Shock Absorber

RB Series

Absorbing impact and noise

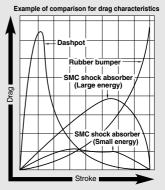
Dampening to meet the high speed requirements of the modern world.

Shock absorber: RB series Coolant resistant type: RBL series

Usable without a stopper nut The strong body can be positioned directly.

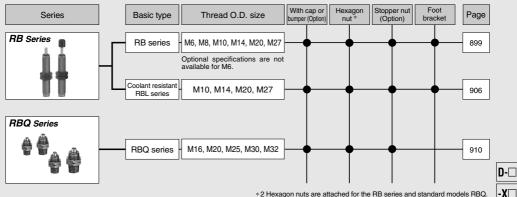
Short type: RBQ series

A compact type that has been shortened lengthwise


Allowable eccentric angle is 5° Suitable for absorption of rotation energy.

Usable without a stopper nut The strong body can be positioned directly.

Shock absorber


Automatic adjustment to the most appropriate absorption performance

Specially designed orifice can absorb energy comprehensively and most appropriately in many different applications. This ranges from high speed low loads, to load speed high loads; without requiring additional adjustment of the shock absorber.

* Drag waveform will vary depending on the operating conditions.

Series Variations

895

RJ

RR

Shock Absorber **RB** Series **Technical Data:**

Model Selection

Model	Selection Step		Selection	Example				
1. Type	of impact			Cvlinder st	oke at load	(Horizontal)		
Cyli Cyli Con Free Free	nder stroke at load (Horiz nder stroke at load (Dowi nder stroke at load (Upwa iveyor stroke at load (Hor e horizontal impact e dropping impact ating impact (With torque	nward) ard) rizontal)	1. Type of impact	Shock absorber				
V	anng mpaor (mar torquo	,	Collision speed (1)		υ			
	eration of operating co		Kinetic energy E1		$\frac{1}{2}$ ·m· v^2			
Symbol m	Operating condition Impacting object mass	Unit kg	Thrust energy		 Fı∙S			
υ	Collision speed	m / sec	E2 Absorbed energy		F1-3			
h	Dropping height	m	E		E 1 + E 2			
 Β	Angle speed Distance between axis of cylinder and impact point	rad/sec m	Corresponding ⁽²⁾		2			
d	Bore size	mm	mass of impacting object		<u>2</u> Ε			
р	Cylinder operating pressure	MPa	Me			l		
F	Thrust	N	2.	$\mathbf{m} = 1 \text{ kg}$	2.	$\mathbf{m} = 50 \text{ kg}$		
<u>т</u> п	Torque Operation cycle	N · m cycle / min	2. Operating	υ = 0.5 m/s d = 10 mm	2. Operating	υ = 0.3 m/s d = 40 mm		
t	Ambient temperature	°C	conditions	p = 0.5 MPa	conditions	p = 0.5 MPa		
μ	Friction coefficient	—		n = 30 cycle/min t = 25 °C		n = 20 cycle/min t = 25 °C		
 * Be aw the car the car 4. Calcuure Using the tion of in In the case substitute r 	e of cylinder stroke at load and free ho respective figures for Data A in order	n radius in nergy E1 e classifica- rizontal impact, r to calculate E1.	and operational instructions 4. Calculation of kinetic energy E1	t −10 (min.) < 25 < 80 (max.) F F1 39.3 < YES • Kinetic energy E1 Use [Formula] to calculate E1. Substitute 1.0 for m and 0.5 for v. E1≅0.125	and operational instructions 4. Calculation of kinetic energy E1	t10 (min.) < 25 < 80 (max.) F F1 628 < 1961 (max.) YES • Kinetic energy E1 Use [Formula] to calculate E1 Substitute 50 for m and 0.3 for v. E1 ≅ 2.3 J		
Select model.	Jation of thrust energy any shock absorber as a case of thrust energy of o e respective figures for Data B	provisional	5. Calculation of thrust energy E ₂	Thrust energy E2 Provisionally select a mode RB0604 and make the use of Data E at left. According to d = 10, E2 is obtained. E2 ≅ 0.157	Calculation	Thrust energy E2 Provisionally select a model RB2015 and make the use of Data B1. According to d = 40, E2 is obtained. E2 = 9.4 J		
Absorb Correspon Substitut speed v	In of corresponding mass of impact end energy $E = E_1 + E_2$ and impacting object Me the both absorbed energy E a for Data A in order to calcu- ing mass of the impacting obj	$= \frac{2}{v^2} \cdot \mathbf{E}$ and collision late the cor-	6. Calculation of corresponding mass of impacting object Me	Corresponding mass of impacting object Me Use the <u>Formula</u> "Absorbed energy E = E1 + E2 = 0.282" to calculate Me. Substitute 0.282 for E and 0.5 for v. Me = 2.3	corresponding	• Corresponding mass of impacting object Me Use the formula "Absorbed energy E = E1 + E2 = 2.3 + 9.4 = 11.7 J to calculate Me. Substitute 11.7 J for E and 0.3 for v. Me = 260 kg		
Taking mass o using provisic condition then th applical	tion of applicable into consideration the con- into consideration the con- into the impacting object Me cano and collision spec- onal model compatibility on of application. If this is se said provisional model ble one. aution on Selection or the shock absorbers for long hours, it is ne model that is well-suit	rresponding , calculated ed v, check / with the satisfactory, will be the on to operate ccessary to	7. Selection of RB0604	Selection of RB0604 RB0604 satisfies Me = 2.3 < 3 kg (Max. corresponding mass of im- pacing object). Ultimately, it will result in an operating frequency of 30 < 80, without causing a problem. YES	7.	Selection of applicable model According to Date 0, the tentative- ty selected RB2015 satisfies Me = 260 kg < 400 kg at v = 0.3. Utimately, it will result in an operating frequency of m-20 < 25, without causing a problem. YES Select RB2015		

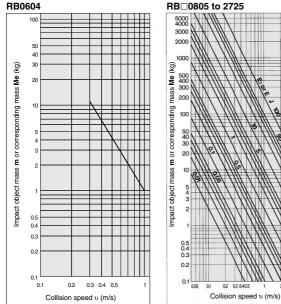
smaller. 896

SMC

1. Type of Impact

	Cylinder stroke at load (Downward)	Cylinder stroke at load (Upward)	Conveyor stroke at load (Horizontal)	Free dropping impact	Rotating impact (With torque)	
Type of impact	Find Cylinder	vi ⊡oad Fi Cylinder		h h		
Collision speed (1)	υ	υ	υ	$\sqrt{2gh}$	ω·Β	
Kinetic energy E1	$\frac{1}{2} \cdot \mathbf{m} \cdot v^2$	$\frac{1}{2} \cdot \mathbf{m} \cdot v^2$	$\frac{1}{2} \cdot \mathbf{m} \cdot v^2$	m·g·h	$\frac{1}{2} \cdot \mathbf{m} \cdot \omega^2$	
Thrust energy E2	$F_1 \cdot S + m \cdot g \cdot S$	$F_1 \cdot S + m \cdot g \cdot S$	m·g·µ·S	m·g·S	T . SR	
Absorbed energy E	E 1 + E 2	E 1 + E 2	E 1 + E 2	E 1 + E 2	E 1 + E 2	
Corresponding ⁽²⁾ mass of impacting object Me	<u>2</u> .F	$\frac{2}{v^2} \cdot E$	<u>_</u> ² ² ⋅ E	<u>_2</u> ,E	<u>_</u> ² .E	

Note 1) Collision speed is momentary velocity at which object is impacting against shock absorber. The collision speed is $\upsilon = 2\overline{\upsilon}$ when the speed (average speed $\overline{\upsilon}$) is calculated from the air cylinder's stroke time.


