

Courtesy of Steven Engineering, Inc - (800) 258-9200 - sales@steveneng.com - www.stevenengineering.com

This guide interacts with the HepcoMotion website and GV3 catalogue

Additional information can be viewed within the online GV3 catalogue when you click this icon:

To assist browsing this guide online, clicking wherever you see blue hypertext, page number, or a product icon in the page margins, will take you directly to the section required:

Where other HepcoMotion product ranges are referred to, clicking on the title will take you to the catalogue in question:

The full contents of the GV3 catalogue can be viewed or downloaded by clicking this icon:

Cap Seals

GV3 linear guidance and transmission system

Smooth – Fast – Accurate – Quiet Durable – Simple – Versatile – Economic

An unrivalled linear motion system, designed to serve a diverse range of automation and linear applications.

ontents	Refer als
System Assembly & Adjustment	2 - 3
Gearboxes, Drive Flanges & AC Geared Motors	6 - 7
Load/Life Calculation Examples	10 - 11
Mix & Match' Component Compatibility	13
kg Component Mass	20 - 23
Removable	

	Removable Carriages	24 - 25		Rack & Pinion Systems	26
0	Shaft Pinion	27		Custom Rack Driven Carriages	28 - 29
	Belt Driven Carriages	30 - 31	N	End Stops & Shock Absorbers	32 - 33
	Carriage Locking Device	34	0 0 1 0 0	Flange Clamps	35
	Controlled Height Bearings	36		Floating Bearings	37
	Vacuum & Extreme Temperature	38-40		Bearing & Track/ Roller Lubricators	41
	Bleed Lubrication	42 - 45		Side Access Adjustment	46
	Twin Taper Roller Bearing	47		GV3-MCS Connectivity	48 - 51
	Moment Load Carriages	Go to datasheet			

For an introduction to the GV3 product range, and examples of how the various products detailed in this Technical Guide can be used, please refer to the System Composition \square and Application Examples \square sections within the main **GV3 catalogue**.

so to Quick Reference icons in page margins

Drive System Recommendations	4 - 5
Drive Calculations for Rack Driven Carriages	8 - 9
Deflection of Self-Supporting Slides	12
Data & Dimensions for Assembled Systems	14 - 19

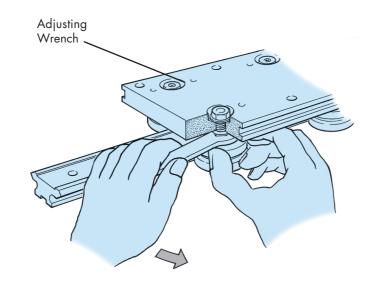
System Assembly & Adjustment*1

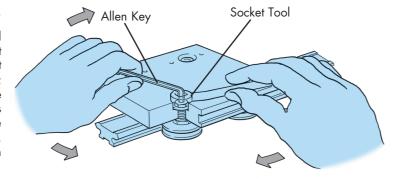
Please refer to the Video section of the HepcoMotion website for a selection of How-To videos that complement the information provided in this section of the GV3 Technical Guide.

Through Fixing Type Bearings & Track Rollers

Having loosely assembled the components (minus load), the Concentric type Bearings 🗹 should be fully tightened and the Eccentric type Bearings tightened just sufficiently to permit adjustment.

The Hepco Adjusting Wrench should then be engaged with hexagon flanges of the Eccentric type Bearings and gradually turned until the Slide (or Track ()) is captivated between each pair of Bearings such that there is no apparent play, but with minimal pre-load.

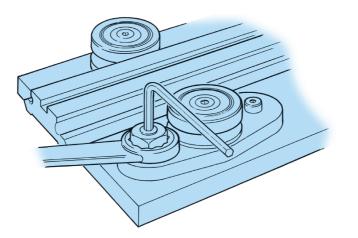

Each pair of Bearings should then be checked for correct pre-load by rotating one of them between forefinger and thumb with the Slide (or Track) stationary so that the Bearing skids against it. A degree of resistance should be felt, but the Bearing should turn without difficulty.


When all Eccentric type Bearings have been adjusted and tested in this manner, the fixing nuts should be fully tightened to the recommended torque settings as in the table on 🛄 3, then checked again for preload as before.

Please note that too much pre-load will shorten the life of the system.

Alternative means of adjustment

Eccentric type Bearings 🗹 may also be adjusted using a standard hex key and Hepco Socket Tool. This method permits re-adjustment without first having to remove Cap Seals d or Cap Wipers d; however, extreme care should be taken not to induce excessive pre-load, which can only be judged in this case, from the resulting friction of the system. Due to the reduced control associated with this method, it is only recommended when the Adjusting Wrench method is not possible.



Blind Hole Fixing Type Bearings & Track Rollers

Concentric type Blind Hole Fixing Bearings 🗹 (or Concentric type Blind Hole Track Rollers [7] are simply screwed into tapped holes in the mounting surface and tightened down using the Hepco Adjusting Wrench.

Each Eccentric type Bearing (or Track Roller) should be located by means of the two screws provided and tightened just sufficiently to still enable adjustment via the eccentric hexagon bush. The same basic procedures, as outlined for the Through Fixing type, should be used to ensure that the correct level of pre-load is applied before finally tightening down the fixing screws.

Cap Seals

Fitting of Cap Seals 🗹 should be carried out after Bearing 🗹 adjustment has been completed.

To fit the Cap Seals over the Bearings, the Standard Carriage 🗹 should be removed from the Slide, then the Cap Seals loosely assembled to the Carriage Plate utilising either the Through Hole Fixing facility, which is the default method for Hepco Carriages. or the Tapped Hole Fixing facility, which requires tapped holes to be provided in the Carriage Plate. Two sets of plastic inserts are included with each Cap Seal to cater for both methods.

The Slide ^I should be re-engaged with the Carriage and each Cap Seal adjusted in, until the felt wipers just make contact with the Slide 'V' surface until smearing of the lubricant is observed when the system is operated. When adjusting the Cap Seal using the Through Hole Fixing method, care should be taken to hold the plastic inserts to prevent them from moving whilst the screws are tightened.

Greater sealing effect, at the expense of increased friction, may be achieved by adjusting each Cap Seal body in further until its 'V' profile makes contact with the 'V' profile of the Slide.

The fixing screws should be fully tightened and each Cap Seal charged with a No. 2 Lithium soap-based grease until grease is seen to overflow.

Male grease connector, part No. HF 4034 or complete gun is available from Hepco, if required.

Cap Wipers

Fitting of the Cap Wipers 🗹 should be carried out after Bearing 🗹 adjustment has been completed.

To fit the cap wipers over the Bearings, the Slimline Carriage 🗹 should be removed from the Slide $\vec{\mathbf{C}}$, then the Cap Wipers loosely assembled to the Carriage Plate utilising either the Tapped Hole Fixing facility which is the default method for Hepco Slimline Carriages, or the Through Hole Fixing facility, which requires slotted clearance holes to be provided in the Carriage Plate for adjustment.

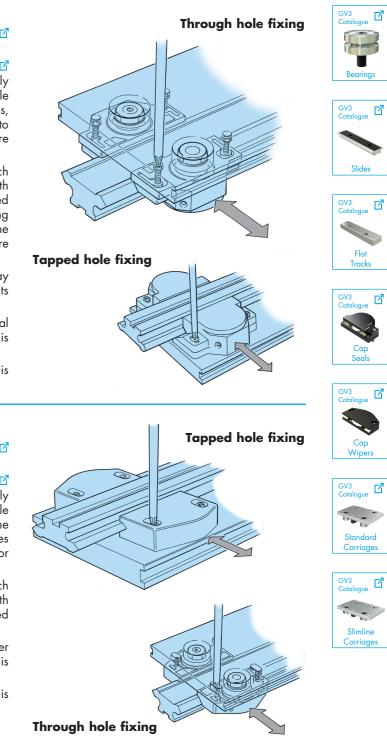
The Slide should then be re-engaged with the Carriage and each Cap Wiper adjusted in, until the felt wipers just make contact with the Slide 'V' surface and a smearing of the lubricant is observed when the system is operated.

The fixing screws should be fully tightened and each Cap Wiper charged with a No. 2 Lithium soap-based grease until grease is seen to overflow.

Male grease connector, part No. HF 4034 or complete gun is available from Hepco, if required.

Bearing/Track Roller Adjusting Tools and Tightening Torques

When ordering individual components for the first time, an Adjusting Wrench or Socket Tool should also be ordered - these are only available from Hepco.


Bearing/Roller Type	13	195	18	265	25	360	34	580	54
Adjusting Wrench	AT13	AT18	AT18	AT25	AT25	AT34	AT34	AT54	AT54
Socket Tool	-	RT6	RT6	RT8	RT8	RT10	RT10	RT14	RT14
Fixing Nut Torque	2Nm	7Nm	7Nm	18Nm	18Nm	33Nm	33Nm	90Nm	90Nm*2

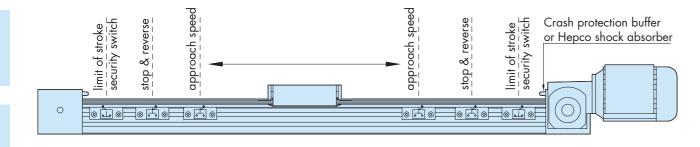
Notes:

A guide to installation and adjustment of other Hepco components may be found on the relevant individual GV3 catalogue component pages. 2. Tightening torque stated is not relevant to twin taper roller type size 54 bearing. Please refer to 🛄 47.

HepcoMotion.com

CAD

Drive System Recommendations


lotor & Flang

Controlle

End Stops

Driving and controlling a linear movement with a Hepco AC Geared Motor and Speed Controller 🛄 5 is generally far less expensive than using stepper or servo motor systems.

Customers are therefore recommended to consider whether the performance and sophistication of their application can be satisfied by Hepco's AC drive equipment before opting for more expensive alternatives. To aid this decision, the following information is provided to explain what can be achieved by using a Hepco AC Geared Motor and Speed Controller. The drawing below shows the switch control for a typical point to point linear movement, with security switches and crash protection devices in place. Additional speeds during the stroke cycle can be achieved by adding more switches wired through to the controller.

Function and Performance

The AC system can stop, start, reverse, accelerate and decelerate. Dynamic braking of the motor is also possible. In conjunction with a simple PLC, it can dwell at any switch position and perform more sophisticated accelerations, as well as giving output command signals to other equipment.

The signals for initiating the basic functions are provided by means of either mechanical or inductive switches, which are available from Hepco (see 🛄 5).

Stop position repeatability can be better than 1mm, and is dependent upon slowing down to a low approach speed before reaching the stop switch. If the approach speed is too fast for the load being carried, the motor will overrun the stop switch position.

Several individual preset speeds can be selected, each with its own acceleration/deceleration profile. These speeds are variable over a very wide range and can be easily set.

The AC system is a simple, reliable, low cost method of driving and control but it does not have the facility for continuous feedback to regulate the exact position of the movement at all times. Continuous feedback is necessary if monitoring and control of the precise dynamic relationship of two or more axes of a machine is required, or if it is necessary to perform a specific dynamic profile with very accurate repeatability. Continuous feedback is a feature of servos and some stepper motor systems.

Fail-Safe Requirements

In the specification of any powered linear system, it is necessary to consider the consequences of system failure. Failure to stop at the end of stroke may result in damage to the system and/or other equipment, and could also present a safety hazard.

It is therefore recommended that the linear transmission includes two levels of safety:

- 1. Limit of stroke security switches These should be fitted outboard of the normal end of stroke switches in order to switch off the motor should the linear transmission travel beyond the operating limits which have been set.
- 2. Crash protection It is recommended that devices be fitted at the limit of physical travel to absorb the energy of the moving load in the event of high speed overrun of the switches. GV3 End Stops are recommended (see 🛄 32).

Additional Safety Considerations

In many applications, the standard AC motor can be used to dynamically brake the system. In some applications, particularly lifting, a holding brake may also be required. This provides an additional degree of safety and may be used as part of the normal operating cycle. In these cases, the optional braked AC motor should be specified.

Hepco GV3 linear motion components are often incorporated into larger machines. Depending on the application, there may be potential hazards which need to be considered and addressed as appropriate, such as guarding of high speed movements and elimination of hazards due to electrical shock or malfunction.

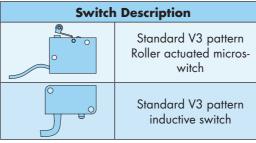
If the driving force is provided by a reinforced toothed belt or other means of transmission, which could snap beyond a certain load, the customer should ensure that loads approaching the maximum limit will not be exceeded under any circumstances, or that no safety hazard will result from such breakage.

AC Speed Controllers and Limit Switches

Hepco can supply the speed controller and switches necessary to position and dynamically control linear movement.

AC Speed Controllers

The model and details of the AC Speed Controller will depend on the application. Each type has been selected to match the requirements of the range of AC Geared Motors, and the functionality that is required in point to point linear applications using rack or belt transmissions.


Please contact Hepco for technical advice and to request full details on each model of AC Speed Controller.

- Ideally suited for Hepco Rack Driven ^I and Belt Driven ^{III} 30 systems.
- Available from Hepco at a competitive price.
- Units are manufactured by a leading international supplier, with full support in all major markets.
- Drives from 0.37 1.5 kW will power a wide range of three-phase AC induction motors.
- Speeds, acceleration rates, power boost functions and motor braking may be programmed. •
- Environmental protection to IP20. Controllers can be located inside an enclosure to achieve any higher rating.
- Keypad programming and digital display of program and running parameters.
- Easy to install and commission.
- Compact unit may be panel mounted or fixed onto a DIN rail.
- Options allow for analogue control via a voltage input or potentiometer, or via digital preset speeds which can be menu programmed or accessed via external switches or a separate PLC.
- Drives are available to run from 230-250 V single-phase or 380-460 V three-phase supplies. •
- Units will be supplied with filters to meet the requirements of the EU EMC directive.
- Units may be specified with Devicenet compatible interface for high level control communications.
- On board diagnostics for easy fault finding.
- The simple and economical solution for basic point to point linear positioning applications.

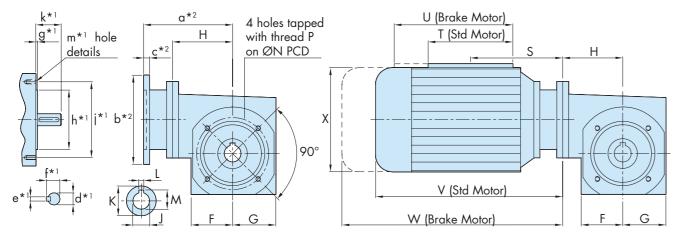
Motor Sizes	Required Controller Power
80 L/2	1.5 kW
80 S/2 & 80 L/4	0.75 kW
80 S/4 & 71 L/2	0.55 kW
71 L/4, 71 S/2 & 71 S/4 all 56 & 63 frame motors	0.37 kW

Limit Switches

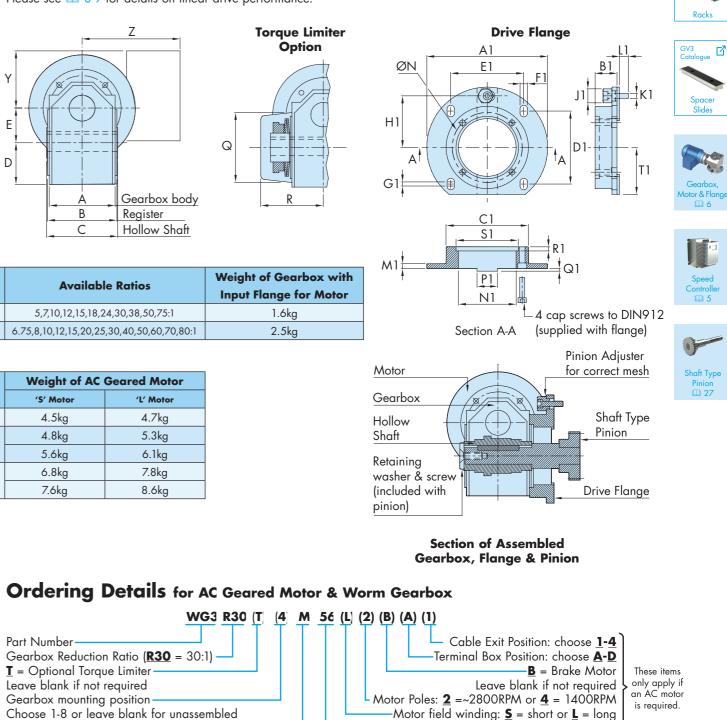
In addition to the AC Speed Controller, Hepco supplies mechanical and inductive limit switches, sealed to IP67. These will usually be required as part of the control hardware of a typical installation.

The units have the following characteristics, which make them ideally suited for use within AC linear positioning systems:

Part Number	Lead Length
DLS-V7SWM	500mm
DLS-V7SWI	500mm



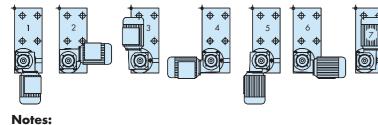
Gearboxes, AC Geared Motors & Drive Flanges

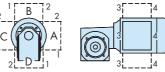

Hepco Gearboxes, AC Geared Motors & Drive Flanges provide a means to drive Rack Driven Carriages I and can also be used with separate Racks 🗹 or Rack Cut Single Edge Spacer Slides 🗹 to provide a simple and easily adjustable linear drive. The Drive Flange, which connects the Gearbox to the Carriage, incorporates a micro-adjustment facility for achieving correct engagement of the Pinion I with the Rack. Customers using the Drive Flange in conjunction with a Carriage of their own construction will need to provide a keyway to accommodate the sliding key portion P1. Please refer to Rack Driven Carriages in the GV3 catalogue for the principle \mathbf{C} .

To obtain the best performance from the Rack and Pinion drive, it is important that meshing teeth are lubricated. A No.2 lithium soap-based grease is recommended for this purpose. In dirty environments, it is advisable to guard against ingress of debris. When sold separately, Worm Gearboxes have an input flange and shaft coupling which will be tailored to suit the shaft and face details of the customer's motor.

Gearboxes and Geared Motors may be specified with an adjustable torque limiting clutch, if required. Hepco supplies three-phase squirrel cage type AC motors to VDE 0530, supported by DIN 42677. Motors in IEC frame sizes 56, 63 and 71 can be supplied, each with the choice of short or long field windings and two pole and four pole designs, running at approximately 2,800 and 1,400 rpm, respectively. Power ratings from 60W to 0.55kW are available.

Motors are rated at 400/230V, protected to IP54, and are finished in blue epoxy paint as standard. Fitted disk brakes, alternative single and three phase windings, special finishes and enhanced IP protection rating are available on request. The AC Geared Motor can be combined with the Hepco AC Speed Controller to provide a complete drive control system. Please see 🛄 8-9 for details on linear drive performance.


Hollow Shaft Detail


Gearbox	A	В	С	D	E	F	G	Н	J	Κ	L	Μ	Ν		Ρ	Q	R	Gearbox Rated	Available Ratios	Weight of Gearbox wit
Part Number														Ø	Depth			Output Torque	Available katios	Input Flange for Motor
WG3	72	75	77	38	33	39	41	57	15	25	5	17.3	62.5	M5	10	67	69	17Nm (typical)	5,7,10,12,15,18,24,30,38,50,75:1	1.6kg
WG4	76	80	82	48	40	49	51	71	20	35	6 2	22.8	85	M6	12	85	76	32Nm (typical)	6.75,8,10,12,15,20,25,30,40,50,60,70,80:1	2.5kg

	Use with																		
Motor Frame Size*4	S	S	Т	U	V	W	X	Y	Z		Power				Weight of AC Geared Motor				
IT diffe 5126										2 Pole 'S'	2 Pole 'L'	4 Pole 'S'	4 Pole 'L'		'S' Motor	'L' Motor			
56	WG3	60	90	130	167	210	111	100	109	90W	120W	60W	90W		4.5kg	4.7kg			
40	WG3	90	125	165	212	272	100	100	110	10014/	25014	10014/	10014/		4.8kg	5.3kg			
63	WG4	99	134	174	221	281	123	100	113	180W	250W	120W	180W		5.6kg	6.1kg			
71	WG3	90	125	165	237	297	120	110	105	27014/	550W	250W	370W		6.8kg	7.8kg			
71 -	WG4	99	134	174	246	306	130	38 110	0 125	25 370W	55077	23000	3/000		7.6kg	8.6kg			

		Use With																			
	Drive Flange Part Number		A 1	B1	Cl	D1	El	F1	G1	H1	IJ	K1	IJ	M1	N1	P1	Q1	R1	S 1	TI	Weight
[WGF3	WG3	118	35	75	63	75	9	2	49	14	M5	5	6	48	20	2	4	57	43	0.34 kg
	WGF4	WG4	147	34.5	100	88.8	88.8	9	5	62.8	17	M6	6	6	70	25	3	5	76	57	0.5 kg

The AC Geared Motor and Worm Gearbox may be mounted onto a Rack Driven Carriage I in any one of the eight configurations shown below. The terminal box may take one of four positions A...D and the cable exits also have four possible positions 1...4. Please use the diagram below as a guide to selection.

Terminal box position A1 is the default, which is usually available on express delivery.

WG3 R30 (T	(4)	M	56
Part Number			
Gearbox Reduction Ratio (R30 = 30:1) —			
I = Optional Torque Limiter			
Leave blank if not required			
Gearbox mounting position	1		
Choose 1-8 or leave blank for unassembled Input Options: F = Flange ^{*1,2} , M = fitted AC Motor			
inpor ophona. <u>-</u> - nange · , <u>M</u> - inied Ac Molor			

Drive Flange*	Please state po
Shaft Pinion*	Ple

included as standard.

