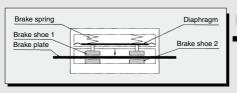
Mechanically Jointed Hy-rodless Cylinder with Brake

ML1C Series

ø25, ø32, ø40

Brake mechanism has been compactly integrated into the slide table which enables intermediate stops of the rodless cylinder.

Large holding brake force


Force from 4 brake springs hold slide tightly.

Stroke adjustment unit combines a shock absorber and stopper bolt.

Brake construction is designed not to allow loads on quide.

Spring force works directly on the brake-shoe and the brake plate is caught between brake shoes from top and bottom so that the slide table can stop without compromising guide performance. The brake shoe yields long service life due to special friction resistant material.

Stop is possible at the arbitrary position.

Locking in both directions is possible.

Locking in either side of cylinder stroke is possible, too.

External air piping for brake release not required.

Brake releasing air flows from head cover to slide table through air tube in cylinder body. There is no restriction on piping requirements because piping to the outside of the slide table is not necessary.

Cam follower guide type

Cam follower is adopted for the guide section. Trafficability is excellent in moment resistance.

> D--X□

CLJ2

CLM2 CLG1 CL₁

MLGC

CNG MNB CNA2 CNS

CLS

CLQ

RLO

MLU

MLGP

ML1C

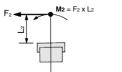
Prior to Use

Maximum Allowable Moment/Maximum Load Mass

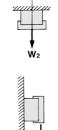
Model	Allowal	ble momen	t (N·m)	Maximum load mass (kg)			
Model	M1	M2	М3	W1	W2	W3	W4
ML1C25	14.7	4.90	4.90	20	12	3	10
ML1C32	29.4	9.80	9.80	32	19	5	16
ML1C40	58.8	19.6	19.6	50	30	8	25

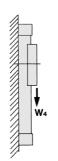
Maximum Allowable Moment

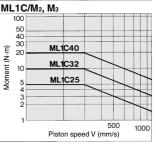
Select the moment within the limits shown in the graphs below. Note that the maximum payload value in some cases may exceed maximum allowable payload despite being within the limit shown in the graph; therefore, payload on the operating conditions should be checked.


Caution on Design

Allowable moment and Load Mass Maximum


Allowable moment and Maximum load mass varies depending on mounting orientation, piston speed, etc. Therefore use the cylinder within the range shown in the graph corresponding to operating conditions.




M3 = F3 x L3

Wз

ML1C/M1 100 50 ML1C40 50 40 30 ML1C32 30 E 20 ML1C25 ML1C25 ML1C25 ML1C25 Piston speed V (mm/s)

(How to calculate the load ratio)

- A. Consider (1) max. load mass, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load mass.
 - * Evaluate (1) and (2) as va (average speed), and (3) as v (collision speed v = 1.4 va). Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

 $\left\{ \begin{array}{l} \text{Sum of the load factors } \mathcal{D}\alpha = \frac{\text{Load mass } [\mathbf{m}]}{\text{Maximum load mass } [\mathbf{m}\text{-max}]} + \frac{\text{Static moment } [\mathbf{M}|^{\text{Nute in}})}{\text{Static allowable moment } [\mathbf{Mmax}]} + \frac{\text{Dynamic moment } [\mathbf{M}\text{e}]^{\text{Nute 2}})}{\text{Dynamic allowable moment } [\mathbf{M}\text{e}\text{max}]} \leq 1 \right\}$

Note 1) Moment generated by load, etc. when the cylinder stops.

Note 2) Moment generated by load equivalent to impact at stroke end (when stopper collides).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors (Σα) is the total of all such moments.

υ : Collision speed (mm/s)

M_E: Dynamic moment (N⋅m)

L1 : Distance to the center of load gravity (m)

g : Gravitational acceleration (9.8 m/s2)

B. Reference formula [Dynamic moment at impact]

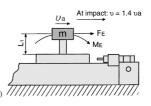
Refer to following calculation for dynamic moment considering the impact when stopper collides.

