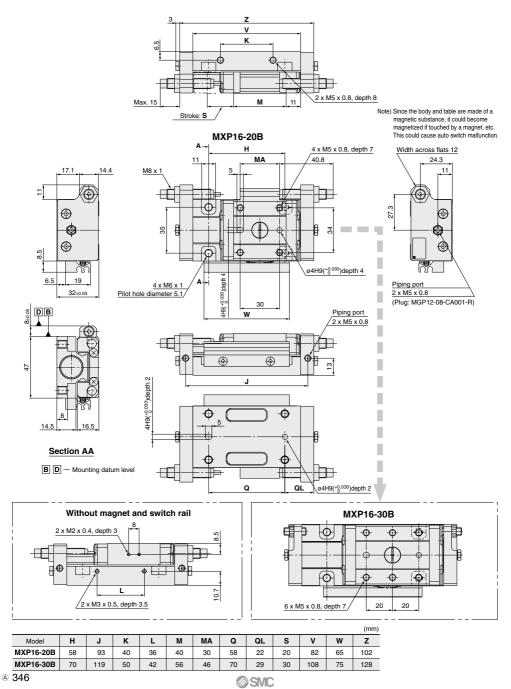


												(mm)
Model	G	н	J	К	L	М	Q	QL	S	٧	W	z
MXP12-15	10	40	68	22	24	29	40	18	15	59	55	76
MXP12-25	30	60	98	40	42	49	60	23	25	89	75	106

⊘SMC

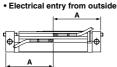

Dimensions: MXP12 with Shock Absorber

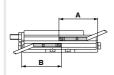
												(11111)
Model	н	J	к	L	м	MA	Q	QL	S	v	w	z
MXP12-15B	40	68	22	24	29	9	40	18	15	59	55	76
MXP12-25B	60	98	40	42	49	29	60	23	25	89	75	106
				•								


A 344

Dimensions: MXP16

SMC


Dimensions: MXP16 with Shock Absorber



MXP Series **Auto Switch Mounting**

Auto Switch Proper Mounting Position (Detection at Stroke End)

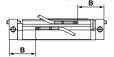
MXP8.10.12.16

MXP6

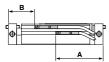
п

р

Model


Reed Auto Switch

D-A90(V), D-A93(V), D-A96(V) Stroke (mm)


10

34.5

· Electrical entry from inside

· Parallel electrical entry

Reed Auto Switch D-A90(V), D-A93(V), D-A96(V) (mm)

Mod	-1	Stroke (mm)							
IVIOU	ei	10	15	20	25	30			
MXP8	Α	35	-	45	-	Ι			
IVIAPO	в	15	-	25	—				
MXP10	Α	35	-	45	_				
WAPTU	в	15	-	25	—	Ι			
MXP12	Α	-	40.5	-	50.5	—			
MXP12	в	_	20.5	_	30.5	Ι			
MXP16	Α	—	-	51	_	59			
WAP 16	в	-	-	31	-	39			

Solid State Auto Switch D-M9B(V), D-M9N(V), D-M9P(V) (mm)

Mode	-1	Stroke (mm)							
WOO	ei	10	15	20	25	30			
MXP8	Α	31	-	41	—				
WIXP8	в	19	-	29	—	_			
MXP10	Α	31	-	41	-				
IVIAP IU	в	19	-	29	—				
MXP12	Α	—	36.5	_	46.5	_			
WIAP 12	в	—	24.5	-	34.5				
MXP16	Α	-	-	47	_	55			
MAP 16	в	-	—	35	_	43			

2-Color Indicator, Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW(V), D-M9□A(V) (mm)

Mad	-	Stroke (mm)							
Model		10	15	20	25	30			
MXP8	Α	31	-	41	—	_			
MXP8	в	19	-	29	—	_			
MXP10	Α	31	-	41		—			
IVIAP IU	в	19	-	29	—	—			
MXP12	Α	_	36.5	_	46.5	_			
WAP 12	в	_	24.5	-	34.5	_			
MXP16	Α	-	-	47	—	55			
MXP 16	в	—	-	35	—	43			
Noto) Ac	liuet t	tho aut	to cwite	ob afte	vr confi	rmina			

the operating conditions in the actual setting

Operating Range

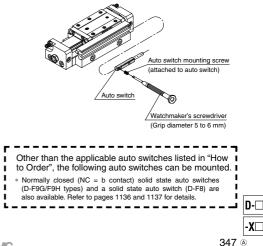
						(mm)	
	Auto switch model	Applicable bore size					Г
		6	8	10	12	16	
	D-A9□/A9□V	5	5	5	5	5	
		3	3	3.5	3	3	
	D-M9□W/M9□WV D-M9□A/M9□AV	3	3	3.5	3	3	

Minimum Auto Switch Mounting Stroke

	Applic	able auto switch	(mm) model	N
No. of auto switches mounted	D-A9□ D-A9□V	D-M9□ D-M9□V	D-M9⊟W D-M9⊟WV D-M9⊡AV	
1 pc.	5	5	5	
2 pcs.	10	5	10	

Auto Switch Mounting

A Caution


Auto Switch Mounting Tool

 Use the watchmaker's screwdriver with a handle diameter 5 to 6 mm when tightening the auto switch mounting screw (attached to auto switch).

