Process Gas Diaphragm Valve

Series AZ

RoHS

Cleaned for high purity semiconductor applications.

Cleanroom assembled and He leaked tested.

Valve meets dimensional requirements of

SEMI F36-0299, Option I.

Air Operated Type Series AZ3542 and 4542

- Compact and lightweight by making the actuator shorter
- M5 actuation port

Manually Operated Type Series AZ3652 and 4652

Compact and lightweight by modifying the knob design

The knob is a unique design that combines a scalloped round knob with a raised rectangular section to provide two choices of gripping.

Actuation is 90 degrees open to closed with a cutout window, on both sides of raised rectangular section, providing visual status of open or closed state.

Direction of a raised rectangular section indicate open/close status

AP

SL AZ

AK BP

Air operated type Series AZ3542/AZ4542

Manually operated type Series AZ3652/AZ4652

Body material

316L SS

Electropolish and passivation internals


SEMI standard

Mounting hole, dimension, and face to face dimension are interchangeable (Guide for Dimensions and Connections of Gas Distribution Components).

User-friendly forged body

Rounded corner for safety and easy operation (forged body is for machined type.)

Port

Machined type

Welded type

	Machined		Welded		
Body					
Connection	Face seal fitting (Male)	Tube weld (Tube stub)	Face seal fitting (Male)	Face seal fitting (Female)	Tube weld (Tube stub)
Connection size (inch)	1/4, 3/8	1/4, 3/8, 1/2	1/4, 3/8		
Interchangeability	N	lo	Yes		

Welded type, inlet and outlet available with any combination of fitting type and size.

Further information>>> How to order P.1110, 1112

Example)

Face seal fitting (Male) 1/4

Face seal fitting (Female) 3/8

Welded type, ports (2, 3, 4 ports) and porting configuration (flow direction 2, 3, 4) selectable

Further information>>> Optional porting configuration P.1114

■ Air operated type

	Carina	Series Status	Body material	Max. operating	Cv * 1)	Connections	Page
	Series	Status	body material	pressure (MPa)	CV · i/	Fitting	Page
面的 语言	AZ3542	N.C.	316L SS	0.9	0.29	Face seal fitting	P.1110
Machined type Welded type	AZ4542	IN.C.	3102 33	0.9	0.5	Tube weld	F.1110

■ Manually operated type

	Series	Knob	Body material	Max. operating	Cv * 1)	Connections	D
	Series	KIIOD	Body material	pressure (MPa)	CV · ·/	Fitting	Page
	AZ3652	Knob with a raised	316L SS	1.7	0.29	Face seal fitting	P.1112
Machined type Welded type	AZ4652	section on top (indication window)		1.7	0.5	Tube weld	F.1112

^{* 1)} Cv calculation based on SEMI Standard

Precautions for selection -

The proper regulator and valve selection can be significantly affected by parameters such as system design, flow duration, frequency of use, ambient conditions and outlet pressure. It is important to understand that one may follow this guide's recommendation, yet have a failure due to a parameter specific to the given application, as noted.

Applicable Fluid

Process Gas	Molecular Formula
Boron11 Trifluoride	11BF3
Argon	Ar
Arsine	AsH₃
Boron Trichloride	BCl ₃
Boron Trifluoride	BF ₃
Halocarbon114	C2CIF4
Halocarbon115	C2CIF5
Halocarbon116	C ₂ F ₆
Acetylene	C ₂ H ₂
Halocarbon134A	C ₂ H ₂ F ₄
Ethylene	C ₂ H ₄
Halocarbon125	C ₂ HF ₅
Dimethylsilane	C ₂ SiH ₈
HalocarbonR218	C ₃ F ₈
Propene	СзН6
Propane	C ₃ H ₈
Perfluoro-butadiene	C ₄ F ₆
HalocarbonC318	C ₄ F ₈
Butene-1	C ₄ H ₈
Octafluorocyclopentene	C ₅ F ₈
Halocarbon12B2	CBr ₂ F ₂
Halocarbon13B1	CBrF ₃
Halocarbon12	CCl ₂ F ₂
Halocarbon13	CCIF ₃
Halocarbon14	CF ₄
Halocarbon32	CH ₂ F ₂
Trimethylsilane	(CH ₃) ₃ SiH
Methyl Chloride	CH₃CI
Methyl Fluoride	CH₃F
Methanol	CH₃OH
Methylsilane	CH₃SiH₃
Methane	CH ₄
Halocarbon21	CHCl ₂ F