Note 2) An "Impact body equivalent mass" is the mass of an impact object without involving thrust, into which an object's total energy has been converted. Hence, $E = \frac{1}{2} \cdot Me \cdot U^2$

Note 3) R: The distance between rotational center and impact point. Set R at the minimum installation radius (page 904) or higher.

Data A

Kinetic Energy E1 or Energy Absorption E

RB0604

Symbol

-,		
Symbol	Specifications	Unit
d	Bore size	mm
E	Absorbed energy	J
E1	Kinetic energy	J
E2	Thrust energy	J
F1	Cylinder thrust	N
g	Acceleration of gravity (9.8)	m / s ²
h	Dropping height	m
I (4)	Moment of inertia around the center of gravity	kg ∙ m²
n	Operating frequency	cycle / min
р	Cylinder operating pressure	MPa
R	Distance between axis of cylinder and impact point	m
s	Shock absorber stroke	m
т	Torque	N · m
t	Ambient temperature	°C
υ	Collision speed	m/s
m	Impact object mass	kg
Ме	Corresponding mass of impact object	kg
ω	Angle speed	rad / s
μ	Friction coefficient	_
Note 4)	For the formula of moment	of inertia I

(kg·m2), refer to the catalog of rotary actuator.

D-🗆
-X□

RJ

RB

SMC Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

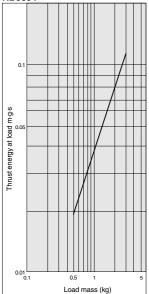
4

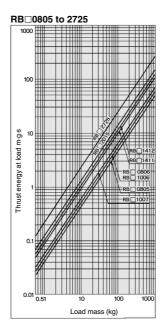
RB Series

Data B

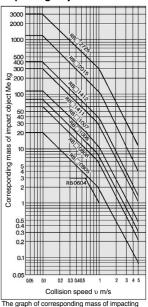
Thrust Energy of Cylinder F1.S

Thru	st Ene	ergy of C	ylinder	F1⋅S			(Opera	ting pressure	0.5 MPa) (J)
М	odel	RB0604	RB□0805	RB□0806 RB□1006	RB□1007	RB□1411	RB□1412	RB□2015	RB□2725
Stroke absorption (mm)		4	5	6	7	11	12	15	25
	6	0.057	0.071	0.085	0.099	0.156	0.170	0.212	0.353
	10	0.157	0.196	0.236	0.274	0.432	0.471	0.589	0.982
	15	0.353	0.442	0.530	0.619	0.972	1.06	1.33	2.21
	20	0.628	0.785	0.942	1.10	1.73	1.88	2.36	3.93
	25	0.981	1.23	1.47	1.72	2.70	2.95	3.68	6.14
	32	—	2.01	2.41	2.81	4.42	4.83	6.03	10.1
Ê	40	—	3.14	3.77	4.40	6.91	7.54	9.42	15.7
Ē	50	_	4.91	5.89	6.87	10.8	11.8	14.7	24.5
size d (mm)	63	—	7.79	9.35	10.9	17.1	18.7	23.4	39.0
si.	80	—	12.6	15.1	17.6	27.6	30.2	37.7	62.8
Bore	100	_	19.6	23.6	27.5	43.2	47.1	58.9	98.2
ň	125	_	30.7	36.8	43.0	67.5	73.6	92.0	153
	140	-	38.5	46.2	53.9	84.7	92.4	115	192
	160	-	50.3	60.3	70.4	111	121	151	251
	180	_	63.6	76.3	89.1	140	153	191	318
	200	_	78.5	94.2	110	173	188	236	393
	250	_	123	147	172	270	295	368	614
	300	—	177	212	247	389	424	530	884


Operating pressure other than 0.5 MPa: Multiply by the following coefficient.


Operating pressure (MPa)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Coefficient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

Data C


Thrust Energy at Load m·g·s

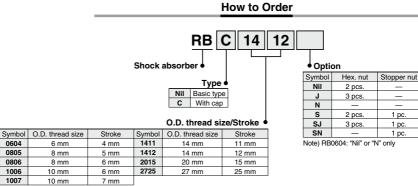
RB0604

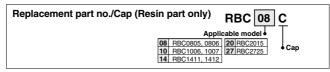
Data D Corresponding Mass of Impacting Object Me

object: At room temperature (20 to 25°C)

898

SMC


Shock Absorber **RB** Series

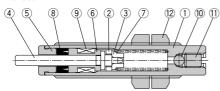

Specifications

Model	Basic type	RB0604	RB0805	RB0806	RB1006	RB1007	RB1411	RB1412	RB2015	RB2725
Specifications	With cap	-	RBC0805	RBC0806	RBC1006	RBC1007	RBC1411	RBC1412	RBC2015	RBC2725
Max. energy absorption (J) Notes		0.5	0.98	2.94	3.92	5.88	14.7	19.6	58.8	147
Thread O.D. siz	ze	M6 x 0.75	M8 :	к 1.0	M10	x 1.0	M14	x 1.5	M20 x 1.5	M27 x 1.5
Stroke (mm)		4	5	6	6	7	11	12	15	25
Collision spe	• •	0.3 to 1.0	0 0.05 to 5.0							
Max. operating fr (cycle/min)	equency	80	80	80	70	70	45	45	25	10
Max. allowable	thrust (N)	150	245	245	422	422	814	814	1961	2942
Ambient temperatur	re range (°C)	-10 to 80 (No freezing)								
Spring force	Extended	3.05	1.96	1.96	4.22	4.22	6.86	6.86	8.34	8.83
(N)	Retracted	5.59	3.83	4.22	6.18	6.86	15.30	15.98	20.50	20.01
Weight (g)	Basic type	5.5	15	15	23	23	65	65	150	350
weight (g)	With cap		16	16	25	25	70	70	165	400

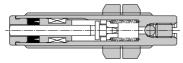
Note) The maximum energy absorption, the maximum corresponding mass of impacting object and maximum operating frequency are measured at room temperature (20 to 25°C).

Note) RB0604: With cap type is not available.

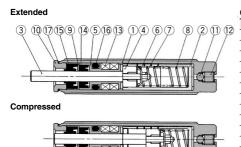
Cap cannot be mounted for basic type. Please place an order with cap type from the beginning.