W: Mass (kg)

F : Load (N)

F_E: Load equivalent to impact (when stopper collides) (N)

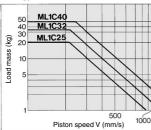
v_a: Average speed (mm/s)

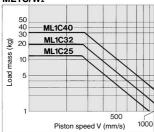

M : Static moment (N-m)

 $\mathbf{v} = 1.4 \, \mathbf{va} \, (\text{mm/s}) \, \text{Fe} = \frac{1.4}{100} \, \mathbf{va} \cdot \mathbf{g} \cdot \mathbf{W}$

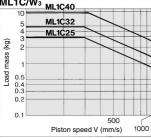
 $\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot \mathbf{F}_{E} \cdot \mathbf{L}_{1} = 0.05 \text{ vagWL}_{1} \text{ (N·m)}$

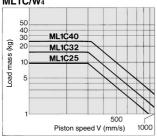
3


Note 4) Average load coefficient (This coefficient is meant to average the maximum load moment at the time of impact with stopper in the light of calculating the service life.)

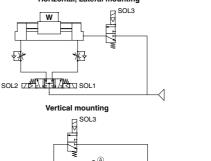

Maximum Load Mass

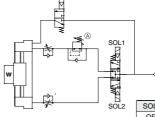
Select the maximum load mass to be applied within the limits shown in the graph. Note that the maximum allowable moment may in some cases exceed Maximum allowable moment despite being within the limit shown in the graph: therefore, allowable moment on operating conditions should be checked.


ML1C/W₁


ML1C/W₂

ML1C/W₃


ML1C/W₄



Caution on Pneumatic Circuit Design

Operating pneumatic circuit

Horizontal, Lateral mounting

* Be sure to use the circuit above Please consult with SMC in case of using other circuits.

SOL.1	SOL.2	SOL.3	Actuation
OFF	OFF	OFF	Stop
ON	OFF	ON	To left
OFF	ON	ON	To right

CLQ RLO

CLJ2

CLM2

CLG1

CL₁

MLGC

CNG MNB CNA2

CNS

CLS

MLU MLGP

ML1C

Solenoid Valve for Driving and Braking

<Solenoid valve for driving>

Use pressure center type valve. Control the operation with a meter-out system.

<Solenoid valve for braking>

- · Use the solenoid valve for braking which has the effective area equivalent to the one of solenoid valve for driving. If the effective area is smaller, it may encounter an unexpected sudden slide table movement.
- Install a solenoid valve for braking as close to the cylinder as possible. If there is a long distance between the cylinder and valve, it may cause fluctuations in the stop accuracy or unexpected sudden slide table movements.

<Recommended solenoid valve example>

	Horizontal, lateral mounting	Vertical				
Solenoid valve for driving	VFS2500					
Solenoid valve for braking	VP300 or VFS2100					

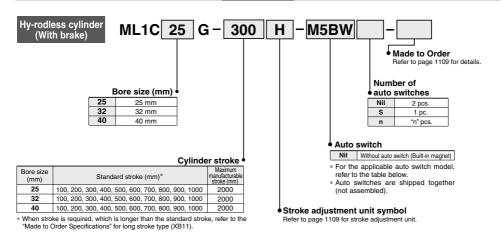
* Determine the size of the solenoid valve according to the operating cylinder speed.

Air Balance

On both above mentioned circuit, the air balance is made by pressurizing to both sides of cylinder on the condition of the intermediate stop.

In the case of the vertical orientation, reduce the pressure of the upside by regulator (check valve) (A) to keep the balance is not made, it may cause unexpected sudden slide table movements after the intermediate stop operation, once the reverse operation occurs, resulting in compromised accuracy of the cylinder.

Supply Pressure


- . Set the supply pressure at 0.25 to 0.5 MPa. If setting at less than 0.25 MPa, malfunction of the release brake may occur.
- If line pressure is used directly as supply pressure, any fluctuation in pressure will appear in the form of changes in cylinder characteristics. Therefore, make sure to use a pressure regulator to convert line pressure into supply pressure for the actuating valve and the brake valve. In order to actuate multiple cylinders at once, use a pressure regulator that can handle a large air flow volume and also consider installing a surge tank.