The customer's motor dimensions marked *1 on the drawing should be advised to Hepco when the input motor flange option is required. 1 2.

The Gearbox input flange dimensions marked *2 on the drawing will be advised to the customer by Hepco once motor details (see above) have been given.

3 Other motor sizes beyond those listed are available from Hepco, but may not be compatible with the Drive Flange. Please consult Hepco. HepcoMotion.com

CAD

Rack Driven Carriages

GV3 Cataloa

ď

7

part number as second line of the order (see table above left) ease state part number as third line of the order (see 🛄 27)

Motor frame size: 56, 63 or 71*4

* Customers requiring a Geared Motor or Worm Gearbox for use with Rack Driven Carriages should not specify a Drive Flange or Shaft Pinion, as they are

Calculations - Rack Driven Carriage Drive Calculations

GV3 Catalogue Rack Driven Carriages

The following section should be used by customers who require a system using a Rack Driven Carriage 🗹 with fitted Gearbox or Geared Motor, and need to calculate the speeds and forces produced by the system. Drive calculations for systems using Hepco Belt Driven Carriages, belts and pulleys are identical to those in the Hepco DLS Driven Linear System catalogue. Customers using other combinations of components should use the data within this document and conventional calculations to rate their systems. Hepco will be pleased to assist in this selection process, on request.

How to select the right Rack Driven Carriage 2 + Geared Motor combination

The method of rating detailed below uses a simplified version of the definitive calculations. It will select the correct system in the vast majority of cases. For unusual and borderline cases, the application may be referred to Hepco for a more precise rating.

Belt Drive Carriages

GV3 Catalogue

Racks

GV3 Catalogue

Shaft Typ Pinion III 27

To choose the right system configuration for a given duty, follow the three stages outlined below:

- 1) Choose the size of Rack Driven Carriage Z required, considering the following factors: i) The load to be supported by the Carriage (see Load/Life Calculations 🗹 section in the GV3 catalogue for details of rating); ii) the linear force which is required (an AURD...34... has a maximum rated linear force of 400 N, while for an AURD...54... this figure is typically 600-700 N, depending on the gear ratio); and iii) the physical dimensions of the unit (see Rack Driven Carriages $\mathbf{\vec{C}}$ section in the GV3 catalogue).
- 2) The user should then examine the relevant table to identify combinations of motor size, number of poles and gearbox ratio which have a suitable working speed range and linear driving force. If a unit is intended to run at a single speed, it is recommended that a unit with a nominal speed close to the working speed is chosen.
- In many cases, there will be more than one combination which will satisfy the speed and force requirements. In these 3) cases, the following secondary factors may be considered:
 - i) For arduous applications, it is best to select the combination with the highest rated linear force for the gears.
 - ii) For gearbox ratios of less than 29:1, the motor can be back-driven through the gearbox. This may be useful as it will allow the axis to be manually positioned with the power switched off. In some cases, however (for instance in lifting applications) back-driving may be undesirable. If this is the case, specify the electro-magnetic brake option or select a higher gearbox ratio.
 - Two pole motors will be lighter than four pole for a given power. iii)
 - For best dynamic performance, use a four pole motor. This will give sharper acceleration and more dynamic iv) performance than a two pole motor driving through a gearbox with a higher ratio. For a given load, a more powerful motor will generally accelerate the system more quickly than a less powerful one, but the benefit of increasing power will be small if loads are light.
 - v) Four pole motors keep the speed in the gearbox down, minimising heating and maximising life.
 - The marginal cost of extra motor power is low on an AC system. If in doubt between two sizes, it is often best to specify larger, as there will usually be only a small extra cost.

How to select the right Rack Driven Carriage $\mathbf{Z} + \mathbf{Gearbox}$ combination

The approach is similar to that used when selecting the AC Geared Motor.

The actual linear force which is generated by the system will depend on the torque generated by the motor, the gearbox efficiency, the Rack 🗹 and Pinion 🗹 drive efficiency, the reduction ratio, and the Carriage friction. This can be calculated using the following equation:

Linear Force (N) =
$$\left(\frac{\tau_m \times \eta_g \times \eta_r \times R_r}{P_r}\right) - F_c$$

The parameters used are described below:

 τ_m is the torque generated by the motor in Nm

 η_{q} is the Gearbox efficiency (this varies between ratios and speeds, but is typically 0.9 - 0.75. Contact Hepco for full data

 η_{r} is the Rack and Pinion drive efficiency (~0.9)

R_r is the gearbox reduction ratio

- Pr is the Pinion radius in metres (= 0.021 m for the AURD34... and = 0.027 m for the AURD....54...)
- F_c is the Carriage friction in Newtons (~25 N for the AURD34... and ~40 N for the AURD54...)

The linear force which can be generated by the Rack Driven Carriage will be limited by the lowest of the Rated Linear Force for the gears, Bearings and Rack & Pinion (as detailed in the tables 🛄 9). Customers should ensure that the motor torque selected does not overload the mechanical components.

			AURD34	4 wi	ith WG	53 AC	Geare	d Mot	or/Ge	arbox		
Nominal Speed m/s	Motor Poles		Travel per motor					orce/N for size			Critical Co	r Force (N) mponents ^{*2}
at 50Hz*1		Kullo	rev/mm	56S	56L	635	63L	715	71L	Gears	Bearings	Rack & Pinion
1.23	2	5	26.4	35	56	99	146	228	348	440	740	400
0.88	2	7	18.8	61	91	142	211	322		498	740	400
0.62	2	10	13.2	90	129	211	301	448		526	740	400
0.59	4	5	26.4	56	99	138	219	309	446	483	740	400
0.51	2	12	11.0	112	159	245	356			541	740	400
0.42	4	7	18.8	86	142	202	309	446		543	740	400
0.41	2	15	8.8	138	192	301	446			526	740	400
0.35	2	18	7.3	168	232	365				511	740	400
0.29	4	10	13.2	129	206	292	446			573	740	400
0.26	2	24	5.5	217	298					526	740	400
0.25	4	12	11.0	155	245	344				588	740	400
0.21	2	30	4.4	258	352					511	740	400
0.2	4	15	8.8	189	296	446				573	740	400
0.16	2	38	3.5	323	440					529	740	400
0.16	4	18	7.3	224	348					558	740	400
0.13	2	50	2.6	376						416	740	400
0.12	4	24	5.5	284	446					573	740	400
0.1	4	30	4.4	331						573	740	400
0.08	4	38	3.5	446						603	740	400

			AURD54	with \	WG4 AC	Geared I	Motor/G	earbox		
Nominal Speed m/s	Motor Poles		motor rov/	-	minal Lin ystem wi					r Force (N) pmponents*2
at 50Hz*1	Foles	Kullo	mm	63S	63L	715	71L	Gears	Bearings	Rack & Pinion
1.17	2	6.75	25.1	86	140	227	360	539	700	950
0.99	2	8	21.2	110	167	267	427	630	700	950
0.79	2	10	17.0	147	220	360	527	666	700	950
0.66	2	12	14.1	177	260	427	627	630	700	950
0.57	4	6.75	25.1	126	217	327	460	602	700	950
0.53	2	15	11.3	227	360	499	762	648	700	950
0.48	4	8	21.2	163	263	360	560	703	700	950
0.4	2	20	8.5	302	435	662		666	700	950
0.38	4	10	17.0	210	360	460	693	743	700	950
0.32	2	25	6.8	362	518			612	700	950
0.32	4	12	14.1	247	393	560		703	700	950
0.27	2	30	5.7	436	622			648	700	950
0.25	4	15	11.3	327	493	693		723	700	950
0.2	2	40	4.2	547	775			648	700	950
0.19	4	20	8.5	427	660			743	700	950
0.16	2	40	3.4	674				703	700	950
0.15	4	25	6.8	493	760			683	700	950
0.13	4	30	5.7	593				723	700	950
0.1	4	40	4.2	727				723	700	950

Notes:

- 1. Rack Driven Carriages with AC Geared Motor will produce the Nominal Linear Force at speeds ranging from 50 to 120% of the Nominal Speed. Units will perform with a lower force and duty cycle over a much wider speed range from 10% to 180% of the Nominal Speed.
- There are three mechanical elements which limit the driving force which can be generated by a Rack Driven Carriage 🗹. These are:
 - Allowable forces may be either increased or reduced for duties which are less or more severe than this.
 - Rack Driven Carriage. For other designs, the linear force will be different.
- The continuous linear force rating for a well lubricated Rack 🗹 and Pinion. In each of the tables, all of these figures are shown (for the benefit of those using components in other ways), but the smallest of the three factors will limit the performance for Rack Driven Carriage applications. This limiting factor is shown in **bold** text. Some of the combinations of AC Motor and Gearbox produce a linear force which is higher than the limiting mechanical element is rated for. These combinations are shown in blue text. These combinations may be permissible, depending on the duty. Please contact Hepco for details.

HepcoMotion.com

CAD

The torque capacity of the gears within the gearbox (based on a service factor of 1.4, which corresponds to fast operation for 8 hours per day).

The load capacity of the gearbox bearings. The torque reaction has been calculated assuming the Pinion 🗹 diameter and shaft length of the

Calculations - Load/Life Calculation Examples

The formula and values in the following examples are detailed in the Load/Life Calculations d section of the GV3 catalogue.

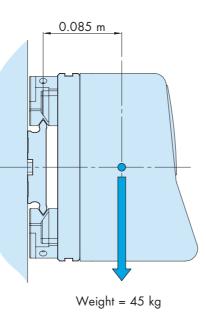
Example Calculation 1

A machine control unit is mounted onto a Hepco AU 76 34 L240 CS DR Carriage (Standard Carriage 🗹 with fitted Cap Seals 🗹 and Double Row Bearings 🖄, mounted onto an NM76 P1 Double Edge Spacer Slide 2. The weight of the control unit and Carriage is 45 kg, and the centre of mass is central along the length of the Carriage, and 0.085m from the Slide 'V' as shown in the diagram.

The system is lubricated.

Calculating the Carriage life:

(Refer to □ 50-51 of the Load/Life Calculations 🗹 section within the GV3 catalogue.)


$$L_{1} = M = Mv = 0$$

$$L_{2} = 45 \text{ kg x } 9.81(\text{gravity}) = 441.5 \text{ N} \qquad Ms = 441.5 \text{ x } 0.085 = 37.5 \text{ Nm}$$

$$L_{F} = \frac{L_{1}}{L_{1}(\text{max})} + \frac{L_{2}}{L_{2}(\text{max})} + \frac{Ms}{Ms}(\text{max}) + \frac{Mv}{Mv}(\text{max}) + \frac{M}{M}(\text{max})$$

$$L_{F} = \frac{0}{3600} + \frac{441.5 \text{ N}}{6000 \text{ N}} + \frac{37.5 \text{ Nm}}{130 \text{ Nm}} + \frac{0}{3000 \text{ x } \text{D}} + \frac{0}{1800 \text{ x } \text{D}} = 0.362$$

$$Life = \frac{\text{Basic Life}}{(0.03 + 0.97\text{ LF})^{3}} = \frac{250}{(0.03 + 0.97 \text{ x } 0.362)^{3}} = \frac{4,508 \text{ km}}{4,508 \text{ km}}$$

Example Calculation 2

An overhead transfer system uses a combination of an NLE P3 Single Edge Spacer Slide 🗹 and an FT 66 33 P3 Flat Track 🗹 on either side of a machine bay. 2 off LJ54CDR Bearings with CS54 Cap Seals run on the 'V' Slide. 2 off LR54C Track Rollers run on the Flat Track. A single LRN54E Narrow Track Roller 🗹 is on the non-loaded side of both the 'V' Slide and Flat Track to retain the moving structure on the Slides.

A weight of 420 kg is located centrally on the structure, such that the load is equally distributed between the LJ54's and LR54's, each therefore experiencing a radial load of $9.81 \times 105 = 1030 \text{ N}$.

The system is lubricated.

Calculating the life of each LJ54CDR Bearing:

(Refer to III 50-51 of the GV3 catalogue II). $L_A = 0$ $L_{R} = 1030 \text{ N}$ $L_{F} = \frac{L_{A}}{L_{A_{(max)}}} + \frac{L_{R}}{L_{R_{(max)}}} = \frac{0}{2500} + \frac{1030 \text{ N}}{5000 \text{ N}} = 0.206$ Life = $\frac{\text{Basic Life}}{(0.03 + 0.97 \text{LF})^3}$ = $\frac{500}{(0.03 + 0.97 \times 0.206)^3}$ = **41,186 km** Calculating the life of each LR54C Track Roller: (Refer to page \square 52 of the GV3 catalogue \square). Weight = 420 kg $|_{A} = 0$ I₂ = 1030 N $L_{F} = \frac{L_{R}}{L_{R_{(max)}}} = \frac{1030 \text{ N}}{8000 \text{ N}} = 0.129$ Life = $\frac{1000}{1c^3}$ = $\frac{1000}{0.129^3}$ = **<u>468,484 km</u>**

From this it can be seen that the 'V' Bearings are the life determining factor for the system as a whole

Example Calculation 3

A machine vertical movement uses a Hepco AU 60 360 L280 Carriage (Slimline Carriage 🗹 without Cap Wipers 🗹 or Lubricators 🗹) mounted onto an NM60... P3 Double Edge Spacer Slide 🗹. The Slide system is run in a <u>dry condition</u> and is raised and lowered by a ball screw, as shown. The total mass being raised and lowered is 14 kg.

The load F1 due to the weight of 14 kg x 9.81 = 137.4 N is balanced out by the force F2 of the ball screw, so no <u>direct</u> load is put onto the Slide system. There is a moment load in the M direction which is calculated by taking moments about the Slide 'V'.

Calculating the Carriage life:

(Refer to 🛄 50-51 of the GV3 catalogue 🗹.)

 $M = (137.4 \text{ N} \times 0.14 \text{ m}) - (137.4 \text{ N} \times 0.05 \text{ m}) = 12.4 \text{ Nm}.$ $L_1 = L_2 = Ms = Mv = 0$

$$L_{F} = \frac{0}{800} + \frac{0}{800} + \frac{0}{22} + \frac{0}{400 \times 0.2} + \frac{12.4}{400 \times 0.2}$$

Life = $\frac{Basic Life}{(0.03 + 0.97L_{F})^{2}} = \frac{100}{(0.03 + 0.97 \times 0.155)^{2}}$

Example Calculation 4

A testing machine has a horizontal table movement that uses 2 off NVE...P1 Single Edge Spacer Slides 🗹 with 2 off BHJ 18 C NS and 2 off BHJ 18 E NS Blind Hole Standard Bearings 2. Lubrication is provided by 2 off LB18F Lubricators 2.

The table includes a casting, and the weight is 10 kg, which is centrally located with respect to the four Bearings.

When the table is moving, there is an external load of 50 N, which is exerted as shown in the diagram.

The weight of the table exerts a force $10 \text{ kg} \times 9.81 = 98.1 \text{ N}$. This is equally shared between all four Bearings, so each

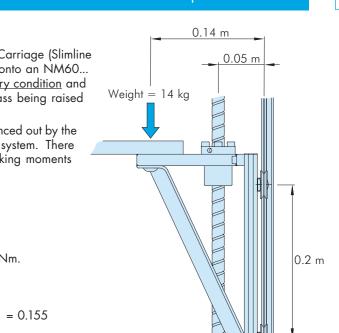
sees an axial load of 24.5 N. The external force of 50 N is shared by the two concentric Bearings. Each sees a radial load of 25 N.

The external force also exerts a turn	ing moment which will be balo
Taking moments about the 'V' of the	concentric side (ignoring the
Counter- clockwise moment:	50 N x 0.04m = 2 Nm.
Clockwise moment:	2 x (reaction force on each e

Since there is no unbalanced vertical force, the axial reaction on each concentric Bearing will be equal and opposite, i.e. -10 N The load on each concentric and eccentric Bearing is therefore as follows:

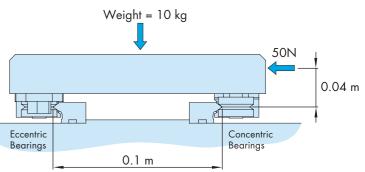
Each Concentric Bearing:	L _A = 24.5 - 10 = 14.5 N
Each Eccentric Bearing:	$L_A = 24.5 + 10 = 34.5 N$

Calculating the Bearing life:


(Refer to 🛄 50-51 of the GV3 catalogue 🗹.)

$$L_{F} = \frac{L_{A}}{L_{A_{(max)}}} + \frac{L_{R}}{L_{R_{(max)}}}$$

$$L_{F} \text{ (for concentrics)} = \frac{14.5 \text{ N}}{125 \text{ N}} + \frac{25 \text{ N}}{200 \text{ N}} = 0.241$$


The Bearing life for the more heavily loaded eccentric Bearings is calculated as shown below:

Life =
$$\frac{\text{Basic Life}}{(0.03 + 0.97 \text{Lf})^3} = \frac{1}{(0.03 + 0.97 \text{Lf})^3}$$

HepcoMotion.com

= <u>3,091 km</u>

lanced by additional axial reaction forces on the Bearings. weight reactions which will cancel out) we get:

eccentric Bearing) x 0.1 m Since clockwise moment = counter-clockwise moment, then reaction force on each eccentric Bearing = $\frac{2 \text{ Nm}}{2 \times 0.1 \text{ m}}$ = 10 N.

$$L_{R} = 25 N$$
$$L_{R} = 0$$

LF (for eccentrics) =
$$\frac{34.5 \text{ N}}{125 \text{ N}} + \frac{0}{200 \text{ N}} = 0.276$$

 $\frac{100}{0.03 + 0.97 \times 0.276)^3} = 3,782 \text{ km}$

CAD

Calculations - Deflection of Self-Supporting Slides HepcoMotion.com

CAD

GV3 Cataloau ₫

When GV3 Slide Beams 🗹 and Spacer Slides 🗹 are used as self-supporting beams (as shown in Application Examples section of the GV3 catalogue], the Slides will deflect under load and their own weight. Care should be taken when designing an installation to take account of this deflection, by choosing a Slide or Slide Beam which will give both adequate life and satisfactory stiffness for the duty.

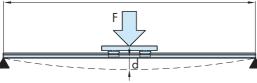
The deflection of a Slide or Slide Beam across a span (as shown, right) will be a maximum at the centre of the span when the load passes over this point. This maximum deflection is given by equation (1):

48E

Deflection due to the applied load

(1)*^{2,3}

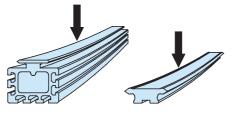
d =

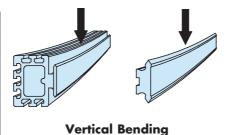


Application Examples

FL³ 5L⁴Qg

> 384EI Deflection due to the Slide or Slide Beam's weight


The deflection of a Slide or Slide Beam acting as a cantilever will be a maximum at the free end when the load is at the outermost extremity of its stroke. This maximum deflection is given by equation (2)*1:


In the equations (1) and (2) above, L, k and d are the dimensions shown in the relevant diagrams (in mm) and F is the load applied (in Newtons). The term El is the product of the Slide or Slide Beam material's Young's modulus and the section moment of inertia, which is a constant, relating to the stiffness of the Slide section in the orientation of the application. The term Q is the mass of the Slide in kg/mm and g is the acceleration due to gravity (=9.81m/s²). The values of EI and Q for the various sections are given in the table below:

Slide	El (Section Stif	fness - Nmm ²)	Q = Section Mass
Part Number	Horizontal*3	Vertical*3	kg/mm
NS 25	4.2 x 10 ⁸	1.2 x 10 ⁹	0.0015
NS 35	7.5 x 10 ⁸	4.6 x 10°	0.0023
NS 50	1.1 x 10°	1.55 x 10 ¹⁰	0.0032
NM 44	1.7 x 10 ⁹	9.8 x 10 ⁹	0.0035
NM 60	2.6 x 10 ⁹	3 x 10 ¹⁰	0.0055
NM 76	3.4 x 10 ⁹	6.8 x 10 ¹⁰	0.007
NL 76	1.1 x 10 ¹⁰	8.6 x 10 ¹⁰	0.010
NL 120	1.8 x 10 ¹⁰	4.3 x 10 ¹¹	0.015

Slide Beam	El (Section Stif	fness - Nmm ²)	Q = Section Mass
Part Number	Horizontal*3	Vertical*3	kg/mm
SB S 35	5.8 x 10 ¹⁰	9.5 x 10 ¹⁰	0.0068
SB S 35L(lightweight)	3.2 x 10 ¹⁰	5.6 x 10 ¹⁰	0.0043
SB S 50	5.8 x 10 ¹⁰	1 x 10 ¹¹	0.0072
SB S 50L(lightweight)	3.2 x 10 ¹⁰	6.2 x 10 ¹⁰	0.0047
SB M 44	1.5 x 10 ¹¹	2.1 x 10 ¹¹	0.0104
SB M 60	1.5 x 10 ¹¹	2.3 x 10 ¹¹	0.0112
SB M 76	1.5 x 10 ¹¹	2.5 x 10 ¹¹	0.0129

Horizontal Bending

'Mix & Match' Component Compatibility

Customers can design a system to meet their exact requirements by combining components as indicated in the 'Mix & Match' compatibility table below.