899

RB Series


Construction

RB0604


Compressed

Component Parts

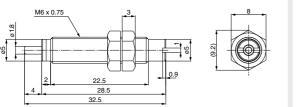
No.	Description	Material	Treatment
1	Outer tube	Free-cutting steel	Nitriding
2	Piston	Copper alloy	-
3	Spring guide	Stainless steel	-
4	Piston rod	Carbon steel	Nitriding
5	Stopper	Stainless steel	-
6	Bearing	Copper alloy	-
7	Return spring	Piano wire	Zinc trivalent chromated
8	Rod seal	NBR	—
9	Accumulator	NBR	Foam rubber
10	Steel ball	Bearing steel	—
11	Hexagon socket head cap screw	Special steel	Nickel plated
12	Hexagon nut	Carbon steel	Nickel plated

RB 0805 to 2725

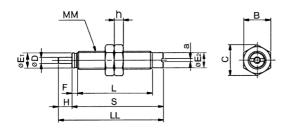
Component Parts

Comb			
No.	Description	Material	Treatment
1	Outer tube	Rolled steel	Gray coated
2	Inner tube	Special steel	Heat treated
3	Piston rod	Special steel	Electroless nickel plated
4	Piston	Special steel	Heat treated
5	Bearing	Special bearing material	
6	Spring guide	Carbon steel	Zinc chromated
7	Lock ring	Copper	
8	Return spring	Piano wire	Zinc chromated
9	Seal holder	Copper alloy	
10	Stopper	Carbon steel	Zinc chromated
11	Steel ball	Bearing steel	
12	Set screw	Special steel	
13	Accumulator	NBR	Foam rubber
14	Rod seal	NBR	
15	Scraper	NBR	
16	Gasket	NBR	
17	Gasket	NBR	Only RB(C)2015, 2725

Dimensions

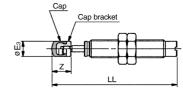

RB0604

Hexagon Nut (2 pcs. standard equipment)

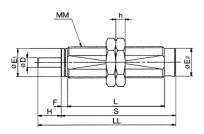

M6 x 0.75

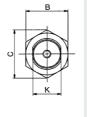
<u>o</u>

8

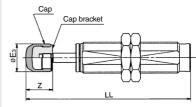


Basic type: RB0805, RB0806, RB1006, RB1007


With cap: RBC0805, RBC0806 RBC1006, RBC1007



Model Basic type dimensions With cap * Hexagon nut Basic type With cap D E1 E₂ F н L LL MM s E₃ LL z R С h а RB0805 **RBC0805** 2.8 6.8 6.6 2.4 5 1.4 33.4 45.8 M8 x 1.0 40.8 6.8 54.3 8.5 12 13.9 4 **RB0806 RBC0806** 1.4 40.8 2.8 6.8 6.6 2.4 6 33.4 46.8 M8 x 1.0 6.8 55.3 8.5 12 13.9 4 RB1006 RBC1006 3 8.8 8.6 2.7 6 1.4 39 52.7 M10 x 1.0 46.7 8.7 62.7 10 14 16.2 4 1.4 **RB1007 RBC1007** 3 8.8 8.6 2.7 7 39 53.7 M10 x 1 0 46.7 8.7 63.7 10 14 16.2 4


Basic type: RB1411, RB1412, RB2015, RB2725

With cap: RBC1411, RBC1412 RBC2015, RBC2725

^{*} Other dimensions are the same as the basic type.

Model Basic typ							type dimensions				With cap *			Hexagon nut		nut			
	Basic type	With cap	D	E1	E ₂	F	н	K	L	LL	MM	S	E3	LL	Z	в	C	h	
	RB1411	RBC1411	5	12.2	12	3.5	11	12	58.8	78.3	M14 x 1.5	67.3	12	91.8	13.5	19	21.9	6	D-
	RB1412	RBC1412	5	12.2	12	3.5	12	12	58.8	79.3	M14 x 1.5	67.3	12	92.8	13.5	19	21.9	6	Ē
	RB2015	RBC2015	6	18.2	18	4	15	18	62.2	88.2	M20 x 1.5	73.2	18	105.2	17	27	31.2	6	-x
	RB2725	RBC2725	8	25.2	25	5	25	25	86	124	M27 x 1.5	99	25	147	23	36	41.6	6	
	CONC.										901								

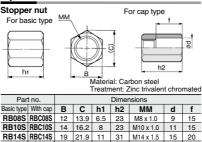
Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

RJ

RB

RB Series

Hexagon Nut

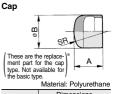

Part

(2 pcs. standard equipment)

Ma Tre	MM	al steel	ent chro	omated
10.	D	imensi	ons	
	MM	h	в	С
6J	M6 x 0.75	3	8	9.2

RB06J	M6 x 0.75	3	8	9.2
RB08J	M8 x 1.0	4	12	13.9
RB10J	M10 x 1.0	4	14	16.2
RB14J	M14 x 1.5	6	19	21.9
RB20J	M20 x 1.5	6	27	31.2
RB27J	M27 x 1.5	6	36	41.6

Option



11 31

RB20S RBC20S 27 31.2 16 40 M20 x 1.5 23

RB27S RBC27S 36 41.6 22 51 M27 x 1.5 32

Replacement Parts

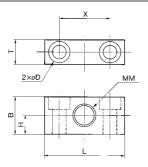
Dimensions Part no. в SR Α RBC08C 6.5 6.8 6 RBC10C 9 8.7 7.5 RBC14C 10 12.5 12 RBC20C 16 18 20 RBC27C 21 25 25

20

25

33

Foot Bracket for Shock Absorber


Available for the foot mounting bracket of the RB series

t	the RB series.		
	Part no.		al: Aluminum alloy ent: Black hard anodized
	Part no.		Applicable absorber
	RB08-X33	81	RB□0805, 0806
	RB10-X33	1	RB□1006, 1007
	RB14-X33	1	RB□1411, 1412
	RB20-X33	1	RB□2015
	RB27-X33	1	RB□2725

* Order foot brackets separately.

Dimensions

Part no.	В	D	н	L	MM	Т	X	Mounting bolt
RB08-X331	15	4.5 drill, 8 counterbore depth 4.4	7.5	32	M8 x 1.0	10	20	M4
RB10-X331	19	5.5 drill, 9.5 counterbore depth 5.4	9.5	40	M10 x 1.0	12	25	M5
RB14-X331	25	9 drill, 14 counterbore depth 8.6	12.5	54	M14 x 1.5	16	34	M8
RB20-X331	38	11 drill, 17.5 counterbore depth 10.8	19	70	M20 x 1.5	22	44	M10
RB27-X331	50	13.5 drill, 20 counterbore depth 13	25	80	M27 x 1.5	34	52	M12

RB Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.

Selection

\land Danger

1. Energy absorption

Select a model so that the aggregated energy of impact object should not exceed the maximum absorption energy. Otherwise, it could cause changes in properties or result in damaging the shock absorber.

2. Corresponding mass of impacting object

Make a model selection, so that the corresponding mass of impacting object does not exceed the allowable range. Pulsation will occur in buffer and deceleration force, thus making it difficult to absorb shock smoothly.

3. Collision speed

Use it in the conditions that collision speed is within the specified range. It could cause the changes in buffer characteristics or lead to damage a shock absorber.

A Warning

1. Static load

Design the system, so that any other forces than the buffer capacity or impacts should not be applied to the piston rod which is stopped at the retracted state.

\land Caution

1. Maximum operating frequency

Design the system in the conditions under which it is not used at the frequency exceeding the specified maximum operating frequency.