-**X**□

Mechanically Jointed Hy-rodless Cylinder with Brake ML1C Series 925, 932, 940

How to Order

Applicable Auto Switches/Refer to pages 1119 to 1245 for further information on auto switches.

			ig.	145.		Load volt	age		Lead wire le	ngth ((m)*						
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		DC AC		DC AC		Auto switch model	0.5 (Nil)	3 (L)	5 (Z)	Pre-wired connector	Applio	cable load	
				3-wire (NPN)		5 V.12 V		M5N	•	•	•	0	IC				
	_			3-wire (PNP)		12 V		M5P	•	•	•	0	circuit				
활동				2-wire				M5B	•	•	•	0	_				
sts Wir	Diameratic in diameter	Grommet	V	3-wire (NPN)	24 V 5 V,12 V		24 V 5 V,12 V —	04 1/ 5 1/ 10 1/	1 V E V 10 V		M5NW	•	•	•	0	IC	Relay,
₽°°	Diagnostic indication (2-color indicator)	Gionnie	res	3-wire (PNP)				M5PW	•	•	•	0	circuit	PLC			
Solid state auto switch	(2-color indicator)			2-wire			M5BW	•	•	•	0	_					
	Marie Alexandre			3-wire (NPN)		E 1/ 40 1/		M5NT	_	•	•	0	IC				
	With timer			3-wire (PNP)		5 V,12 V		M5PT	_	•	•	0	circuit				
Reed auto switch				3-wire	_	5 V	_	E76A	•			_	IC				
» wit	Grommo	Grommet	Yes	(NPN equivalent)		_ ` '				_			circuit				
5 B	_	GIOIIIIIEL		2-wire	24 V	12 V 10	100 V	E73A	•	•	<u> </u>	_	_	Relay, PLC			
ᇙ				N0	2-WII6	24 V	5 V,12 V	100 V or less	E80A	•	•	-	_	IC circuit	nelay, FLO		

^{*} Lead wire length symbols: 0.5 m-----Nil (Example) M5BW
3 m-------L (Example) M5BWL
5 m-------Z (Example) M5BWZ

^{*} Solid state auto switches marked with "O" are produced upon receipt of order.

^{*} For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.

^{*} Auto switches are shipped together (not assembled). (For details about auto switch mounting, etc., refer to page 1116.)

Specifications

Long stroke type

Symbol

-XB11

Cylinder Specifications

Bore size (mm)		25 32 40				
Guide type		Cam follower guide type				
Fluid		Air				
Action		Double acting				
Operating pressur	e range (MPa)	0.1 to 0.8				
Proof pressure (Mi	Pa)	1.2				
Ambient and fluid	temperature	5 to	60°C (No freez	ing)		
Piston speed (mm	/s)		100 to 1000			
Cushion			Air cushion			
Lubrication		Not required (Non-lube)				
Stroke length toler	ance (mm)	+1.8 0				
Port size Rc	Front port, Side port, Bottom port	rt 1/8 1/4				

Brake Specifications

Lock operation	Spring locking (Exhaust lock)
Fluid	Air
Maximum operating pressure (MPa)	0.5
Brake releasing pressure (MPa)	0.25
Brake activating pressure (MPa)	0.18
Braking direction	Both directions

Stroke Adjustment Unit Specifications

Applicable cylinder size (mm)		25	32	40
Unit symbol		н н		Н
Configuration Shock absorber model		RB1412 + with adjustment bolt	ent bolt RB2015 + with adjustment bolt RB2015 + with ad	
Stroke adjustment range	Without spacer	0 to −11.5	0 to −12	0 to −16
by intermediate fixing	With short spacer	−11.5 to −23	-12 to -24	−16 to −32
spacer (mm)	With long spacer	−23 to −34.5	−24 to −36	−32 to −48

Stroke adjustment range is applicable for one side when mounted on a cylinder.

* The shock absorber service life is different from that of the ML1C cylinder depending on the operating conditions. Refer to the Specific Product Precautions for the replacement period.