Process Gas	Molecular Formula
Chlorine	Cl2
Chlorine Trifluoride	CIF ₃
Carbon Monoxide	СО
Carbon Dioxide	CO ₂
Germane	GeH ₄
Hydrogen	H ₂
Hydrogen Sulfide	H₂S
Hydrogen Selenide	H ₂ Se
Hydrogen Bromide	HBr
Hydrogen Chloride	HCI
Helium	He
Hydrogen Fluoride	HF
Krypton	Kr
Nitrogen	N ₂
Nitrogen Oxide	N ₂ O
Neon	Ne
Nitrogen Trifluoride	NF ₃
Ammonia	NH₃
Nitric Oxide	NO
Oxygen	O ₂
Phosphorous Pentafluoride	PF ₅
Phosphine	PH₃
Sulfer Tetrafluoride	SF ₄
Sulfer Hexafluoride	SF ₆
Disilane	Si ₂ H ₆
Silicon Tetrachloride	SiCl ₄
Silicon Tetrafluoride	SiF ₄
Dichlorosilane	SiH ₂ Cl ₂
Silane	SiH ₄
Trichlorosilane	SiHCl ₃
Sulfur Dioxide	SO ₂
Diethyltelluride	Te (C ₂ H ₅) ₂
Tungsten Hexafluoride	WF ₆
Xenon	Xe

[·] This applicable fluid is a reference guide and does not apply to product guarantee.

⚠ Caution

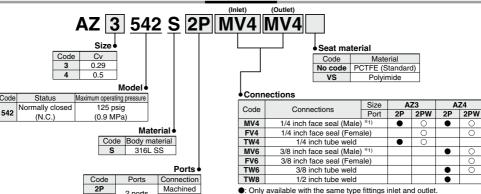
Since the product specified here is used under various operating conditions, its compatibility with fluid and specific equipment must be decided by the person who designs the equipment or decided its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product regardless of any recommendation.

Proper installation, operation and maintenance are also required to assure safe, trouble free performance.

[·] Please consult SMC for a specific recommendation beyond the scope of this document.

Diaphragm Valve for Ultra High Purity

Air operated type


Series AZ3542 & 4542

- Suitable for UHP gas supply line
- Body material: 316L SS
- Pneumatically actuated normally closed

How to Order

RoHS

Optional portings and porting configurations available

Welded

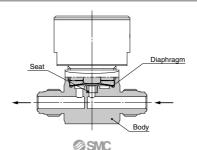
Please refer to page 1114.

Wetted Parts Material

O: Inlet and outlet available with any combination of fitting type and size.

* 1) Fixed fitting (no rotating nut)

Wetted Parts	S
Body	316L SS
Surface finish	Electropolish + Passivation
Diaphragm	Ni-Co Alloy
Seat	PCTFE (Option: Polyimide)