2. Stroke

The maximum absorption energy in the specifications cannot be exerted unless the full stroke is used for both RB and RBL Series.

3. Work surface of an impact object

The contact surface of the impact object with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HRC35 or more).

4. Be aware of the return force of the impact object.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built-in. For the spring force in the specifications, refer to the column (page 899).

5. Selection of size

As the number of operation proceeds, the maximum absorption energy of shock absorbers will be decreased by the following reasons such as abrasion, or deterioration, etc. of the internal working fluid. Taking this into consideration, selecting a size which is 20 to 40% affordable against the amount of absorption energy is recommended.

6. Drag characteristics

In general, the values of drag (reactive force generated during operation) generated by the operating speed will vary in hydraulic shock absorber. And then, by adopting "Porous orifice construction", the RB series can adapt to such this fast/slow speed and can absorb shock smoothly in a wide range of speed.

But, the speed reduction (speed reduction G) would be larger around the stroke terminal, depending upon the operating conditions. Please note that it might be encountered that stroke time is long, motion is not smooth, etc. If this would be a problem, we recommend that stroke amount should be restricted by using our optional component like "Stopper nut", etc.

▲ Caution

7. Parallel usage

When using multiple shock absorbers in parallel, energy will not be divided evenly because of differences in product dimensions and devices. For this reason, select the following options.

- E = Ea/N/0.6
- E : Energy used per shock absorber
- Ea: All energies
- N : The number of shock absorbers used in parallel

Operating Environment

\land Danger

- . Operation in an environment which requires explosion-proof
- •When mounting in places where static electricity is accumulated, implement a distribution of electrical energy by grounding.
- Do not use the materials for buffer face which might cause to spark by collision.

A Warning

1. Press

Do not use it in the vacuum state, which is substantially different from the atmospheric pressure (above sea level) and in the atmosphere under being pressurized.

2. Using inside a clean room

Do not use the shock absorber in a clean room, as it could contaminate the clean room.

▲ Caution

1. Temperature range

Do not use it, exceeding the specified allowable temperature range. Seal could be softened or hardened or worn out, or leading to leak a working fluid, deterioration, or impact characteristic changes.

2. Deterioration by atmosphere

Do not use the product in an environment where the product may be damaged by salt or air which contains organic solvent, phosphoester operating oil, sulfurous acid gas, chlorine gas or other acids. It may deteriorate seals or corrode metals.

3. Deterioration by ozone

Do not use it under the direct sunlight on the beach, or by the mercury lamp, or the ozone generator, because the rubber material will be deteriorated by ozone.

4. Cutting oil, water, blown dust

Do not use the product under the condition, where the liquid such as cutting oil, water, solvent, etc. is exposed either directly or in atomized form to the piston rod, or where blown dust could be adhered around the piston rod. This could cause malfunction.

903

RB Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.

Operating Environment

▲ Caution

5. Vibration

When vibrations are applied on impact objects, implement a secure guide on impact objects.

Mounting

\land Warning

 Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.

2. Installation of protective cover

We recommend the protective cover should be installed in the case workers might be getting close during the operation.

3. The rigidity of the mounting frame

The mounting frame must have sufficient rigidity.

Load on mounting plate can be calculated as follows.

$$\label{eq:load} \mbox{Load on mounting plate} \quad N \cong 2 \, \frac{E \, (\mbox{Absorbed energy : J})}{S \, (\mbox{Stroke : m})}$$

Depending on the impact conditions, a load applied to the mounting frame may exceed the calculated value.

When setting the rigidity of the mounting frame, the sufficient safety ration must be taken into account in the calculated value.

A Caution

1. Tightening torque of mounting nut should be as follows.

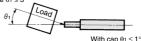
When threading on a mounting frame in order to mount a shock absorber directly, prepared hole dimensions are referred to the table below.

For tightening torque of a nut for shock absorber, kindly abide by the table below.

If the tightening torque that is applied to the nut exceeds the value given below, the shock absorber itself could become damaged.

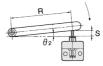
Model	RB0604	RB(C)0805 RB(C)0806	RB(C)1006 RB(C)1007	RB(C)1411 RB(C)1412		
O.D. thread (mm)	M6 x 0.75	M8 x 1.0	M10 x 1.0	M14 x 1.5		
Thread prepared bore (mm)	ø5.3 ^{+0.1}	ø7.1 ^{+0.1}	ø9.1 ^{+0.1}	ø12.7 ^{+0.1}		
Tightening torque (N · m)	0.85	1.67	3.14	10.8		

Model	RB(C)2015	RB(C)2725				
O.D. thread (mm)	M20 x 1.5	M27 x 1.5				
Thread prepared bore (mm)	ø18.7 ^{+0.1}	ø25.7 ^{+0.1}				
Tightening torque (N · m)	23.5	62.8				


Mounting

▲ Caution

2. Deviation of impact

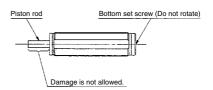

The installation must be designed so that the impact body is perpendicular to the shock absorber's axial center. An angle of deviation that exceeds 3° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentric angle $\theta_1 \leq 3^\circ$

3. Rotating angle

If rotating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center. The allowable rotating angle until the stroke end must be $\theta \in 3^{\circ}$.

Allowable rotating eccentric angle $\theta_2 \leq 3^\circ$


Installation Conditions for Rotating Impact (mm)										
Model	s	θ_2	R (Min. installation radiu							
Model	(Stroke)	(Allowable rotating angle)	Basic type	With cap						
RB0604	4		76	_						
RB□□0805	5		96	258						
RB□□0806	6		115	277						
RB□□1006	6		115	306						
RB□□1007	7	3°	134	325						
RB□□1411	11		210	468						
RB□□1412	12		487							
RB□□2015	15		287	611						
RB	25		478	916						

4. Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

Failure to observe this precaution could scratch or gouge the sliding potion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.

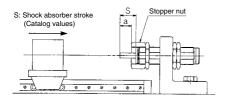
5. Never turn the screw on the bottom of the body.

This is not an adjusting screw. Turning it could result in oil leakage.

SMC

RB Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.


Mounting

\land Caution

6. Adjust the stopping time through the use of the stopper nut, as follows:

Control the stopping time of the impact object by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Capacity of shock absorbers deteriorate in accordance with usage. When crashing sounds or vibrations are generated during the operation, adjust the stopper nut and make the effective stroke (a) longer, or give the stroke enough leeway beforehand.

Maintenance

A Caution

1. Check the mounting nut is not loosen.

The shock absorber could become damaged if it is used in a loose state.

2. Pay attention to any abnormal impact sounds or vibrations.

If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.

3. Confirm that abnormality, oil leakage, etc. In the outward surface. When a large amount of oil is leaking, replace the product, because it is believed to be happening something wrong with it. If it keeps on using, it may cause to break the equipment which is mounted by this product.

4. Inspect the cap for any cracks or wear.

If the shock absorber comes with a cap, the cap could wear first. To prevent damage to the impact object, replace the cap often.