										۸at	ch'	Co	mp	on	ent	Co	mp	oati	bili	ity	Cho	art					
			١	/= F	Prefe	erre										atik							ot C	omp	batik	ole	
					3		ť					Ś	\sum]		;	æ			1					<	\geq	
	Part			9									4	, 			6	9							Ľ	2	
	Number	J13	J18	J25	J34	J54	CS18	CS25	CS34	CS54	LB12	LB20	LB25	LB44	LB76	J195	J265	J360	J580	CW195	CW265	CW360	CW580	LB195	LB265	LB360	LB580
	NMS 12	\checkmark	x	×	x	x	x	x	x	x	 ✓ 	x	x	x	x	√	x	×	x	x	×	x	×	√	×	×	×
	NV 20	 ✓ 	\checkmark	\checkmark	√	×	\checkmark	×	×	×	✓	\checkmark	√	×	×	\checkmark	~	×	×	\checkmark	×	×	×	\checkmark	✓	×	×
	NV 28	~	\checkmark	\checkmark	√	×	\checkmark	x	×	×	~	\checkmark	√	×	×	\checkmark	\checkmark	x	×	✓	×	×	×	\checkmark	✓	×	×
	NS 25	~	✓	\checkmark	√	×	✓	✓	×	×	~	\checkmark	\checkmark	×	×	~	~	✓	×	×	\checkmark	×	×	~	\checkmark	\checkmark	×
	NS 35	~	~	\checkmark	✓	×	\checkmark	✓	×	×	~	\checkmark	✓	×	×	~	~	✓	×	×	\checkmark	×	×	\checkmark	~	\checkmark	×
	NS 50	✓	✓	\checkmark	√	×	✓	✓	×	×	✓	\checkmark	\checkmark	×	×	✓	\checkmark	✓	×	×	\checkmark	×	×	✓	\checkmark	\checkmark	×
200	NM 44	~	~	\checkmark	✓	✓	✓	√	✓	×	~	✓	×	✓	×	~	~	✓	~	×	×	✓	×	~	~	\checkmark	\checkmark
	NM 60	~	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark	×	~	\checkmark	×	\checkmark	×	\checkmark	\checkmark	✓	~	×	×	\checkmark	×	~	✓	\checkmark	\checkmark
	NM 76	~	~	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	×	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark	~	\checkmark	\checkmark
	NL 76	~	~	\checkmark	√	\checkmark	\checkmark	✓	~	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	✓	\checkmark	×	×	×	\checkmark	~	\checkmark	\checkmark	\checkmark
	NL 120	~	~	~	√	✓	\checkmark	✓	\checkmark	✓	~	\checkmark	×	×	✓	~	~	✓	✓	×	×	×	\checkmark	~	\checkmark	\checkmark	\checkmark
	NMS E	√	×	×	×	×	×	×	×	×	\checkmark	×	×	×	×	✓	×	×	×	×	×	×	×	✓	×	×	×
	NV E	✓	 ✓ 	✓	√	×	✓	×	×	×	✓	 ✓ 	×	×	×	 ✓ 	✓	×	×	✓	×	×	×	\checkmark	✓	×	×
	NS E	✓	✓	\checkmark	✓	×	✓	✓	×	×	~	\checkmark	✓	×	×	~	\checkmark	✓	×	×	\checkmark	×	×	✓	\checkmark	\checkmark	×
2	NM E	~	~	~	✓	~	\checkmark	✓	\checkmark	×	~	\checkmark	×	\checkmark	✓	~	~	✓	~	×	×	\checkmark	×	~	✓	\checkmark	\checkmark
	NL E	~	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	✓	\checkmark	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	MS 12	\checkmark	✓	×	×	×	×	×	×	×	\checkmark	×	×	×	×	✓	×	×	×	×	×	×	×	✓	×	×	×
	V 20	✓	\checkmark	\checkmark	✓	×	\checkmark	×	×	×	✓	\checkmark	✓	×	×	\checkmark	\checkmark	×	×	\checkmark	×	×	×	\checkmark	\checkmark	×	×
	V 28	~	 ✓ 	~	√	×	✓	×	×	×	~	✓	√	×	×	~	~	×	×	✓	×	×	×	 ✓ 	~	×	×
	S 25	~	✓	\checkmark	✓	✓	\checkmark	✓	×	×	\checkmark	\checkmark	\checkmark	✓	×	\checkmark	\checkmark	✓	×	×	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×
	S 35	~	~	\checkmark	√	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	✓	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	×	\checkmark	✓	\checkmark	×
	S 50	~	~	\checkmark	√	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	✓	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	×	~	\checkmark	\checkmark	×
	M 44	~	~	\checkmark	✓	\checkmark	\checkmark	✓	✓	x	~	\checkmark	x	\checkmark	✓	~	\checkmark	✓	~	×	×	\checkmark	×	~	\checkmark	\checkmark	\checkmark
	M 60	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	x	\checkmark	\checkmark	x	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	✓	\checkmark	\checkmark	\checkmark
	M 76	~	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	x	\checkmark	\checkmark	×	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
	L 76	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	×	×	✓	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	L 120	\checkmark	✓	\checkmark	√	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	×	×	✓	\checkmark	\checkmark	✓	\checkmark	×	×	×	\checkmark	✓	\checkmark	\checkmark	\checkmark
	MS E	\checkmark	×	×	×	×	×	×	×	×	\checkmark	×	×	×	×	✓	×	×	×	×	×	×	×	✓	×	×	×
	V E	√	✓	~	√	x	\checkmark	x	×	×	✓	✓	×	x	×	~	✓	x	×	\checkmark	×	×	×	\checkmark	✓	×	×
/ =//	S E	✓	✓	✓	✓	✓	✓	\checkmark	×	×	✓	✓	\checkmark	✓	×	✓	✓	✓	×	×	\checkmark	×	×	✓	\checkmark	\checkmark	×
	M E	✓	✓	\checkmark	✓	✓	✓	✓	✓	×	\checkmark	✓	×	✓	√	\checkmark	\checkmark	✓	✓	×	×	\checkmark	×	✓	✓	\checkmark	\checkmark
	L E	✓	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	✓	x	×	\checkmark	✓	✓	✓	\checkmark	×	×	×	\checkmark	✓	\checkmark	\checkmark	\checkmark

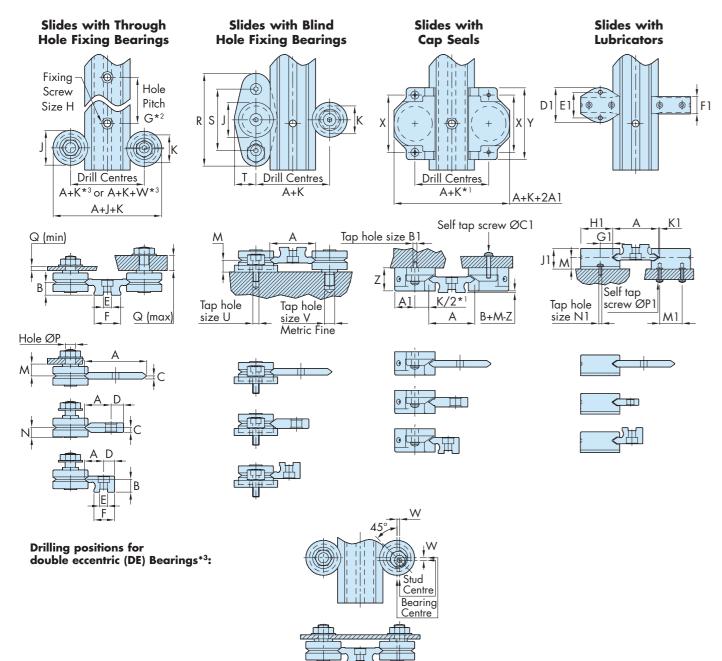
Notes:

- The calculation for the deflection of a cantilevered Slide assumes that the Slide 🗹 is held absolutely rigidly at one end. This is often difficult to achieve 1 in practice, and it is usual to allow for additional deflection due to the compliance of the support. Hepco will supply such data on Flange Clamps, on request.
- The deflections calculated are for static loads. In some situations, dynamic loading may increase the amount of bend. 2.
- For maximum stiffness, the Slide or Slide Beam 🗹 section should be arranged such that the bending mode with the higher value for El resists bending. 3
- Care should be taken in such applications to ensure that offset loads do not cause excessive bending in the weaker perpendicular plane.

RUT 17.Fu

Data & Dimensions for Assembled Systems

GV3 can be ordered either as individual components or as factory assembled systems. For details on the extensive range of factory assembled Standard Z, Slimline Z, Removable, Belt Driven and Rack Driven Carriages Z, please refer to the GV3 catalogue.


This section includes summary data on Slides 🗹, Bearings 🗹 and Lubrication Devices 🗹. They allow customers to calculate the overall dimensions of a system (less the Carriage plate) and provide important reference dimensions including drilling details. The information can be determined for any combination of components as indicated in the Mix and Match table on 🛄 13, enabling customers to design a system to meet their exact requirements.

Dimensions in respect of the additional components used in Slide Beams 2, Belt Driven Carriages and Rack Driven Carriages may also be found on the pages relating to these products in this Technical Guide and the GV3 catalogue.

'V' Slide Systems with Standard 'V' Bearing

Please refer to the diagrams below and the tables 🛄 15 when designing a system utilising the Standard Bearing 🗹 programme. Alternatively, for systems which are based on the Slimline Bearing 🗹 programme, see 💷 16-17. For systems which incorporate Track Rollers 🗹 and/or Pinions 🗹, see 🛄 18-19.

CAD models are also available online.

	Part		A		В		C	[)	E		F	G	Н
	Number	P1/P2	P3	P1	P2/P3	P1	P2/P3	P1/P2	P3		P1/P2	P3		
	NMS 12	12.37	13.25	6.2	6.4	-	-	-	-	4	8.5	8.9	45	M3
	NV 20	20.37	21.01	8	8.2	-	-	-	-	5	12	12.4	90	M4
	NV 28	28.37	29.01	8	8.2	-	-	-	-	6	20	20.4	90	M5
	NS 25	25.74	26.58	10	10.2	-	-	-	-	6	15	15.4	90	M5
1011	NS 35	35.74	36.38	10	10.2	-	-	-	-	8	25	25.4	90	M6
	NS 50	50.74	51.38	10	10.2	-	-	-	-	10	40	40.4	90	M6
Loc	NM 44	44.74	45.58	12.5	12.7	-	-	-	-	8	26	26.4	90	M6
	NM 60	60.74	61.38	12.5	12.7	-	-	-	-	10	42	42.4	90	M8
	NM 76	76.74	77.38	12.5	12.7	-	-	-	-	12	58	58.4	90	M8
	NL 76	76.74	77.58	19.5	19.7	-	-	-	-	15	50	50.4	180	M12
	NL 120	120.74	121.38	19.5	19.7	-	-	-	-	45	94	94.4	180	M10
	NMS E	6.19	6.41	6.2	6.4	-	-	5	5.3	4	9.25	9.65	45	M3
/0/)	NV E	9.69	10.02	8	8.2	-	-	6.5	6.7	4	12	12.4	90	M4
$\langle $	NS E	12.87	13.19	10	10.2	-	-	8.5	8.7	6	16	16.4	90	M5
2	NM E	18.87	19.19	12.5	12.7	-	-	10.5	10.7	8	20	20.4	90	M6
7	NL E	27.37	27.69	19.5	19.7	-	-	16	16.2	12	30	30.4	180	M10
	MS 12	12.55	13.13	-	-	1.52	1.60	-	-	-	-	-	30	M3
	V 20	20.37	21.01	-	-	2.14	2.21	-	-	-	-	-	90	M4
	V 28	28.37	29.01	-	-	2.14	2.21	-	-	-	-	-	90	M5
	S 25	25.81	26.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
	S 35	35.81	36.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
/ = //	S 50	50.82	51.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
	M 44	44.81	45.58	-	-	3.14	3.21	-	-	-	-	-	90	M6
	M 60	60.81	61.58	-	-	3.14	3.21	-	-	-	-	-	90	M8
	M 76	76.81	77.38	-	-	3.14	3.21	-	-	-	-	-	90	M8
	L 76	76.81	77.58	-	-	4.56	4.72	-	-	-	-	-	90	M10
	L 120	120.81	121.58	-	-	4.56	4.72	-	-	-	-	-	180* ³	M10*3
	MS E	6.87	7.1	-	-	1.52	1.60	4.5	4.7	-	-	-	45	M3
	V E	10.37	10.6	-	-	2.14	2.21	6	6.2	-	-	-	90	M4
/ =//	S E	12.96	13.3	-	-	2.39	2.47	6.5	6.7	-	-	-	90	M5
\triangleleft	M E	17.46	17.8	-	-	3.14	3.21	8	8.2	-	-	-	90	M6
	L E	22.46	22.8	-	-	4.56	4.72	10	10.2	-	-	-	90	M8

	Part Number	J	K *1	Μ	Ν	Ρ	(short		(long) axle)	R	S	Т	U	V	W
	Number						Min	Max	Min	Max					Metric Fine	
	J13	12.7	9.51	5.47	4.5	4	2.2	3	2.4	6.7	47.5	30	10	M3	M4x0.5	1.34
	J18	18	14.0	6.75	5.6	6	2.4	3.4	2.5	10	54	38	12.3	M4	M6x0.75	1.84
	J25	25	20.27	9.0	7.5	8	2.2	3.8	4.9	13	72	50	16	M5	M8x1	1.95
e e	J34	34	27.13	11.5	9.7	10	5.2	6.6	5.9	14.8	90.5	60	21	M6	M10x1.25	2.55
	J54	54	41.8	19.0	15.6	14	5.7	8.2	7.9	20.4	133	89.5	31	M8	M14x1.5	3.89

Part Number	x	XI	Y	Z	Al	B1	Cl	Use with Bearings
CS18	32.5	-	42	13.8	11	M2.5	3	J18
CS25	44	-	55	18	16	M3	3.5	J25
CS34	56	-	70	22.5	21	M4	4.5	J34
C\$54	80	-	98	36.5	31	M5	6	J54

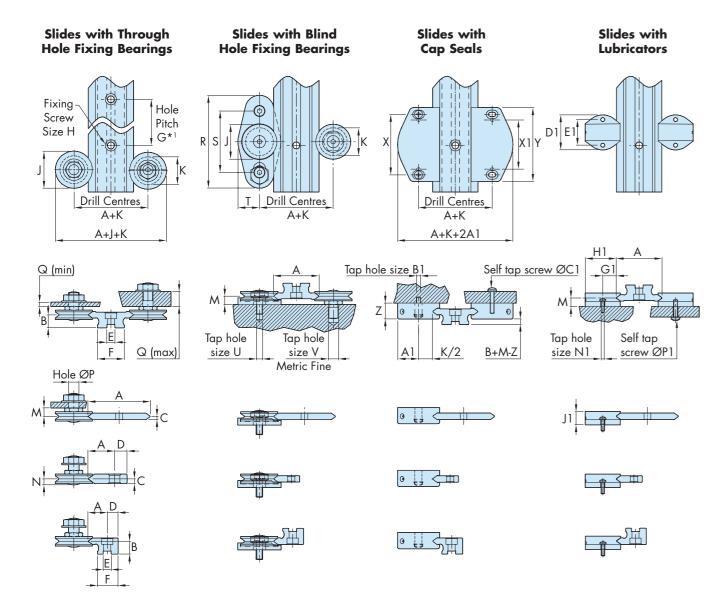
	Part Number	DI	El	F1	G1	H1	JI	К1	MI	N1	P1	Use with Bearings
	LB12	17	12	7	4.8	11.5	10	1.6	6.5	M2.5	2.5	J13
	LB20	19	13	8	7.3	19	12	0.8	13	M2.5	2.5	J18
No.	LB25	25	18	12	9	23	16.5	1	16	M3	3	J25
	LB44	34	25	17	11.8	31	20	0.8	22	M4	3	J34
	LB76	50	38	25	17.8	47	33.5	1.3	33	M5	3.5	J54

Notes:

- The fixing screw positions for the size CS18 Cap Seal 🗹 are not on the same centreline as the Bearing. When using the CS18, please add 3.8mm to A+K. The NL120 and L120 Slides 🗹 have two parallel rows of holes.
- 2

Drilling centres A+K apply to all Bearings 🗹 with the exception of double eccentric (DE) type. If double eccentric Bearings are used with the intention of 3. disengaging the Slide, then drilling centres A+K+W should be used. Double eccentric Bearings are designed to adjust in with the eccentric making a 45° angle to the Slide as shown above.

HepcoMotion.com



'V' Slide Systems with Slimline 'V' Bearing

Please refer to the diagrams below and the tables 🛄 17 when designing a system utilising the Slimline Bearing 🗹 programme. For systems which are based on the Standard Bearing 🗹 programme, please see 🛄 14-15. For systems which incorporate Track Rollers 🗹 and/or Pinions 🖾, see 🛄 18-19.

CAD models are also available online.

	Dount				2		C	F)	E		5	G	н
	Part Number	P1/P2	• P3	P1	P2/P3	P1	P2/P3	P1/P2	P3	E	P1/P2	P3	G	п
	NMS 12	12.37	13.25	6.2	6.4	-	-	-	-	4	8.5	8.9	45	M3
	NV 20	20.37	21.01	8	8.2	-		-	-	5	12	12.4	90	M4
	NV 28	28.37	29.01	8	8.2	-	-	-	-	6	20	20.4	90	M4
	NS 25	25.74	26.58	10	10.2	-	-	-	-	6	15	15.4	90	M5
1011	NS 35	35.74	36.38	10	10.2	-	-	-	-	8	25	25.4	90	M6
	NS 50	50.74	51.38	10	10.2	-	-	-	-	10	40	40.4	90	M6
2mg	NM 44	44.74	45.58	12.5	12.7	-	-	-	-	8	26	26.4	90	M6
	NM 60	60.74	61.38	12.5	12.7	-	-	-	-	10	42	42.4	90	M8
	NM 76	76.74	77.38	12.5	12.7	-	-	-		12	58	58.4	90	M8
	NL 76	76.74	77.58	12.5	12.7	-	-	-	-	12	50	50.4	180	M12
	NL 120	120.74	121.38	19.5	19.7	-	-	-	-	45	94	94.4	180	M12
	NMS E	6.19	6.41	6.2	6.4	-	-	5	5.3	4	9.25	9.65	45	M3
6	NV E	9.69	10.02	8	8.2	-	-	6.5	6.7	4	12	12.4	90	M4
	NS E	12.87	13.19	10	10.2	-	-	8.5	8.7	6	16	16.4	90	M5
	NM E	18.87	19.19	12.5	12.7	-	-	10.5	10.7	8	20	20.4	90	M6
	NL E	27.37	27.69	19.5	19.7	-	-	16	16.2	12	30	30.4	180	M10
	MS 12	12.55	13.13	-	-	1.52	1.60	-	-	-	-	-	30	M3
	V 20	20.37	21.01	-	-	2.14	2.21	-	-	-	-	-	90	M4
	V 28	28.37	29.01	-	-	2.14	2.21	-	-	-	-	-	90	M5
	S 25	25.81	26.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
/ - //	S 35	35.81	36.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
	S 50	50.82	51.58	-	-	2.39	2.47	-	-	-	-	-	90	M6
	M 44	44.81	45.58	-	-	3.14	3.21	-	-	-	-	-	90	M6
	M 60	60.81	61.58	-	-	3.14	3.21	-	-	-	-	-	90	M8
	M 76	76.81	77.38	-	-	3.14	3.21	-	-	-	-	-	90	M8
	L 76	76.81	77.58	-	-	4.56	4.72	-	-	-	-	-	90	M10
	L 120	120.81	121.58	-	-	4.56	4.72	-	-	-	-	-	180*3	M10*3
	MS E	6.87	7.1	-	-	1.52	1.60	4.5	4.7	-	-	-	45	M3
10/1	V E	10.37	10.6	-	-	2.14	2.21	6	6.2	-	-	-	90	M4
L //	S E	12.96	13.3	-	-	2.39	2.47	6.5	6.7	-	-	-	90	M5
	M E	17.46	17.8	-	-	3.14	3.21	8	8.2	-	-	-	90	M6
	L E	22.46	22.8	-	-	4.56	4.72	10	10.2	-	-	-	90	M8

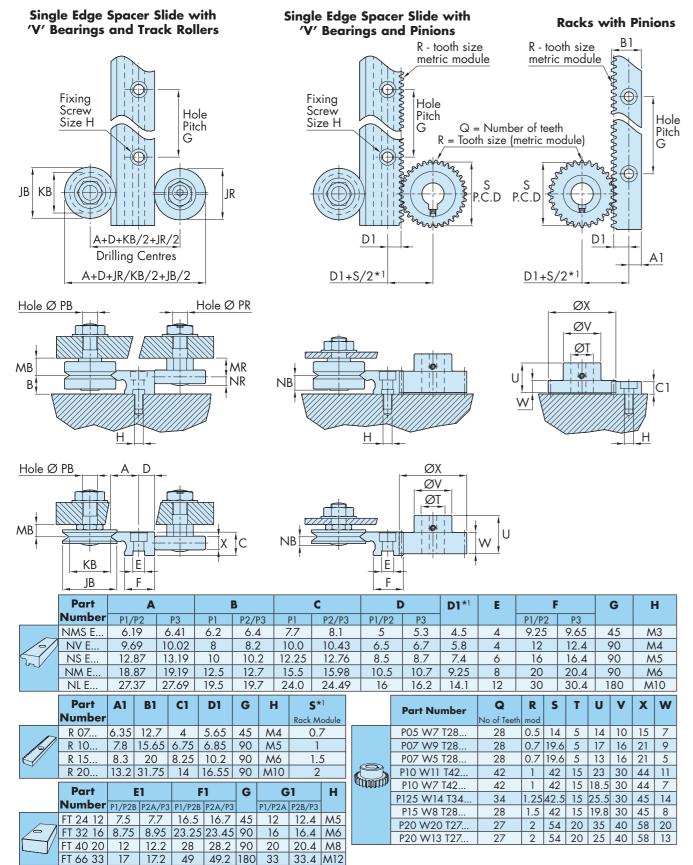
	Part Number	J	к	м	Ν	Ρ	(short) axle)	(long		R	S	т	U	V Metric Fine	w
							Min	Max	Min	Max					Memorine	
	J195	19.5	14.8	5.7	3.5	6	2.4	3.4	2.5	10	54	38	12.3	M4	M6x0.75	-
	J265	26.5	20	6.8	4.5	8	2.2	3.8	4.9	13	72	50	16	M5	M8x1	-
	J360	36	27.6	8.3	5.7	10	5.2	6.6	5.9	14.8	90.5	60	21	M6	M10x1.25	-
	J580	58	46.1	14.3	8.5	14	5.7	8.2	7.9	20.4	133	89.5	31	M8	M14x1.5	-

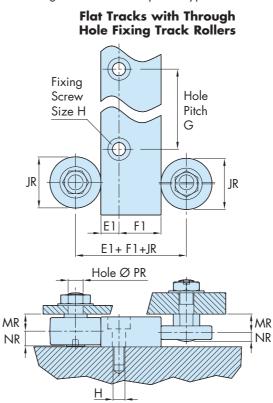
Part Number	x	XI	Y	Z	Al	B1	Cl	Use with Bearings
CW195	35	27.5	43	11.2	12	M2.5	3	J195
CW265	44	35	54	13	16	M3	3.5	J265
CW360	59	48	72	15.5	21	M4	4.5	J360
CW580	90	74	106	25	32	M5	6	J580

	Part Number	D1	El	F1	G1	H1	JI	К1	MI	NI	P1	Use with Bearings
	LB195	19	13	-	7.5	17.5	8.7	-	-	M2.5	3	J195
	LB265	25	18	-	9.6	23	10.3	-	-	M3	3.5	J265
NO)	LB360	34	25	-	13.4	31	12.9	-	-	M4	5	J360
	LB580	50	38	-	19.9	49	21.9	-	-	M5	6	J580

HepcoMotion.com

Ø	CAD




Systems with Track Rollers, Racks & Pinions

The section includes data on Single Edge Spacer Slides 🗹, Bearings 🗹, Track Rollers 🗹, Flat Tracks 🗹, Racks 🗹 and Pinions I to allow customers to calculate overall dimensions of a system and look up important dimensions, including drilling details. It is possible to run a Wide Track Roller on the rear face of the Single Edge Spacer Slide, but this option is not shown, as the Narrow Track Roller usually fits better. The extra load capacity of the Wide Track Roller will not usually be a benefit when used with the Single Edge Spacer Slide, as the soft back face can be damaged if used beyond the load capacity of the Narrow Track Roller.