Tightening Torque

Tightening Torque of Auto Switch Mounting Screw	(N·m)
---	-------

rightening rolque of Auto offi	ton mounting ouron ()
Auto switch model	Tightening torque
D-A9□(V)	0.10 to 0.20
D-M9□(V) D-M9□W(V) D-M9□A(V)	0.05 to 0.15

MXH MXS MXO 🗆 MXQ MXF WXW MXJ

MTS

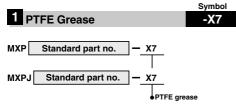
SMC

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

Δ в 35.5 MXP6 С 14.5 15.5 D

Solid State Auto Switch D-M9B(V), D-M9N(V), D-M9P(V)

	1 1		(<i>n</i>)	• • •	
	Model		Stroke (mm)		
			5	10	
	MXP6 A D	Α	25.5	30.5	
		в	26.5	31.5	
		С	13.5	18.5	
		14.5	19.5		


2-Color Indicator, Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW(V), D-M9□A(V)

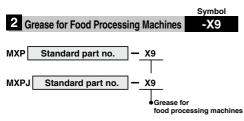
Model		Stroke (mm)	
		5	10
MXP6	Α	25.5	30.5
	в	26.5	31.5
	С	13.5	18.5
	D	14.5	19.5

MXP Series Made to Order: Individual Specifications 1

Please contact SMC for detailed dimensions, specifications and lead times.

PTFE grease is used for all parts that grease is applied.

Specifications


Туре	PTFE grease
Bore size (mm)	6, 8, 10, 12, 16

* Dimensions other than the above is the same as the standard type.

A Warning

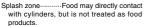
Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Grease for food processing machines is used for all parts that grease is applied.

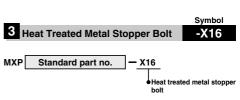
Specifications

Туре	Grease for Food Processing Machines (NSF-H1 certified)/ Aluminum Complex Soap Base Grease
Bore size (mm)	6, 8, 10, 12, 16

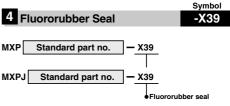

* Dimensions other than the above is the same as the standard type.

≜ Caution

Do not use the cylinders in a food-related environment.


<Cannot be mounted> Food zone-----Food may directly contact with cylinders, and is treated as

Non-food zone......Air grippers do not directly contact food.

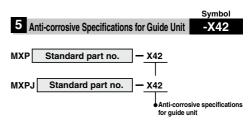


To reduce wear on the metal stopper, heat treated chrome molybdenum steel (SCM435) is used for the stroke adjustment screw.

Specifications

Туре	Heat treated metal stopper bolt			
Bore size (mm)	6	8, 10	12, 16	
Speed range	50 to 200 mm/s			
Cushion		None		
Stroke adjustment	Singe end: 0 to 6 mm	Double ends: 0 to 5 mm each	Double ends: 0 to 4 mm each	

* Dimensions other than the above is the same as the standard type.



Change the materials for the piston seal, O-rings and scrapers (rubber lined parts) to fluororubber.

Specifications

Туре	Fluororubber seal
Bore size (mm)	6, 8, 10, 12, 16
Seal material	Fluororubber

* Dimensions other than the above is the same as the standard type.

Martensitic stainless steel is used for the table, body and guide block. Use this treatment if more effective anti-corrosive measures are necessary.

Anti-corrosive treatment is applied to the table, body and guide block.

Specifications

Bore size (mm) 6, 8,	10, 12, 16
Surface treatment Special anti-co	rrosive treatment (2)

* 1 Dimensions other than the above is the same as the standard type.

* 2 The special anti-corrosive treatment turns the table, body and guide block black.

348

MXP Series Made to Order: Individual Specifications 2

Please contact SMC for detailed dimensions, specifications and lead times.