Storage

▲Caution

1. Piston rod position while stored

If a piston rod is stored as pushed in for a long period of time (over 30 days), absorption capacity may decrease. Avoid storing like this for a long time. Service Life and Replacement Period of Shock Absorber

\land Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

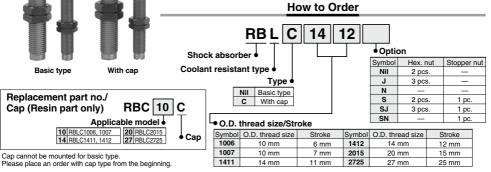
1.2 million cycles	RB0604, RB08□□
0	

2 million cycles	
1 million cycles	RBADDDD, RBLODDD

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

905

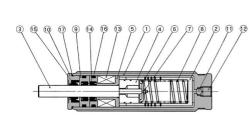
Shock Absorber: Coolant Resistant Type **RBL** Series


Can be operated in an environments exposed to non-water soluble cutting oil. (Mainly JIS Class 1 equivalent)

Specifications

Model	Basic type	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725					
Specifications	With cap	RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725					
Max. energy absorp	tion (J) Note)	3.92	5.88	14.7	19.6	58.8	147					
Thread O.D. siz	е	M10	x 1.0	M14	x 1.5	M20 x 1.5	M27 x 1.5					
Stroke absorpt	on (mm)	6	7	11	12	15	25					
Collision speed	• •		0.05 to 5									
Max. operating frequ (cycle/min)	ency	70	70	45	45	25	10					
Max. allowable	thrust (N)	422	422	814 814		1961	2942					
Ambient temperatur	e range (°C)	-10 to 80										
Effective atmos	phere	Non-water soluble cutting oil										
Spring force	Extended	4.22	4.22	8.73	8.73	11.57	22.16					
	Retracted	6.18	6.86	14.12	14.61	17.65	38.05					
Weight (g)	Basic type	26	26	70	70	150	365					
weight (g)	With cap	28	28 28 75		75	165	410					

Note) The maximum energy absorption and maximum operating frequency are measured at room temperature (20 to 25°C).



Construction

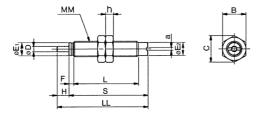
Basic type

Replacement part no./

Cap (Resin part only)

With cap

Component Parts

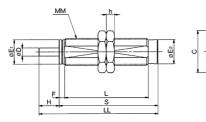

001	inponent i uno		
No.	Description	Material	Treatment
1	Outer tube	Rolled steel	Gray coated
2	Inner tube	Special steel	Heat treated
3	Piston rod	Special steel	Electroless nickel plated
4	Piston	Special steel	Heat treated
5	Bearing	Special bearing material	
6	Spring guide	Carbon steel	Zinc chromated
7	Lock ring	Copper	
8	Return spring	Piano wire	Zinc chromated
9	Seal holder	Copper alloy	
10	Stopper	Carbon steel	Zinc chromated
11	Steel ball	Bearing steel	
12	Set screw	Special steel	
13	Accumulator	NBR	Foam rubber
14	Rod seal	NBR	
15	Scraper	NBR	
16	Gasket	NBR	
17	Gasket	NBR	Only RBL(C)2015, 2725

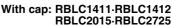
Dimensions

Basic type: RBL1006, RBL1007

With cap: RBLC1006, RBLC1007

* Other dimensions are the same as the basic type.





Mo	del		Basic type dimensions									With cap *			Hexagon nut		
Basic type	With cap	D	E1	E ₂	F	н	а	L	LL	MM	S	E₃	LL	Z	В	С	h
RBL1006	RBLC1006	3	8.8	8.6	2.7	6	1.4	43.8	57.5	M10 x 1.0	51.5	8.7	67.5	10	14	16.2	4
RBL1007	RBLC1007	3	8.8	8.6	2.7	7	1.4	43.8	58.5	M10 x 1.0	51.5	8.7	68.5	10	14	16.2	4

Note) L, LL and S dimensions of RBL(C)1007/1006 are different from those of RB(C)1007/1006.

Basic type: RBL1411.RBL1412.RBL2015.RBL2725

* Other dimensions are the same as the basic type.

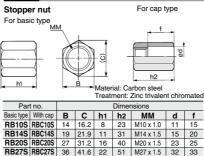
Cap bracket

RJ RB

Mo	odel	Basi				Basic ty	sic type dimensions					With cap*			Hexagon nut		
Basic type	With cap	D	E1	E ₂	F	н	K	L	LL	MM	S	E3	LL	Z	В	С	h
RBL1411	RBLC1411	5	12.2	12	3.5	11	12	63.6	83.1	M14 x 1.5	72.1	12	96.6	13.5	19	21.9	6
RBL1412	RBLC1412	5	12.2	12	3.5	12	12	63.6	84.1	M14 x 1.5	72.1	12	97.6	13.5	19	21.9	6
RBL2015	RBLC2015	6	18.2	18	4	15	18	62.2	88.2	M20 x 1.5	73.2	18	105.2	17	27	31.2	6
RBL2725	RBLC2725	8	25.2	25	5	25	25	91.5	129.5	M27 x 1.5	104.5	25	152.5	23	36	41.6	6

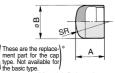
Note) L, LL and S dimensions are different from those of RB(C) (except RBL(C)2015).

Hexagon Nut



Material: S	Special steel

Material: Special steel Treatment: Zinc trivalent chromated


Part no.	Dimensions						
Fait no.	MM	h	В	С			
RB10J	M10 x 1.0	4	14	16.2			
RB14J	M14 x 1.5	6	19	21.9			
RB20J	M20 x 1.5	6	27	31.2			
RB27J	M27 x 1.5	6	36	41.6			

Option

Replacement Parts

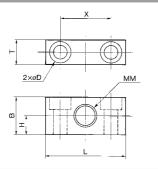
Сар

Material: Polyurethane

Material 1 organotinano						
Part no.	Dimensions					
Fait no.	Α	В	SR			
RBC10C	9	8.7	7.5			
RBC14C	12.5	12	10			
RBC20C	16	18	20			
RBC27C	21	25	25			

D-□ -X□

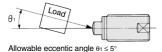
RBL Series


Foot Bracket for Shock Absorber

Available for the foot mounting bracket of the RBL series.

 Part no.		al: Aluminum alloy ent: Black hard anodized	
Part no.		Applicable absorber	
RB10-X33	1	RB□1006, 1007	
RB14-X33	1	RB□1411, 1412	
RB20-X33	1	RB□2015	
RB27-X33	1	RB□2725	
* Order foot brac	kote cor	paratoly	

* Order foot brackets separately.