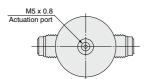

Specifications Operating Parameters

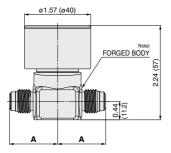
2PW

Operati	ng Parameters	AZ3542	AZ4542	
Status		Normally closed (N.C.)		
Gas		Select compatible materials	s of construction for the gas	
Operating p	ressure	Vacuum to 125	psig (0.9 MPa)	
Proof press	ure	200 psig	(1.4 MPa)	
Burst press	ure	375 pisg	(2.7 MPa)	
Ambient and	operating temperature	-10 to 71°C ((No freezing)	
Cv		0.29	0.5	
Lantonata	Inboard leakage	2 x 10-11 Pa-m3/s		
Leak rate	Outboard leakage	2 x 10 ⁻¹⁰ Pa·m ³ /s *1)		
Across the	seat leak	4 x 10 ⁻⁹ Pa·m ³ /s *1)		
Surface finis	sh	Ra 10μin. (0.25 μm)		
Connection	S	Face seal, Tube weld		
Actuation p	ressure	60 to 110 psig (0.4 to 0.76 MPa)		
Actuation p	ort connection	M5 x 0.8		
Actuation port location		Тор		
Installation		Bottom mount		
Internal volume		0.06 in ³ (1.07 cm ³)		
Weight		0.24 kg *2)		
1\ Tootod wit	h Halium ann inlet ere	sours 10F pois (0.0 MDs)		

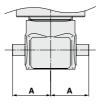
^{* 1)} Tested with Helium gas inlet pressure 125 psig (0.9 MPa).

Construction

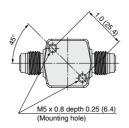



^{* 2)} Weight for AZ3542S2PMV4MV4 including individual boxed weight. It may vary depending on connections or options.

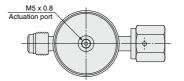
Dimensions inch (mm)

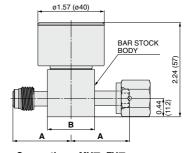

AZ3542 & 4542

Ports: 2P (Machined)

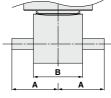


Connections: MV□

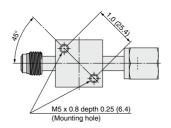

Connections: TW□



Note) MV6 is bar stock body.


Ports	Connections	Α	
FUIS	Connections	inch	(mm)
2P (Machined)	MV4	1.14	(29.0)
	TW4	0.875	(22.2)
	MV6	1.5	(38.1)
	TW6	0.875	(22.2)
	TW8	1.125	(28.6)

Ports: 2PW (Welded)



Connections: MV□, FV□

Connections: TW□

Ports	0	Α		В	
Ports	Connections	inch	(mm)	inch	(mm)
	MV4	1.39	(05.0)		
2PW	FV4	1.39	(35.3)		
	TW4	1.06	(26.9)	1.12 sq.	(00.4)
(Welded)	MV6	1.93	(49.0)	11.12 Sq.	(20.4)
	FV6	1.93	(49.0)		
	TW6	1.325	(33.7)		

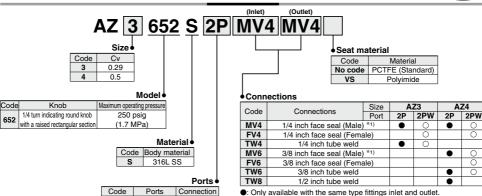
AP SL

ΑZ AK

BP

Diaphragm Valve for Ultra High Purity

Manually operated


Series AZ3652 & 4652

- Suitable for UHP gas supply line
- Body material: 316L SS

How to Order

RoHS

* 1) Fixed fitting (no rotating nut)

Optional portings and porting configurations available

2 ports

Machined

Welded

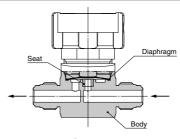
2P

2PW

Wetted Parts Material

O: Inlet and outlet available with any combination of fitting type and size.

Wetted Parts	s
Body	316L SS
Surface finish	Electropolish + Passivation
Diaphragm	Ni-Co Alloy
Seat	PCTFE (Option: Polyimide)