All sizes of Track Roller 🗹 (in both narrow and wide formats) have a 500 mm crown radius to avoid the problems which can occur if imperfect alignment concentrates the load on the edge of the Roller. Any Track Roller can be used with any size of Flat Track I or Single Edge Spacer Slide I, subject to physical size constraints. Any Rack 🗹 and Pinion 🗹 combination can be used, subject to the tooth size matching, and other obvious size constraints.

The drawings below show only boss type Pinions. Pinions with integral shafts are also available.

Part	JB	KB	MB	NB	PB	Z (sho	ort axle)	I
 Number						Min	Max	Γ
J13	12.7	9.51	5.47	4.5	4	2.2	3	Γ
J18	18	14.00	6.75	5.6	6	2.4	3.4	I
J25	25	20.27	9.0	7.5	8	2.2	3.8	Γ
J34	34	27.13	11.5	9.7	10	5.2	6.6	Γ
J54	54	41.76	19.0	15.6	14	5.7	8.2	
J195	19.5	14.8	5.7	3.5	6	2.4	3.4	Γ
J265	26.5	19.98	6.8	4.5	8	2.2	3.8	Γ
J360	36	27.57	8.3	5.7	10	5.2	6.6	Γ
J580	58	46.08	14.3	8.5	14	5.7	8.2	Γ

Part	JR	MR	NR	PR	Z (sho	ort axle)	Z (lon	g axle)
 Number					Min	Max	Min	Max
R18	18	6.75	5.6	6	2.4	3.4	2.5	10
R25	25	9.0	7.5	8	2.2	3.8	4.9	13
R34	34	11.5	9.7	10	5.2	6.6	5.9	14.8
R54	54	19.0	15.6	14	5.7	8.2	7.9	20.4
LRN18	18	8	3.5	6	-	-	2.5	10
LRN25	25	10	4.5	8	-	-	4.9	13
LRN34	34	12.5	5.7	10	-	-	5.9	14.8
LRN54	54	21	8.5	14	-	-	7.9	20.4

Note:

7.9 20.4 The calculated position of the Pinion 🗹 relative to the Rack 🗹 gives an approximate location only. Customers should make provision for the Pinion to be adjusted relative to the Rack to ensure that the best running condition is achieved. The Hepco Gearbox and Drive Flange includes a facility for this type of adjustment.

7.9 20.4

MI

54

72

90.5

133

Flat Tracks with Blind **Hole Fixing Track Rollers** \odot $(\mathbf{\Phi})$ JR E1+JR/2 $F1+JR/2 \mid Q1$ MR MR Tap hole Tap hole size N1

metric fine Z (long axle) Min Max 2.4 6.7 G1+JR 2.5 10 Drilling G 4.9 13 Centres 5.9 14.8 7.9 20.4 2.5 10 4.9 13 5.9 14.8

K1

38

50

60

89.5

Q1

12.25

16

21

31

P1

M4

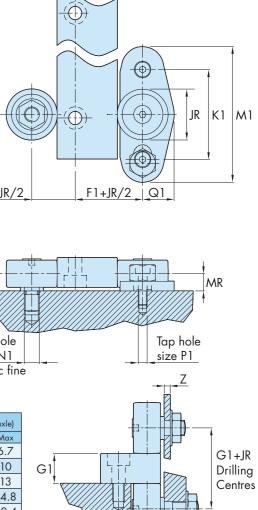
M5

M6

M8

N1

Aetric Fine


M6x0.75

M8x1

M10x1.25

M14x1.5

HepcoMotion.com

CAD

Component Mass

	Part Number	Mass (kg)
	AU 12P1/P2 13 L50	0.07
Standard	AU 12P1/P2 13 L75	0.09
Carriages	AU 12P1/P2 13 L100	0.11
	AU 12P3 13 L50	0.07
	AU 12P3 13 L75	0.09
<u> </u>	AU 12P3 13 L100	0.11
&	AU 20 18 L65	0.21
Removable	AU 20 18 L100	0.27
Carriages	AU 20 18 L140	0.34
(See equivalent	AU 28 18 L75	0.25
tandard Carriage for	AU 28 18 L125	0.36
Removable Carriage	AU 28 18 L175	0.47
mass.)	AU 25 25 L80	0.41
	AU 25 25 L135	0.54
	AU 25 25 L180	0.66
	AU 35 25 L100	0.53
	AU 35 25 L150	0.7
	AU 35 25 L200	0.86
	AU 50 25 L110	0.67
	AU 50 25 L160	0.89
	AU 50 25 L220	1.2
	AU 44 34 L125	1.1
	AU 44 34 L180	1.4
	AU 44 34 L225	1.6
	AU 60 34 L150	1.5
	AU 60 34 L200	1.8
	AU 60 34 L280	2.3
	AU 76 34 L170	1.8
	AU 76 34 L240	2.3
	AU 76 34 L340	3.1
	AU 76 54 L200	3.8
	AU 76 54 L300	4.8
	AU 76 54 L400	5.8
	AU 120 54 L240	5.5
	AU 120 54 L360	7.4
	AU 120 54 L480	9.3

	Part Number	Mass (kg)
	AURD 44 34 L300 CSDR	3.1
Rack Driven	AURD 44 34 L420 CSDR	3.9
Carriages	AURD 60 34 L320 CSDR	3.4
	AURD 60 34 L440 CSDR	4.2
	AURD 76 34 L320 CSDR	3.5
	AURD 76 54 L360 CSDR	6.2
	AURD 76 54 L500 CSDR	7.7
	AURD 120 54 L380 CSDR	7.4
	AURD 120 54 L540 CSDR	9.4

	Part Number	Mass (kg)
	BK2525	0.2
Carriage	BK3525	0.3
Locking Device	BK4434	0.4
	BK5025	0.6
	BK6034	0.8
	BK7634	1.5
	BK7654	1.5
	BK12054	1.9

	Part Number	Mass (kg)
	AU 20 195 L65	0.21
Slimline	AU 20 195 L100	0.27
Carriages	AU 20 195 L140	0.34
	AU 28 195 L75	0.25
	AU 28 195 L125	0.36
	AU 28 195 L175	0.47
	AU 25 265 L85	0.37
	AU 25 265 L135	0.51
	AU 25 265 L180	0.63
	AU 35 265 L100	0.5
	AU 35 265 L150	0.66
	AU 35 265 L200	0.83
	AU 50 265 L110	0.64
	AU 50 265 L160	0.86
	AU 50 265 L220	1.1
	AU 44 360 L125	0.95
	AU 44 360 L180	1.2
	AU 44 360 L225	1.4
	AU 60 360 L150	1.3
	AU 60 360 L200	1.6
	AU 60 360 L280	2.2
	AU 76 360 L170	1.7
	AU 76 360 L240	2.2
	AU 76 360 L340	3
	AU 76 580 L200	3.8
	AU 76 580 L300	3.5
	AU 76 580 L400	4.5
	AU 120 580 L240	5.3
	AU 120 580 L360	7.2
	AU 120 580 L480	9.1

	Part Number	Mass (kg)
	AUBD 35 25 L150	1.2
Belt Driven	AUBD 35 25 L230	1.7
Carriages	AUBD 50 25 L160	1.6
	AUBD 50 25 L240	2.3
	AUBD 44 34 L200	2
• •	AUBD 44 34 L280	2.8
	AUBD 60 34 L224	3.4
	AUBD 60 34 L304	4.3
	AUBD 76 34 L244	4.1
	AUBD 76 34 L344	5.6

	Part Number	Mass (kg/m)
	NMS 12	0.5
Double Edge	NV 20	1.0
Spacer Slides	NV 28	1.6
(Slide Only)	NS 25	1.5
~	NS 35	2.3
	NS 50	3.2
L	NM 44	3.5
	NM 60	5.5
	NM 76	7.0
	NL 76	10
	NL 120	15

	Part Number	Mass (kg/m)
	NMS E	0.55
Single Edge	NV E	1.0
Spacer Slides	NS E	1.6
	NM E	2.6
~	NL E	6.0

	Part Number	Mass (kg/m)
	MS 12	0.23
Double Edge Flat Slides	V 20	0.6
Flat Slides	V 28	0.9
	S 25	0.8
	S 35	1.3
y	S 50	1.7
	M 44	1.9
	M 60	2.7
	M 76	3.4
	L 76	5.0
	L 120	8.5

	Part Number	Mass (kg/m)
	FT 24 12	2.3
Flat Tracks	FT 32 16	4.0
	FT 40 20	6.3
	FT 66 33	17

	Part Number	Mass (kg/m)
	R 07	0.37
Racks	R 10	0.77
	R 15	1.2
	R 20	3.3

HepcoMotion.com

	Part Number	Mass (kg/m)
	NV 20R	1.4
Double Edge	NV 28R	2.0
Spacer Slides	NS 25R	2.3
(With Rack)	NS 35R	3.0
~	NS 50R	4.0
	NM 44R	4.7
Jan Star	NM 60R	5.7
	NM 76R	8.2
	NL 76R	13
	NI 120 R	18

	Part Number	Mass (kg/m)
	MS E	0.22
Single Edge Flat Slides	V E	0.5
Flat Slides	S E	0.7
	M E	1.2
	L E	2.2

	Part Number	Mass (kg/m)
	SB S 35	6.0
Slide Beams	SB S 35L	4.3
1º7	SB S 50	6.5
	SB S 50L	4.7
	SB M 44	10
2 non of	SB M 60	11
	SB M 76	11.5

Component Mass

	Part Number	Mass (kg)
	SJ 13	0.008
Standard	SJ 18	0.019
Bearings	SJ 25	0.048
	SJ 34	0.115
	SJ 54	0.415
-	LJ 13	0.008
&	LJ 18	0.020
N	LJ 25	0.051
Vacuum Bearings	LJ 34	0.120
(See equivalent	LJ 54	0.425
Standard Bearing	BHJ 13 C	0.007
for Vacuum Bearing	BHJ 18 C	0.018
mass.)	BHJ 25 C	0.043
	BHJ 34 C	0.105
	BHJ 54 C	0.390
	BHJ 13 E	0.027
	BHJ 18 E	0.045
	BHJ 25 E	0.105
	BHJ 34 E	0.235
	BHJ 54 E	0.800

	David Marinelia an	
	Part Number	Mass (kg)
-l. l.	GSJ 195	0.014
Slimline	GSJ 265	0.028
Bearings	GSJ 360	0.065
	GSJ 580	0.280
	GLJ 195	0.016
	GLJ 265	0.030
	GLJ 360	0.070
	GLJ 580	0.290
	GBHJ 195 C	0.013
	GBHJ 265 C	0.023
	GBHJ 360 C	0.055
	GBHJ 580 C	0.255
	GBHJ 195 E	0.040
	GBHJ 265 E	0.085
	GBHJ 360 E	0.185
	GBHJ 580 E	0.660

	Part Number	Mass (kg)
	SFJ 25	0.058
Floating	SFJ 34	0.130
Bearings	SFJ 54	0.492
	LFJ 25	0.060
	LFJ 34	0.135
	LFJ 54	0.505

	Part Number	Marce (lea)
		Mass (kg)
	SR 18	0.020
Wide Track	SR 25	0.050
Rollers	SR 34	0.120
	SR 54	0.440
	LR 18	0.021
_	LR 25	0.055
	LR 34	0.125
	LR 54	0.450
	BHR 18 C	0.019
	BHR 25 C	0.045
	BHR 34 C	0.110
	BHR 54 C	0.415
	BHR 18 E	0.045
	BHR 25 E	0.105
	BHR 34 E	0.235
	BHR 54 E	0.800

	Part Number	Mass (kg)
Narrow	LRN 18	0.016
Track Rollers	LRN 25	0.040
	LRN 34	0.085
.	LRN 54	0.310

	Part Number	Mass (kg)
Vacuum	LRN 25	0.04
Track Rollers	LRN 34	0.085
	LRN 54	0.310

	Part Number	Mass (kg)
	CS 18	0.006
Lubrication	CS 25	0.013
Device	CS 34	0.028
	CS 54	0.078
	CW 195	0.006
	CW 265	0.010
	CW 360	0.020
	CW 580	0.055
	LB 12	0.002
	LB 20	0.003
	LB 25	0.006
E S	LB 44	0.016
	LB 76	0.044
~	LB 195	0.002
	LB 265	0.004
	LB 360	0.008
	LB 580	0.030

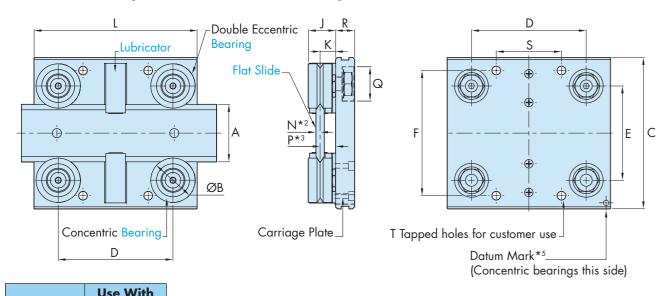
	Part Number	Mass (kg)
	P05 W7 T28	0.011
Pinions	P07 W9 T28	0.031
(Boss type)	P07 W5 T28	0.022
(boss type)	P10 W11 T42	0.160
	P10 W7 T42	0.120
(unui)	P125 W14 T34	0.20
	P15 W8 T28	0.125
	P20 W20 T27	0.430
	P20 W13 T27	0.300

HepcoMotion.com

Flange Clamps

Part Number	Mass (kg)
SFC 25	0.120
SFC 35	0.240
SFC 50	0.260
SFC 44	0.220
SFC 60	0.370
SFC M76	0.530
SFC 76	0.500
SFC 120	1.050
LFC 25	0.405
LFC 35	0.740
LFC 50	0.770
LFC 44	0.630
LFC 60	1.150
LFC M76	1.780
LFC 76	1.430
LFC 120	2.750

Removable Carriages


Hepco Removable Carriages are available to suit all sizes of Double Edge Slides 🗹, in all grades of precision. Carriage Plates are precision machined from aluminium alloy and are supplied clear anodised.

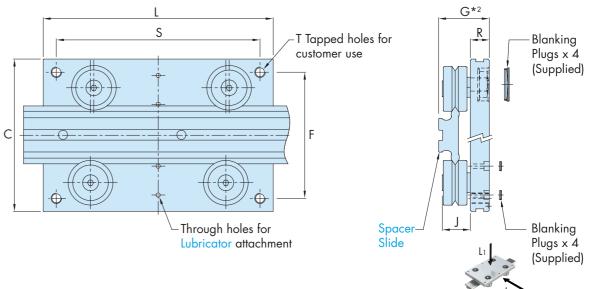
Carriages may be specified as Assembled Units (AU Type), either factory set to the chosen Slide, or without Slide for self-adjustment.

The key feature of Removable Carriages is the incorporation of Double Eccentric Bearings 🗹. By slackening the Bearing axle fixing nuts and rotating the eccentric using the adjusting spanner, the Carriage can be disengaged from the Slide (see GV3 catalogue 🗹). This can be a considerable advantage over Standard 🗹 and Slimline 🗹 Carriages, which must either be run off the end of the Slide, or be disassembled to allow removal.

The following types of Bearing and lubrication device Z may be specified (refer also to availability table below right). The Twin Bearing type which is the default choice, comprises two individual Bearings on a common axle. This offers some compliance, with smoother running, easy adjustment and greater tolerance of misalignment.

Example: Short Removable Carriage with Lubricators on a Flat Slide

The Double Row Bearing d type (DR) incorporates a one piece Bearing with two ball tracks. This offers higher load capacity, especially in the radial direction and is less susceptible to entrapment of debris.


The Nitrile Sealed Bearing option (NS) provides a higher degree of sealing against ingress of water or debris than does the default metal shielded type. A small increase in friction may result.

The Controlled Height Bearing option (CHK) minimises variation between Bearings in respect of the important 'K' dimension. This is desirable in high precision applications*5.

The Lubricator C option (LB) applies oil to the 'V' contact surfaces by means of lightly sprung felt pads which are charged with oil to give long intervals between re-lubrication. The Lubricator option is useful where the advantages of increased load and life are required but with lower friction compared to the Cap Seal Z. Lubricators are fixed with screws through the Carriage Z, so that they can be detached easily in the event of Carriage removal from the Slide 7.

See Application Example on 🛄 10 of the GV3 catalogue 🗹

Example: Medium Removable Carriage on a Spacer Slide

Part																													62	
	100	-	Α	ØB	С	E	F	G	*2	J	K	N	*2	P* ^{2,3}	Q	R	Sho	rt Carr	iage	Medi	um Cai	rriage	Lon	g Carri	iage	Т	Max	c Load C	apacity ((N) *1
Number	200		~					P1	P2 & P3			P1	P2 & P3		Ø x depth		L	D	S	L	D	S	L	D	S		DR Lı	DR L2	Twin Lı	Twin L ₂
AU 12 13 R	NMS 12	MS 12	12	13	40	23.3	30	19	19.2	10.1	5.46	1.49	1.6	3.8	12.5 x 4.8	7.34	50	35	17	75	60	25	100	85	50	4×M4			240	240
AU 20 18 R	NV 20	V 20	20	18	64	35.9	50	24.75	24.95	10 4	6.75	2.1	2.2	4.5	16 x 7	10	65	43	20	100	55	88	140	95	124	4×M5	760	1200	500	400
AU 28 18 R	NV 28	V 28	28	10	72	43.9	58	25.75	25.95	12.4	0.75	2.1	2.2	5.5	16 x 8	11	75	52	25	125	80	110	175	130	160	4x///J	700	1200	300	400
AU 25 25 R	NS 25	S 25	25		80	48.3	65	30.5	30.7			2.36			22 x 8.4	11.5	80	51	24	135	74	120	180	120	164					
AU 35 25 R	NS 35	S 35	35	25	95	58.3	80	31.5	31.7	16.6	9	2.30	2.5	6.5	22 x 9.4	12.5	100	70	40	150	90	130	200	140	180	4×M6	1600	3000	1280	1200
AU 50 25 R	NS 50	S 50	50		112	73.3	95	33	33.2			2.34			22 x 10.9	14	110	80	50	160	100	140	220	160	200					
AU 44 34 R	NM 44	M 44	44		116	74.8	96	38.5	38.7			3.08			25 x 8.7	14.5	125	88	50	180	103	160	225	153	206					
AU 60 34 R	NM 60	M 60	60	34	135	90.8	115	41	41.2	21.3	11.5	3.05	3.2	8.3	25 x 11	17	150	110	60	200	125	180	280	205	260	4×M8	3600	6000	3200	2800
AU 76 34 R	NM 76	M 76	76		150	106.8	130	42	42.2			3.05			25 x 12.5	18	170	130	80	240	165	220	340	265	320					
AU 76 54 R	NL 76	L 76	76	54	185	123.0	160	58.5	58.7	34.7	19	4.56	4.7	14.3	32 x 13.5	20	200	140	90	300	198	270	400	298	370	4×M10	10000	10000	7200	6400
AU 120 54 R	. NL 120	L 120	120	54	240	167.0	210	62.5	62.7	34./	19	4.30	4./	14.3	32 x 17.5	24	240	180	120	360	258	330	480	378	450	4×///10	10000	10000	/200	0400

Notes:

- 1. Maximum loads quoted assume lubrication at the interface of Bearings 🗹 and Slide 🗹. This can best be achieved by using Cap Seals 🗹 or Lubricators 🗹. It is strongly recommended that load and life are determined using the methods shown in the Load/Life Calculations 🗹 section of the GV3 catalogue. The Bearing static and dynamic load capacities (C & Co) often quoted by manufacturers are not the best basis for practical life calculations. C & Co figures are included on the Bearing pages for comparison.
- Some dimensions will vary by the amount of the grinding allowance according to which grade of Slide is selected. All Carriages 🗹 are compatible with 2. all arades of Slide
- Carriage size AU 28 18 R incorporates a recess in the underside for fixing screw clearance when used with size V28 Flat Slide. The P dimension in the 3. table includes this recess.
- 4. Controlled Height (CHK) Bearings are available in five bands, grouped in steps of 0.020mm from B1-0.050mm to B1+0.050mm, in respect of the B1 dimension given in the Standard Bearings section of the main GV3 catalogue. They are supplied in sets of up to 50 parts as standard, with larger sets on request. Customers requiring CHK Bearings within the same tolerance band, in respect of a number of Carriages, should state this on their order. 5 The datum mark identifies the reference edge used in manufacture. The concentric Bearings are always mounted on this side.
 - Courtesy of Steven Engineering, Inc (800) 258-9200 sales@steveneng.com www.stevenengineering.com

Ordering Details

Number of -

Carriages **Z** set to

AU... = Part Number

Carriage Length **L** = 180mm

Leave blank if not required.