Stroke adjustment unit

Stroke Adjustment Unit Symbol

SHOKE AC	ijustilielit O	ilit Əyilibül							
			Right side stroke adjustment unit						
			Without	H: With hi + Adjustm	gh load shock ent bolt	absorber			
			unit		With short spacer	With long spacer			
Left side	Without unit		Nil	SH	SH6	SH7			
stroke		ad shock absorber	HS	Н	HH6	HH7			
adjustment	+ Adjustment bolt	With short spacer	H6S	Н6Н	Н6	H6H7			
unit	Boil	With long spacer	H7S	H7H	H7H6	H7			

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Stroke Adjustment Unit Shock Absorber Model

ø 25	ø 32	ø 40
RB1412	RB2015	RB2015

Shock Absorber Specifications

Applicable cy	linder size (mm)	25	32	40
Shock absorber n	nodel	RB1412	RB2015	RB2015
Max. energy abso	rption (J)	19.6	58.8	58.8
Stroke absorption	n (mm)	12	15	15
Max. collision spe	eed (mm/s)	1000	1000	1000
Max. operating fre	equency (cycle/min)	45	25	25
Spring force (N)	Extended	6.85	8.34	8.34
Spring loice (N)	Retracted	15.98	20.50	20.50
Operating temper	ature range (°C)		5 to 60	

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

SMC

CLM2 CLG1

CLJ2

CL1

MLGC

CNG MNB

CNA2

CNS

CLS

RLQ

MLU

MLGP

ML1C

Intermediate fixing spacer

Right side H unit

Short spacer

mounting diagram

Example of H7H6 attachment

Stroke adjustment unit

Left side

Port

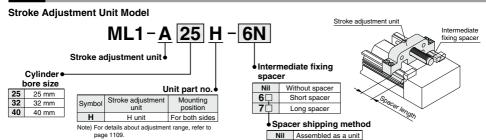
Long spacer

D-□

-X□

^{*} The shock absorber service life is different from that of the ML1C cylinder depending on the operating conditions. Refer to the Specific Product Precautions for the replacement

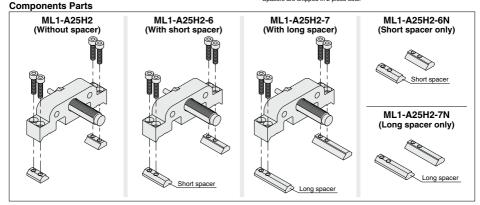
ML1C Series


Theoretical Output

								(14)
Bore size	Piston area			Operatin	g pressur	e (MPa)		
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

Weight

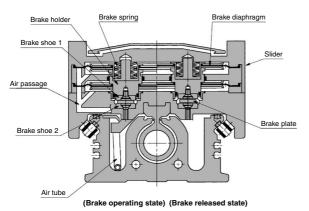
					(kg)
Bore size (mm)	Basic weight			upport (per set)	Stroke adjustment unit weight
()		of stroke	Type A	Type B	(per unit)
25	3.86	0.275	0.015	0.016	0.25
32	6.05	0.425	0.040	0.041	0.41
40	8.38	0.545	0.076	0.080	0.50


Option

 Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Spacer only

Spacers are shipped in 2 piece sets.



Side Support Part No.

Bore size (mm)		32	40
Side support A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S25B	MY-S32B	MY-S40B

For details about dimensions, etc., refer to page 1114.

Construction Principle of Brake

[Anatomy of Brake Operation]

Spring force generated by the brake spring works on a brake shoe 1 fixed to the brake holder, bend brake plate fixed on head cover on both sides, brake rails and holds brake plate between brake shoe 1 and brake shoe 2 fixed to slider side so that slider will stop.

[Brake releasing]

Air pressure supplied from the head cover side goes to the slide table through the air tube and acts on the brake diaphragm, reducing the spring

CLJ2

CLM2

CLG1

CL₁ MLGC

CNG

MNB

CNA2

CLS CLQ

RLO

MI U

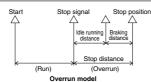
MLGP ML1C

CNS

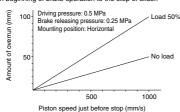
Brake Capacity

Holding Force (Maximum static load)

Bore size (mm)	25	32	40
Holding force	320N	500N	800N


- 1. The holding force is the lock's ability to hold a static load that does not involve vibrations or shocks, after it is locked without a load. Therefore, to use the cylinder near the upper limit of the constant holding force, be aware of the following
 - . Select the cylinder bore size so that the load is less than 80% of the holding force.
 - . If slipping occurs when the load is over holding force, the brake shoe will be damaged, and it is possible the holding force will become smaller or the cylinder life shortened.