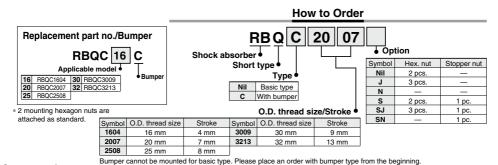

Dimensions

Part no.	В	D	н	L	MM	Т	Х	Mounting bolt
RB10-X331	19	5.5 drill, 9.5 counterbore depth 5.4	9.5	40	M10 x 1.0	12	25	M5
RB14-X331	25	9 drill, 14 counterbore depth 8.6	12.5	54	M14 x 1.5	16	34	M8
RB20-X331	38	11 drill, 17.5 counterbore depth 10.8	19	70	M20 x 1.5	22	44	M10
RB27-X331	50	13.5 drill, 20 counterbore depth 13	25	80	M27 x 1.5	34	52	M12

Shock Absorber: Short Type **RBQ Series**

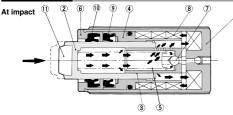
Allowable eccentric angle is 5°

Ideal for absorption of rotating energy


With bumpe

RBQC series

Specifications


Model	Basic type	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213	
Specifications	With bumper	RBQC1604	RBQC2007	RBQC2508	RBQC3009	RBQC3213	
Max. energy absorp	tion (J) Note)	1.96	11.8	19.6	33.3	49.0	
Thread O.D. size		M16 x 1.5	M20 x 1.5	M25 x 1.5	M30 x 1.5	M32 x 1.5	
Stroke absorptio	n (mm)	4	7	8	8.5	13	
Collision speed (m/s)	0.05 to 3					
Max. operating frequence	y (cycle/min)	60	60	45	45	30	
Max. allowable th	nrust (N)	294	490	686	981	1177	
Ambient tempera	ature (C°)			-10 to 80			
Spring force (N)	Extended	6.08	12.75	15.69	21.57	24.52	
Spring lorce (N)	Retracted	13.45	27.75	37.85	44.23	54.23	
Weight (g)		28	60	110	182	240	
Option/Stopper r	nut	RBQ16S	RB20S	RBQ25S	RBQ30S	RBQ32S	

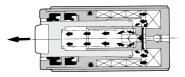
Note) The maximum energy absorption and maximum operating frequency are measured at room temperature (20 to 25°C).

Œ

Construction

Basic type

RBQ series

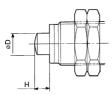

An impact object that strikes against the piston rod end pressurizes oil inside the piston. Thus, pressurized oil jets out through the orfice inside the piston, threeby generating hydraulic resistance to absorb the energy of the impacting object.

The oil jetted out through the orifice is collected inside the outer tube by means of the stretching action of the accumulator.

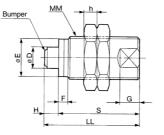
Component Parts

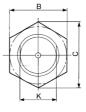
No.	Description	Material	Treatment
1	Outer tube	Rolled steel	Black electroless nickel plated
2	Piston rod	Special steel	Heat treated, Hard chrome plated
3	Piston	Special steel	Heat treated
4	Bearing	Special bearing material	
5	Return spring	Piano wire	Zinc chromated
6	Stopper	Carbon steel	Zinc chromated

At returning


When the impact object is removed, the return spring pushes out the piston rod, and negative pressure, generated at the same time, opens the check ball to permit oil to return to the inside of the piston rod and the piston, making the shock absorber ready for the next impact.

No.	Description	Material	Treatment
7	Check ball	Bearing steel	
8	Accumulator	Fluororubber	Foam rubber
9	Rod seal	NBR	
10	Scraper	NBR	
11	Bumper	Polyurethane	Only with bumper


910


SMC

Dimensions

RBQ series Basic type

RBQC series With bumper

M	odel					Shock a	absorber				Н	exagon n	ut
Basic type	With bumper	D	E	F	н	K	G	LL	MM	S	В	С	h
RBQ1604	RBQC1604	6	14.2	3.5	4	14	7	31	M16 x 1.5	27	22	25.4	6
RBQ2007	RBQC2007	10	18.2	4	7	18	9	44.5	M20 x 1.5	37.5	27	31.2	6
RBQ2508	RBQC2508	12	23.2	4	8	23	10	52	M25 x 1.5	44	32	37	6
RBQ3009	RBQC3009	16	28.2	5	8.5	28	12	61.5	M30 x 1.5	53	41	47.3	6
RBQ3213	RBQC3213	18	30.2	5	13	30	13	76	M32 x 1.5	63	41	47.3	6

Hexagon Nut

(2 pcs. standard equipment)

Material: Special steel Treatment: Zinc trivalent chromated						
MM	h	P	<u>^</u>			

Part no.	MM	h	В	С
RBQ16J	M16 x 1.5	6	22	25.4
RB20J (1)	M20 x 1.5	6	27	31.2
RBQ25J	M25 x 1.5	6	32	37
RBQ30J	M30 x 1.5	6	41	47.3
RBQ32J	M32 x 1.5	6	41	47.3

Note 1) In the case of RB20J, RB and RBQ are common.

Option

Stopper nut мм

0
→ B

-ff	- ₽j	
- 6	3	

•	→ B	These are the ment part for
Material: Ca	rbon steel	bumper type.
Treatment: 2	Zinc trivalent chromated	able for the ba

		Material: F	Polyurethane			
Part no.	Α	В	С			
RBQC16C	3.5	4	4.7			
RBQC20C	4.5	8	8.3			
RBQC25C	5	8.3	9.3			
RBQC30C	6	11.3	12.4			
RBQC32C	6.6	13.1	14.4			

MM Part no. в С h1

RBQ16S 22 25.4 12 M16 x 1.5 RB20S⁽²⁾ 27 31.2 16 M20 x 1.5 RBQ25S 18 M25 x 1.5 32 37 RBQ30S 41 47.3 20 M30 x 1.5 RBQ32S 41 47.3 25 M32 x 1.5

Note 2) In the case of RB20S, RB and RBQ are common.

Replacement Parts

Bumper

D-🗆 -X□

RJ

RB

Shock Absorber: Short Type **RBQ** Series **Technical Data:**

Model Selection

Model Selection Step

- 1. Type of impact
 - Cylinder stroke at load (Horizontal)
 - Cylinder stroke at load (Downward)
 - Cylinder stroke at load (Upward)
 - Conveyor stroke at load (Horizontal)
 - Free dropping impact Rotating impact (With torque)
- 2 Enumeration of operating conditions Symbol Operating conditions Unit Impacting object mass m kg 1) Collision speed m/sec h Dropping height m Angle speed ω rad/sec Distance between axis o R m cylinder and impact point d Bore size mm Cylinder operating pressure p MPa F Thrust N Torque т N · m n Operation cycle cycle/min Ambient temperature t °C Friction coefficient μ
- Specifications and operational instructions Ensure that the collision speed, thrust operation cycle, the ambient temperature and atmosphere fall within the specifications. *Be aware of the min. installation radius in the case of rotating impacts.
- Λ Calculation of kinetic energy E1 Using the equation suitable for the classification of impact. In the case of cylinder stroke at load and free horizontal impact,

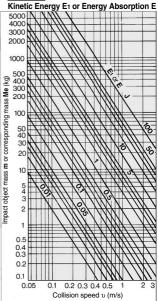
substitute respective figures for Data A in order to calculate E1.

- Calculation of thrust energy E2 Select any shock absorber as a provisional model In the case of thrust energy of cylinder E2,
- substitute respective figures for Data B or Data C. Calculation of corresponding mass of impacting object Me
- Absorbed energy E = E1 + E2

Corresponding mass of impacting object $\mathbf{Me} = \frac{2}{v^2} \cdot \mathbf{E}$

Substitute both absorbed energy E and collision speed v for Data A in order to calculate the corresponding mass of the impacting object Me.