R = Removable Type Carriage

specified Slide 🗹

Lubrication Option

LB = Lubricators

HepcoMotion.com

Leave blank if Slide not required and Carriage will be supplied in a loose condition for self-adjustment -CHK = Controlled Height Bearings*4 Leave blank for standard tolerance **NS** = Nitrile Sealed Bearings **☑** Leave blank for metal shielded **DR** = Double Row Bearings Leave blank for Twin Bearings

Availability of

Carrie	ige	ev	p	10	ns	
Part Number	-	DR	-	NS	LB	снк
	Twin Bearings	Double Row	Metal Shields	Nitrile Shields	Lubricators	Controlled Height
AU 12 13 R	✓	×	×	✓	✓	\checkmark
AU 20 18 R	\checkmark	\checkmark	×	✓	\checkmark	\checkmark
AU 28 18 R	\checkmark	\checkmark	×	✓	\checkmark	\checkmark
Larger sizes	\checkmark	\checkmark	✓	✓	✓	\checkmark

Rack & Pinion Systems

HepcoMotion.com

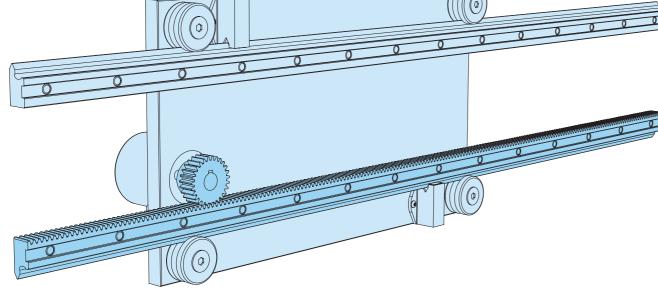
GV3 Catalogue

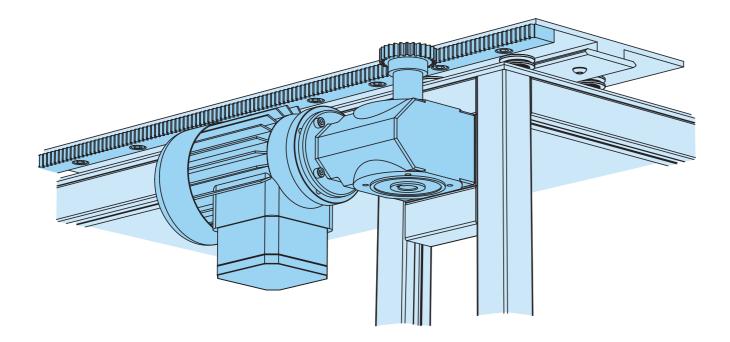
Racks

HepcoMotion Racks 27, Shaft Type Pinions, Drive Flanges and Gearboxes or AC Geared Motors can be used to construct a range of different Rack Driven system configurations.

Hepco Rack Driven Carriages ☑ run on Double Edge Spacer Slides ☑ with a precision machined Rack. Two examples of other configurations are shown below:

System with opposing Single Edge Spacer Slides 🗹


One Single Edge Spacer Slide has a rack cut into the back face, engaged with a Pinion.

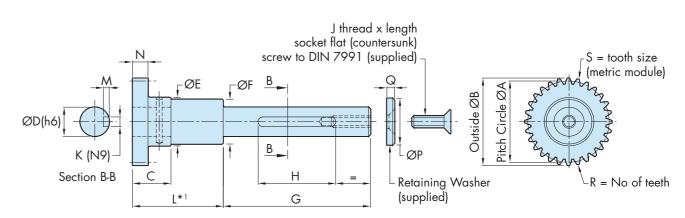


ľ

System with driven Rack 🗹

A Hepco Drive Flange and hollow shaft motor driven worm gearbox are mounted to a fixed plate.

Our Technical Department will be pleased to assist with all aspects of specification and ordering.


Shaft Type Pinions

Shaft Type Pinions have an extended shaft with keyed diameter and are compatible with Rack Driven Carriages Z, which incorporate the Hepco Drive Flange and hollow shaft motor driven worm Gearbox.

All Shaft Type Pinions have metric module hardened and ground teeth at a 20° pressure angle, conforming to ISO 1328 grade 6.

The Pinions are supplied with the key, retaining washer and screw necessary to connect to the worm Gearbox. For best performance, the teeth of the Rack Z and Pinion should be lubricated with No.2 lithium soap-based grease.

See Application Examples on 🛄 13, 15 & 17 of the GV3 catalogue 🗹

Ρα	rt	A	В	С	D	E	F	G	Н	J	Κ	L *1	Μ	Ν	Р	Q	R	S
Num	ber									Thread x Length								
P10 W11	T42 S	42	44	23	15	30	23	76	40	M6x16	5	to order	3	11	24	4	42	1
P125 W14	T34 S	42.5	45	25.5	20	30	30	81	50	M8x20	6	to order	3.5	14	32	5	34	1.25
P15 W8	T28 S	42	45	19.8	15	30	23	76	40	M6x16	5	57.4	3	8	24	4	28	1.5
P20 W20	T27 S	54	58	35	20	40	30	81	50	M8x20	6	to order	3.5	20	32	5	27	2
P20 W13	T27 S	54	58	25	20	40	30	81	50	M8x20	6	64.4	3.5	13	32	5	27	2

Part		For Us	e With	
Number	A			
P10 W11 T42 S	-	NSER	-	WG3
P125 W14 T34 S	-	NMER	-	WG4
P15 W8 T28 S	R15	-	NMR	WG3
P20 W20 T27 S	-	NLER	-	WG4
P20 W13 T27 S	R20	-	NLR	WG4

Ordering Details

P20 W13 T27 S (68) (D20)

Shaft type Pinion Part Number

Notes:

HepcoMotion.com

-Shaft engagement diameter D = **<u>20</u>** mm Leave blank for Boss type Pinion Pinion shaft length (Dim 'L' above') in mm

The length of the Pinion shaft will depend on the exact design. Shaft Type Pinions are made to length from part machined stock, to ensure rapid delivery and economy. The lengths shown for the P15W8T28 & P20W13T27 are those used in the Hepco Rack Driven Carriage 2. Other lengths are

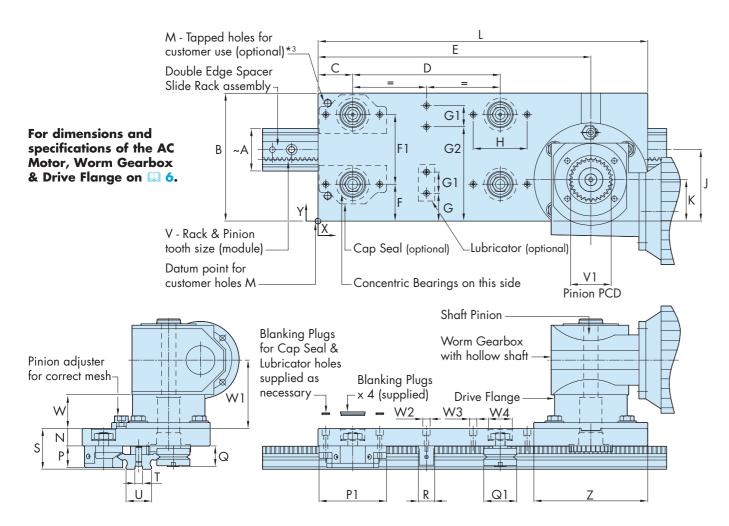
Custom Rack Driven Carriages

The information presented in this section details the options available when specifying a non-standard GV3 Rack Driven Carriage. For standard specifications, please refer to the GV3 catalogue d.

Rack Driven Carriages include the Hepco Worm Gearbox, Drive Flange and Shaft Pinion of suitable ratio. The Gearbox may be supplied coupled with an integral Hepco AC Motor, which is the most economical means of producing point to point linear motion, and which may be controlled via the Hepco AC Speed Controller. The Gearbox can also be supplied with an adaptor flange and input shaft coupling tailored to suit other makes or types of motors including steppers and servos, which benefit from the low backlash of the Hepco Gearbox.

Carriages may be specified with the Removable Option, enabling the Carriage to be disengaged from the Slide 🗹 at any position along its length. Bespoke Carriages are available on short delivery for customers wishing to use their own motor, gearbox and Pinion.

Rack Driven Carriages are normally supplied as Assembled Units (AU type), which are factory assembled and set to the Slide. More specific information regarding the options for Bearings Z, Lubrication Devices Z and load capacities are provided in the GV3 catalogue^{*1}. For details of linear drive performance, please see 🛄 8–9.


See Application Example on 🛄 13 of the GV3 catalogue 🗹

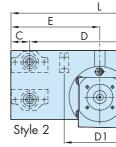
Dent		Use With																															
Part Numb		M	Α	В	F	l	F1	G	G1	G2	Н	J	K	N	Р	P1	Q	Q1	R		S	T	U	I	V	V1	W	W1	W2	W3	W4	Z	Rack Drive
Nomb			~			Standard	Removable													P1	P2 & P3		P1 & P2	P3	MOD	PCD							Force/N*5
AU RD 44	34	NM44R	44	133	38.2	72.3	74.8	28.8	22	97.8	56	74.1	14	18	22.5	70	21.3	34	17	42	42.25	8	26	26.5	1.5	42	35	71	5.4	7.5	25	118	400
AU RD 60	34	NM60R	60	144	29.7	88.3	90.8	20.3	22	105.3	56	74.1	41	18	22.5	70	21.3	34	17	42	42.25	10	42	42.5	1.5	42	35	71	5.4	7.5	25	118	400
AU RD 76	34	NM76R	76	154	21.7	104.3	106.8	12.3	22	113.3	56	74.1	41	18	22.5	70	21.3	34	17	42	42.25	12	58	58.5	1.5	42	35	71	5.4	7.5	25	118	400
AU RD 76	54	NL76R	76	193	41.2	119.1	123	27.2	33	141.2	80	100.6	57	20	36.5	98	34.7	54	25	58.5	58.75	15	50	50.5	2	54	34.5	72.5	6.5	9.5	32	147	700
AU RD 120	54	NL120R	120	240	38.5	163.1	167	24.5	33	182.5	80	119.8	111.3	20	36.5	98	34.7	54	25	58.5	58.75	45	94	94.5	2	54	34.5	72.5	6.5	9.5	32	147	700

Please see other table for dimensions C, D, E & L.

...

.....



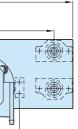

Notes:

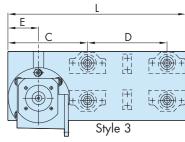
- The maximum load capacities quoted on the Standard 🗹 and Removable Carriage pages of the main GV3 catalogue, assume lubrication at the interface 1 of Bearings 🗹 and Slide 🗹. This can best be achieved by using Cap Seals 🗹 or Lubricators 🗹. It is strongly recommended that load and life are determined using methods shown in the Calculations section of the GV3 catalogue Z.
- 2 Controlled Height (CHK) Bearings are usually selected from stock, quantities available may therefore be restricted. Please refer to 🛄 36 of this guide. Customers requiring CHK Bearings within the same tolerance band in respect of a number of Carriages should state this on their order.
- Any number and size of tapped mounting holes 'M' can be provided in any available position. These may be specified in the ordering details after the 3. designation M by stating the co-ordinates X & Y relative to the datum point, followed by the tapped hole size. Example: M - X10Y25M6 - x=10 mm, y=25 mm, hole size = M6. Care should be taken to avoid any hole position that bridges the contact area between Cap Seal and Carriage Plate as this will allow grease to escape.
- The removable option is not available in conjunction with Cap Seals. 4.
- The quoted rack drive force is determined by the Rack and Pinion size, gearbox Bearings and gears, and the duty. See 🛄 8-9 for full details.

Specifying the Format and Size of the Carriage

Three styles of Carriage are available with motor mounting positions as shown in the diagram below. The style and size are specified by selecting the required values for dimensions C, D, E, & L in the table below the diagram. Any values for these dimensions may be chosen subject to the recommended limitations in the table. If Lubricators 🗹 are specified with 'style 2' Carriage, these will be offset to one another as indicated in the diagram. The motor and gearbox can be mounted in any one of 8 orientations. Please see 🛄 6.

Carriage	Part			N	Ninimum R	ecommen	ded Value	s		
-	-		With Co	ap Seals			Wit	h Lubrica	tors	
Style	Number	С	D	E	L	С	D	D1	E	L
Style 1	AU RD34	36	F1	C+D+92*	E+60	18	F1	-	C+D+73*	E+60
Style I	AU RD54	51	F1	C+D+119*	E+75	28	F1	-	C+D+91*	E+75
Style 2	AU RD34	36	182*	C+92*	C+D+36	18	177*	124	C+89*	C+D+18
Style 2	AU RD54	51	237*	C+119*	C+D+51	28	235*	154	C+118*	C+D+28
Challe 2	AU RD34	E+92*	F1	59	C+D+36	E+73*	F1	-	59	C+D+18
Style 3	AU RD54	E+119*	F1	73.5	C+D+51	E+91*	F1	-	73.5	C+D+28


Figures marked * are the minimums which can be achieved without the flange covering the Bearing 🗹 stud counterbore or the Cap Seal 🗹 or Lubricator 🗹 fixings. Smaller values of these dimensions can be achieved if overlap is acceptable to the customer. When specifying such reduced dimensions, the customer should ensure that the Pinion does not interfere with either Bearings, Cap Seals or Lubricators.

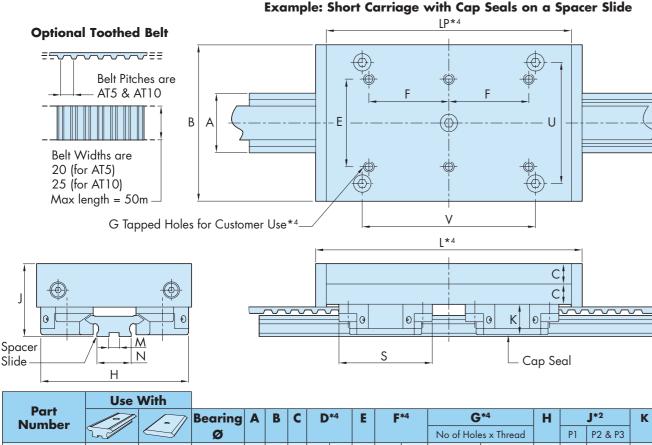

Ordering Details

AURD4434 L288 C36 D100 E228 (M) (R) (DR) (NS) (CHK) (CS) -Lubrication Options: **<u>CS</u>** = Cap Seals or <u>**LB**</u> = Lubricators Leave blank if not required **CHK** = Controlled Height Begrings*2 Leave blank if not required **NS** = Nitrile Sealed Bearings Leave blank if not required **DR** = Double Row Bearings Leave blank if not required

Part Number	
AU = Assembled Carriage	
Carriage Length L = 288 mm	
Dimension C = 36 mm	
Dimension D = 100 mm	
Dimension E = 228 mm	
M = Customer mounting holes*3 Leave blank if not required	
<u>R</u> = Removable Carriage Option*4 – Leave blank if not required	

AC Motor/Worm Gearbox 📖 6-7 - Please state part number as the second line of your order. Double Edge Spacer Slide Rack Assembly 2 - Please state part number as the third line of your order.

HepcoMotion.com


Belt Driven Carriages

HepcoMotion Belt Driven Carriages are available to suit ten sizes of Double Edge Slide 🗹 in all grades of precision. They have all of the benefits of the Standard Carriages d along with many additional features:

Carriages may be specified with the **Removable Option**, which is the key feature of the Removable Carriage. This allows the Carriage to be disengaged from the Slide at any position along its length, without the need for complete disassembly. Each Belt Driven Carriage incorporates a base plate and a **Removable Top Plate** which can simply be unscrewed and

reworked as required. Tapped holes are provided in convenient positions to enable components to be attached.

Belt Driven Carriages are normally supplied as Assembled Units (AU type) which are factory assembled and set to the Slide. Information regarding the options for Bearings 2, Lubrication Devices 2 and load capacities is given on the page for Standard Carriages^{*1} in the GV3 catalogue \mathbf{Z} .

	200		Ø									No of Hole	es x Thread		P1	P2 & P3	
AU BD 35 25	NS35	S35	25	35	90	13	70	150	48	50	100	4xM6	6xM6	88	45	45.2	18
AU BD 50 25	NS50	S50	25	50	112	14	82	162	60	50	90	4xM6	6xM6	103	47	47.2	18
AU BD 44 34	NM44	M44	34	44	116	15	95	168	65	60	90	6xM8	6xM8	114	54	54.2	22.5
AU BD 60 34	NM60	M60	34	60	135	17	119	199	75	75	115	6xM8	6xM8	130	58	58.2	22.5
AU BD 76 34	NM76	M76	34	76	150	18	139	239	100	80	130	6xM8	6xM8	146	60	60.2	22.5

Part				Pulle	ys				Belt	Belt Te	nsion*5
Number	Part Number	W	W1	X	X1	Y	Z	No of Teeth	Part No	Working	Max
AU BD 35 25	TP20& IP20	49.5	47	25	27	12	39.4	27	DB 20 AT5	560	5390
AU BD 50 25	TP20& IP20	49.5	47	25	27	12	39.4	27	DB 20 AT5	560	5390
AU BD 44 34	TP25& IP25	67	67	30	32	15	56.8	20	DB 25 AT10	1225	12450
AU BD 60 34	TP25& IP25	67	67	30	32	15	56.8	20	DB 25 AT10	1225	12450
AU BD 76 34	TP25&IP25	67	67	30	32	15	56.8	20	DB 25 AT10	1225	12450

Notes:

For load capacities see Standard Carriages 🗹 page in main GV3 catalogue. It is strongly recommended that load and life are determined using the 1 methods shown in the Load/Life Calculations section of the main GV3 catalogue d.

Some dimensions vary by the amount of the grinding allowance according to the grade of Slide selected. All Carriages are compatible with all grades 2 of Slide 🗹.

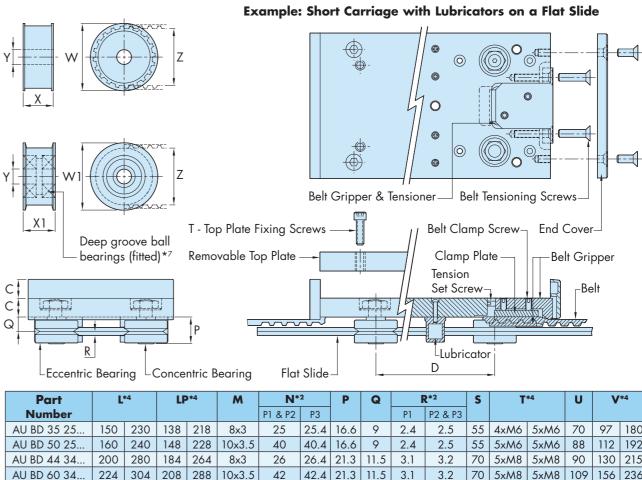
Controlled Height (CHK) Bearings are usually selected from stock, guantities available may therefore be restricted. Please refer to 🛄 36 of this guide. 3. Customers requiring CHK Bearings within the same tolerance band in respect of a number of Carriages should state this on their order.

Carriages are available in two standard lengths, therefore Bearing centres 'D' and the number and position of component mounting holes 'G' will vary 4 accordingly. Hepco will make Carriages to your special length requirements on request.

5. The Max belt tension stated relates to the breaking load, and is provided for comparison purposes only. The working belt tension should not be exceeded when used with Hepco pulleys and grippers.