Allowable Kinetic Energy


Bore size (mm)	25	32	40
Allowable kinetic energy (J)	0.43	0.68	1.21

Overrun

Overrun

When cylinder is stopped at intermediate strokes, "idle running distance" is from detection of stop signal to beginning of brake operation and "braking distance" is from beginning of brake operation to the stop of slider

Amount of overrun The graph above shows the relation between piston speed and overrun. (The length of overrun is changed, dependent on piston speed, load, piping conditions and control method. Be sure to adjust the stop signal position, etc.

by trial operation with the actual machine.)

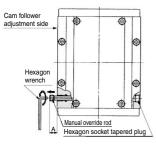
Stop dispersion

When cylinder is stopped at intermediate stroke, there is dispersion of stop position. Dispersion of stop position is changed dependent on piston speed, load, piping condition and control method. Use values in the table below as reference.

Stopping Accuracy

Piston speed (mm/s)	100	300	500	800	1000
Stopping accuracy (mm)	±0.5	±1.0	±2.0	±3.0	±4.0

Conditions Driving pressure: 0.5 MPa


Brake releasing pressure: 0.25 MPa

Load: 25%

Solenoid valve for releasing brake is connected to cylinder directly. Dispersion of the control system is not included.

Manual Operation

In the case of manual operation, be sure to supply air for brake releasing.

If not, this may result in damage to the brake, which will cause a cylinder malfunction.

[Brake releasing]

- 1. Supply the air for releasing the brake to the braking air port on the head cover. This should be 0.4 to 0.5 MPa.
- 2. Loosen the manual override (nickel plated) rod on the slide table by using a hexagon wrench, and draw the rod until it reaches to the end. The size of the hexagon wrench should be 3 mm (ML1C25, 32) or 4 mm (ML1C40).
- 3. Exhaust the air to release the brake.

Manual Rod Drawing Dimensions

Model	Α
ML1C25	23
ML1C32	27
ML1C40	32

[Brake operation]

- 1. Supply the air for releasing the brake to the braking air port on the head cover. This should be 0.4 to 0.5 MPa.
- 2. Push the manual rod and then screw it until it is housed inside a slider completely.
- 3. Exhaust the air to release the brake.

Cushion Capacity

Cushion selection

<Air cushion>

Air cushion is standard on Hy-rodless cylinder. The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation.

Air cushion is not applied for slow piston operation around the stroke

A range of the mass and speeds that an air cushion can absorb is within the limits shown in the graph, "Air Cushion Absorbing Capacity".

<Stroke adjustment unit with shock absorber>

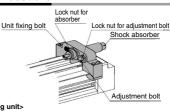
Use this unit to decelerate the cylinder when mass and speed are beyond the air cushion limit lines or when the stroke adjustment causes limited or no cushion engagement. Note)

- 1. Adjust the shock absorber so that stroke will be fully utilized to near the limit of allowable energy, because absorption capacity becomes extremely small if the absorber's effective stroke is short due to a stroke adjustment.
- 2. When the shock absorber is used within the air cushion stroke range, almost open the air cushion needle (about 1 turn from the fully closed position).

Stroke Adjusting Unit with Shock Absorber/ Calculation of Absorbed Energy

		- 3,	
	Horizontal collision	Vertical (Downward)	Vertical (Upward)
Type of impact	\$ V-	₩ s	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Kinetic energy E ₁		<u>₩</u> .V²	
Thrust energy	F⋅s	F·s + W·s·g	F·s – W·s·g
Absorbed energy E		E1 + E2	
Symbol			

- W: Impact speed (m/s)
 W: Impact object mass (kg)
 F: Cylinder thrust (N)
- s: Stroke length of shock absorber (m)


Note) The speed of the impact object is measured at the moment of impact with the shock absorber.