7. Selection of applicable model


Taking into consideration the corresponding mass of the impacting object Me, calculated using Data D and collision speed v, check provisional model compatibility with the condition of application. If this is satisfactory, then the said provisional model will be the applicable one

Caution on Selection

In order for the shock absorbers to operate accurately for long hours, it is necessary to select a model that is well-suited to your operating conditions. If the impact energy is smaller than 5% of the maximum energy absorption, select a model that is one class smaller

Selection Example					
1.	Cylinder stroke at load (Horizontal)				
Type of impact					
Collision speed (1)	υ				
Kinetic energy E1	$\frac{1}{2} \cdot \mathbf{m} \cdot v^2$				
Thrust energy E2	F ₁ · S				
Absorbed energy E	E1 + E2				
Corresponding ⁽²⁾ mass of impacting object Me	$\frac{2}{v^2} \cdot E$				
2. Operating conditions					
3. Specifications and operational instructions	• Confirmation of specifications $v \cdots 0.7 < 3 \text{ (max.)}$ $t \cdots -10 \text{ (min.)} < 25 < 80 \text{ (max.)}$ $F \cdots F_1 \cdots 628 < 686 \text{ (max.)}$ YES				
4. Calculation of kinetic energy E1	Kinetic energy E1 Use Formula to calculate E1. Suitable 20 for m and 0.7 for υ. E1 ≅ 4.9 J				
5. Calculation of thrust energy E ₂	• Thrust energy E2 Provisionally select a model RBQ2508 and make the use of Data B1. According to d = 40, E2 is obtained. E2 = 5.0 J				
6. Calculation of corresponding mass of impacting object Me	• Corresponding mass of impacting object Me Use the formula "Absorbed en- ergy Ε = Ε1 + Ε2 = 4.9 + 5.0 = 9.9 J" to calculate Me. Substitute 9.9 J for E and 0.7 for υ. Me = 40 kg				
7. Selection of applicable model	• Selection of applicable model According to Data D, the tentatively selected RBO2508 satisfies Me = 40 kg < 60 kg at υ = 0.7. Utilimately, it will result in an operating frequency of n-:30 < 45, without causing a problem.				
	YES Select RBQ2508				

SMC

1. Type of Impact

n type of impact					
	Cylinder stroke at load (Downward)	Cylinder stroke at load (Upward)	Conveyor stroke at load (Horizontal)	Free dropping impact	Rotating impact (With torque)
Type of impact		v Cylinder			
Collision speed (1)	υ	υ	υ	$\sqrt{2 \text{ gh}}$	ω·R
Kinetic energy E1	$\frac{1}{2} \cdot \mathbf{m} \cdot \upsilon^2$	$\frac{1}{2} \cdot \mathbf{m} \cdot \upsilon^2$	$\frac{1}{2} \cdot \mathbf{m} \cdot v^2$	m ⋅ g ⋅ h	$\frac{1}{2} \cdot I \cdot \omega^2$
Thrust energy E2	$F_1\cdot S+m\cdot g\cdot S$	$F_1\cdot S-m\cdot g\cdot S$	$m\cdot g\cdot \mu\cdot S$	$m\cdot g\cdot S$	T · <u>S</u>
Absorbed energy E	E1 + E2	E1 + E2	E1 + E2	E1 + E2	E1 + E2
Corresponding (2) mass of impacting object Me	$\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} \cdot E$

Note 1) Collision speed is momentary velocity at which object is impacting against shock absorber.

The collision speed is $v = 2\overline{v}$ when the speed (average speed \overline{v}) is calculated from the air cylinder's stroke time.

Note 2) An "Impact body equivalent mass" is the mass of an impact object without involving thrust, into which an object's total energy has been converted. Hence, E = $\frac{1}{2}$ -Me· U^2

Note 3) R: The distance between rotational center and impact point. Set R at the minimum installation radius (page 916) or higher.

Data B Thrust Energy of Cylinder F1 · S (Operating pressure 0.5 MPa) (J)

	odel		RBQD2007			
	absorption nm)	4	7	8	8.5	13
	6	0.057	0.099	0.113	0.120	0.184
	10	0.157	0.274	0.314	0.334	0.511
	15	0.353	0.619	0.707	0.751	1.15
	20	0.628	1.10	1.26	1.34	2.04
	25	0.982	1.72	1.96	2.09	3.19
	32	1.61	2.81	3.22	3.42	5.23
Ê	40	2.51	4.40	5.03	5.34	8.17
Bore size d (mm)	50	3.93	6.87	7.85	8.34	12.8
þ	63	6.23	10.9	12.5	13.2	20.3
size	80	10.1	17.6	20.1	21.4	32.7
ere	100	15.7	27.5	31.4	33.4	51.1
ň	125	24.5	43.0	49.1	52.2	79.8
	140	30.8	53.9	61.6	65.4	100
	160	40.2	70.4	80.4	85.5	131
	180	50.9	89.1	102	108	165
	200	62.8	110	126	134	204
	250	98.2	172	196	209	319
	300	141	247	283	300	459

Operating pressure other than 0.5 MPa: Multiply by the following coefficient.

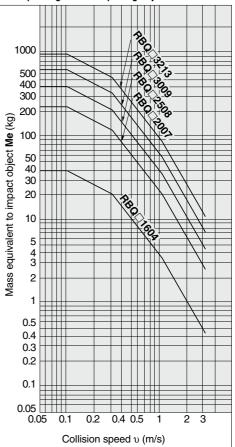
Operating pressure (MPa)	1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Coefficient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

Symbol Symbol Specifications Unit d Bore size mm Absorbed energy Е J Eı Kinetic energy J E2 Thrust energy J E₁ Cylinder thrust Ν g Acceleration of gravity (9.8) m/s² h Dropping height m Moment of inertia around I (4) kg·m² the center of gravity n Operating frequency cycle/min Cylinder operation pressure MPa р Distance between axis of R m cylinder and impact point s Shock absorber stroke m т Torque N⋅m Ambient temperature t °C υ Collision speed m/s m Impact object mass kg Corresponding mass of Me kα impact object Angle speed ω rad/s μ Friction coefficient

Note 4) For the formula of moment of inertia I (kg·m²), refer to the catalog of rotary actuator.

D--X□

913


Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

RJ RB

RBQ Series

Data C Thrust Energy at Load m · g · s 1000 100 Thrust energy at load m•g•s 10 100 1004 1 RBQ[3009 **RBQ**2508 **RBQ**2007 0.1 0.01 0.5 1 10 100 1000 Load mass (kg)

Data D **Corresponding Mass of Impacting Object Me**

The corresponding mass graph shows the values at room temperature (20 to 25 °C).

RBQ Series **Specific Product Precautions 1**

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.

Selection

/ Danger

1. Energy absorption

Select a model so that the aggregated energy of impact object should not exceed the maximum absorption energy. Otherwise, it could cause changes in properties or result in damaging the shock absorber.

2. Corresponding mass of impacting object

Make a model selection, so that the corresponding mass of impacting object does not exceed the allowable range. Pulsation will occur in buffer and deceleration force, thus making it difficult to absorb shock smoothly.