The removable option is not available in conjunction with Cap Seals 2. 6.

The IP 25 P15 idler pulley is fitted with 2-off 6302 2RS deep groove ball Bearings (C = 11400N, Co = 5400N per Bearing). The IP 20 P12 idler pulley is fitted with 2 off 6001 2RS deep groove ball Bearings (C = 5070N, Co = 2360N).


The Belt Driven Carriage incorporates an integral Belt Gripper & Tensioner at each end. The Gripper securely holds the toothed belt and the fixing screws allow controlled pretensioning and adjustment.

In addition to the Carriage, Hepco will supply the necessary belt and pulleys to complete the system. Belts are steel reinforced polyurethane, and have the high strength AT tooth profile. Bored drive pulleys with zero backlash AT profile teeth are available in one size to provide a useful driving ratio for most applications. Idler pulleys are plain without teeth and are supplied complete with fitted deep groove ball Bearings, ready to fit onto a shaft. Customers wishing to run the Carriage on a Flat Slide I must specify the counterbored Slide fixing hole option as the belt

would otherwise foul the heads of the screws.

Customers requiring a beam mounted Belt Driven Carriage with pulleys should consider the Hepco DLS Linear Transmission, which is a complete ready to mount positioning system including drive motor if required.

See Application Examples on 🛄 13, 14 & 16 of the GV3 catalogue 🗹

Ordering Details

AU BD 76 34..

58 58.4 2

Part Number AU = Assembled Carriage		
Carriage Length L = 200mm		
R = Removable Carriage Option Leave blank if not required* ⁶		
Lubrication Options <u>CS</u> = Cap Seals or <u>LB</u> for Lubricators		
Leave blank if not required		

244 | 344 | 228 | 328 | 12x4 |

Ordering Examples for Pulleys & Belts:

Teethed Drive Dulles
Toothed Drive Pulley
Toothed Drive Pulley f
Idler Pulley for 2
Idler Pulley for 2.
Drive Belt 20 mm wid
Drive Belt 25 mm wide

HepcoMotion.com

Ρ	Q	F	* ²	S	T	*4	U	V	*4
		P1	P2 & P3						
6.6	9	2.4	2.5	55	4xM6	5×M6	70	97	180
6.6	9	2.4	2.5	55	5×M6	5×M6	88	112	192
21.3	11.5	3.1	3.2	70	5×M8	5×M8	90	130	215
21.3	11.5	3.1	3.2	70	5×M8	5×M8	109	156	236
21.3	11.5	3.1	3.2	70	5xM8	5xM8	124	188	288

AUBD4434 L200 (R) (CS) (DR) (NS) (CHK) (T) + Slide Part Number

 \mathbf{T} = Tamper Proof option Leave blank if not required **CHK** = Controlled Height Bearings*3 Leave blank if not required **NS** = Nitrile Sealed Bearings Leave blank if not required **DR** = Double Row Bearings Leave blank if not required

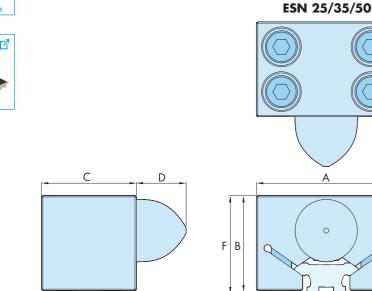
y for 20 mm wide AT5 belt with 27 teeth & 12 mm plain bore for 25 mm wide AT10 belt with 20 teeth & 15 mm plain bore 20 mm wide belt with fitted Bearings to run on 12 mm Ø shaft 25 mm wide belt with fitted Bearings to run on 15 mm Ø shaft de with AT5 tooth profile. **L2345** is the required length in mm e with AT10 tooth profile. **L3456** is the required length in mm

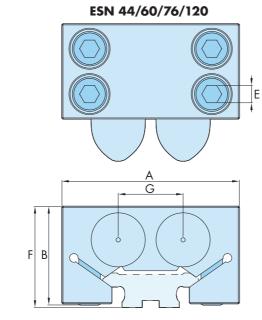
End Stops

CAD

GV3 Catalogue

Carriage


GV3 Catalogue



HepcoMotion End Stops provide a physical stop to the linear movement and impact protection should a system overrun. The conical buffer provides a controlled deceleration to the Carriage 🗹 to protect the system and payload.

End Stops are suitable for GV3 Spacer 🗹 and Flat Slides 🗹 from 25 to 120mm wide, and can be positioned anywhere along the length of a Slide, for maximum flexibility.

See Application Example on 🛄 11 of the GV3 catalogue 🗹

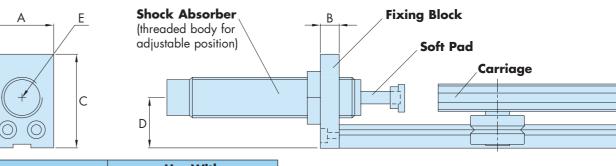
Doub	Use	With							
Part Number			A	В	с	D	E	F	G
ESN S25	N\$25	S25	56	38.6	38	19	6	39.5	-
ESN S35	N\$35	\$35	69	38.6	38	19	6	39.5	-
ESN S50	N\$50	\$50	84	38.6	38	19	6	39.5	-
ESN M44	NM44	M44	82	45.6	44	19	8	46.5	30
ESN M60	NM60	M60	100	45.6	44	19	8	46.5	44
ESN M76	NM76	M76	118	50.6	44	19	8	51.5	50
ESN L76	NL76	L76	122	67.6	48	40	10	68.5	50
ESN L120	NL120	L120	164	72.6	60	40	10	73.5	90

Part Number	Clamping Screw Torque (Nm)	Maximum Static Force (N)*1	Maximum Impact Energy (J)* ²	
ESN S25	23	1000	6]
ESN S35	23	1000	6	
ESN S50	23	1000	6]
ESN M44	47	2000	18	

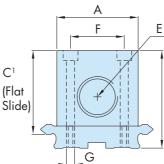
Part Number	Clamping Screw Torque (Nm)	Maximum Static Force (N)*1	Maximum Impact Energy (J)* ²
ESN M60	47	2000	18
ESN M76	47	2000	18
ESN L76	80	6000	36
ESN L120	80	6000	36

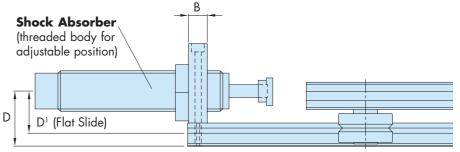
Ordering Details

ESN M44



Notes:


- Indicates maximum force that can be applied to the GV3 End Stop under gradual application.
- Indicates maximum energy that can be absorbed by the GV3 End Stop under sudden impact conditions. 2.
- 3 GV3 End Stops are intended for infrequent impacts. Please refer to 🛄 33 and the HepcoMotion SH Shock Absorber catalogue for units suitable for repeated impacts.
- To fit End Stop sizes ESNS25, ESNS35 and ESNS50 to non-counterbored GV3 Flat Slides 🗗, the End Stops must be fitted before the fixing screws for 4. mounting the Flat Slide


Shock Absorber Fixing Blocks

HepcoMotion SH Shock Absorbers are a cost effective means of significantly increasing the life of a GV3 system, by reducing stress on the internal elements and fixings, as well as by reducing wear on the Slide 🗹 in the crucial deceleration zone. Hepco Shock Absorbers will allow higher operating speeds to be achieved, reduce maintenance costs, lower noise levels, and enhance safety in the event of control system failure. Shock Absorber Fixing Blocks are supplied, ready assembled to the Spacer Slide, to provide a strong fixing capable of withstanding high deceleration forces. They are compatible with Standard 🗹, Removable and Slimline Carriages 🗹. Smaller sizes of Fixing Block (see table) are bolted directly to the end of the Slide whilst larger sizes are bolted to the top surface. The top surface mounting position is normally at the end of the Slide, as shown, but may be specified at any position. This may be useful in cases where a number of Carriages run on the same Slide. Top surface mounting Fixing Blocks can also be used with Flat Slides. In this case the Slide is supplied drilled clearance for the screws and it will be necessary for customers to provide tapped fixing holes in the mounting surface of their machine. Details of Shock Absorbers may be found in the Hepco SH Shock Absorber catalogue. They should be ordered separately, complete with the Soft Pad option.

riste o plasta	Use \	With					
Fixing Block Part Number		0	A	В	С	D	E
SHBS 35 20	NS 35	SH20	30	12	40	25.5	M20 x 1.5
SHBS 50 20	NS 50	SH20	40	15	45	26.1	M20 x 1.5
SHBS 50 25	NS 50	SH25	40	15	45	26.1	M25 x 1.5
SHBM 44 20	NM 44	SH20	40	15	50	31.4	M20 x 1.5
SHBM 44 25	NM 44	SH25	40	15	50	31.4	M25 x 1.5
SHBM 60 20	NM 60	SH20	44	15	50	32.7	M20 x 1.5
SHBM 60 25	NM 60	SH25	44	15	50	32.7	M25 x 1.5

	Use	With									
Fixing Block Part Number	17/1-1		Α	в	Max	(with I	P2/P3	Slide)	E	F	G
Full Nomber		000			С	C ¹	D	D ¹		•	Ŭ
SHBM 76 20	NM & M 76	SH20	55	15	65.2	56.5	33.3	24.5	M20 x 1.5	37	M8
SHBM 76 25	NM & M 76	SH25	55	15	65.2	56.5	33.3	24.5	M25 x 1.5	37	M8
SHBL 76 20	NL & L 76	SH20	55	15	73.7	59.5	49	34.7	M20 x 1.5	37	M8
SHBL 76 25	NL & L 76	SH25	55	15	73.7	59.5	49	34.7	M25 x 1.5	37	M8
SHBL 120 20	NL & L 120	SH20	90	15	73.7	59.5	50.7	36.4	M20 x 1.5	70	M8
SHBL 120 25	NL & L 120	SH25	90	15	73.7	59.5	50.7	36.4	M25 x 1.5	70	M8
SHBL 120 36	NL & L 120	SHA3625/3650	90	15	73.7	59.5	50.7	36.4	M36 x 1.5	70	M8

Ordering Details

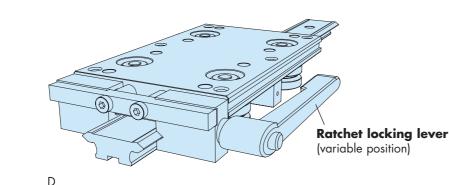
S	lid	е	Ρ	art	Ν	lum	b	er	_
---	-----	---	---	-----	---	-----	---	----	---

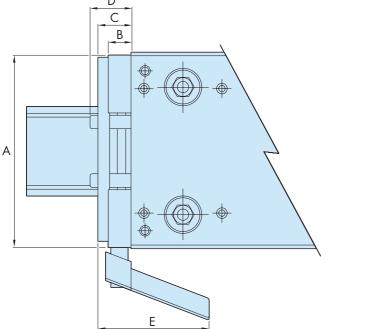
HepcoMotion.com

1 x SHBL12036

Fixing Block Part Number Quantity (1 x one end, 2 x = both ends)

Carriage Locking Device




G

CAD

The HepcoMotion Carriage Locking Device has been designed to provide a safe and simple method of manually locking a Standard Carriage 🗹 in position to facilitate processes where a secure, stationary platform is required. It is available factory assembled in Standard Carriage format only for sizes AU2525 and above.

	Use with									
Part Number		A	В	С	D	E	F	G	н	J
								lever disengaged		
BK 25 25	AU 25 25	78					33.5	37.0	28.0	
BK 35 25	AU 35 25	88	16	21.5	26.5	57	31.0	34.5	29.0	18.4
BK 50 25	AU 50 25	103					30.0	33.5	30.5	
BK 44 34	AU 44 34	116					51.5	55.0	35.0	
BK 60 34	AU 60 34	132	16	23.5	29.5	83	50.0	53.5	37.5	22.4
BK 76 34	AU 76 34	148					50.5	54.0	38.5	
BK 76 54	AU 76 54	164	20	22.5	41.5	105	53.0	57.0	54.0	24.0
BK 120 54	AU 120 54	208	20	33.5	41.5	105	47.5	51.5	58.0	34.9

Ordering Details

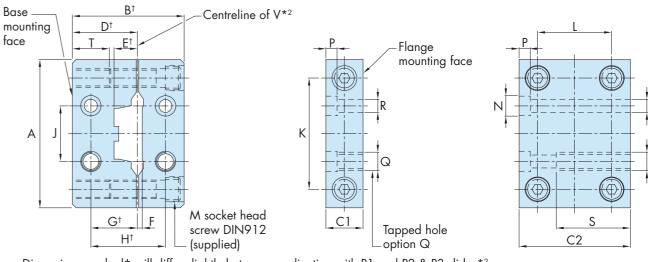
Llco With

AU2525 L180 (CS) (DR) BK2525 + Slide Part Number*1

Notes:

Due to the limited clearance between Locking Device components and the Slide Id, all Slides with Locking Devices must have counterbored holes.

Flange Clamps


HepcoMotion Flange Clamps enable Slides 🗹 to act as a self supporting elements of a machine. The Long Flange Clamp (type LFC) enables short lengths of Slide to be supported from one end only. Flange Clamps are fully machined from aluminium alloy and are supplied anodised.

Please refer to the Deflection of Self Supporting Slides calculations section on 🛄 33.

Assembly

Flange Clamps should be positioned proud of the ends of the Slide*1. Flange fixing screws should be located and slightly tightened, before clamping screws 'M' are fully tightened. Progressive tightening of each screw 'M' is recommended. Flange fixing screws may then be fully tightened.

See Application Examples on 🛄 12 & 16 of the GV3 catalogue 🗹

Dimensions marked[†] will differ slightly between application with P1 and P2 & P3 slides^{*2}

	Use With																					
Part Number* ³]=]]j	A	В	C1	C2	D *2	E *2	F	G	Н	J	К	L	Μ	Ν	Ρ	Q	R	S	Т	Weig	ght/g
	200									±0.2	±0.2										S FC	L FC
S/L FC 25	N\$25	60	55	15	55	30	10	1.8	20	35	20	45	35	M6x30	9.5	5	M8	6	35	17	120	405
S/L FC 35	N\$35	76	62	20	60	37	10	1.8	25	40	26	56	40	M8x35	11	6	M10	7	30	17	240	740
S/L FC 50	N\$50	86	62	20	60	37	10	1.8	26	42	32	66	40	M8x35	11	6	M10	7	30	17	260	770
S/L FC 44	NM44	80	60	20	60	35	12.5	2.5	25	40	30	60	40	M8x30	11	6	M10	7	40	20	220	630
S/L FC 60	NM60	100	62	25	75	37	12.5	2.5	27	42	40	78	50	M8x35	11	6	M10	7	40	17	370	1150
S/L FC M76	NM76	127	75	25	75	50	12.5	2.5	30	45	55	95	50	M10x40	14	8	M12	9	45	23	530	1780
S/L FC 76	NL76	120	75	25	75	45	19.5	4	30	50	55	95	50	M10x40	14	8	M12	9	45	23	500	1430
S/L FC 120	NL120	170	100	25	75	62.5	19.5	4	35	54	95	140	45	M12x50	17	11	M16	11	40	35	1050	2750

Ordering Details

Clamp Length

S = Short Type (use one at each end of Slide)

L = Long type (use for cantilever Slide mounting)

Notes:

- For mounting Slides 🗹 between opposing faces, Slides should be ordered 2 mm shorter than the required span. The drawings show dimensions from the centreline of the Slide 'V' when in the clamped condition. The figures quoted are valid for precision grades P2 & P3. For P1 Slides, dimensions D & E will be reduced by 0.2mm and dimensions B & H will be reduced by 0.4mm. The keyway register ensures 2 the Slide is located centrally
- 3
- 4. Standard drilled Flange Clamps will be reworked for customers requiring tapped hole option 'Q'.

HepcoMotion.com

Short Flange Clamp (SFC)

Long Flange Clamp (LFC)

Q = tapped hole option is required Leave blank for through hole fixing Part Number (60 = nominal Slide width in mm^{*3})

Flange Clamps are available to suit both the NM76 and NL76 Slides. For the NM76 compatible Flange Clamp, please state S/L FC M76 as per table.

CAD

Controlled Height Bearings - CHK

CAD

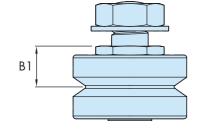
kg

Mass

HepcoMotion Controlled Height Bearings (CHK) are designed to minimise the variation in the 'V' height of Standard Bearings 🗹. This is desirable in high precision applications, and in Carriages 🗹 using Double Row type Bearings.

Controlled Height (CHK) Bearings are available in five incremental ±0.010mm bands, spanning a total of ±0.050mm in respect of the B1 dimension. They are supplied in sets of up 50 parts as standard, with larger sets on request.

CHK Bearings of differing bands should not be mixed in any Carriage assembly. In applications with multiple Carriages, it is recommended that Bearings with adjacent tolerance bands are used in Carriages that will be assembled next to each other.


To aid identification, Bearings are supplied with a colour coded mark located in the hexagon recess on the underside of the Bearing, as shown below.

₫

GV3 Catalo

P

Identification Colours:

Orange

Red

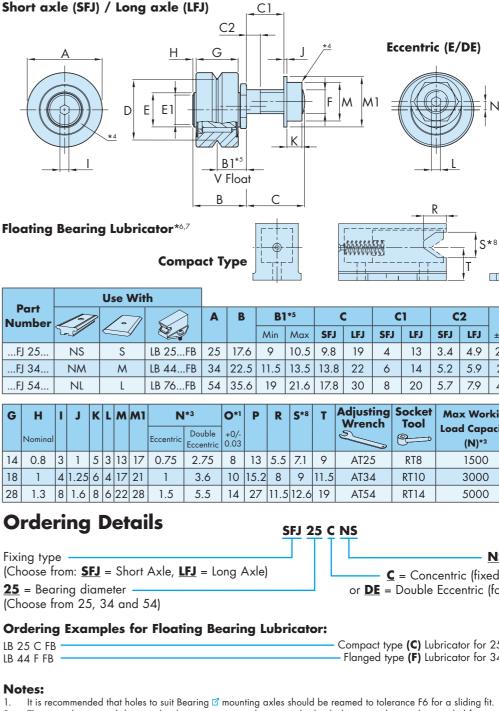
Green

Blue

Identification	B1 Tole	erance
Colour	Band	B1
Red	Α	-0.05
Kea	A	-0.03
0	р	-0.03
Orange	В	-0.01
Yellow	С	-0.01
Tellow		+0.01
Green	D	+0.01
Green		+0.03
Blue	F	+0.03
Bille	Ē	+0.05

Yellow

Ordering Details^{*1}


Notes:

A set of Bearings will be supplied within a single band. Bearings within a specific band are available on request.

Floating Bearings

HepcoMotion Floating Bearings are designed to provide axial movement (float) of the 'V' position; this is especially useful where 'V' Slides I' are mounted in parallel. The axial movement compensates for parallelism tolerances between the opposing V's, reducing the potential of additional loading and helping to maintain a consistent running quality. Floating Bearings are available in three basic sizes to work easily with the GV3 range. They are available in two axle lengths covering most thicknesses of Carriage 🗹 or mounting plate, the short axle version being compatible with Hepco Carriage Plates. Both versions are available in Concentric type (C), which are fixed providing a datum (in radial direction) for the system, Eccentric (E) and Double Eccentric type (DE) to enable system adjustment, with the DE version

having sufficient stroke to permit disengagement from the Slide. For more information, or to suit a specific application, please contact Hepco's Technical Department.

- 2. The quoted static and dynamic load capacities use industry standard calculations and are only provided for comparison with other systems. Please use the Load/Life Calculation methods from the main GV3 catalogue 🗹 In all cases, Hepco Floating Bearings will have a life equal to or greater than the corresponding size of Double Row Standard Bearings. Floating Bearings are not designed to be axially loaded. 3. The 'N' dimension is the eccentric offset.
- Fastenings are chemically blacked on the concentric version and bright zinc plated on the eccentric versions for identification purposes. Δ
- The variation in the 'B1' dimension is the min/max axial movement of the 'V' centre also referred to as 'V float'. 5.
- Two machine screws with cross-recessed pan heads to DIN7985A are supplied for fixing the flanged type Floating Bearing Lubricator. Additionally, two 6.
- Lubrication interval depends on length of stroke, duty and environmental factors. Replenish lubricant as necessary using a 68 viscosity EP mineral oil 7
 - 8 Dimension S accomodates the 'V' float of the Floating Bearings.

HepcoMotion.com

Concentric (C)

Flange Type

C		C	1	C	2	D	E	E1	F
	LFJ	SFJ	LFJ	SFJ	LFJ	±0.025			Metric Fine
	19	4	13	3.4	4.9	20.27	11.5	10	M8 x 1
3	22	6	14	5.2	5.9	27.13	16	12	M10 x 1.25
;	30	8	20	5.7	7.9	41.76	28	25	M14 x 1.5

Adjusting Wrench	Socket Tool		Bearing Radial Load Capacities (N)*2					
	@	Load Capacity (N)* ²	Static (Co)	Dynamic (C)				
AT25	RT8	1500	6100	4900				
AT34	RT10	3000	12500	11500				
AT54	RT14	5000	28900	21500				

NS = Nitrile Sealed Bearings $\mathbf{\underline{C}}$ = Concentric (fixed), $\mathbf{\underline{E}}$ = Eccentric (adjustable) or **DE** = Double Eccentric (for disengagement purposes)

Compact type (C) Lubricator for 25mm diameter Floating Bearing Flanged type (F) Lubricator for 34mm diameter Floating Bearing

self-tapping screws for plastic with PT thread form and cross-recessed pan heads are supplied for compact type Lubricators 🗹.