Air Cushion Stroke

All Cusilion	Sticke	(mm)
Bore size (mm)	Cushion stroke	
ø 25	15	
ø 32	19	
ø 40	24	

Air Cushion Absorption Capability

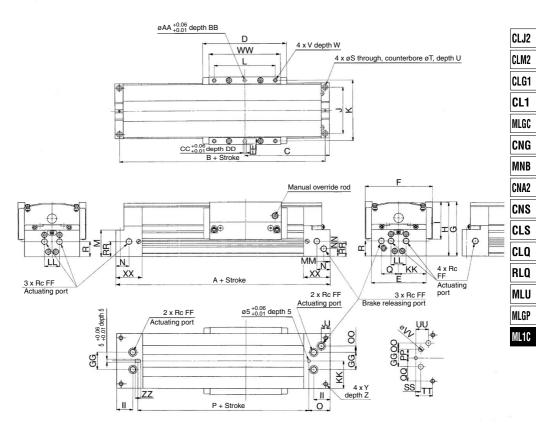
Adjusting Procedure

1000 MLTC40 ML1C32 speed V (mm/s) 500 400 300 Piston 200 4 5 30 40 50 Payload W (kg)

<Moving and fixing unit>

Remove the dust proof cover, loosen the four fixing bolts to move the unit

The unit body can be fixed by tightening four holding bolts evenly at an arbitrary position. However, there is a possibility that the adjustment mechanism will be tilted due to high impact energy. Since the holder mounting bracket for adjustment is available as an option for -X416, -X417, we recommend that you use it. Please refer to holder mounting bracket in Made to Order Specifications (2). If any other length is desired, please consult with SMC.


<Stroke adjusting of adjustment bolt>

After loosening the lock nut for adjustment bolt, adjust the stroke with hexagon wrench. Then, tighten lock nut.

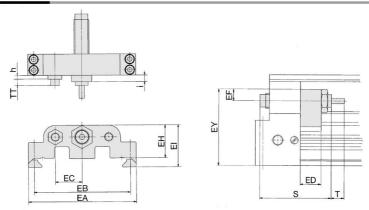
<Stroke adjusting of shock absorber>

After loosening the lock nut for the shock absorber, adjust the stroke by rotating shock absorber, then fix the shock absorber by tightening lock nut. Do not over tighten the lock nut.

Bottom Side Piping Port Size

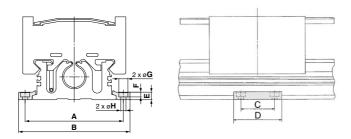
(Mounting side sl									
	Model	00	PP	QQ	RR	SS	TT	UU	٧٧	Applicable gasket
	ML1C25	10	14	37	24	8	27	20	8	C11.2
ı	ML1C32	16.5	18	46	30	12	32	22	8	C11.2
-	ML1C40	17	23.5	53	40	12.5	34	26	10	C14

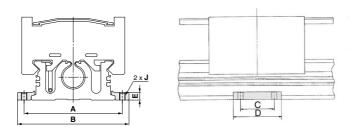
Model	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	Υ	Z
ML1C25	274	260	137	140	88	108	87	85.5	60	74	97	100	42.5	26	34	206	28	24	5.6	9	5.5	M5 x 0.8	8.5	M6 x 1	9.5
ML1C32	322	306	161	160	108	131	101	99.5	64	92	118	120	53.5	28	40	242	36.5	30	6.8	11	6.6	M6 x 1	12	M8 x 1.25	16
ML1C40	372	354	186	190	124	158	118	116.5	73	106	144	140	64	30.5	43	286	40.5	35	8.6	14	8.5	M8 x 1.25	14	M10 x 1.5	15


Model	AA	ВВ	CC	DD	EE	FF	GG	II	JJ	KK	LL	MM	NN	ww	XX	ZZ
ML1C25	5	5	5	5	7	1/8	28	26	14	44	20	16	12.5	120	42	8
ML1C32	6	5	6	5	8	1/8	36	28	18	54	36	18	12.5	140	48	8
ML1C40	6	5	6	5	8	1/4	47	30.5	17	62	30	22	16.5	170	51	10