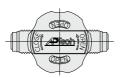

Specifications

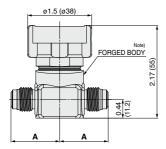
652

Operat	ing Parameters	AZ3652	AZ4652	
Gas		Select compatible materials of construction for the ga		
Operating p	Operating pressure Vacuum to 250 psig (1.7 MPa)		psig (1.7 MPa)	
Proof press	ure	375 psig	(2.6 MPa)	
Burst press	ure	750 psig	(5.1 MPa)	
Ambient and	operating temperature	-40 to 71 °C	(No freezing)	
Cv		0.29 0.5		
Leak rate	Inboard leakage	2 x 10 ⁻¹¹ Pa·m ³ /s		
Leak rate	Outboard leakage	2 x 10 ⁻¹⁰ Pa·m ³ /s * ¹⁾		
Across the	seat leak	4 x 10 ⁻⁹ Pa·m ³ /s *1)		
Surface fini	sh	Ra 10 μin	.(0.25 μm)	
Connection	S	Face seal,	Tube weld	
Installation Bo		Bottom	mount	
Internal volume		0.06 in ³ (1.07 cm ³)		
Weight		0.22 kg *2)		
Knob		1/4 turn indicating round knob v	vith a raised rectangular section	

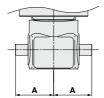
- * 1) Tested with Helium gas inlet pressure 125 psig (0.9 MPa).
- * 2) Weight for AZ3652S2PMV4MV4 including individual boxed weight. It may vary depending on connections.

Construction

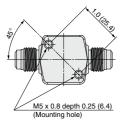



Please refer to page 1114.

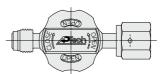
Dimensions inch (mm)

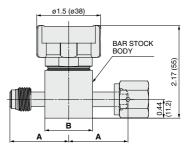

AZ3652 & 4652

Ports: 2P (Machined)

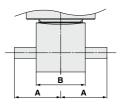


Connections: MV□

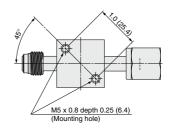

Connections: TW□



Note) MV6 is bar stock body.


Ports	Connections	Α		
Ports	Connections	inch	(mm)	
2P (Machined)	MV4	1.14	(29.0)	
	TW4	0.875	(22.2)	
	MV6	1.5	(38.1)	
	TW6	0.875	(22.2)	
	TW8	1.125	(28.6)	

Ports: 2PW (Welded)



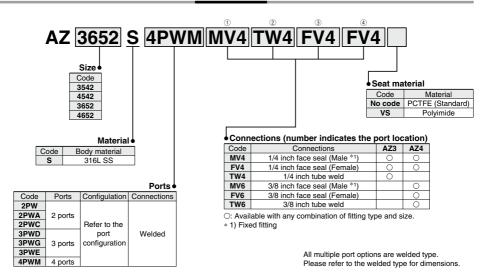
Connections: MV□, FV□

Connections: TW□

Ports	Connections	Α		В	
		inch	(mm)	inch	(mm)
2PW (Welded)	MV4	1.39	(35.3)	1.12 sq.	(28.4)
	FV4				
	TW4	1.06	(26.9)		
	MV6	1.93	(49.0)		
	FV6				
	TW6	1.325	(33.7)		

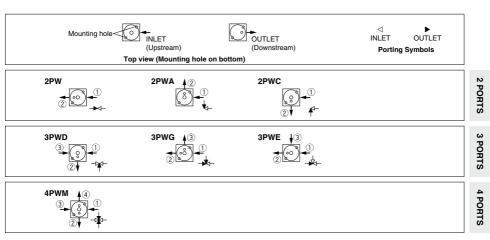
Made to Order

Optional knob color available. Red, blue, green, gold, silver, purple, etc. Please contact SMC for further information.


AP

SL

ΑZ AK BP


Series AZ / Diaphragm Valve Optional Porting Configuration

How to Order

Port Configuration

- · Valves are illustrated top view looking down through the valve.
- Inlet (Upstream) is defined as a port connected to the region below the valve seat. It is illustrated with an arrow pointing towards the valve body or an "empty" triangle on the schematic. Outlet (Downstream) is defined as a port connected to the region above the seat and below the diaphragm. It is illustrated with an arrow pointing away from the valve body or a "filled" triangle on the schematic.
- · The traditional flow direction is INLET to OUTLET, but AP Tech valves may be employed in either flow direction.
- \cdot End connections are specified in numerical order per the diagram's numbered arrows.