GV3 Catalogue
+ - X ÷
Load/Life Calculations

Vacuum & High Temperature Bearings

Concentric (C)*³

Low Temperature Bearings

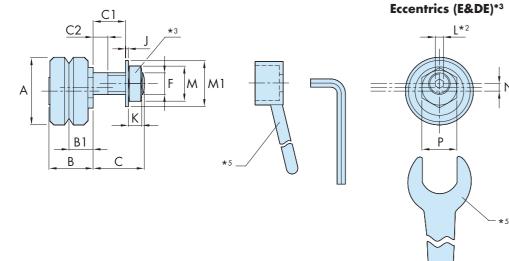
kg

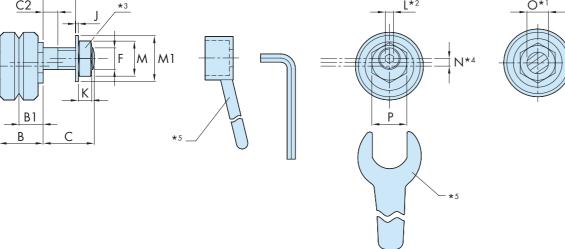
Mass 20-23

GV3 Catalogue

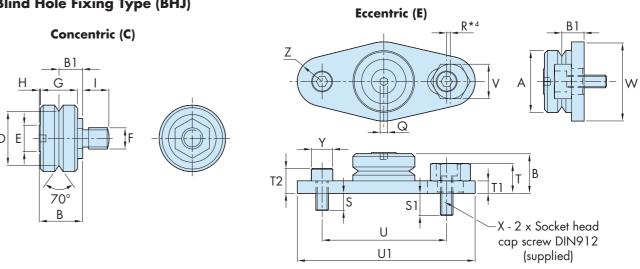
HepcoMotion Vacuum & Extreme Temperature Bearings 🗹 and Track Rollers 🗹 are designed for extreme environments. They are available in sizes from 18mm to 54mm in diameter, with a broad range of fixing styles, and with load capacities from 180N to 4,200N.

Hepco VACSS Vacuum & High Temperature Bearings are made entirely from stainless steel parts and are lubricated internally for life using Krytox LVP grease. They are suitable for use in high vacuums, at temperatures from -15°C to +210°C, and in the presence of oxygen. They are widely used in applications including semiconductor wafer manufacture, aerospace components, vapour deposition processes, LCD panel and plasma display manufacture and in vacuum evaporation equipment. The Bearings have the same dimensions as GV3 Standard Bearings ☑.


TheJ18... VACSS Bearings have a different construction to the larger sizes, using a one piece outer wheel into which two smaller Bearings are fitted. This size is not available in the low temperature LTSS version.


These Bearings can be supplied with alternative grease, without grease or without shields, on request.

Through Fixing Type (SJ/LJ)



Hepco LTSS Low Temperature Bearings 🗹 are lubricated internally for life using AeroShell Grease 22, which is suitable for use at temperatures from -50°C to +150°C. This lubricant enables use in much colder conditions than the VACSS Bearings, for applications such as cold stores and specialised freeze dry equipment.

Through Hole Fixing type is available in two axle lengths covering most thicknesses of mounting plate. Both are available in Concentric type (C) which are fixed, Eccentric type (E), adjustable, and Double Eccentric type (DE), which have sufficient adjustment to enable a Carriage 🗹 to be disengaged from the Slide 🗹.

Blind Hole Fixing type (BHJ) allows mounting into a solid machine base where through mounting holes are not possible, or where the thickness of the mounting plate is too great. The Blind Hole Fixing type is also useful where adjustment from the front is preferred or where access to the opposite side of the mounting hole is restricted. They are available in the fixed position Concentric type (C) and adjustable Eccentric type (E).

Blind Hole Fixing Type (BHJ)

Part	A	В	B1	(C	C	1	C	2	D	E	F	G	н	I	J	К	L	Μ	M1	N	*4	O *1	Р
Number				SJ	IJ	SJ	LJ	SJ	LJ	±0.025		Metric Fine									Е	DE	+0.0 -0.03	
J 18	18	12.4	6.75	7.4	14	3.4	10	2.4	2.5	14.00	7	M6 x 0.75	10	0.6	7.4	0.8	3.2	2.5	10	13	0.7	2.6	6	11
J 25	25	16.6	9	9.8	19	3.8	13	2.2	4.9	20.27	10	M8 x 1	14	0.5	9.8	1	5	3	13	17	0.75	2.75	8	13
J 34	34	21.3	11.5	13.8	22	6.6	14.8	5.2	5.9	27.13	12	M10 x 1.25	18	0.7	13.8	1.25	6	4	17	21	1	3.6	10	15
J 54	54	34.7	19	17.8	30	8.2	20.4	5.7	7.9	41.76	25	M14 x 1.5	28	1.6	17.8	1.6	8	6	22	28	1.5	5.5	14	27

Part	Q		R *4	S	S 1	Т	TI	T2	U	Ul	V	W	X	Y	Z	Adjusting	Socket	Max \	Norking Loc	ıd Capacitie	s (N)*6	Basic L	ife* ⁶
Numbe	r															Wrench*5	Tool*5	Lubri	cated	Dı	y		
Nombe									±0.1								9	Axial	Radial	Axial	Radial	Lubricated	Dry
J 18	2	2	1.2	8	10.5	10	4	8	38	54	11	24.5	M4	7	7	AT18	RT6	60	180	36	72	80	50
J 25	3	3	1.5	7	9	12	5	10	50	72	14	32	M5	8.5	10	AT25	RT8	240	450	80	160	50	70
J 34	4	1	2.0	9.5	8.5	17.5	6.5	12.5	60	90.5	17	42	M6	10	14	AT34	RT10	520	900	160	320	100	100
J 54	8	3	3.0	14.5	16.4	23.5	10.5	18.5	89.5	133	25	62	M8	13	20	AT54	RT14	1350	2400	360	720	250	150

Notes:

It is recommended that holes to suit Bearing 🗹 mounting axles should be reamed to tolerance F6 for a sliding fit.

- Eccentric Bearing fixing axles are supplied with hexagon sockets for adjustment as shown.
- Nuts and washers are supplied with both concentric and eccentric SJ/LJ type Bearings. 3.
- 'N' is the eccentric offset due to the eccentric design (2 x N = total stroke). R dimension is both the eccentric offset of the adjusting nut and total stroke Δ at the Bearing centreline
- 5. For adjusting tool part numbers see table. For adjustment procedure and fixing nut tightening torques 🛄 3.

To calculate the load capacity and life of systems using these Bearings, please use the methods shown in the Load/Life Calculations section of the GV3 6 catalogue 🗹.

Ordering Details

VAC SS SJ 25 C

Bearing Type Choose from: VAC = Vacuum & High Temperature or **LT** = Low Temperature

SS = Stainless steel

Fixing type

Choose from: SJ = Short Axle, LJ = Long Axle & **BHJ** = Blind Hole Fixing

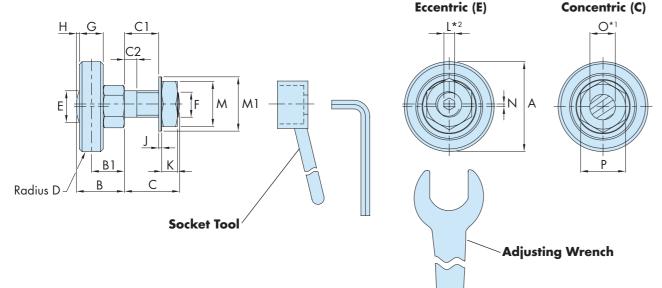
HepcoMotion.com

Journal type: **C** = Concentric (fixed) **E** = Eccentric (adjustable) or **DE** = Double Eccentric (adjustable SJ/LJ only) **<u>25</u>** = Bearing Diameter in mm (Size 18 not available as LT grade)

Vacuum & Extreme Temperature Track Rollers

HepcoMotion.com

Vacuum & High Temperature and Low Temperature Track Rollers 🗹 are available as fixed position Concentric type (C) and adjustable Eccentric type (E) on through hole fixing axles. They are available with 25mm, 34mm or 54mm diameters, and load capacities up to 4,200N. Track Rollers can be run with any suitable Flat Track 🗹, or can be used as cam followers. Materials and greases are the same as are used on the VACSS Vacuum & High Temperature and LTSS Low Temperature 'V' Bearings shown on the previous pages.



CAD

Part Number	A	В	B1	с	Cl	C2	D	E	F Metric Fine	G	н	J	К
LRN 25	25	14.5	10	19	13	5	500	10	M8x1	7	1	1	5
LRN 34	34	18.2	12.5	22	14.8	6	500	12	M10x1.25	9	1.2	1.25	6
LRN 54	54	29.5	21	30	20.4	8	500	23.5	M14x1.5	14	1.4	1.6	8

Part Number	L*2	м	MI	N	O *1	P	Adjusting Wrench	Tool	Tool Max Working Load Capacity*4			
					+0 -0.03		S		loud capacity	Co	С	
LRN 25	3	13	17	0.75	8	13	AT25	RT8	800	1092	2632	
LRN 34	4	17	21	1	10	15	AT34	RT10	1400	1905	4078	
LRN 54	6	22	28	1.5	14	27	AT54	RT14	4200	5319	10965	

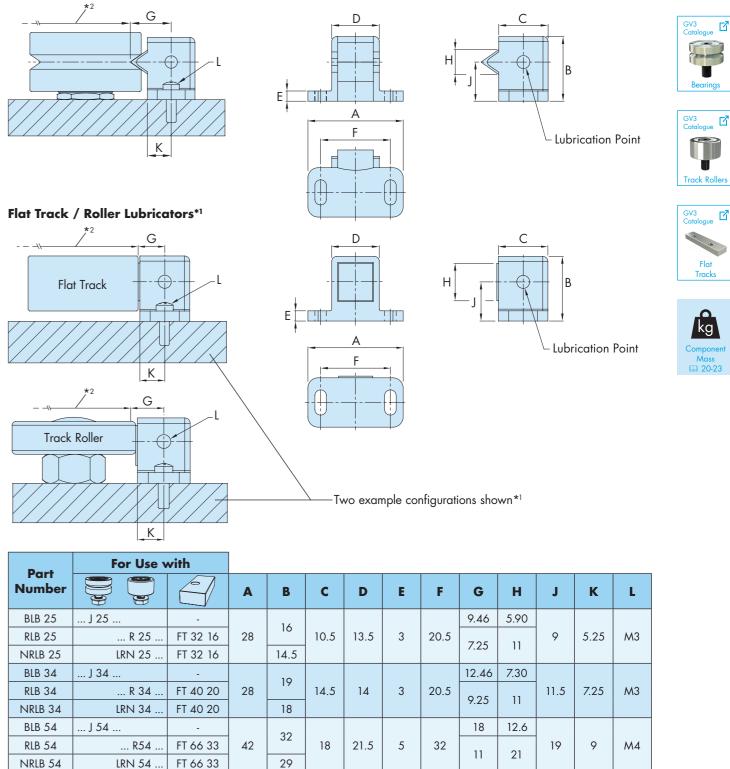
Ordering Details

Bearing Type Choose from: **VAC** = Vacuum & High Temperature or **LT** = Low Temperature

<u>SS</u> = Stainless steel

VAC SS LRN25 C

 $\underline{\mathbf{C}}$ = Concentric (fixed) or $\underline{\mathbf{E}}$ = Eccentric (Adjustable) LRN = Indicates a Track Roller, 25 denotes the diameter in mm


Notes:

- It is recommended that holes to suit Track Roller 🗹 mounting axles should be reamed to tolerance F6 for a sliding fit.
- Eccentric Track Roller fixing axles are supplied with hexagon sockets for adjustment as shown. 2.
- The quoted static and dynamic load capacities are based on industry standard calculations. These do not accurately reflect system performance, and 3 are only provided for comparison with other systems.
- 4 To calculate the load capacity and life of systems using these Rollers, please use the methods provided in the Load/Life Calculations section of the GV3 catalogue 🗹.

Bearing Lubricators & Flat Track / Roller Lubricators

HepcoMotion Bearing Lubricators & Flat Track / Roller Lubricators*1 provide a simple and versatile means of applying lubricant to a system, and consist of a plastic housing incorporating a sprung loaded oil impregnated felt wiper. Bearing Lubricators are an alternative to Slide Lubricators 🗹 for lubricating 'V' Slide Systems with Standard Bearings 🗹.

Bearing Lubricator

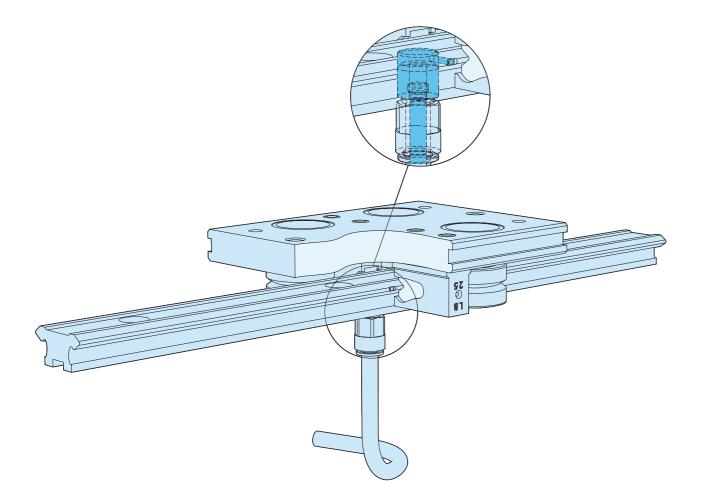
Ordering Details

Notes:

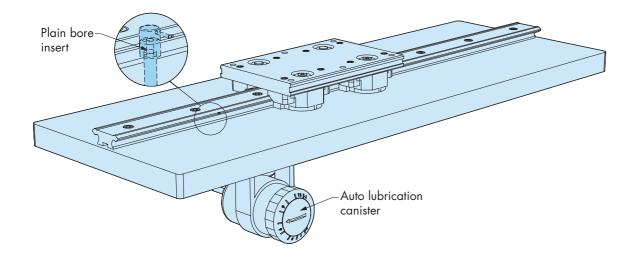
- 1. Wide Track Roller Lubricators can be used with both Wide Track Rollers 🗹 and Flat Tracks 🗹. Narrow Track Roller Lubricators can be used with both Narrow Track Rollers and Flat Tracks.
- 2. For drilling centres, see Data & Dimensions for Assembled Systems section 🛄 14-19.

D	E	F	G	н	J	к	L
			9.46	5.90			
13.5	3	20.5	7.25	11	9	5.25	M3
			12.46	7.30			
14	3	20.5	9.25	11	11.5	7.25	M3
			18	12.6			
21.5	5	32	11	21	19	9	M4

BLB 34

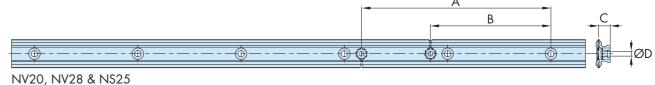

Bleed Lubrication

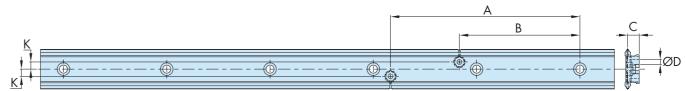
The HepcoMotion Bleed Lubrication facility enables a constant flow of lubricant to be channelled directly to the 'V' surfaces of the Slide 🗹. The lubricant is picked up and distributed by the Bearings 🗹 whilst traversing the Slide. Lubricant distribution can be facilitated further by also fitting Hepco Cap Seals Z / Wipers Z or Lubricators Z, which will be continuously charged with fresh lubricant and ensure an even spread over the working surfaces.

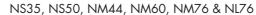

As the lubricant is provided via the Slide rather than the Lubricators or Cap Seals, the number of lubrication devices fitted to each Carriage 🗹 can be reduced within a system. It is recommended that one in four Carriages is fitted with Lubricators or Cap Seals in any system using bleed lubrication. This will reduce friction and running costs.

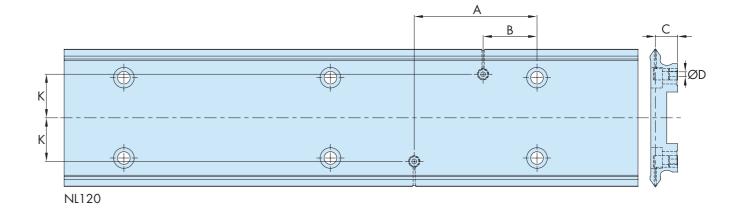
Inserts are available with either an M5 thread or 4mm diameter bore with O-ring seal.

Connection can be made to a centralised lubrication system, pressure feed canister or an oil dispensing pump and controller, which can be programmed to meter a set dose of lubricant according to the distance travelled by the Carriage.

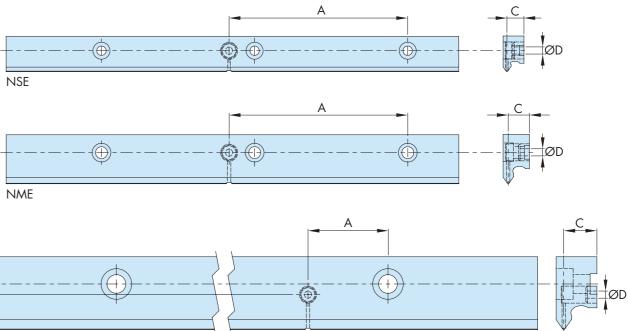


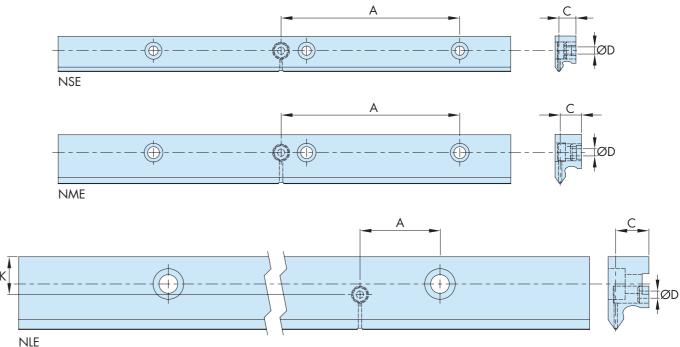

Below is an example of how the bleed lubrication facility can be incorporated into a typical application:

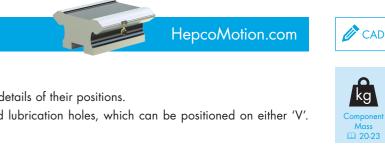



Double Edge Slides

Slides with dual bleed lubrication holes are shown below with details of their positions. The Double Edge Slides 🗹 are also available with single bleed lubrication holes, which can be positioned on either 'V'. Please specify at the time of ordering.

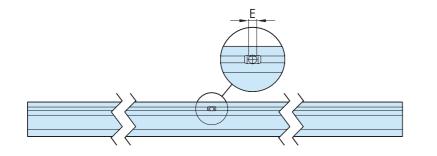




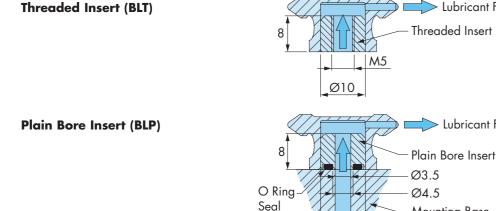


Single Edge Slides

Single Edge Slides 🗹 are also available with the bleed lubrication facility. Details of their positions are shown below.



Bleed Lubrication Inserts


Male Stud Connectors

The plain bore insert has an O-ring seal between the mounting base and the Slide 🗹 to stop lubricant escaping. The threaded version has an M5 male stud fitting through which the lubricant is pumped. Please refer to the diagrams below. For more information please contact Hepco's technical department.

Lubricant Flow

Lubricant Flow

Mounting Base

Straight Connector 90° Connector Ø8 5 To suit 4mm OD Nylon 18.5 or Polyurethane tube 16.5 17 8 AF M5

Ø10

The tube used with the standard male stud fitting is 4mm diameter nylon or polyurethane tube. Alternative sizes of male stud fittings and tube are available on request. Please contact Hepco's technical department for more information.

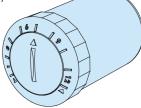
Slide Part Number	For Use With	A *1,2	B *1,2	С	D *3	ØE	К
NMS12				Bleed lubrico	ation unavailable		
NV20		435	375	8	M5 / Ø3.5	1.5	-
NV28		435	375	8	M5 / Ø3.5	1.5	-
N\$25		435	375	10	M5 / Ø3.5	1.5	-
N\$35	-	435	375	10	M5 / Ø3.5	1.5	6.25
N\$50		435	375	10	M5 / Ø3.5	1.5	12
NM44		435	375	12.5	M5 / Ø3.5	1.5	6.25
NM60		435	375	12.5	M5 / Ø3.5	2.0	13
NM76		435	375	12.5	M5 / Ø3.5	2.0	17.5
NL76		330	210	19.5	M5 / Ø3.5	2.0	18
NL120		330	210	19.5	M5 / Ø3.5	2.0	38
NMSE							
NVE				Bleed IUDrico	ation unavailable		
NSE		375*4	-	10	M5 / Ø3.5	1.5	-
NME	2ml	375*4	-	12.5	M5 / Ø3.5	2.0	-
NLE		390*4	-	19.5	M5 / Ø3.5	2.0	22.25

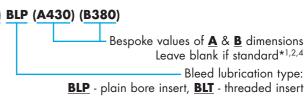
Auto Lubrication Canister

This can be set to dispense the lubricant to the Slide 🗹 at regular intervals and can be adjusted, depending on the application. Please specify at the time of ordering, if required.