D-□ -X□

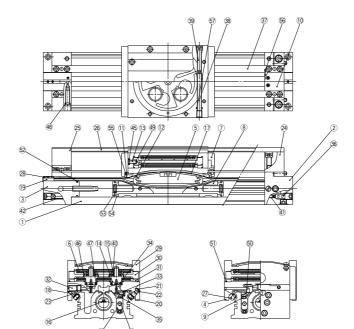
ML1C Series


Stroke Adjustment Unit


Part no.	Applicable bore	EA	EB	EC	ED	EF	EY	S	Т	EH	EI	TT	h	i	Shock absorber model	
ML1-A25H	ML1C25	101	90	25	20	11	72	67.3	12	31	39.5	Max. 16.5	4.5	3	RB1412	
ML1-A32H	ML1C32	120	107	30	25	16	93	73.2	15	38	49	Max. 20	5.5	6	DD0045	
ML1-A40H	ML1C40	147	129	30	31	16	105.5	73.2	15	40.5	54.5	Max. 25	5.5	6	RB2015	

Side Support

Side support A



Side support B

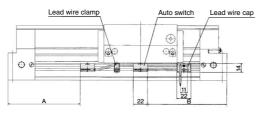
										(mm)
Part no.	Applicable bore	Α	В	С	D	E	F	G	Н	J
MY-S25 A	ML1C25	103	117	35	50	8	5	9.5	5.5	M6 x 1
MY-S32A	ML1C32	128	146	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ^A _B	ML1C40	148	170	55	80	14.8	5	14	9	M10 x 1.5

Construction

Component Parts					
No.	Description	Material	Note		
1	Cylinder tube	Aluminum alloy	Hard anodized		
2	Head cover WR assembly	Aluminum alloy	Hard anodized		
3	Head cover WL assembly	Aluminum alloy	Hard anodized		
4	Slide table	Aluminum alloy	Hard anodized		
5	Piston assembly	Aluminum alloy	Hard anodized		
6	Brake diaphragm assembly	_			
7	End Cover	Chrome molybdenum steel	Nickel plated		
8	Wear ring	Special resin			
_ 9	Air joint assembly	_			
_10	Plate tensile table	Rolled steel	Nickel plated		
11	Stopper	Carbon steel	Nickel plated		
12	Belt separator	Special resin			
13	Port joint	Stainless steel			
14	Brake holder assembly	Carbon steel	Gas soft nitrided		
15	Spring holder	Carbon steel	Gas soft nitrided		
16	Seal belt	Special resin			
_17	Dust seal band	Stainless steel			
_18	Rail	Hard steel wire material			
19	Belt clamp	Special resin			
_20	Cam follower	_			
_21	Eccentric screw cap	Stainless steel			
22	Lock nut	Stainless steel			
_23	Bushing	Stainless steel			
_24	Dust proof cover mountable R	Aluminum alloy	Hard anodized		
25	Dust proof cover mountable L	Aluminum alloy	Hard anodized		
_26	Dust cover	Aluminum alloy	Hard anodized		
_27	Magnet assembly	Aluminum alloy	Anodized		
28	Seal lock plate	Rolled steel	Nickel plated		
_29	Slider cover assembly	Aluminum alloy	Hard anodized		
30	Diaphragm plate assembly	Aluminum alloy	Chromated		
31	Diaphragm ring	Aluminum alloy	Chromated (ø25 only)		

Con	Component Parts					
No.	Description	Material	Note			
32	Cam follower cap	Aluminum alloy	Hard anodized			
33	Tube cover	Aluminum alloy	Hard anodized			
34	Brake shoe	Special friction material				
35	Joint ring	Stainless steel				
36	Air coupler 2	Stainless steel				
37	Brake plate	Stainless steel	Hard chrome plated			
38	Manual rod 1	Carbon steel	Nickel plated			
39	Manual rod 2	Carbon steel	Chromated			
40	Brake spring					
41	Air tube	Special resin				
42	Cable	Stainless steel				
43	Tube guide assembly					
44	Guide tube	Stainless steel				
45	Tension rod	Rolled steel	Nickel plated			
46	Spacer	Stainless steel				
47	O-ring	NBR				
48	O-ring	NBR				
49	O-ring	NBR				
50	Needle gasket	NBR				
51	O-ring	NBR				
52	O-ring	NBR				
53	O-ring	NBR				
54	Tube gasket	NBR				
_55	Cushion seal	NBR				
56	Piston seal	NBR				
57	Scraper	NBR				
58	Bypass gasket	NBR				
59	O-ring	NBR				

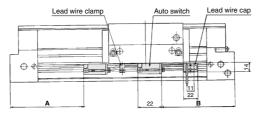
D-□ -**X**□


CLJ2 CLM2 CLG1 CL1 MLGC CNG MNB CNA2 CNS CLS CLQ RLQ MLU MLGP ML1C

ML1C Series Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

D-E7□A, D-E80A


Note) Position auto switch's indicator sight toward the slide table side.