3. Collision speed

Use it in the conditions that collision speed is within the specified range. It could cause the changes in buffer characteristics or lead to damage a shock absorber

\land Warning

1. Static load

Design the system, so that any other forces than the buffer capacity or impacts should not be applied to the piston rod which is stopped at the retracted state

∕!\ Caution

1. Maximum operating frequency

Design the system in the conditions under which it is not used at the frequency exceeding the specified maximum operating frequency.

2. Stroke

The maximum absorption energy in the specifications cannot be exerted unless the full stroke is used

3. Work surface of an impact object

The contact surface of the impact object with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HBC35 or more).

4. Be aware of the return force of the impact object.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built-in. For the spring force in the specifications, refer to the column (page 910).

5. Selection of size

As the number of operation proceeds, the maximum absorption energy of shock absorbers will be decreased by the following reasons such as abrasion, or deterioration, etc. of the internal working fluid. Taking this into consideration, selecting a size which is 20 to 40% affordable against the amount of absorption energy is recommended.

A Caution

6. Drag characteristics

In general, the values of drag (reactive force generated during operation) generated by the operating speed will vary in hydraulic shock absorber. And then, by adopting "Porous orifice construction", the RB series can adapt to such this fast/slow speed and can absorb shock smoothly in a wide range of speed.

But, the speed reduction (speed reduction G) would be larger around the stroke terminal, depending upon the operating conditions. Please note that it might be encountered that stroke time is long, motion is not smooth, etc. If this would be a problem, we recommend that stroke amount should be restricted by using our optional component like "Stopper nut", etc.

7. Parallel usage

When using multiple shock absorbers in parallel, energy will not be divided evenly because of differences in product dimensions and devices. For this reason, select the following options.

- F = Fa/N/0.6
- E : Energy used per shock absorber
- Ea: All energies
- N : The number of shock absorbers used in parallel

Operating Environment

\land Danger

1. Operation in an environment which requires explosion-proof

- •When mounting in places where static electricity is accumulated, implement a distribution of electrical energy by grounding
- . Do not use the materials for buffer face which might cause to spark by collision

\land Warning 1. Pressure

Do not use it in the vacuum state, which is substantially different from the atmospheric pressure (above sea level) and in the atmosphere under being pressurized.

2. Using inside a clean room

Do not use the shock absorber in a clean room, as it could contaminate the clean room.

/!\ Caution

1. Temperature range

Do not use it, exceeding the specified allowable temperature range. Seal could be softened or hardened or worn out, or leading to leak a working fluid, deterioration, or impact characteristic changes.

2. Deterioration by atmosphere

Do not use the product in an environment where the product may be damaged by salt or air which contains organic solvent, phosphoester operating oil, sulfurous acid gas, chlorine gas or other acids. It may deteriorate seals or corrode metals.

RBQ Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.

Operating Environment

A Caution

3. Deterioration by ozone

Do not use it under the direct sunlight on the beach, or by the mercury lamp, or the ozone generator, because the rubber material will be deteriorated by ozone.

4. Cutting oil, water, blown dust

Do not use the product under the condition, where the liquid such as cutting oil, water, solvent, etc. is exposed either directly or in atomized form to the piston rod, or where blown dust could be adhered around the piston rod. This could cause malfunction.

5. Vibration

When vibrations are applied on impact objects, implement a secure guide on impact objects.

Mounting

🗥 Warning

 Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.

2. Installation of protective cover

We recommend the protective cover should be installed in the case workers might be getting close during the operation.

3. The rigidity of the mounting frame

The mounting frame must have sufficient rigidity.

Load on mounting plate can be calculated as follows.

Load on mounting plate
$$N \cong 2 \frac{E (Absorbed energy : J}{S (Stroke : m)}$$

Depending on the impact conditions, a load applied to the mounting frame may exceed the calculated value.

When setting the rigidity of the mounting frame, the sufficient safety ration must be taken into account in the calculated value.

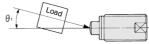
A Caution

1. Tightening torque of mounting nut should be as follows.

When threading on a mounting frame in order to mount a shock absorber directly, prepared hole dimensions are referred to the table below.

For tightening torque of a nut for shock absorber, kindly abide by the table below.

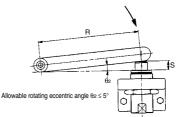
If the tightening torque that is applied to the nut exceeds the value given below, the shock absorber itself could become damaged.


Model	RBQ(C)1604	RBQ(C)2007	RBQ(C)2508	RBQ(C)3009	RBQ(C)3213
O.D. thread (mm)	M16 x 1.5	M20 x 1.5	M25 x 1.5	M30 x 1.5	M32 x 1.5
Thread prepared bore (mm)	ø14.7 ^{+0.1}	ø18.7 ^{+0.1}	ø23.7 ^{+0.1}	ø28.7 ^{+0.1}	ø30.7 ^{+0.1}
Tightening torque (N · m)	14.7	23.5	34.3	78.5	88.3

Mounting

▲ Caution

2. Deviation of impact.


The installation must be designed so that the impact body is perpendicular to the shock absorber's axial center. An angle of deviation that exceeds 5° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentric angle $\theta_1 \le 5$

3. Rotating angle

If rotating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center. The allowable rotating eccentric angle until the stroke end must be $\theta_{\leq} 5^{\circ}$.

Installation Conditions for Rotating Impact (mm)

Model	S (Stroke)	θ ₂ (Allowable rotating angle)	R (Min. installation radius)		
RBQ□1604	4		46		
RBQ[2007	7]	80		
RBQ 2508	8	5°	92		
RBQ[]3009	8.5		98		
RBQ[]3213	13		149		

Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

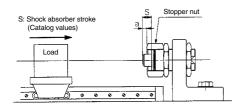
Failure to observe this precaution could scratch or gouge the sliding potion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.

5. Never turn the screw on the bottom of the body.

This is not an adjusting screw. Turning it could result in oil leakage.

RBQ Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions.


Mounting

\land Caution

6. Adjust the stopping time through the use of the stopper nut, as follows:

Control the stopping time of the impact object by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Capacity of shock absorbers deteriorate in accordance with usage. When crashing sounds or vibrations are generated during the operation, adjust the stopper nut and make the effective stroke (a) longer, or give the stroke enough leeway beforehand.

Maintenance

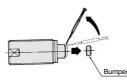
\land Caution

1. Check the mounting nut is not loosen.

The shock absorber could become damaged if it is used in a loose state.

2. Pay attention to any abnormal impact sounds or vibrations.

If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.


3. Confirm that abnormality, oil leakage, etc. in the outward surface. When a large amount of oil is leaking, replace the product, because it is believed to be happening something wrong with it. If it keeps on using, it may cause to break the equipment which is mounted by this product.

4. Inspect the bumper for any cracks or wear.

If the shock absorber comes with a bumper, the damper could wear first. To prevent bumper to the impact object, replace the bumper often.

5. How to replace bumper

The bumper inserted into the piston rod can be removed easily by a small screwdriver. When reassembling, push the smaller end of the bumper inside the piston.

Storage

▲ Caution

1. Piston rod position while stored

If a piston rod is stored as pushed in for a long period of time (over 30 days), absorption capacity may decrease. Avoid storing like this for a long time.

Service Life and Replacement Period of Shock Absorber

\land Caution

1.Allowable operating cycle under the specifications set in this catalog is shown below.

2 million cycles

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

D-