Ordering Deta	ils
Ŭ	NS35 L1290 P1 (C15) (D15)
Slide Part Number	
Ordering Example:	
1 x NME L2336 P2 BLP A 1 x NME L2336 P2 BLP A	0 0 1

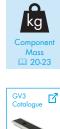

For Straight Male Stud Connectors use	31010419
---------------------------------------	----------


For 90° Male Stud Connectors use 31990419


Notes:

- Dimensions A and B are distances from the centre of the mounting hole positioned nearest to the right-hand end of the Slide. Custom position bleed holes can be specified, but cannot be located more than 600mm from the end of the Slide. Mounting holes should be avoided.
- 2
- 3. Depends on whether a plain or threaded insert is used.
- 4. bleed hole position dimension A to reflect this. This is shown in the ordering example above.

HepcoMotion.com



le, 2336mm long, P2 grade, with custom hole position A le, 2336mm long, P2 grade, with custom hole position A

he ordering details below if required.

To order a symmetrical pair of Single Edge Spacer Slides with Bleed Lubrication, one of the Slides should be an opposite handed version, with an adjusted

Side Access Adjustment (SAA)

GV3 Catalogue

D D

Standard Carriages

Hepco's Side Access Adjustment offers an alternate method of Bearing 🗹 adjustment, available as an option for size Ø25, Ø34 and Ø54 standard Bearings. It is advantageous in applications where access required to adjust standard eccentric or double eccentric Bearings is limited.

SAA also provides sufficient Bearing displacement to enable a Carriage 🗹 to be removed from a system without the need to disassemble or run the Carriage off the end of the Slide 🗹.

Adjustment is made via two hexagon screws located in the side of the Carriage plate. Any fixings or customer mounted mechanisms need not be removed from the Carriage.

GV3 Catalogue P Standard Bearings

GV3 Catalogue

Slides

Ø Journal Hex

Bearina

Ø

25

34

54

Journal Hex

A/F (mm)

19

25

37

27

37

27

Adjusting Screw B

Screw A Adjustment

Screw B

2

2.5

3

Travel

(mm)

4

4.5

6.5

Hex Key A/F (mm)

Screw A

3

3

Δ

~		
	Screw B Adjustment	
_		-

Trave

HepcoMotion.com

Setting Procedure

Adjusting Screw A

Carriage Plate

Part Number

AU 25 25 ... SAA AU 35 25 ... SAA

AU 50 25 ... SAA AU 44 34 ... SAA AU 60 34 ... SAA

AU 76 34 ... SAA

AU 76 54 ... SAA

AU 120 54 ... SAA

AU 76 54 ... SAA TTR

AU 120 54 ... SAA TTR

Step 1

Using hex keys (as per the table above), check that Screws A and B are disengaged (but not removed).

Rotate the journal hex to ensure that the Bearing is loose, and then re-tighten to approximately 50% of the tightening torque specified on 🛄 3, to remove any play between the Bearing and Carriage plate.

Step 2

Adjust the Bearing towards the Slide, by rotating Screw A clockwise, until the desired pre-load is achieved. Pre-load can be repeatedly checked by rotating the Bearing between the forefinger and thumb whilst keeping the Carriage stationary on the Slide, so that the Bearing skids against the Slide Vee. A degree of resistance should be felt but the Bearing should rotate without difficulty.

If the level of pre-load needs to be reduced, loosen Screw A by rotating it anticlockwise, then move the Bearing away from the Slide by rotating Screw B clockwise. Repeat Step 2 until the desired pre-load is achieved.

Step 3

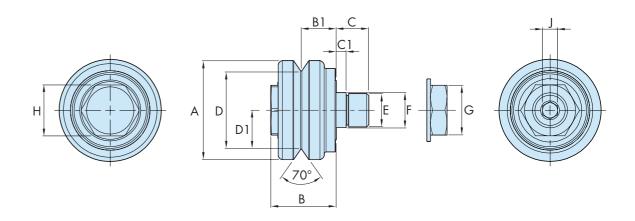
Tighten Adjusting Screw B (by rotating the screw clockwise) to lock the position of the Bearing.

When both SAA type Bearings on the Carriage have been adjusted and set, fully tighten the journal hexes to the recommended torque settings on \square 3.

Ordering Details*1

AU4434 L180 (LB) (DR) (NS) (CHK) SAA + Slide Part Number

Example:


Notes:

1. Cap Seals 🗹 and Slide Lubricators 🗹 are incompatible with Side Access Adjustment. Bearing Lubricators must be used where system lubrication is required.

Twin Taper Roller Bearing

For applications requiring load capacity or system life that exceeds the standard GV3 Bearing 🗹 range, a Twin Taper Roller Bearing is available in size Ø54 format. The Twin Taper Roller Bearing also offers increased rigidity. When incorporated into Hepco Carriage 🗹 assemblies, Twin Taper Roller Bearings must be used in combination with Side Access Adjustment (SAA) (see 🛄 46).

Twin Taper Roller Bearings are greased for life internally, with nitrile seals providing a high degree of sealing against ingress of water or debris. Customers are strongly recommended to provide lubrication to the interface between Bearings and Slide 🗹 by specifying Hepco Bearing Lubricators (see 🛄 41). Lubrication greatly increases load capacity and life.

Part	Α	В	B1	С	C1	D	D1	E	F	G *1	H *1	J
Number								Metric Fine	+0.00 / -0.03	A/F	A/F	A/F
SJ 54 TTR C NS	54	35.7	19	18.5	4.9	41.76	20.88	M18 x 1.5	19	27	27	8

Part	Max W	/orking	Static (Co) o	: (C) Load Ca	Basic Life			
Number	Load Capacities ^{*2} Radial Loads Axial Loads					Loads		
Number	Radial, LR(max)	Axial, LA(max)	Co	С	Co	С	(km)*²	
SJ 54 TTR C NS	8000	3800	46800	44400	34036	21206	1150	

Calculating Carriage or Individual Twin Taper Roller Bearing Life

To calculate the life of systems using these Bearings, please use the methods shown in the Load/Life Calculations section of the GV3 catalogue Z and the equation below, which is specifically for twin taper roller bearings. The value for Basic Life is taken from the table above.

Lubricated Life (km) = -

(Use this calculation for SJ54TTRNS bearings only.)

Orderina Details

Twin taper Roller Bearings can be purchased as individual components or ordered as part of a Carriage assembly:

SJ 54 TTR C NS

Bearing part number

AU7654 L200 (LB) SAA TTR + Slide Part Number

Carriage assembly part number

Refer to GV3 catalogue d for key dimensions.

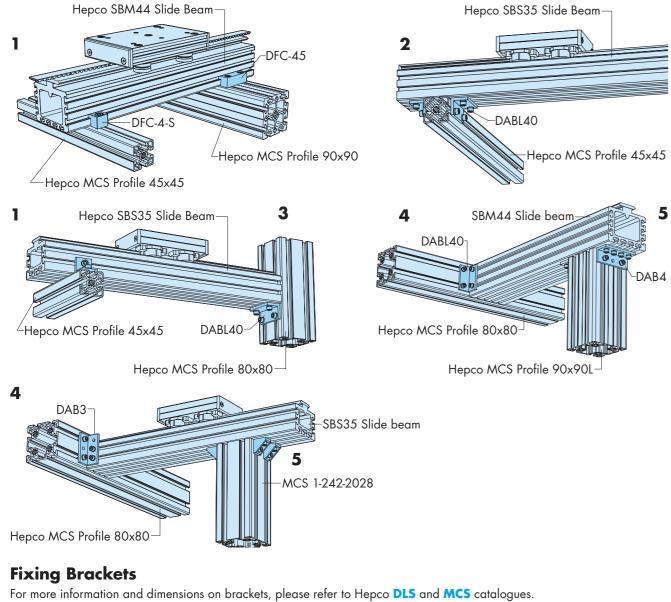
Options are: AU7654 L200, AU7654 L300, AU7654 L400, AU12054 L240, AU12054 L360 and AU12054 L480

Notes:

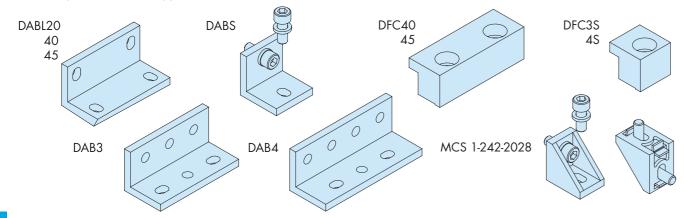
- 27mm A/F adjusting wrench is available from Hepco. Please order part number AT54. Recommended tightening torque is 110Nm.
- 2. Stated working load capacities and basic life are relevant to GV3 slide systems only

HepcoMotion.com

Lubrication option LB for Bearing Lubricators



MCS-GV3 Connectivity - Fixing Brackets


There are five basic types of junction when attaching GV3 Slide Beams ^I to a framework system. These are shown in the illustrations below.

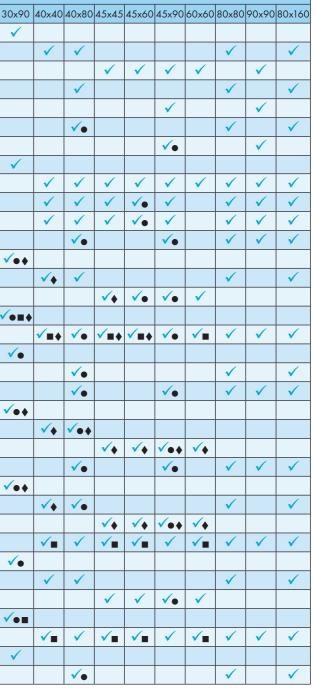
There are three basic types of Fixing Bracket, in several sizes, available for connecting Slide Beam units to a framework system. Hepco Fixing Brackets are also suitable for attaching Slide Beam units to corresponding sizes of profile supplied by most other framework system manufacturers. Simply check that the T-slot opening and T-slot centres correspond with **Hepco MCS** and use the manufacturers T nuts with required thread size. The screw length may need adjusting.

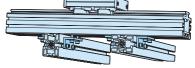
To determine the possible combinations of Fixing Bracket and Slide Beam units for the required junctions, refer to the table opposite. For detailed information on relevant Hepco products, please contact Hepco.

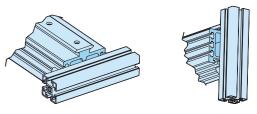
All brackets have holes and slots with clearance for M6 screws, unless otherwise stated. (Screws specified but not supplied: refer to table.)

		Part Nun	· · ·						
Joint	Beam	Bracket	Attach bracke MCS Pre	+ +0	Attack brack Slide B				
	Туре		T-Nut	Screw			30x30	30x60	:
		DFC-3-S	1-242-1026	M6x22			√	\checkmark	
		DFC-4-S	1 0 40 1000	M8x22	-				Γ
			1-242-1002	M8x25	NONE	NONE			Τ
	SBS	DFC-40	1-242-1002	M8x22					
1	&	DFC-45	1-242-1002	M8x25					
	SBM	DABL-40	1-242-1001	M6x16					
		DABL-45	1-242-1001	M6x16	DTNIONA				Γ
		DARG	1-242-1026	M6x12	rtn8m6	Moxio	\checkmark	\checkmark	T
		DAB-S	1-242-1001	M6x16					Γ
2	SBS	DABL-40	1.0.40.1001		DTNIOLU				T
	SBM	2xDABL20	1-242-1001	Moxio	KIN8MO	Moxio			Γ
	CDC	DAB3	1-242-1001	M6x16					T
			1-242-1026	M6x12			<	√ •♦	T
	SBS	1-242-2028	1-242-1001	M6x12					t
			1-242-1001	M6x16	DT. IO. I				T
3	SBM	2424	1-242-1026	M6x12	KIIN8MO	M6x16	✓∎♦	√ •∎♦	1
		DAB4	1-242-1001	M6x16					T
		1.0.00000	1-242-1026	M6x12					t
		1-242-2028	1-242-1001	M6x12					t
		DAB3	1-242-1001	M6x16					Ť
			1-242-1026	M6x12			<	√ •♦	T
	SBS	1-242-2028	1-242-1001	M6x12					T
			1-242-1001	M6x16					T
4		DAB3	1-242-1001	M6x16	rtn8m6	Moxio			T
	CDU		1-242-1026	M6x12			<	√ •♦	T
	SBM	1-242-2028	1-242-1001	M6x12					T
			1-242-1001	M6x16					T
		DAB3	1-242-1001	M6x16					T
	CDC		1-242-1026	M6x12			\checkmark	. ✓•	T
	SBS	1-242-2028	1-242-1001	M6x12					T
-			1-242-1001	M6x16	DT. IO. I				T
5		DADA	1-242-1026	M6x12	rtn8m6	M6x16	✓∎	✓₀∎	Ť
		DAB4	1-242-1001	M6x16					T
	SBM	10/00000	1-242-1026	M6x12					t
		1-242-2028	1-242-1001	M6v12					T

The joint is possible but the bracket is wider than the MCS section






MCS Profile

✓ The joint is possible for only one orientation of the MCS section

 \checkmark Joint is possible but the hollow in the SB is partially exposed.

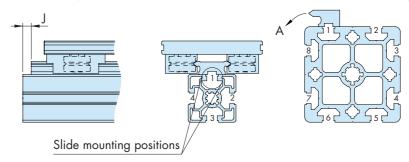
MCS-GV3 Connectivity - Slides

T-Nut Strip provides location of Spacer Slide 🗹 and retention of fixing screw position in the event of disassembly.

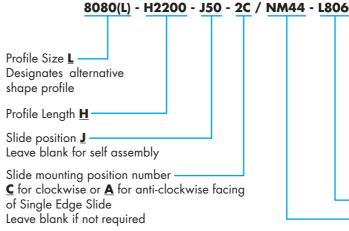
Compatibility Table - GV3 Spacer Slides 🗹 with MCS Profiles

RJ		Sli		art N	lumb	er			
		1-10	ISTA FIN				Rack Driven Carriage	Belt Drive Carriage	
	<u>کا</u>		4	UUUU	/	4	Rack Driven Carriage Availability* ²	Belt Drive Carriage Availability*2	
Width	Height	5.2		~~		61			
00	00	NV 20					+1		
20 20 40	20 40	NV 28	NV	20	R		*1		
	20	149 20	NV	28	R		*1		
						NVE	-		
		NV 28							
			NV	28	R	NVE	*]		
30	30	NS 25				INVE			
30	60	110 20	NS	25	R		*1		
30	90	NS 35						\checkmark	
60	30		NS	35	R		*1		
90	30	NM 44				NSE			
		11/01/44	NM	44	R		✓	•	
						NME			
		NV 28							
	40 80 40 80 160 80		NV	28	R		*1		
		NS 25	NS	25	R		*]		
		NS 35	145	25	K			✓	
40			NS	35	R		*]		
40 80		NS 50						✓	
80			NS	50	R	NICE.	*1		
80		NM 44				NSE		\checkmark	
160		19/01 44	NM	44	R		✓		
		NM 60						\checkmark	
			NM	60	R		\checkmark		
						NME NLE*4			
		NM 76*3				INLE ***		\checkmark	
			NM	76	R*3		✓		
160	80	NL 76* ^{3,4}							
			NL	76	R* ^{3,4}		\checkmark		
		NV 28	N IV C	00	D		*]		
		NS 25	NV	28	R		~[
		140 20	NS	25	R		*]		
45	45	NS 35						\checkmark	
45 45	43 60		NS	35	R		*1		
45	90	NS 50	NIC	50	P		*]	✓	
60	45		NS	50	R	NSE			
60 90	60 90	NM 44						✓	
90	90		NM	44	R		\checkmark		
		NM 60		10	6			✓	
			NM	60	R	NME	\checkmark		
						NLE*4			
		NM 76						\checkmark	
60	45		NM	76	R		\checkmark		
60	60	NL 76*4			D				
			NL	76	R*4		\checkmark		

1.	Hepco I	Rack Driven	Carriages 🗹	not available but	customers may	construct thei	r own using GV3 Pinions 🗹.


All types of Carriage with the exception of some sizes of Rack 🗹 and Belt Driven Carriages are available to suit all sizes of Double Edge Spacer Slides 🗹. NM76 & NL76 Spacer Slides can only be attached to the two centre most positions of the 160mm wide face of the 80 x 160 profile

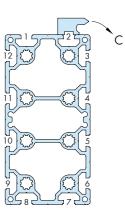
Slide hole centres and fixing screw sizes and types will vary from those specified in the GV3 catalogue. 4


Compatibility Table - GV3 Flat Slides 🗹 with MCS Profiles

		Slide Part No								Belt Driven Carriage Availability* ²
Width	Height			Ĵ				Ý		
20	20	V	28	\checkmark	P3	P3	\checkmark	P3	\checkmark	
20	40	S	35	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
30 30	30 60	м	44	\checkmark	✓	P3	 ✓ 	✓	~	\checkmark
30	90	S	50	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark	\checkmark
60	30	Μ	76	✓	✓	✓	✓	✓	\checkmark	\checkmark
90	30	L	120*4	P3	P3	P3	P3	P3	P3	
40	20	S	50	✓	✓	P3	✓	P3	\checkmark	\checkmark
	40 80	S	50	\checkmark	 Image: A set of the set of the	P3	\checkmark	P3	\checkmark	\checkmark
40		Μ	60	\checkmark	 ✓ 	\checkmark	✓	 ✓ 	\checkmark	\checkmark
40		Μ	76	\checkmark	\checkmark	\checkmark	✓	 ✓ 	\checkmark	\checkmark
		L	76*4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
45	45 60	Μ	60	\checkmark	\checkmark	~	\checkmark	\checkmark	>	~
45		Μ	76	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
45	90	L	76*4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
60	45	Μ	76	\checkmark	\checkmark	~	 ✓ 	\checkmark	~	\checkmark
60	60	L	76*4	Р3	P3	P3	P3	P3	P3	
80 80 80 90 90	40 80 160 45 90	L	120*4	P3	P3	P3	P3	P3	P3	

Fits with all grades of Slide

Ordering Details



_ 🗹 D.P.D Carria GV3 ď Slides GV3 ď Racks

P3 = Fits with P3 grade Slide only

8080(L) - H2200 - J50 - 2C / NM44 - L806 - P2 - (R) - (C) / 1x AU4434 - L180 - CS - DR

Carriage reference for example only Please specify from GV3 catalogue

<u>C</u>=Counterbored option for flush surface on GV3 Flat Slides

R=Rack mounted to GV3 Spacer Slide GV3 Flat Slide mounting to special order

> **P2**=Slide precision grade Options are P1, P2 & P3

> > - Slide Length <u>L</u> - Slide part number

BLANK PAGE

BLANK PAGE

CATALOGUE No. GV3 TECH 03 UK © 2018 Hepco Slide Systems Ltd. Reproduction in whole or part without prior authorisation from Hepco is prohibited. Although every effort has been made to ensure the accuracy of the information in this catalogue, Hepco cannot accept liability for any omissions or errors. Hepco reserves the right to make alterations to the product resulting from technical developments. Many Hepco products are protected by: Patents, Copyright, Design Right or Registered Design. Infringement is strictly prohibited and may be challenged in law. The Customer's attention is drawn to the following clause in Hepco's conditions of sale: The Costonier's antennion is drawn to the following clause in respects containing or solutions of sale. 'It shall be the Customer's sole responsibility to ensure that goods supplied by Hepco will be suitable or fit for any particular application or purpose of the Customer, whether or not such application or purpose is known to Hepco. The Customer will be solely responsible for any errors in, or omissions from, any specifications or information the Customer provides. Hepco will not be obliged to verify whether any such specifications or information are correct or sufficient for any application or purpose.' Hepco's full conditions of sale are available on request and will apply to all quotations and contracts for the supply of items detailed in this catalogue. HepcoMotion is the trading name of Hepco Slide Systems Ltd.

HepcoMotion.com

51

HepcoMotion[®]

ADVANCED LINEAR SOLUTIONS

For further information on HepcoMotion[®] products and details of worldwide representation, please visit:

HepcoMotion.com

HepcoMotion France (Also covering French-speaking Switzerland) www.hepcomotion.com/fr Tel: +33 (0) 1 34 64 30 44 Email: info.fr@hepcomotion.com

HepcoMotion South Korea www.hepcomotion.co.kr Tel: +82 (0) 31 352 7783 Email: hepcokr@chol.com

HepcoMotion Benelux (Covering Belgium, Luxembourg & Netherlands)

Luxembourg & Netherlands) www.hepcomotion.com/nl Tel: +31 (0) 492 551290 Email: info.nl@hepcomotion.com

HepcoMotion China www.hepcomotion.com.cn Tel: +86 21 5648 9055 Email: sales.china@hepcomotion.com

Group Headquarters www.hepcomotion.com Lower Moor Business Park Tiverton Way, Tiverton EX16 6TG England Tel: +44 (0)1884 257000 Email: sales@hepcomotion.com

Certification Number 14479 ISO 9001 HepcoMotion Germany

(Also covering Austria & German-speaking Switzerland)

HepcoMotion Spain

Tel:

+49 (0) 9128 92710

+34 93 205 84 47

Email: info.es@hepcomotion.com

info.de@hepcomotion.com