Lead Wire Clamp/Lead Wire Cap (Option)

Series	Lead wire clamp	Lead wire cap
ML1C	LC-01	LP-01

Series	Mounting position	ø 25	ø 32	ø 40
ML1C	Α	128.5	152.5	177.5
WILTO	В	123.5	147.5	172.5

D-M5□ D-M5□W D-M5□T

Lead Wire Clamp/Lead Wire Cap (Option)

Series	Lead wire clamp	Lead wire cap
ML1C	LC-01	LP-01

 Mounting position
 o25
 o32
 o40

 ML1C
 A
 124.8
 148.8
 173.8

 B
 113.2
 137.2
 162.2

Minimum Stroke for Auto Switch Mounting

		(11111)
No. of auto	Applicable auto switch	
switches mounted	D-E7□A, D-E80A	D-M5□, D-M5□W, D-M5□T
1 pc.	10	5
2 pcs.	15	10

Auto Switch Mounting Bracket: Part No.

Bore size (mm)	Auto switch mounting bracket part no.	Note	Auto switch model
25 32	BMY1-025	Switch mounting screw M2.5 x 10 L Switch mounting nut	D-E7□A·80A
40	BMY2-025	Switch mounting screw M2.5 x 12 L Switch mounting nut	D-M5□ D-M5□W D-M5□T

Operating Range

Auto switch model	Bore size (mm)		
Auto switch model	25	32	40
D-E7□A, E80A	6	6	6
D-M5□, M5□W, M5□T	4	4	4

 Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion.)

There may be the case it will vary substantially depending on an ambient environment.

(mm)

ML1C Series Specific Product Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Adjustment

⚠ Caution

 Even though hy-rodless cylinders can be loaded within the maximum allowable moment and payload, precise alignment is required if connected to a payload which has an external support structure.

As the stroke becomes longer, variations in the center axis become larger. Consider using a connection method (floating mechanism) that is able to absorb deflection.

Due to the factory pre-adjusted guide and brake plate, readjustment is not required under normal operating conditions.

Therefore, do not unnecessarily alter the guide adjustment setting

- Do not operate the cylinder in an environment in which the cylinder will be exposed to cutting chips, dust (paper debris, lint, etc.), spatter or cutting fluid (gas oil, water (warm water), etc.), which could lead to operational problems.
- It is recommended that grease be applied periodically to the sliding portion of the bearing and to the dust seal band to increase their service life.
- 5.Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc.

When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, consult with SMC.

Since the hy-rodless cylinders have a unique seal structure, a slight speed change may occur.

For applications that require constant speed, select an applicable equipment for the level of demand.

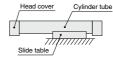
- The hy-rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, consult with SMC.
- When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.
- Mount a cylinder after confirming the cylinder tube is not twisted.

If flatness of the mounting surface is not sufficient, the cylinder tube may be twisted, which may cause air leakage due to separation of the seal belt, damage to a dust seal band, or malfunctions.

Handling Precautions

⚠ Caution

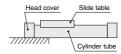
 Do not scratch or dent the outside surface of the cylinder tube.


This may result in damaged bearings or scrapers, which can cause cylinder malfunction.

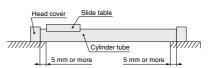
Handling Precautions

⚠ Caution

- Do not apply a load to the dustproof cover. It may cause malfunction.
- Since the slide table is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting workpieces.
- 4. Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.

Mounting with a slide table (slider)


5. Consult with SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Consult with SMC when using it this way.

Mounting in a cantilevered way

Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

7. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment.

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

Service Life and Replacement Period of Shock Absorber

⚠ Caution

 Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million cycles RB08□□

2 million cycles RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

CLJ2

CLM₂

CLG1

CL1

MLGC

CNG

MNB

CNA₂

CNS

CLS

CLQ

RLO

MI II

MLGP

ML1C