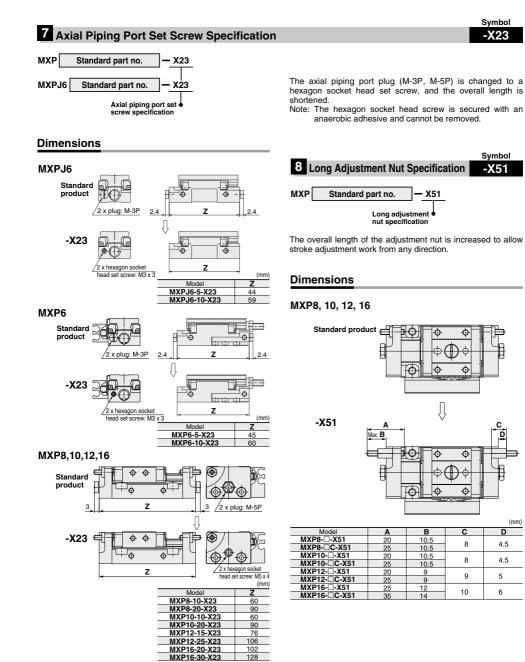
	Symbol
6 EPDM Seal	-X45
MXP Standard part no X45	
MXPJ Standard part no. — X45	
• EPDM seal	
Change the materials for the piston seal, rod seal, O-ri and scrapers (rubber lined parts) to EPDM.	ings
Specifications	l. l

Туре	EPDM seal
Bore size (mm)	6, 8, 10, 12, 16
Seal material	EPDM
Grease	PTFE grease

* Dimensions other than the above is the same as the standard type.

Made-to-Order Application Chart		MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16	Note
PTFE grease	X7	•	•	•	•	•	•	
Grease for food	X9	•	•	•	•	•	•	
Heat treated metal stopper bolt	X16		•	•	•	•	•	Metal stopper only
Axial piping port set screw	X23	•	•	•	•	•	•	
Fluororubber seal	X39	•	•	•	•	•	•	
Anti-corrosive Specifications for Guide Unit	X42	•	•	•	•	•	•	
EPDM seal	X45	•	•	•	•	•	•	
Long adjustment nut	X51			•	•	•	•	Except with shock absorber

Marning Precautions


Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

349

MXP Series Made to Order: Individual Specifications 3

Please contact SMC for detailed dimensions, specifications and lead times.

SMC

MXP Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

ACaution

1. Use a load within a range that does not exceed the operating limit.

Select models based on the maximum load mass and the allowable moment. Refer to model selection on pages 330 and 331 for detailed methods. If operated beyond the operating limit, the eccentric load applied to the guide section will be excessive. This can have an adverse effect on service life us to vibration in the guide unit and loss of accuracy, etc.

2. When performing intermediate stops with an external stopper, employ measures to prevent lurching.

If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

3. Do not operate in such a way that excessive external forces or impact forces are applied to the product.

This can cause damage.

Mountina

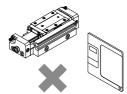
ACaution

- Do not scratch or gouge the mounting surfaces of the body and table (guide block). This can cause loss of parallelism in the mounting surfaces, vibration of the guide unit and increased operating resistance, etc.
- 2. Do not scratch or gouge the transfer surfaces of the body and table (guide block). This can cause vibration and increased operating resistance, etc.

3. Do not apply strong impacts or excessive moment when mounting work pieces.

Application of external forces greater than the allowable moment can cause vibration of the guide unit and increased operating resistance, etc.

4. Ensure that the parallelism of the mounting surface is 0.02 mm or less.

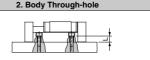

Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration of the guide unit and increased operating resistance, etc.

 For connection to a load that has an external support or guide mechanism, select an appropriate connection method and perform careful alignment.

Mounting

6. Do not allow objects affected by magnets in close proximity to the air slide table

Since magnets are built into the side of the guide block when equipped with auto switches, do not allow items such as magnetic disks, magnetic cards or magnetic tape close to the air slide table. Data may be erased.


7. Do not attach magnets to the table (guide block) section.

Since the table (guide block) is constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to it, and this may cause malfunction of auto switches, etc.

8. When mounting a body, use screws of an appropriate length and tighten them properly at no more than the maximum tightening torque.

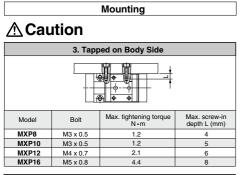
Tightening with a torque above the limit can cause malfunction, while insufficient tightening can cause slippage and dropping, etc.

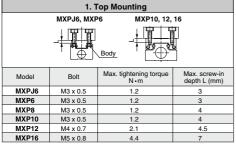
	1. Body Tapped				
Model	Bolt	Max. tightening torque N • m	Max. screw-in depth L (mm)		
MXPJ6	M4 x 0.7	2.1	6		
MXP6	M4 x 0.7	2.1	6		
MXP8	M4 x 0.7	2.1	4.5		
MXP10	MXP10 M4 x 0.7 2.1 6				
MXP12	MXP12 M5 x 0.8 4.4 5				
MXP16	M6 x 1	7.4	8		

Model	Bolt	Max. tightening torque N • m	Body thickness L (mm)
MXPJ6	M3 x 0.5	1.2	6
MXP6	M3 x 0.5	1.2	6
MXP8	M3 x 0.5	1.2	4.5
MXP10	M3 x 0.5	1.2	6
MXP12	M4 x 0.7	2.1	5
MXP16	M5 x 0.8	4.4	8
MXP12	M4 x 0.7	2.1	

-X⊏

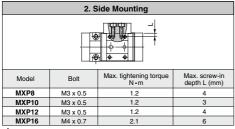
D-□


351 ®



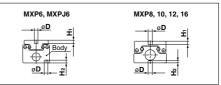
MXP Series Specific Product Precautions 2

Be sure to read this before handling the products.


Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

▲ Caution

Since the bolts pass through in the case of MXPJ6 and MXP6, use bolts shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause trouble.



▲ Caution

Side mounting is not possible when equipped with shock absorber.

Mounting

9. When the positioning pinhole is used for mounting a body, select a positioning pin with an appropriate length.

Model	Pinhole diameter	Pinhole depth	
Widdei	øD	H1mm	H2mm
MXPJ6	2.5 +0.030	2.5	2
MXP6	2.5 +0.030	2.5	2
MXP8	3 +0.030	2.5	1.5
MXP10	3 +0.030	2.5	1.5
MXP12	3 +0.030	3	1.5
MXP16	4H9 ^{+0.030}	4	2

Operating Environment

ACaution

1. Do not use in environments where there is direct exposure to liquids such as cutting oil. Operation in environments where the body is exposed to

cutting oil, coolant or oil mist can cause vibration, increased operating resistance and air leakage, etc.

2. Do not use in environments where there is direct exposure to foreign matter such as dust, dirt, chips and spatter.

This can cause vibration, increased operating resistance and air leakage, etc.

- Consult with SMC regarding use in this kind of environment.
- 3. Be careful about the corrosion resistance of the linear guide.

Be careful the rail and guide block use martensitic stainless steel, which is inferior to austenitic stainless steel in terms of corrosion resistance.

Adjuster Option Handling Precautions

With Shock Absorber

A Caution

1. Never turn the screw on the bottom of the shock absorber body.

This is not an adjustment screw. Turning it can cause oil leakage.

2. Do not scratch the sliding surface of the shock absorber's piston rod.

This can cause a loss of durability and return malfunction.

SMC

MXP Series **Specific Product Precautions 3**

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Adjuster Option Handling Precautions

∧ Caution

3. Use the tightening torque in the table below for the shock absorber's lock nut.

Bolt	Tightening torque N • m
MXP10	
MXP12	1.67
MXP16	

Rust may occur specifically in an environment where water drops from condensation adhere to a surface.

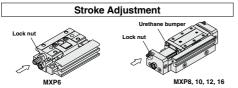
- 4. Provide shade in locations exposed to direct sunlight.
- Block off sources of heat located near by.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

6. Do not use in locations where vibration or impact occur.

Consult with SMC regarding use in this kind of environment, as damage and malfunction can result.

Service Life and Replacement Period of Shock Absorber

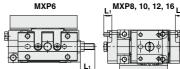

A Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million cycles RB08□□

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Applicable size	Shock absorber model
MXP10	RB0805
MXP12	RB0805
MXP16	RB0806



Loosen the lock nut, adjust the stroke with a hexagon wrench from the side marked with an arrow and secure with the lock nut.

Stroke Adjustment

A Caution Urethane Bumper

If not adjusted for effective operation of the urethane bumper, impact will increase and have an adverse effect on service life As a guide, adjust so that dimension L1 is less than the value shown in "Table 1"

L1 (mm)

9 (one side only)

9 (one side only)

6

8

8

MXH
MXS
MXQ
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

MXP10-20 MXP12-15 MXP12-25 MXP16-20 MXP16-30

Model

MXP6-5

MXP6-10

MXP8-10

MXP8-20

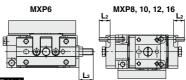

MXP10-10

Table 1

Metal Stopper

In the case of a metal stopper, adjust so that the stroke adjuster hits the end face of the guide block.

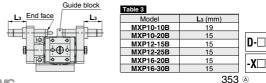

As a guide, adjust so that dimension L2 is less than the value shown in "Table 2".

Table 2	14 - 21
Model	L2 (mm)
MXP6-5C	10 (one side only)
MXP6-10C	10 (one side only)
MXP8-10C	9
MXP8-20C	8
MXP10-10C	9
MXP10-20C	8
MXP12-15C	8
MXP12-25C	8
MXP16-20C	8
MXP16-30C	8
	-

Shock Absorber

When equipped with shock absorber, adjust so that the end face of the shock absorber hits the guide block. If the shock absorber does not operate effectively, impact will increase and have an adverse effedct on service life. As a guide, adjust so that dimension L₃ is less than the value shown in "Table 3".

